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a b s t r a c t

In this paper we obtain an explicit formula for the number of curves in P2, of degree d,
passing through (d(d + 3)/2 − k) generic points and having a singularity X, where X is of
type Ak≤7,Dk≤7 or Ek≤7. Our method comprises of expressing the enumerative problem as
the Euler class of an appropriate bundle and using a purely topological method to compute
the degenerate contribution to the Euler class. These numbers have also been computed by
M. Kazarian using the existence of universal formulas for Thom polynomials.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Enumerative geometry is a branch of mathematics concerned with the following question:

How many geometric objects are there which satisfy prescribed constraints?

A well known class of enumerative problems is that of singular curves in P2 (complex projective plane) passing through the
appropriate number of points. This question has been studied by algebraic geometers for a long time. However, in this paper
we use topological methods to tackle this problem. Although all our spaces and vector bundles will be algebraic, we will
often be considering C∞-sections of these bundles as opposed to holomorphic sections.

If p is a non-zero vector in C3, we will denote its equivalence class in P2 by p̃.1

Definition 1.1. Let f be a homogeneous degree d polynomial in three variables and p̃ ∈ P2. A point p̃ ∈ f −1(0) is of
singularity type Ak, Dk, E6, E7, or E8 if there exists a locally analytic coordinate system (x, y) : (U, p̃) → (C2, 0) such that
f −1(0) ∩ U is given by

Ak : y2 + xk+1
= 0 k ≥ 0, Dk : y2x + xk−1

= 0 k ≥ 4,

E6 : y3 + x4 = 0, E7 : y3 + yx3 = 0, E8 : y3 + x5 = 0.

In more common terminology, p̃ is a smooth point of f −1(0) if it is a singularity of type A0; a simple node if its singularity type
is A1; a cusp if its type is A2; a tacnode if its type is A3; an ordinary triple point if its type is D4.

∗ Corresponding author.
E-mail addresses: basu.somnath@gmail.com, somnath@rkmvu.ac.in (S. Basu), ritwikm@math.tifr.res.in (R. Mukherjee).

1 In this paper we will use the symbol Ã to denote the equivalence class of A instead of the standard [A]. This will make some of the calculations in
Section 4 easier to read.
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Remark 1.2. Before stating the main result of this paper, let us set up a practical terminology. We will frequently use the
phrase ‘‘a singularity of codimension k’’. Roughly speaking, this refers to the number of conditions having that singularity
imposes on the space of curves.More precisely, it is the expected codimension of the equisingular strata. Hence, a singularity
of type Ak, Dk or Ek≤8 is a singularity of codimension k.

The main result of this paper is as follows.

Theorem 1.3. Let X be a singularity of type Ak, Dk or Ek. Denote N(X) to be the number of degree d curves in P2 that pass through
d(d + 3)/2 − k generic points and has a singularity of type X and codimension k. Then

N(A1) = 3(d − 1)2,

N(A2) = 12(d − 1)(d − 2), N(A3) = 2(25d2 − 96d + 84),

N(A4) = 60(d − 3)(3d − 5), N(A5) = 18(35d2 − 190d + 239),

N(A6) = 7(316d2 − 1935d + 2769), N(A7) = 12(651d2 − 4400d + 7002),

N(D4) = 15(d − 2)2, N(D5) = 12(d − 2)(7d − 19),

N(D6) = 14(16d2 − 87d + 114), N(D7) = 48(15d2 − 92d + 135),

N(E6) = 21(d − 3)(4d − 9), N(E7) = 252d2 − 1464d + 2079,

provided d ≥ CX where

CAk = k, CD4 = 3, CDk = k − 2 if k ≥ 5, CE6 = 3, CE7 = 4.

Remark 1.4. The bound on d is imposed to ensure that the relevant sections we encounter are transverse to zero. In other
words, the numbers N(X)we compute are actually enumerative (meaning that they are counted with a multiplicity of one
in the linear system). However, the bound we impose is not necessarily the optimal bound. For example, strictly speaking
our formula for N(A2) is applicable if d ≥ 2. However, a little bit of thought shows that the formula we have obtained clearly
holds even when d = 1, since there are no lines with a cusp. In other words, the bound we impose is a sufficient condition
to prove transversality; it is not always a necessary condition.

The numbers N(X) have been previously computed by M. Kazarian in his paper [1] using a completely different method
(see Section 2). Themethodwe use to enumerate singular plane curves appliesmore generally to enumerating curves in any
sufficiently ample linear system L → X where X is a smooth compact complex algebraic surface. For instance, our method
also gives a formula for the number of curves in P1

× P1 of bi-degree (d1, d2) that pass through (d1 + 1)(d2 + 1) − 1 − k
that has a singularity of type X, where X is a singularity of type Ak, Dk or Ek and k ≤ 7. This is illustrated in our paper [2].
Kazarian’s method also generalizes to enumerating curves in a general linear system and he does obtain the results of our
paper [2]. Many of these numbers (for plane curves) have also been computed by Dimitry Kerner in his paper [3].

This paper contains the crucial details of computing the degenerate contribution to the Euler class that is needed to prove
Theorem 1.3 of this paper and Theorem 1.5 of [2].2 In order to keep the exposition simple, we have decided to focus on the
special case of plane singular curves in this paper and work out the more general case of an arbitrary linear system in [2].
Ourmethod also applies to enumerating singular hypersurfaces, as is illustrated in [4]. The problem of enumerating singular
hypersurfaces in Pn has also been studied by Kerner in [5]. Finally, ourmethod also applies to enumerating curveswithmore
than one singular point, as illustrated in [6] and [2].

In future,wehope to apply thismethod to enumerate curveswith singularities of typeAk,Dk and Ek, evenwhen k > 7. One
of the challenging aspect of thismethod is to have a thorough and systematic understanding of the closure of the equisingular
strata.We also expect this method to work for other types of singularities not defined in Definition 1.1, providedwe are able
to find a necessary and sufficient criteria for a curve to have that singularity in terms of vanishing andnonvanishing of certain
derivatives (see Section 3 for a precise discussion).

The results of this paper are an extension of the topological method employed in [7]. One of the crucial aspects of this
method is how we compute the degenerate contribution to the Euler class; we perturb the section smoothly (as opposed
to holomorphically) and count (with a sign) how many zeros are there near the degenerate locus. Hence our method is a
topologicalmethod as opposed to an algebro-geometric one. The most conceptual part of applying this method is to describe
a neighbourhood of the degenerate locus. This method of computing degenerate contributions continues to play a crucial
role when we enumerate curves with two singular points as is illustrated in our paper [6].

Our starting point will be the following well known fact from topology ([8], Proposition 12.8).

Theorem 1.5. Let V −→ X be a smooth oriented vector bundle over a compact oriented manifold X and suppose s : X −→ V is
a smooth section that is transverse to zero. Then the Poincaré dual of [s−1(0)] is the Euler class of V . In particular, if the rank of

2 Theorem 1.3 is actually a special case of Theorem 1.5 of [2].
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V is same as the dimension of X then the signed cardinality of s−1(0) is the Euler class of V , evaluated on the fundamental class
of X, i.e.,

| ± s−1(0)| = ⟨e(V ), [X]⟩.

Remark 1.6. Let X be a compact, complex manifold, V a holomorphic vector bundle and s a holomorphic section that is
transverse to the zero section. If the rank of V is same as the dimension of X , then the signed cardinality of s−1(0) is same
as its actual cardinality (provided X and V have their natural orientations). In the case of complex vector bundles, the Euler
class is also same as the top Chern class.

2. A survey of related results

‘‘Enumerative Geometry of Singular Curves’’ is a classical subject and has been studied extensively using tools of algebraic
geometry. As we explained in the introduction, the crucial aspect of our method is the way we compute the degenerate
contribution to the Euler class. We perturb the section smoothly (as opposed to holomorphically) and count (with a sign)
how many zeros are there in a neighbourhood of the degenerate locus. Hence, the method is topological as opposed to
algebro-geometric.

We now give a brief survey of related results in this area ofmathematics.We start by looking at the results ofM. Kazarian.
In [1] Kazarian has computed the numbers N(X) using a completely different approach. His method works on the principle
that there exists a universal formula (in terms of Chern classes) for the Thom polynomial associated to a given singularity.
He then goes on to consider enough special cases to find out what that exact combination is. As an example, suppose there is
a polynomial of degreem. To find out what the polynomial is, we simply have to find the value of the polynomial at enough
points [1, page 667]. One of the challenges of this method is to prove the existence of such a universal formula. Kazarian
has successfully applied this method to solve a large class of enumerative problems; in particular it recovers the result of
Theorem 1.3. In fact, he has obtained a formula for the number of degree d-curves (passing through d(d+3)

2 − κ generic
points) and having a singularity of type χk1 , χk2 , . . . , χkn , provided κ := k1 + k2 + · · · + kn ≤ 7. Here χki is a singularity of
codimension ki. Kazarian’s method also applies to the more general case of enumerating curves in a general linear system
that is sufficiently ample; in particular he obtains the results of [2].

Next, let us look at the results of I. Vainsencher. In [9], Vainsencher enumerates curves that have up to six nodes. He also
obtains a formula for N(A2) in [10]. His results are for a general linear system that is sufficiently ample.

Let us now describe the results of S. Kleiman and R. Piene. In [11, Theorem 1.2] they obtainmany of the formulas we have
obtained in Theorem 1.3; namely N(A1),N(D4),N(D6) and N(E7). They in fact obtain a formula for enumerating curves that
have up to eight simple nodes, or one triple point and up to three simple nodes, or one singularity of type D6 and up to
one simple node. Their results are applicable for a linear system that is suitably ample. By this they mean the following;
they consider a line bundle L −→ X over a smooth projective surface X that is of the form L := M⊗m

⊗ N , where m is
at least three times the expected codimension of the equisingular strata and where N is spanned by global holomorphic
sections. They then make the curves pass through the right number of generic points so that the expected number is finite.
The ampleness condition is used to prove that the numbers they compute are indeed enumerative, i.e. each curve appears
with a multiplicity of one in this linear system.

To summarize, the results of Kazarian, Vainsencher andKleiman and Piene are applicable for enumerating singular curves
in an arbitrary smooth projective surface (and not just for curves in P2).

Next, we note that in [12,13] and [14], Z. Ran, L. Caporaso and J. Harris have obtained a formula for the number of curves
of degree d in P2 (through the right number of generic points) having r simple nodes, for any r (provided d is sufficiently
larger than r).

The numbers N(X) have also been computed by Dimitry Kerner for many singularities in his paper [3] (for curves in P2).
Finally we note that a great deal of progress has been made in proving that universal formulas exist in terms of Chern

classes for the number of curves in a sufficiently ample linear system passing through the right number of generic points
and having singularities of typeχk1 , χk2 , . . . , χkn . The fact that a universal formula exists was conjectured by Göttschewhen
the singularities χk1 , . . . , χkn are all simple nodes. Two independent proofs of this conjecture have now been given using
methods of BPS calculus and using degeneration methods by Kool, Shende and Thomas [15] and Tzeng [16] respectively.
There is also an earlier approach by Liu in [17] and [18]. Recently, Li and Tzeng gave a proof for the existence of universal
formulas for any collection of singularities χk1 , χk2 , . . . , χkn in [19], thereby generalizing the Göttsche conjecture. A further
generalization of the Göttsche conjecture was proved by Rennemo, where he shows that there is a universal polynomial to
count hypersurfaces in a sufficiently ample linear system, with any collection of singularities ([20, Proposition 7.8]).

It should be noted that even for r-nodal curves in P2, it is not at all obvious when the polynomials obtained by the
Göttsche conjecture are actually enumerative. They are enumerative if d is large. However, Göttsche conjectured that these
polynomials are actually enumerative for all d roughly greater than r

2 . This has now been proven by Kleiman and Shende
in [21].

For an overview of this subject (enumerative geometry of singular curves), we direct the reader to the comprehensive
survey article [22] by Kleiman.
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3. Necessary and sufficient criteria for a singularity

In this section we state a necessary and sufficient criterion for a curve to have a singularity of type Ak≥0, Dk≥4, E6 and E7.
Let f = f (x, y) be a holomorphic function defined on a neighbourhood of the origin in C2 and i, j be non-negative integers.
We define

fij :=
∂ i+jf
∂ ix∂ jy


(x,y)=(0,0)

.

Let us now define the following directional derivatives, which are functions of fij:

Af
3 := f30, Af

4 := f40 −
3f 221
f02
, Af

5 := f50 −
10f21f31

f02
+

15f12f 221
f 202

,

Af
6 := f60 −

15f21f41
f02

−
10f 231
f02

+
60f12f21f31

f 202
+

45f 221f22
f 202

−
15f03f 321

f 302
−

90f 212f
2
21

f 302
,

Af
7 := f70 −

21f21f51
f02

−
35f31f41

f02
+

105f12f21f41
f 202

+
105f 221f32

f 202
+

70f12f 231
f 202

+
210f21f22f31

f 202

−
105f03f 221f31

f 302
−

420f 212f21f31
f 302

−
630f12f 221f22

f 302
−

105f13f 321
f 302

+
315f03f12f 321

f 402
+

630f 312f
2
21

f 402
,

Af
8 := f80 −

28f21f61
f02

−
56f31f51

f02
+

210f 221f42
f 202

+
420f21f22f41

f 202
−

210f03f 221f41
f 302

+
560f21f31f32

f 202

−
840f13f 221f31

f 302
−

420f 321f23
f 302

+
1260f03f 321f22

f 402
−

35f 241
f02

+
280f22f 231

f 202
−

280f03f21f 231
f 302

−
1260f 221f

2
22

f 302

+
105f04f 421

f 402
−

315f 203f
4
21

f 502
+

168f21f51f12
f 202

+
280f31f41f12

f 202
−

1680f 221f32f12
f 302

−
3360f21f22f31f12

f 302

+
2520f03f 221f31f12

f 402
+

2520f13f 321f12
f 402

−
840f21f41f 212

f 302
+

7560f 221f22f
2
12

f 402
−

560f 231f
2
12

f 302
−

5040f03f 321f
2
12

f 502

+
3360f21f31f 312

f 402
−

5040f 221f
4
12

f 502
(3.1)

and

Df
6 := f40, Df

7 := f50 −
5f 231
3f12

, Df
8 := f60 +

5f03f31f50
3f 212

−
5f31f41
f12

−
10f03f 331
3f 312

+
5f22f 231
f 212

. (3.2)

Wewill now state a necessary and sufficient criterion for a curve to have a specific singularity of one of the types Ak≥0,Dk≥4,
E6 and E7.

Lemma 3.1. Let f = f (x, y) be a holomorphic function defined on a neighbourhood of the origin in C2 such that f00 = 0 and
∇f |(0,0) ≠ 0. Then the curve has a singularity of type A0 at the origin (i.e., a smooth point).

Lemma 3.2. Let f = f (x, y) be a holomorphic function defined on a neighbourhood of the origin in C such that f00 = 0,
∇f |(0,0) = 0 and ∇

2f |(0,0) is non-degenerate. Then the curve has a singularity of type A1 at the origin.

Remark 3.3. Lemma 3.1 is also known as the Implicit Function Theorem and Lemma 3.2 is also known as theMorse Lemma.

We now state the remaining Lemmas, which can be thought of as a continuation of Lemma 3.2.

Lemma 3.4. Let f = f (r, s) be a holomorphic function defined on a neighbourhood of the origin in C such that f00 = 0,
∇f |(0,0) = 0 and there exists a non-zero vector η = (v1, v2) such that at the origin ∇

2f (η, ·) = 0, i.e., the Hessian is degenerate.
Let x := v1r + v2s, y := −v2r + v1s and fij be the partial derivatives with respect to the new variables x and y. Then, the curve
f −1(0) has a singularity of type Ak at the origin (for 2 ≤ k ≤ 7) if f02 ≠ 0 and the directional derivatives Af

i defined in (3.1) are
zero for all i ≤ k and Af

k+1 ≠ 0.

Proof. The result follows from the following observation.

Observation 3.5. Let f = f (r, s) be a holomorphic function defined on a neighbourhood of the origin in C such that
f (0, 0), ∇f |(0,0) = 0 and there exists a non-zero vector η = (v1, v2) such that at the origin ∇

2f (v, ·) = 0, i.e., the Hessian is
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degenerate. Let x := v1r + v2s, y := −v2r + v1s and fij be the partial derivatives with respect to the new variables x and y. If
f02 ≠ 0, there exists a coordinate chart (u, v) centred around the origin in C2 such that

f =


v2, or
v2 + uk+1, for some k ≥ 2.

(3.3)

In terms of the new coordinates we have f00 = f10 = f01 = f20 = f11 = 0 and f02 ≠ 0. Here ∂x + 0∂y = (1, 0) is the
distinguished direction along which the Hessian is degenerate.

Proof of observation. Let the Taylor expansion of f in the new coordinates be given by

f (x, y) = A0(x)+ A1(x)y + A2(x)y2 + · · · .

By our assumption on f , A2(0) ≠ 0.We claim that there exists a holomorphic function B(x) such that after wemake a change
of coordinates y = y1 + B(x), the function f is given by

f = Â0(x)+ Â2(x)y21 + Â3(x)y31 + · · ·

for some Âk(x) (i.e., Â1(x) ≡ 0). To see this, we note that this is possible if B(x) satisfies the identity

A1(x)+ 2A2(x)B + 3A3(x)B2
+ · · · ≡ 0. (3.4)

Since A2(0) ≠ 0, B(x) exists by the Implicit Function Theorem.3 Therefore, we can compute B(x) as a power series using
(3.4) and then compute Â0(x). Hence,

f = v2 +
Af
3

3!
x3 +

Af
4

4!
x4 + · · · , where v =


(Â2 + Â3y1 + · · · )y1, (3.5)

satisfies (3.3). �

Following the above procedure we find Aρi for i = 3, . . . , 7. In particular,

Af
3 = f30, Af

4 = f40 −
3f 221
f02
, Af

5 = f50 −
10f21f31

f02
+

15f12f 221
f 202

.

This concludes the proof of the Lemma. �

Lemma 3.6. Let f = f (x, y) be a holomorphic function defined on a neighbourhood of the origin in C such that
f00,∇f |(0,0),∇2f |(0,0) = 0 and there does not exist a non-zero vector η = (v1, v2) such that at the origin∇

3f (η, η, ·) = 0. Then
the curve f −1(0) has a singularity of type D4 at the origin.

Lemma 3.7. Let f = f (r, s) be a holomorphic function defined on a neighbourhood of the origin in C such that
f00,∇f |(0,0),∇2f |(0,0) = 0 and there exists a non-zero vector η = (v1, v2) such that at the origin ∇

3f (η, η, ·) = 0. Let
x := v1r + v2s, y := −v2r + v1s and fij be the partial derivatives with respect to the new variables x and y. Then, the curve
f −1(0) has a singularity of type Dk at the origin (for 5 ≤ k ≤ 7) if and only if f12 ≠ 0 and the directional derivatives Df

i defined
in (3.2) are zero for all i ≤ k and Df

k+1 ≠ 0.

As in the case of singularities of type Ak, we see that the proof of the above rests on the following observation which can be
proved via a combination of Taylor expansion and Implicit Function Theorem.

Observation 3.8. Let f = f (r, s) be a holomorphic function defined on a neighbourhood of the origin in C such that
f00,∇f |(0,0),∇2f |(0,0) = 0 and there exists a non-zero vector η = (v1, v2) such that at the origin ∇

3f (η, η, ·) = 0. Let
x = v1r + v2s, y = −v2r + v1s and fij be the partial derivatives with respect to the new variables x and y. If f12 ≠ 0,
there exists a coordinate chart (u, v) centred around the origin in C2 such that

f (u, v) ≡


v2u or
v2u + uk−1 for some k ≥ 5.

Lemma 3.9. Let f = f (r, s) be a holomorphic function defined on a neighbourhood of the origin in C such that f00 =

∇f |(0,0) = ∇
2f |(0,0) = 0 and there exists a non-zero vector η = (v1, v2) such that at the origin ∇

3f (η, η, ·) = 0. Let
x = v1r + v2s, y = −v2r + v1s and fij be partial derivatives with respect to the new coordinates, x and y. Then, the curve
f −1(0) has a singularity of type E6 at the origin if f12 = 0 and f03 ≠ 0, f40 ≠ 0.

3 Moreover it is unique if we require B(0) = 0.
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Lemma 3.10. Let f = f (r, s) be a holomorphic function defined on a neighbourhood of the origin in C such that
f00,∇f |(0,0),∇2f |(0,0) = 0 and there exists a non-zero vector η = (v1, v2) such that at the origin ∇

3f (η, η, ·) = 0. Let
x = v1r + v2s, y = −v2r + v1s. Let fij be the partial derivatives with respect to the new variables x and y. Then, the curve
f −1(0) has a singularity of type E7 at the origin if f12 = 0, f40 = 0 and f03 ≠ 0, f31 ≠ 0.

We omit the proof of these Lemmas. As illustrated in the proof of Lemma 3.4 and Observation 3.8, the basic idea is to write
down the Taylor expansion of f (x, y) and make a suitable (locally analytic) change of coordinates.

4. Proof of the main theorem via Euler class computation

4.1. A few basic notations

For the convenience of the reader, we define the various spaces and bundles as and when they get needed as opposed to
defining them earlier in one place. We feel this will make our manuscript easier to follow.

First, let us set up some basic notation. We recall the definition of the tautological line bundle γPn over Pn. Although this
definition is a standard one, we urge the reader to carefully go through the definition, since it will be crucial throughout the
paper. The tautological line bundle is defined as follows:

γPn := {(l, v) ∈ Pn
× Cn+1

: v ∈ l} −→ Pn.

Thus, an element of Pn is a line l through the origin in Cn+1. The phrase ‘‘v ∈ l’’ should now make sense; it means that v is
a point in Cn+1 that belongs to the line l. If πPn : γPn −→ Pn is the projection map, then π−1

Pn (l) is the entire line l in Cn+1.
Hence, we are viewing γPn as a sub bundle of the trivial bundle Pn

× Cn+1.
Next, following the notation in [7] we will denote the space of curves of degree d in P2 by D . It follows that D ∼= Pκd ,

where κd := d(d+ 3)/2. A homogeneous polynomial f , of degree d in 3 variables, induces a holomorphic section of the line
bundle γ ∗d

P2 −→ P2. If f is non-zero, then we will denote its equivalence class in D by f̃ . Similarly, if p is a non-zero vector in
C3, we will denote its equivalence class in P2 by p̃. As explained earlier, in this paper we will use the symbol Ã to denote the
equivalence class of A instead of the standard [A] since it will make some of the calculations in Section 4 easier to read.

Next, we will denote the tautological line bundle over D as γD . Let us also denote by γ̂ the tautological line bundle over
PTP2, the projectivization of the tangent space of P2. Following the notation of [7], we denote

a := c1(γ ∗

P2) ∈ H2(P2,Z), y := c1(γ ∗

D) ∈ H2(P2,Z) and λ := c1(γ̂ ∗) ∈ H2(PTP2,Z).

Finally, we will be following a standard abuse of notation: if V is a bundle over M1, we will also say that V is a bundle over
M1 × M2. The intended meaning is that we are referring by V the pullback bundle π∗

1 V −→ M1 × M2, where π1 is the
projection map. Similarly, if α is a cohomology class in M1, we will also say that α is a cohomology class in M1 × M2; the
intended meaning being π∗

1α. Hence, when we say that γ ∗

P2 −→ D × P2 is a bundle over D × P2, our intended meaning is
π∗

P2γ
∗

P2 −→ D × P2. Similarly, when we say that a ∈ H2(D × P2
; Z), our intended meaning is π∗

P2a ∈ H2(D × P2
; Z).

We will now give a proof for each of the formulas in Theorem 1.3. For the convenience of the reader, we have split the
results into several subsections.

4.2. Computing N(A1)

We will now start with the computation of N(A1).

Theorem 4.1. Let N(A1, n) denote the number of degree d curves in P2 through κd − 1 − n generic points and having an
A1-singularity at the intersection of n generic lines. Then,

N(A1, n) =


3(d − 1)2, if n = 0;
3(d − 1), if n = 1;
1, if n = 2;
0, otherwise.

(4.1)

Proof. Let p̃1, p̃2, . . . , p̃κd−1−n be κd − 1 − n generic points and L1, . . . , Ln be n generic lines in P2. Define

Hi := {f̃ ∈ D : f (p̃i) = 0}, Ĥi := Hi × P2 and L̂i := D × Li.

Then N(A1, n) is the cardinality of the set

{(f̃ , p̃) ∈ D × P2
: f (p̃) = 0, ∇f |p̃ = 0} ∩ Ĥ1 ∩ . . . Ĥκd−1−n ∩ L̂1 ∩ . . . L̂n. (4.2)
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Let us now define holomorphic sections of the following bundles:

ψA0 : D × P2
−→LA0 := γ ∗

D ⊗ γ ∗d
P2 , {ψA0(f̃ , p̃)}(f ) := f (p̃), (4.3)

ψA1 : ψ−1
A0
(0) −→VA1 := γ ∗

D ⊗ T ∗P2
⊗ γ ∗d

P2 , {ψA1(f̃ , p̃)}(f ) := ∇f |p̃. (4.4)

Wewill now explain themeaning of (4.3) and (4.4). Althoughwhat we are about to explain is a standard fact, we request the
reader to carefully go through our explanation since it will prove to be extremely important throughout the paper.4 Note
that γ ∗d

P2 refers to the dth-tensor power of the dual of γP2 , i.e.

γ ∗d
P2 := (γ ∗

P2)
⊗d.

Wewill denote the fibre at each point p̃ ∈ P2 by γ ∗d
P2 |p̃. Similarly, we will denote the fibre of the tautological bundle at each

point f̃ ∈ D by γD |f̃ .
Let us now explain an important point; note the difference between f̃ and f . Observe that f̃ is an element of D , while f is

an element of the fibre γD |f̃ . We are now ready to explain the meaning of (4.3). In (4.3), the right hand side is an element of
the vector space γ ∗d

P2 |p̃. Secondly, f belongs to the vector space γD |f̃ . Hence ψA0(f̃ , p̃) is a linear map from the vector space
γD |f̃ , with values in γ ∗d

P2 |p̃. Hence ψA0(f̃ , p̃) is an element of the vector space γD |
∗

f̃
⊗ γ ∗d

P2 |p̃. Hence, ψA0(f̃ , p̃) is a section of

the line bundle LA0 := γ ∗
D ⊗ γ ∗d

P2 .
Next, if f : P2

−→ γ ∗d
P2 is a section, then ∇f |p̃ is a linear map from Tp̃P2

−→ γ ∗d
P2 |p̃. Hence, the right hand side of (4.4) is

an element of T ∗

p̃ P2
⊗ γ ∗d

P2 |p̃. Hence ψA1(f̃ , p̃) is a linear map from γD |f̃ to T ∗

p̃ P2
⊗ γ ∗d

P2 |p̃. Hence, ψA1 is a section of the rank
two bundle VA1 := γ ∗

D ⊗ T ∗P2
⊗ γ ∗d

P2 .
We will justify shortly (in Lemmas 4.2 and 4.3) that the sections ψA0 and ψA1 are transverse to zero if d ≥ 1. Since the

κd − 1 − n points and n lines are generic, we conclude that the intersection in (4.2) is transverse. Furthermore, if (f̃ , p̃)
belongs to the set defined in (4.2), then f has a genuine A1-singularity at p̃ (as opposed to something more degenerate like
a cusp for instance). Since ψA0 and ψA1 are holomorphic, we conclude that

N(A1, n) = ⟨e(VA1)y
κd−1−nan, [ψ−1

A0
(0)]⟩,

= ⟨e(LA0)e(VA1)y
κd−1−nan, [D × P2

]⟩. (4.5)

The second equality follows from the fact that the Poincaré Dual of [ψ−1
A0
(0)] inD ×P2 is e(LA0) (using Theorem 1.5). Using

the splitting principle, we conclude that

e(LA0)e(VA1) = (y + da)((y + da)2 − 3a(y + da)+ 3a2). (4.6)

Eq. (4.1) now follows from (4.5), (4.6) and by extracting the coefficient of yκda2 in

e(LA0)e(VA1)y
κd−1−nan. �

We now prove the two assertions about transversality.

Lemma 4.2. The section

ψA0 : D × P2
−→ LA0 := γ ∗

D ⊗ γ ∗d
P2 given by {ψA0(f̃ , p̃)}(f ) := f (p̃)

is transverse to the zero section if d ≥ 1.

Proof. Suppose (f̃ , p̃) ∈ ψ−1
A0
(0). Choose homogeneous coordinates [X : Y : Z] on P2 so that p̃ = [0 : 0 : 1] and let

U :=

[X : Y : Z] ∈ P2

: Z ≠ 0

, ϕU : U −→ C2, ϕU([X : Y : Z]) = (X/Z, Y/Z).

Let us also denote x := X/Z and y := Y/Z . In local coordinates, proving transversality is equivalent to showing that the map

F ∗
× C2

−→ C, (f , x, y) → f (x, y)

is transverse to zero at (f , 0, 0) (in the usual calculus sense). Here F ∼= Cκd+1 denotes the space of polynomials in two
variables of degree at most d and F ∗ is the subspace of non-zero polynomials.5 Thus, the section can be rewritten as

ψA0(f , x, y) = f (x, y) := f00 + f10x + f01y +
f20
2

x2 + f11xy +
f02
2

y2 + · · · .

Since the Jacobian matrix of this map at (f , 0, 0) is (1 0 0 . . .), where the first column is partial derivative with respect
to f00, transversality follows. �

4 The reader is urged to first review the definition of the tautological line bundle as defined in Section 4.1.
5 This can also be thought of as homogeneous polynomials, in 3 variables, of degree d.
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Lemma 4.3. The section

ψA1 : ψ−1
A0
(0) −→ VA1 given by {ψA1(f̃ , p̃)}(f ) := ∇f |p̃

is transverse to the zero section if d ≥ 1.

Proof. Continuing with the setup of Lemma 4.2, transversality is equivalent to showing that the map

F ∗
× C2

−→ C3, (f , x, y) →

f (x, y), fx(x, y), fy(x, y)


is transverse to zero at (f , 0, 0) (in the usual calculus sense). Since d ≥ 1,

f (x, y) = f00 + f10x + f01y + · · ·

and the Jacobian at (f , 0, 0) has the identity matrix as the first three columns, where the first three columns are partial
derivatives with respect to f00, f10 and f01. Hence, transversality follows. �

Remark 4.4. Thismethod is different fromDimitry Kerner’s method (cf. [3], page 20). His method is specific to P2. Our proof
of Theorem4.1 easily generalizes to enumerating curves in a linear systemH0(X, L), provided L −→ X is a sufficiently ample
line bundle. This is shown in our paper [2]. By a slight modification of the proof of Theorem 4.1, we can show that

N(A1) = ⟨3c1(L)2 + 2c1(L)c1(T ∗X)+ c2(TX), [X]⟩.

The ampleness condition is required to prove the transversality hypothesis. Kazarian’s method also produces the above
formula.

4.3. Computing N(A2)

Before proving our formula for N(A2), let us set up some notation. Let γ̂ −→ PTP2 denote the tautological bundle over
PTP2. Given an element lp̃ ∈ PTP2, we denote γ̂ |lp̃ to be the fibre over lp̃. We now define

A2 := {(f̃ , lp̃) ∈ D × PTP2
: f has an A2-singularity at p̃} and

PA2 := {(f̃ , lp̃) ∈ D × PTP2
: f has an A2-singularity at p̃, ∇

2f (v, ·) = 0 ∀ v ∈ γ̂ |lp̃}.

Let us explain in words what this space is. First, we recall that PTP2 is the projectivized tangent space of P2. We denote an
element of PTP2 as lp̃. The letter l is to remind the reader that an element of PTp̃P2 is actually a line through the origin in
Tp̃P2. Hence, the phrase v ∈ γ̂ |lp̃ means that v is a tangent vector in Tp̃P2 that belongs to the line lp̃. Hence, PA2 is the space
of degree d curves f̃ and a marked point p̃ and a marked direction lp̃ such that f has an A2-singularity at p̃ and the Hessian is
degenerate along the direction lp̃. That is what the phrase

∇
2f |p̃(v, ·) = 0 ∀ v ∈ γ̂ |lp̃

means.6 Let us now define the following number:

N(PA2, n,m) := ⟨yκd−2−n−manλm, [PA2]⟩,

where λ := c1(γ̂ ∗) ∈ H2(PTP2,Z). There is a one to one correspondence between the elements of A2 and PA2. In other
words, the projection map from PA2 to A2 is one to one. Hence, we conclude that

N(A2, n) = N(PA2, n, 0).

Next,wewill denote the pullback of the tangent bundle TP2 overPTP2 byπ∗TP2
−→ PTP2, whereπ : PTP2

−→ P2 denotes
the projection map. This is the one place we will not omit writing the pullback map; that is because π∗TP2 actually splits as
a sum of line bundles. Note that γ̂ is a sub bundle ofπ∗TP2. Hencewe can define the quotient bundle (π∗TP2/γ̂ ) −→ PTP2.
Hence

π∗TP2
≈ γ̂ ⊕


π∗TP2/γ̂


−→ PTP2.

Let us explain the above splitting more clearly. The tautological line bundle γ̂ −→ PTP2 is a sub bundle of the pullback of
the tangent bundle π∗TP2

−→ PTP2. More precisely, if lp̃ ∈ PTP2, that means lp̃ can be thought of as a non zero tangent
vector at Tp̃P2 up to scaling. The fibre γ̂ |lp̃ is precisely all scalar multiples of this non zero tangent vector. More precisely,

γ̂ := {(lp̃, v) ∈ π∗TP2
: v ∈ lp̃}.

6 Note that if (f̃ , lp̃) ∈ PA2 , then f has a cusp at p̃, but it can also have a singularity at some point other than p̃.
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Hence γ̂ is a sub bundle of π∗TP2. Given a holomorphic bundle V and a holomorphic sub bundle W , the quotient V/W is
also a holomorphic sub bundle. And hence V splits as a direct sum of two holomorphic bundles

V ≈ W ⊕ V/W .

Hence π∗TP2 splits holomorphically as a direct sum of the tautological bundle γ̂ and the quotient bundle π∗TP2/γ̂ .
Both the tautological bundle γ̂ and the quotient bundle (π∗TP2/γ̂ ) will play an important role in our computations.

We are now ready to prove the formula for N(A2).

Theorem 4.5. If d ≥ 2, then

N(PA2, n, 0) = 2N(A1, n)+ 2(d − 3)N(A1, n + 1)

N(PA2, n, 1) = N(A1, n)+ (2d − 9)N(A1, n + 1)+ (d2 − 9d + 18)N(A1, n + 2)
N(PA2, n,m) = −3N(PA2, n + 1,m − 1)− 3N(PA2, n + 2,m − 2) ∀m ≥ 2.

Note that combining this result with our formula for N(A1, n) (Theorem 4.1) we obtain the formula for N(A2)
(cf. Theorem 1.3).

Remark 4.6. The number N(PA2, n,m) is the signed cardinality of a set when m ≠ 0. This number can very easily be
negative. For example N(PA2, 0, 1) = 10d2 − 48d + 48. For d = 2 and 3 this turns out to be −8 and −6. We will see
shortly why N(PA2, n,m) is in general a signed cardinality; this is essentially a consequence of the fact that the bundle
γ̂ ∗

−→ PTP2 does not admit any non zero holomorphic sections.

Proof. Define the bundle

Wn,m,2 :=

κd−2−n−m
i=1

γ ∗

D


⊕

 n
i=1

γ ∗

P2


⊕

 m
i=1

γ̂ ∗


−→ D × PTP2 (4.7)

and let Q : D × PTP2
−→ Wn,m,2 be a generic smooth section that is transverse to zero. We remind the reader about the

abuse of notation we make: if V is a bundle over M1, we will also say that V is a bundle over M1 × M2, where the intended
meaning is π∗

1 V −→ M1 × M2, where π1 is the projection map.
Next, we note that unless m = 0, the bundle Wn,m,2 need not have any holomorphic sections that is transverse to zero.

To see why this is so, let us think of Q as

Q := Q1 ⊕ Q2 ⊕ Q3,

where Q1, Q2 and Q3 map into
κd−2−n−m

i=1 γ ∗
D


,
n

i=1 γ
∗

P2


and

m
i=1 γ̂

∗


respectively. The sectionsQ1 and Q2 can be

non zero and holomorphic, but Q3 cannot be a non zero holomorphic section. This is because γ̂ ∗
−→ PTP2 does not admit

any non zero holomorphic section. And if we take Q3 to be the zero section, then Q will not be transverse to zero (even if
Q1 ⊕ Q2 is transverse to zero). Our purpose of considering Q is to look at its zero set and compute its intersection number
with a given variety of the complementary dimension. In order to do that we have to be able to make sure that we can
perturb Q so that not only is Q transverse to zero, but the zero set intersects a given variety transversally (in other words
Q−1(0) can be made to intersect the given variety only on the smooth locus of the variety, where it makes sense to talk of
transverse intersection). This is possible in general only if we insist that the section Q is smooth as opposed to holomorphic.
This is the reason N(PA2, n,m) is in general the signed cardinality of a set whenm ≠ 0 (see Remark 4.6).

Let us now define

A1 := {(f̃ , p̃) ∈ D × P2
: f has an A1-singularity at p̃}, and Â1 := π−1(A1),

where π : D × PTP2
−→ D × P2 is the projection map. We claim that the closure of A1 inside D × P2 is given by

A1 = {(f̃ , p̃) ∈ D × P2
: f (p̃) = 0, ∇fp̃ = 0}.

We will prove that shortly (in Lemma 4.7). By Lemma 4.3 we conclude that A1 is a smooth complex manifold of dimension
κd − 1. Hence Â1 = π−1(A1) is a smooth complex manifold of dimension κd. In particular,

Â1 = {(f̃ , lp̃) ∈ D × PTP2
: f (p̃), ∇f |p̃ = 0}.

We now define a section of the following bundle

ΨPA2 : Â1 −→ VPA2 := γ ∗

D ⊗ γ̂ ∗
⊗ π∗T ∗P2

⊗ γ ∗d
P2

given by {ΨPA2(f̃ , lp̃)}(f ⊗ v) := ∇
2f |p̃(v, ·) ∀ v ∈ γ̂ |lp̃ .
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We will show shortly (in Lemma 4.9), that if d ≥ 2, then this section is transverse to zero. Hence, if Q is a generic section,
then the zeros of the section

ΨPA2 ⊕ Q : Â1 −→ VPA2 ⊕ Wn,m,2,

counted with a sign, is our desired number. Hence, we have

N(PA2, n,m) =

e(VPA2)e(Wn,m,2), [Â1]


,

=

e(VPA2)e(Wn,m,2), [π−1(A1)]


. (4.8)

By the splitting principle,

e(VPA2)e(Wn,m,2) = ((λ+ y + da)2 − 3a(λ+ y + da)+ 3a2)yκd−(n+m+2)anλm. (4.9)

Next we use the fact that for all n1
π∗(yκd−(n1+1)an1)λ, [π−1(A1)]


=


yκd−(n1+1)an1 , [A1]


and

π∗(yκd−n1an1), [π−1(A1)]

= 0. (4.10)

This follows from [8] (pp. 270). Finally, using the ring structure of H∗(PTP2
; Z) (again using [8], pp. 270) we conclude that

λ2 + 3aλ+ 3a2 = 0. (4.11)

Using Eqs. (4.8)–(4.11) we obtain the identities stated at the outset. �

We now prove the closure and transversality claims.

Lemma 4.7. If d ≥ 2, then the variety A1 is given by

A1 = {(f̃ , p̃) ∈ D × P2
: f (p̃) = 0, ∇fp̃ = 0}. (4.12)

Proof. First, we note that by Lemma 3.2 we conclude that the space A1 can be described as

A1 = {(f̃ , p̃) ∈ D × P2
: f (p̃) = 0, ∇f |p̃ = 0, det∇2f |p̃ ≠ 0}. (4.13)

Remark 4.8. We said that the space A1 ‘‘can be described as’’ as opposed to ‘‘is described as’’. This is because by definition,
the space A1 is described as

A1 := {(f̃ , p̃) ∈ D × P2
: f has an A1-singularity at p̃}.

It is using Lemma 3.2 that we can describe the space A1 as in (4.13).

Let us now continue with the proof of Lemma 4.7. It is clear the left hand side of (4.12) is a subset of the right hand side. We
will now prove the converse. Suppose (f̃ , p̃) belongs to the right hand side of (4.12). We need to show that there exists a
sequence in the left hand side of (4.12) that converges to (f̃ , p̃). In order to do that, we will use local coordinates. In an affine
coordinate chart, let us fix the point p̃ to be (0, 0) and let us assume that the Taylor expansion of f around p̃ is given by

f (x, y) = f00 + f10x + f01y +
f20
2

x2 + f11xy +
f02
2

y2 + · · · .

Since (f̃ , p̃) belongs to the right hand side of (4.12), we conclude f00, f10 and f01 are equal to zero. If f20f02 − f 211 ≠ 0 then
there is nothing further to prove. Hence, suppose f20f02 − f 211 = 0. Then we consider three cases: suppose f20 ≠ 0. Then
define the sequence fn as

(fn)ij := fij if (i, j) ≠ (0, 2) and

(fn)02 :=
f 211
f20

+
1
n
.

A similar argument holds if f02 ≠ 0. Finally, suppose f20 and f02 are both zero. Since f20f02 − f 211 = 0, this implies that f11 is
also zero. Hence, construct the sequence given by

(fn)ij := fij if (i, j) ≠ (0, 2) or (2, 0) and

(fn)02 :=
1
n

and (fn)20 :=
1
n
.

It is easy to see that in all the cases, fn is a sequence in the left hand side of (4.12) that converges to (f̃ , p̃). �
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We now prove the transversality claim.

Lemma 4.9. The section

ΨPA2 : Â1 −→ VPA2 := γ ∗

D ⊗ γ̂ ∗
⊗ π∗T ∗P2

⊗ γ ∗d
P2

given by {ΨPA2(f̃ , lp̃)}(f ⊗ v) := ∇
2f |p̃(v, ·) ∀ v ∈ γ̂ |lp̃ .

is transverse to the zero section if d ≥ 2.

Proof. We continue with the setup of Lemma 4.3, but choose coordinate chart so that

Ũ := {[a∂x, b∂y] ∈ PTP2
|U : a ≠ 0}, ϕŨ : Ũ −→ C3, ϕŨ([a∂x, b∂y]) = (x, y, η),

where η := b/a. With respect to this coordinate chart and the standard trivialization of the bundles, transversality is
equivalent to showing that the map

F ∗
× C3

−→ C5, (f , x, y, η) →

f (x, y), fx, fy, fxx + ηfxy, fxy + ηfyy


is transverse to zero at (f , 0, 0, 0). The Jacobian matrix of this map at (f , 0, 0, 0) is a 5 × (κd + 4) matrix which has full
rank if d ≥ 2. This is easy to see if the first five columns of the matrix are partial derivatives with respect to f00, f10, f01, f20
and f11. �

4.4. Computing N(A3)

Let us now consider the following two spaces

A3 := {(f̃ , p̃) ∈ D × TP2
: f has a singularity of type A3 at p̃} and

PA3 := {(f̃ , lp̃) ∈ D × PTP2
: f has a singularity of type A3 at p̃,∇2f |p̃(v, ·) = 0 ∀ v ∈ γ̂lp̃}.

Define the following number:

N(PA3, n,m) := ⟨yκd−3−n−manλm, [PA3]⟩.

Since the projection map from PA3 to A3 is one to one, we conclude that whenm = 0,

N(A3, n) = N(PA3, n, 0).

We are now ready to prove the formula for N(A3).

Theorem 4.10. If d ≥ 3, then

N(PA3, n,m) = N(PA2, n,m)+ 3N(PA2, n,m + 1)+ dN(PA2, n + 1,m). (4.14)

Note that combining this result with Theorem 4.5 we obtain the formula for N(A3) as stated in Theorem 1.3.

Proof. Define

Wn,m,3 :=

κd−3−n−m
i=1

γ ∗

D


⊕

 n
i=1

γ ∗

P2


⊕

 m
i=1

γ̂ ∗


−→ D × PTP2 (4.15)

and let Q : D × PTP2
−→ Wn,m,3 be a generic smooth section. Again, unless m = 0, the bundle Wn,m,3 need not have any

holomorphic sections that is transverse to zero. We claim that

PA2 = {(f̃ , lp̃) ∈ D × PTP2
: f (p̃), ∇f |p̃ = 0, ∇

2f |p̃(v, ·) = 0 ∀ v ∈ γ̂ |lp̃}. (4.16)

The proof of this claim is very similar to the proof of Lemma 4.7, hence we omit it. It is clear that the left hand side of (4.16)
is a subset of the right hand side. Proving the converse is very similar to the proof of Lemma 4.7; given an element in the
right hand side of (4.16), it is easy to construct a sequence that lies in PA2 converging to that given element.

Next, we note that this claim in particular implies that the variety PA2 is smooth of dimension κd − 2; this follows from
Lemma 4.9.

Let us now define a section of the following line bundle

ΨPA3 : PA2 −→ LPA3 := γ ∗

D ⊗ γ̂ ∗3
⊗ γ ∗d

P2 (4.17)

defined by

{ΨPA3(f̃ , lp̃)}(f ⊗ v⊗3) := ∇
3f |p̃(v, v, v). (4.18)
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If d ≥ 3, then this section is transverse to the zero section. The proof follows from the setup of the proof of Lemma 4.9, by
taking partial derivatives with respect to f00, f10, f01, f20, f11 and f30.

Since Q is a generic section, the zeros of the section

ΨPA3 ⊕ Q : PA2 −→ LPA3 ⊕ Wn,m,3

counted with a sign is N(PA3, n,m). Hence

N(PA3, n,m) = ⟨e(LPA3)e(Wn,m,3), [PA2]⟩.

Since

e(LPA3) = y + 3λ+ da,

we immediately get (4.14). �

We will be using the following fact in our subsequent computations:

Lemma 4.11. Let

ΨPA3 : PA2 −→ LPA3 := γ ∗

D ⊗ γ̂ ∗3
⊗ γ ∗d

P2

be the section induced by taking the third derivative as defined in (4.18). If d ≥ 4, then the variety PA3 can be described as
Ψ−1

PA3
(0). In particular, the variety PA3 is smooth of dimension κd − 3.

Proof. Let us first set up some terminology. Given an element (f̃ , lp̃) ∈ D × PTP2, let us fix a non zero vector v ∈ γ̂ |lp̃ .
Furthermore, let us fix a non zero representative

w ∈


π∗TP2/γ̂


lp̃

of the quotient space. Let us make the following abbreviation

fij := ∇
i+jf |p̃(v, . . . , v  

i times

, w, . . . , w  
j times

).

With this notation, we note that the space PA3 can be described as

PA3 =


(f̃ , lp̃) ∈ PA2 : f30 = 0, f02 ≠ 0, f02f40 − 3f 221 ≠ 0


.

This follows from Lemma 3.4. First of all, note that all the three expressions are well defined on the quotient space. In order
to see that, we need to show that the expressions are invariant underw −→ w+ v. Clearly f30 is well defined, since it does
not involvew. Next, we note that

∇
2fp̃(w + v,w + v) = ∇

2fp̃(w,w)+ 2∇2fp̃(v,w)+ ∇
2fp̃(v, v)

= ∇
2fp̃(w,w).

The last equality follows from the fact that ∇2fp̃(v,w) and ∇
2fp̃(v, v) are both zero. This is because (f̃ , lp̃) ∈ PA2 and hence

∇
2f |p̃(v, ·) = 0.
Next, we need to show that f02f40 − 3f 221 is well defined. To see that, we note that

∇
3f |p̃(v, v,w + v) = ∇

3f |p̃(v, v, v)+ ∇
3f |p̃(v, v,w)

= ∇
3f |p̃(v, v,w).

The last equality follows from the fact that f30 = 0. Hence f21 is well defined. Combined with the fact that f02 is well defined,
we conclude that f02f40 − 3f 221 is well defined.

We claim that

PA3 =


(f̃ , lp̃) ∈ PA2 : f30 = 0


. (4.19)

Again, it is clear that the left hand side of (4.19) is a subset of its right hand side. To prove the converse, suppose (f̃ , lp̃)
belongs to the right hand side of (4.19). Following the setup of Lemma 4.7, let us use local coordinates and fix the point p̃ to
be (0, 0). Suppose the Taylor expansion of f around (0, 0) is given by

f (x, y) = f00 + f10x + f01y +
f20
2

x2 + f11xy +
f02
2

y2 + · · · .
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Since (f̃ , lp̃)belongs to the right hand side of (4.19),we conclude that f00, f10, f01, f20, f11 and f30 are all 0. If f02 and

f40−

3f 221
f02


are both non zero, then there is nothing to prove. Suppose f02 ≠ 0, but f02f40 − 3f 221 = 0. Then define a sequence fn given by

(fn)ij := fij if (i, j) ≠ (4, 0),

(fn)40 :=
3f 221
f02

+
1
n
.

This is a sequence that belongs to PA3 and converges to (f̃ , lp̃). Next, suppose

f02 = 0 and f02f40 − 3f 221 = 0.

Then define a sequence given by

(fn)ij := fij if (i, j) ≠ (4, 0), (2, 1) or (0, 2),

(fn)02 :=
1
n
, (fn)21 :=

1
n

and (fn)40 :=
4
n
.

This is a sequence that belongs to PA3 and converges to (f̃ , lp̃). This proves the claim. The variety PA3 is smooth because
the section ΨPA3 is transverse to the zero section (as explained in the proof of Theorem 4.10). �

4.5. Computing N(D4)

Let us consider the spaces D4 and PD4 defined as

D4 := {(f̃ , lp̃) ∈ D × PTP2
: f has a singularity of type D4 at p̃} and

PD4 := {(f̃ , lp̃) ∈ D × PTP2
: f has a singularity of type D4 at p̃, ∇

3f |p̃(v, v, v) = 0 if v ∈ γ̂ |lp̃}.

Define the following number:

N(PD4, n,m) := ⟨yκd−4−n−manλm, [PD4]⟩.

Note that the projection map π : PD4 −→ D4 is three to one because there are three distinguished directions along which
the third derivative vanishes for an ordinary triple point. Hence, whenm = 0

N(D4, n) =
1
3
N(PD4, n, 0). (4.20)

We are now ready to prove the formula for N(D4). Let us first define

Wn,m,k :=

κd−k−n−m
i=1

γ ∗

D


⊕

 n
i=1

γ ∗

P2


⊕

 m
i=1

γ̂ ∗


−→ D × PTP2. (4.21)

Theorem 4.12. If d ≥ 3, then

N(PD4, n,m) = N(PA3, n,m)− 2N(PA3, n,m + 1)+ (d − 6)N(PA3, n + 1,m). (4.22)

Note that combining this result with Theorem 4.10 and (4.20), we arrive at the formula for N(D4) stated in Theorem 1.3.

Proof. Let Wn,m,k be as in (4.21) with k = 4 and let Q : D × PTP2
−→ Wn,m,4 be a generic smooth section. We continue

with the setup of Theorem 4.10; given an element (f̃ , lp̃) ∈ D × PTP2, we fix a non zero vector v ∈ γ̂ |lp̃ and fix a non zero
representative

w ∈


π∗TP2/γ̂


lp̃

on the quotient space. We also abbreviate

fij := ∇
i+jf |p̃(v, . . . , v  

i times

, w, . . . , w  
j times

). (4.23)

We claim that the space PD4 can be described as

PD4 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PA3 : f02 = 0, 4f03f 321 − 3f 212f

2
21 ≠ 0}. (4.24)

We will now justify why this is so. First of all we note that as before f02 and 4f03f 321 − 3f 212f
2
21 are well defined on the quotient

space; the proof follows from a straightforward computation of these directional derivatives by replacing w with w + v.
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Next, suppose (f̃ , lp̃) ∈ PD4. That implies that

f00, f10, f01, f20, f11, f02, f30 = 0 and

β := f 230f
2
03 − 6f03f12f21f30 + 4f 312f30 + 4f03f 321 − 3f 212f

2
21 ≠ 0.

The last condition is saying that the cubic term in the Taylor expansion of f has no repeated roots (which is precisely the non
degeneracy condition for an ordinary triple point). Note that β is the discriminant of the cubic term of the Taylor expansion.
Let us rewrite the above two equations in the following way

f00, f10, f01, f20, f11, f30 = 0, (4.25)
f02 = 0 and β ≠ 0. (4.26)

If (f̃ , lp̃) satisfies (4.25), then it means that (f̃ , lp̃) ∈ PA3 (this follows from Lemma 4.11). Since f30 = 0, β simplifies to
4f03f 321 − 3f 212f

2
21. This proves (4.24).

Next, let us define a section of the following line bundle

ΨPD4 : PA3 −→ LPD4 := γ ∗

D ⊗


π∗TP2/γ̂

∗2
⊗ γ ∗d

P2

defined by

{ΨPD4(f̃ , lp̃)}(f ⊗ w⊗2) := ∇
2f |p̃(w,w) = f02. (4.27)

If d ≥ 3, then this section is transverse to the zero section. The proof follows from the setup of the proof of Lemma 4.9,
by taking partial derivatives with respect to f00, f10, f01, f20, f11, f30 and f02.

Since Q is a generic section, the zeros of the section

ΨPD4 ⊕ Q : PA3 −→ LPD4 ⊕ Wn,m,4

counted with a sign is N(PD4, n,m). Hence

N(PD4, n,m) = ⟨e(LPD4)e(Wn,m,3), [PA3]⟩.

Since

e(LPD4) = y + 2(−3a − λ)+ da = y − 2λ+ (d − 6)a,

we immediately get (4.14). �

We will be using the following fact in our subsequent computations:

Lemma 4.13. Let

ΨPD4 : PA3 −→ LPD4 := γ ∗

D ⊗


π∗TP2/γ̂

∗2
⊗ γ ∗d

P2

be the section as defined in (4.57). If d ≥ 3, then the variety PD4 can be described as Ψ−1
PD4

(0). Furthermore, the variety PD4 is
smooth of dimension κd − 4.

Proof. As shown in the proof of Theorem 4.12, the space PD4 can be described as

PD4 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PA3 : f02 = 0, 4f03f 321 − 3f 212f

2
21 ≠ 0}.

We claim that

PD4 =


(f̃ , lp̃) ∈ PA3 : f02 = 0


. (4.28)

Again, it is clear that the left hand side of (4.28) is a subset of the right hand side. To prove the converse, suppose (f̃ , lp̃)
belongs to the right hand side of (4.28). Following the setup of Lemma 4.7, let us use local coordinates and fix the point p̃ to
be (0, 0). Suppose the Taylor expansion of f around (0, 0) is given by

f (x, y) = f00 + f10x + f01y +
f20
2

x2 + f11xy +
f02
2

y2 + · · · .

Since (f̃ , lp̃) belongs to the right hand side, we conclude that f00, f10, f01, f20, f11, f30 and f02 are all 0. If 4f03f 321 − 3f 212f
2
21 is

non zero, then there is nothing to prove. Hence, assume that 4f03f 321 − 3f 212f
2
21 = 0. This implies that either 4f03f21 − 3f 212 = 0

or f21 = 0. Let us first assume that 4f03f21 − 3f 212 = 0 but f21 ≠ 0. Then define a sequence fn given by

(fn)ij := fij if (i, j) ≠ (0, 3),

(fn)03 :=
3f 212
f21

+
1
n
.
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This is a sequence that belongs to PD4 and converges to (f̃ , lp̃). Next, suppose f21 = 0. Denote α := 4f03f21 −3f 212 and define
a sequence given by

(fn)ij := fij if (i, j) ≠ (2, 1) or (1, 2),

(fn)21 :=
1
n
, (fn)12 :=


1
3

4f03
n

− α

,

where
√

denotes a branch of the square root. This is a sequence that belongs to PD4 and converges to (f̃ , lp̃). This proves
the claim.

The variety PD4 is smooth because the section ΨPD4 is transverse to the zero section (as explained in the proof of
Theorem 4.12). �

4.6. Computing N(D5)

If k ≥ 5, let us define the spaces Dk and PDk as

Dk := {(f̃ , lp̃) ∈ D × PTP2
: f has a singularity of type Dk at p̃} and

PDk := {(f̃ , lp̃) ∈ D × PTP2
: f has a singularity of type Dk at p̃, ∇

3f |p̃(v, v, ·) = 0 if v ∈ γ̂ |lp̃}.

Define the following number:

N(PDk, n,m) := ⟨yκd−k−n−manλm, [PDk]⟩.

Since the projection map π : PDk −→ Dk is one to one if k ≥ 5, we conclude that whenm = 0,

N(PDk, n, 0) = N(Dk, n) ∀ k ≥ 5. (4.29)

We are now ready to prove the formula for N(D5).

Theorem 4.14. If d ≥ 3 then

N(PD5, n,m) = N(PD4, n,m)+ N(PD4, n,m + 1)+ (d − 3)N(PD4, n + 1,m). (4.30)

Note that combining this result with Theorem 4.12 and (4.29), we arrive at the formula for N(D5) as stated in Theorem 1.3.

Proof. We continue with the setup of the proof of Theorem 4.12; v andw are fixed non zero vectors that belong to γ̂ |lp̃ and

the quotient space

π∗TP2/γ̂


|lp̃ respectively while fij denotes the directional derivative as defined in (4.23). Let Wn,m,5 and

Q be as in (4.15) with k = 5. We claim that the space PD5 can be described as

PD5 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PD4 : f21 = 0, f12 ≠ 0, f40 ≠ 0}. (4.31)

Let us prove this claim. By Lemma 3.7, we conclude that (f̃ , lp̃) ∈ PD5 if and only if

f00, f10, f01, f20, f11, f02 = 0, (4.32)
f30, f21 = 0 and (4.33)
f12, f40 ≠ 0. (4.34)

Eq. (4.32) is simply saying that the linear and quadratic terms in the Taylor expansion of f around p̃ are zero. Since
(f̃ , lp̃) ∈ PD5 we conclude that ∇

3f |p̃(v, v, ·) = 0. This is equivalent to saying that f30 = 0 and f21 = 0. Finally, since
(f̃ , lp̃) ∈ PD5, we conclude that f40 and f12 are non zero (using Lemma 3.7 and (3.2)). Hence, (f̃ , lp̃) ∈ PD5 if and only if

f00, f10, f01, f20, f11, f30, f02 = 0, (4.35)
f21 = 0 and (4.36)

f12, f40 ≠ 0. (4.37)

Eq. (4.35) holds if and only if (f̃ , lp̃) ∈ PD4 (this is using Lemma 4.13). Eqs. (4.36) and (4.37) imply (4.31).
Let us now define a section of the following line bundle

ΨPD5 : PD5 −→ LPD5 := γ ∗

D ⊗ γ̂ ∗2
⊗


π∗TP2/γ̂

∗

⊗ γ ∗d
P2 ,

given by

{ΨPD5(f̃ , lp̃)}(f ⊗ v⊗2
⊗ w) := ∇

3f |p̃(v, v,w) = f21. (4.38)
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If d ≥ 3, then this section is transverse to the zero section. The proof follows from the setup of the proof of Lemma 4.9, by
taking partial derivatives with respect to f00, f10, f01, f20, f11, f30, f02 and f21.

Since Q is a generic section, the zeros of the section

ΨPD5 ⊕ Q : PD4 −→ LPD5 ⊕ Wn,m,5

counted with a sign is N(PD5, n,m). Hence

N(PD5, n,m) = ⟨e(LPD5)e(Wn,m,5), [PD4]⟩.

Since

e(LPD5) = y + 2λ+ (−3a − λ)+ λ+ da = y + λ+ (d − 3)a,

we immediately get (4.30). �

We will be using the following fact in our subsequent computations:

Lemma 4.15. Let

ΨPD5 : PD4 −→ LPD5 := γ ∗

D ⊗ γ̂ ∗2
⊗


π∗TP2/γ̂

∗

⊗ γ ∗d
P2

be the section as defined in (4.38). If d ≥ 4, then the variety PD5 can be described as Ψ−1
PD5

(0). Furthermore, the variety PD5 is
smooth of dimension κd − 5.

Proof. As shown in the proof of Theorem 4.14, the space PD5 can be described as

PD5 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PD4 : f21 = 0, f12 ≠ 0, f40 ≠ 0}.

We claim that

PD5 =


(f̃ , lp̃) ∈ PD4 : f21 = 0


. (4.39)

Again, it is clear that the left hand side of (4.39) is a subset of the right hand side. The converse follows in the same way we
proved Lemmas 4.7 and 4.13. �

4.7. Computing N(D6) and N(E6)

In Section 4.6, we have defined the spaces PDk for all k ≥ 5. Let us now similarly define the spaces Ek and PEk for k = 6
and 7:

Ek := {(f̃ , lp̃) ∈ D × PTP2
: f has a singularity of type Ek at p̃} and

PEk := {(f̃ , lp̃) ∈ D × PTP2
: f has a singularity of type Ek at p̃, ∇

3f |p̃(v, v, ·) = 0 if v ∈ γ̂ |lp̃}.

Define the following number:

N(PEk, n,m) := ⟨yκd−k−n−manλm, [PEk]⟩.

Since the projection map π : PEk −→ Ek is one to one, we conclude that whenm = 0,

N(PEk, n, 0) = N(Ek, n). (4.40)

We will now prove the formula for N(D6) and N(E6). Since their computations are similar, we will give the proofs
simultaneously.

Theorem 4.16. The numbers N(PD6, n,m) and N(PE6, n,m) are given by

N(PD6, n,m) = N(PD5, n,m)+ 4N(PD5, n,m + 1)+ dN(PD5, n + 1,m) (4.41)

and

N(PE6, n,m) = N(PD5, n,m)− N(PD5, n,m + 1)+ (d − 6)N(PD5, n + 1,m) (4.42)

provided d ≥ 4 and 3 respectively.

Note that combining this result with Theorem 4.14, (4.29) and (4.40) we arrive at the formulas for N(D6) andN(E6) as stated
in Theorem 1.3.
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Proof. We continue with the setup of the proof of Theorem 4.14; v andw are fixed non zero vectors that belong to γ̂ |lp̃ and

the quotient space

π∗TP2/γ̂


|lp̃ and fij denotes the directional derivative as defined in (4.23). Let Wn,m,6 and Q be as in

(4.15) with k = 6. We note that the spaces PD6 and PE6 can be described as

PD6 =


(f̃ , lp̃) ∈ D × PTP2

: (f̃ , lp̃) ∈ PD5 : f40 = 0, f12 ≠ 0,

f12f50 −

5f 231
3


≠ 0


, (4.43)

PE6 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PD5 : f12 = 0, f31 ≠ 0, f40 ≠ 0}. (4.44)

This follows from Lemmas 3.7 and 3.9 and using (3.2). Define sections of the following line bundles

ΨPD6 : PD5 −→ LPD6 := γ ∗

D ⊗ γ̂ ∗4
⊗ γ ∗d

P2 and

ΨPE6 : PD5 −→ LPE6 := γ ∗

D ⊗ γ̂ ∗
⊗


π∗TP2/γ̂

∗2
⊗ γ ∗d

P2 (4.45)

given by

{ΨPD6(f̃ , lp̃)}(f ⊗ v⊗4) := ∇
4f |p̃(v, v, v, v) = f40 and

{ΨPE6(f̃ , lp̃)}(f ⊗ v⊗2
⊗ w) := ∇

3f |p̃(v,w,w) = f12. (4.46)

If d ≥ 4, 3, then the sections ΨPD6 and ΨPE6 are transverse to zero respectively. The proof follows from the setup of the
proof of Lemma 4.9, by taking partial derivatives with respect to f00, f10, f01, f20, f11, f30, f02, f21 and: (a) f40 in the first case and
(b) f12 in the second case.

Since Q is a generic section, the zeros of the section

ΨPD6 ⊕ Q : PD5 −→ LPD6 ⊕ Wn,m,6 and ΨPE6 ⊕ Q : PD5 −→ LPE6 ⊕ Wn,m,6

counted with a sign is N(PD6, n,m) and N(PE6, n,m) respectively. Hence

N(PD6, n,m) = ⟨e(LPD6)e(Wn,m,6), [PD5]⟩ and

N(PE6, n,m) = ⟨e(LPE6)e(Wn,m,6), [PD5]⟩.

Since

e(LPD6) = y + 4λ+ da e(LPE6) = y − λ+ (d − 6)a

we immediately get (4.41) and (4.42). �

We will be using the following fact in our subsequent computations:

Lemma 4.17. Let

ΨPD6 : PD5 −→ LPD6 and ΨPE6 : PD5 −→ LPE6

be the sections as defined in (4.45). The varieties PD6 and PE6 are smooth of dimension κd − 6 and can be described as Ψ−1
PD6

(0)
and Ψ−1

PE6
(0) respectively, provided d ≥ 5 and 4 respectively.

Proof. As explained in the proof of Theorem 4.16, the spaces PD6 and PE6 can be described as in (4.43) and (4.44). We
claim that

PD6 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PD5 : f40 = 0}, (4.47)

PE6 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PD5 : f12 = 0}. (4.48)

Again, it is clear that the left hand sides of (4.47) and (4.48) are subsets of their respective right hand sides. In both the cases,
the converse follows in the same way we prove Lemma 4.7, Lemma 4.13 and Lemma 4.15. The varieties PD6 and PE6 are
smooth because the sections ΨPD6 and ΨPE6 are transverse to zero (as explained in the proof of Theorem 4.16). �

4.8. Computing N(E7)

We are now ready to prove the formula for N(E7).

Theorem 4.18. If d ≥ 5, then

N(PE7, n,m) = N(PD6, n,m)− N(PD6, n,m + 1)+ (d − 6)N(PD6, n + 1,m). (4.49)

Note that combining this result with Theorem 4.16, and (4.40) we arrive at the formula for N(E7) as stated in Theorem 1.3.
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Proof. We continue with the setup of the proof of Theorem 4.16; v andw are fixed non zero vectors that belong to γ̂ |lp̃ and

the quotient space

π∗TP2/γ̂


|lp̃ respectively while fij denotes the directional derivative as defined in (4.23). Let Wn,m,7 and

Q be as in (4.15) with k = 7. We note that the space PE7 can be described as

PE7 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PD6 : f12 = 0, f03 ≠ 0, f31 ≠ 0}.

This follows from Lemmas 4.17 and 3.10. Define a section of the following line bundle

ΨPE7 : PD6 −→ LPE7 := γ ∗

D ⊗


π∗TP2/γ̂

∗

⊗ γ̂ ∗2
⊗ γ ∗d

P2

defined by

{ΨPE7(f̃ , lp̃)}(f ⊗ v⊗4) := ∇
4f |p̃(v,w,w) = f12. (4.50)

If d ≥ 4, then this section is transverse to the zero section. The proof follows from the setup of the proof of Lemma 4.9, by
taking partial derivatives with respect to f00, f10, f01, f20, f11, f30, f02, f21, f40 and f12.

Since Q is a generic section, the zeros of the section

ΨPE7 ⊕ Q : PE6 −→ LPE7 ⊕ Wn,m,7

counted with a sign is N(PE7, n,m). Hence

N(PE7, n,m) = ⟨e(LPE7)e(Wn,m,7), [PD6]⟩.

Since

e(LPE7) = y − λ+ (d − 6)a,

we immediately get (4.49). �

4.9. Computing N(D7) and N(A4)

We are now ready to prove the formula for N(D7) and N(A4). These are the first two examples of non-linear singularities.

Theorem 4.19. If d ≥ 5, then

N(PD7, n,m) = 2N(PD6, n,m)+ 4N(PD6, n,m + 1)+ (2d − 6)N(PD6, n + 1,m). (4.51)

Note that combining this result with Theorem 4.16, and (4.29) we arrive at the formula for N(D7) as stated in Theorem 1.5.

Proof. We continue with the setup of the proof of Theorem 4.16; v andw are fixed non zero vectors that belong to γ̂ |lp̃ and

the quotient space

π∗TP2/γ̂


|lp̃ respectively and fij denotes the directional derivative as defined in (4.23). Let Wn,m,7 and

Q be as in (4.15) with k = 7. We note that the space PD7 can be described as

PD7 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PD6 : f12D

f
7 = 0, f 312D

f
8 ≠ 0, f12 ≠ 0},

where Df
k is as defined in (3.2). This follows from Lemma 3.7. Note that f12D

f
7 and f 312D

f
8 are defined even when f12 = 0

(as opposed to Df
7 and Df

8). Define a section of the following line bundle given by

ΨPD7 : PD6 −→ LPD7 := γ ∗2
D ⊗ γ̂ ∗6

⊗


π∗TP2/γ̂

∗2
⊗ γ ∗2d

P2

defined by

{ΨPD7(f̃ , lp̃)}(f
⊗2

⊗ v⊗6
⊗ w⊗2) := f12D

f
7 = f12f50 −

5f 231
3
. (4.52)

Unlike the previous cases, this section is not transverse to zero everywhere. Let us now define the following two sets

M := {(f̃ , lp̃) ∈ PD6 : f12 ≠ 0} and

B := {(f̃ , lp̃) ∈ PD6 : f12 = 0}.

Restricted to M , the section ΨPD7 is transverse to zero if d ≥ 5. The proof follows from the setup of the proof of Lemma 4.9,
by taking partial derivatives with respect to f00, f10, f01, f20, f11, f30, f02, f21, f12, f40 and f50. Note that the condition f12 ≠ 0 is
used to achieve transversality, since in the last step we take the partial derivative with respect to f50. The sectionΨPD7 is not
transverse to zero on the whole of PD6.
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Since Q is a generic section, the signed number of zeros of the section

ΨPD7 ⊕ Q : PD6 −→ LPD7 ⊕ Wn,m,7

restricted to M is N(PD7, n,m). This section a priori could vanish on B. We claim that this section does not vanish on B.
Assuming that claim, we conclude that

N(PD7, n,m) = ⟨e(LPD7)e(Wn,m,7), [PD6]⟩.

Since

e(LPD7) = 2y + 4λ+ (2d − 6)a,

we immediately get (4.51).
It remains to explain why the section ΨPD7 ⊕ Q does not vanish on B. Suppose (f̃ , lp̃) ∈ B and ΨPD7(f̃ , lp̃) = 0. That

means

f12 = 0 and

f12f50 −

5f 231
3


= 0 =⇒ f31 = 0.

Hence, let us define the space

S := {(f̃ , lp̃) ∈ PD6 : f12 = 0, f31 = 0}.

We claim that S is a smoothmanifold of dimension κd −8; the proof again follows from the setup of the proof of Lemma 4.9,
by taking partial derivatives with respect to f00, f10, f01, f20, f11, f30, f02, f21, f40, f12, f31. Next, we note that Q is a section of a
rank κd − 7 bundle. Hence, if Q is a generic smooth section then Q−1(0)will not intersect S, since the dimension of S is less
than the rank of Wn,m,7. Hence ΨPD7 ⊕ Q does not vanish on B if Q is generic. �

The computation of N(A4) is almost identical. Before we compute N(A4), let us make a definition. If k ≥ 2, then define
the spaces Ak and PAk as

Ak := {(f̃ , lp̃) ∈ D × PTP2
: f has a singularity of type Ak at p̃} and

PAk := {(f̃ , lp̃) ∈ D × PTP2
: f has a singularity of type Ak at p̃, ∇

2f |p̃(v, ·) = 0 if v ∈ γ̂ |lp̃}.

Define the following number:

N(PAk, n,m) := ⟨yκd−k−n−manλm, [PAk]⟩.

Since the projection map π : PAk −→ Ak is one to one we conclude that whenm = 0,

N(PAk, n, 0) = N(Ak, n). (4.53)

Recall that we had already defined these spaces for k = 2 and 3 (see Sections 4.3 and 4.4). We are now ready to prove the
formula for N(A4).

Theorem 4.20. If d ≥ 4 then

N(PA4, n,m) = 2N(PA3, n,m)+ 2N(PA3, n,m + 1)+ (2d − 6)N(PA3, n + 1,m). (4.54)

Note that combining this result with Theorem 4.10 and (4.53) we arrive at the formula for N(A4) as stated in Theorem 1.3.

Proof. Wecontinuewith the setup of the proof of Theorem4.10 and Lemma4.11; v andw are fixed non zero vectors that be-
long to γ̂ |lp̃ and the quotient space


π∗TP2/γ̂


|lp̃ respectivelywhile fij denotes the directional derivative as defined in (4.23).

Let Wn,m,4 and Q be as in (4.15) with k = 4. We note that the space PA4 can be described as

PA4 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PA3 : f02A

f
4 = 0, f 202A

f
5 ≠ 0, f02 ≠ 0},

where Af
k is as defined in (3.1). This follows from Lemma 3.4. Note that f02A

f
4 and f 202A

f
5 are defined even when f02 = 0

(as opposed to Af
4 and Af

5). Define section of the following line bundle given by

ΨPA4 : PA3 −→ LPA4 := γ ∗2
D ⊗ γ̂ ∗4

⊗


π∗TP2/γ̂

∗2
⊗ γ ∗2d

P2

defined by

{ΨPA4(f̃ , lp̃)}(f
⊗2

⊗ v⊗4
⊗ w⊗2) := f02A

f
4 = f02f40 − 3f 221. (4.55)
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This section is not transverse to zero everywhere. Let us now define the following two sets

M := {(f̃ , lp̃) ∈ PA3 : f02 ≠ 0} and

B := {(f̃ , lp̃) ∈ PA3 : f02 = 0}.

Restricted to M , the section ΨPA4 is transverse to zero if d ≥ 4. The proof follows from the setup of the proof of Lemma 4.9,
by taking partial derivatives with respect to f00, f10, f01, f20, f11, f30 and f40. Note that we required the condition f02 ≠ 0 to
achieve transversality because in the last step we compute the derivative with respect to f40.

Since Q is a generic section, the signed number of zeros of the section

ΨPA4 ⊕ Q : PA3 −→ LPA4 ⊕ Wn,m,4

restricted to M is N(PA4, n,m). This section a priori could vanish on B. We claim that this section does not vanish on B.
Assuming that claim, we conclude that

N(PA4, n,m) = ⟨e(LPA4)e(Wn,m,4), [PA3]⟩.

Since

e(LPA4) = 2y + 2λ+ (2d − 6)a,

we immediately get (4.54).
It remains to explain why the section ΨPA3 ⊕ Q does not vanish on B. Suppose (f̃ , lp̃) ∈ B and ΨPA4(f̃ , lp̃) = 0. That

means

f02 = 0 and

f02f40 − 3f 221


= 0 =⇒ f21 = 0.

Hence, let us define the space

S := {(f̃ , lp̃) ∈ PA3 : f02 = 0, f21 = 0}.

We claim that S is a smoothmanifold of dimension κd −5; the proof again follows from the setup of the proof of Lemma 4.9,
by taking partial derivatives with respect to f00, f10, f01, f20, f11, f30, f02, and f21. Next, we note that Q is a section of a rank
κd − 4 bundle. Hence, if Q is a generic smooth section then Q−1(0)will not intersect S, since the dimension of S is less than
the rank of Wn,m,4. Hence ΨPA4 ⊕ Q does not vanish on B if Q is generic. �

4.10. Degenerate contribution to the Euler class: computing N(A5)

We are now ready to prove the formula for N(A5). This is the first example where we will be computing a degenerate
contribution to the Euler class.

Theorem 4.21. If d ≥ 5 then

N(PA5, n,m) = 3N(PA4, n,m)+ N(PA4, n,m + 1)+ (3d − 12)N(PA4, n + 1,m)− 2N(PD5, n,m). (4.56)

Note that combining this result with Theorems 4.20, 4.14 and (4.53) we arrive at the formula for N(A5) as stated in
Theorem 1.3.

Proof. We continue with the setup of the proof of Theorem 4.20; v andw are fixed non zero vectors that belong to γ̂ |lp̃ and

the quotient space

π∗TP2/γ̂


|lp̃ respectively and fij denotes the directional derivative as defined in (4.23). Let Wn,m,5 and

Q be as in (4.15) with k = 5. We note that the space PA5 can be described as

PA5 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PA4 : f 202A

f
5 = 0, f 302A

f
6 ≠ 0, f02 ≠ 0},

where Af
k is as defined in (3.1). This follows from Lemma 3.4. Define section of the following line bundle given by

ΨPA5 : PA4 −→ LPA5 := γ ∗3
D ⊗ γ̂ ∗5

⊗


π∗TP2/γ̂

∗4
⊗ γ ∗3d

P2

defined by

{ΨPA4(f̃ , lp̃)}(f
⊗3

⊗ v⊗5
⊗ w⊗4) := f 202A

f
5. (4.57)

Note that we are being a little bit sloppywith our terminology; sincePA4 is not a smooth variety, a little bit of care is needed
in saying thatLPA5 is a ‘‘bundle’’ overPA4. Restricted to the smooth part of the variety,LPA5 is a holomorphic vector bundle.
On the whole space PA4, LPA5 is a topological vector bundle (the transition maps are continuous). Furthermore, restricted
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to each stratum of the variety PA4, LPA5 is a holomorphic bundle. Henceforth we will be using the terminology that L is a
bundle over some variety, even when the variety is not smooth.

Let us now define the following two sets

M := {(f̃ , lp̃) ∈ PA4 : f02 ≠ 0} and

B := {(f̃ , lp̃) ∈ PA4 : f02 = 0}.

Note that M belongs to the smooth part of the variety PA4. This follows from the fact that the section ΨPA4 defined in the
proof of Theorem 4.20 is transverse to zero when f02 ≠ 0.

Restricted toM , the sectionΨPA5 is transverse to zero if d ≥ 5. The proof follows from the setup of the proof of Lemma 4.9,
by taking partial derivatives with respect to f00, f10, f01, f20, f11, f30, f40 and f50. Note that we required the condition f02 ≠ 0 to
achieve transversality because in the last two steps we compute the derivative with respect to f40 and f50.

Since Q is a generic section, the signed number of zeros of the section

ΨPA5 ⊕ Q : PA4 −→ LPA5 ⊕ Wn,m,5

restricted to M is N(PA5, n,m). This section does vanish on B. We claim that

B = {(f̃ , lp̃) ∈ PA4 : f02 = 0} = PD5. (4.58)

Furthermore, we claim that the sectionΨPA5 ⊕Q vanishes on each of the points of B with a multiplicity of 2. Assuming this
claim, we conclude that

e(LPA5)e(Wn,m,5), [PA4]

= N(PA5, n,m)+ 2N(PD5, n,m). (4.59)

Since

e(LPA5) = 3y + λ+ (3d − 12)a,

we immediately get (4.56).

Remark 4.22. Let us take a careful look at Eq. (4.59). First of all we note that although PA4 is not a smooth variety, (4.59)
makes perfect sense. This is because, PA4 defines an integer homology class since the singularities of PA4 are of complex
codimension one and hence real codimension two. This fact is proven in [23]. The left hand side of (4.59) is the pairing of the
cohomology class e(LPA5) evaluated on the homology class PA5. By the discussion on pages 4 and 5 of [24], we conclude
that the Euler class is the number of zeros in the section we consider on the open part, plus the contribution of the section
to the Euler class from the boundary B. The discussion on pages 4 and 5 of [24] is a generalization of Theorem 1.3 where
the base space is a variety that is not necessarily smooth.

We now start the proof of (4.58) and the multiplicity claim. We need to show that

{(f̃ , lp̃) ∈ PA4 : f02 = 0} = PD5. (4.60)

First we note that the left hand side of (4.60) is a subset of its right hand side. To see why that is so, we note that if (f̃ , lp̃)
belongs to the left hand side, then (f̃ , lp̃) ∈ PA3 and f02A

f
4 = 0 and f02 = 0. This implies that

(f̃ , lp̃) ∈ PA3, f02 = 0 and f21 = 0.

Hence (f̃ , lp̃) ∈ PD5, by (4.39) and (4.28).
We will now show that the right hand side of (4.60) is a subset of its left hand side. We will simultaneously prove the

following two statements:

PA4 ⊃ PD5, (4.61)

PA5 ∩ PD5 = ∅. (4.62)

Since PA4 is a closed set, (4.61) implies that the right hand side of (4.60) is a subset of its left hand side.7

Claim 4.23. Let (f̃ , lp̃) ∈ PD5. Then there exists a solution (f̃ (t), lp̃(t)) ∈ PA3 near (f̃ , lp̃) to the set of equations

f02(t) ≠ 0, f02(t)A
f (t)
4 = f02(t)f40(t)− 3f21(t)2 = 0. (4.63)

Moreover, whenever such a solution (f̃ (t), lp̃(t)) is sufficiently close to (f̃ , lp̃) it lies in PA4, i.e., Af (t)
5 ≠ 0. In particular

(f̃ (t), lp̃(t)) does not lie in PA5.

It is easy to see that Claim 4.23 proves statements (4.61) and (4.62) simultaneously.

7 Eq. (4.62) is not necessary right now, but it will be needed later.
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Proof of Claim 4.23. It is easy to see that the only solutions to (4.63) are of the form

f21(t) = t, f40(t) ≠ 0, f02(t) =
3t2

f40(t)
, t ≠ 0 (but small). (4.64)

Note that since (f̃ , lp̃) ∈ PD5, we conclude that f40, f12 ≠ 0 (this follows fromLemma3.7). Hence, if (f̃ (t), lp̃(t)) is sufficiently
close to (f̃ , lp̃), we conclude f40(t), f12(t) ≠ 0. Next, we observe that using (4.64), we get

f02(t)2A
f (t)
5 = 15f12(t)t2 + O(t3). (4.65)

Since t is small but non zero, f02(t)2A
f (t)
5 is non zero, proving the claim. �

Corollary 4.24. Let Wn,m,5 and Q be as in (4.15) with k = 5. Suppose (f̃ , lp̃) ∈ PD5 ∩ Q−1(0). Then the section

ΨPA5 ⊕ Q : PA4 −→ LPA5 ⊕ W

vanishes around (f̃ , lp̃) with a multiplicity of 2.

Proof. First we note that if (f̃ , lp̃) ∈ PD5 then f12 ≠ 0. The claim now follows immediately from (4.65) and using the fact
that Q−1(0) intersects PD5 transversely. �

4.11. Degenerate contribution to the Euler class: computing N(A6)

We are now ready to prove the formula for N(A6).

Theorem 4.25. If d ≥ 6 then

N(PA6, n,m) = 4N(PA5, n,m)+ (4d − 18)N(PA5, n + 1,m)− 4N(PD6, n,m)− 3N(PE6, n,m). (4.66)

Note that combining this result with Theorems 4.21, 4.16 and (4.53) we arrive at the formula for N(A6) as stated in
Theorem 1.3.

Proof. We continue with the setup of the proof of Theorem 4.21; v andw are fixed non zero vectors that belong to γ̂ |lp̃ and

the quotient space

π∗TP2/γ̂


|lp̃ respectively and fij denotes the directional derivative as defined in (4.23). Let Wn,m,6 and

Q be as in (4.15) with k = 6. We note that the space PA6 can be described as

PA5 = {(f̃ , lp̃) ∈ D × PTP2
: (f̃ , lp̃) ∈ PA5 : f 302A

f
6 = 0, f 402A

f
7 ≠ 0, f02 ≠ 0},

where Af
k is as defined in (3.1). This follows from Lemma 3.4. Define a section of the following line bundle

ΨPA6 : PA5 −→ LPA6 := γ ∗4
D ⊗ γ̂ ∗6

⊗


π∗TP2/γ̂

∗6
⊗ γ ∗4d

P2

given by

{ΨPA6(f̃ , lp̃)}(f
⊗4

⊗ v⊗6
⊗ w⊗6) := f 302A

f
6. (4.67)

Let us now define the following two sets

M := {(f̃ , lp̃) ∈ PA5 : f02 ≠ 0},

B1 := {(f̃ , lp̃) ∈ PA5 : f02 = 0, f12 ≠ 0} and

B2 := {(f̃ , lp̃) ∈ PA5 : f02 = 0, f12 = 0}.

Note that M belongs to the smooth part of the variety PA5. This follows from the fact that the section ΨPA5 defined in the
proof of Theorem 4.21 is transverse to zero when f02 ≠ 0.

Restricted toM , the sectionΨPA6 is transverse to zero if d ≥ 6. The proof follows from the setup of the proof of Lemma 4.9,
by taking partial derivatives with respect to f00, f10, f01, f20, f11, f30, f40, f50 and f60. Note that we required the condition f02 ≠ 0
to achieve transversality because in the last three steps we compute the derivative with respect to f40, f50 and f60.

Since Q is a generic section, the signed number of zeros of the section

ΨPA6 ⊕ Q : PA5 −→ LPA6 ⊕ Wn,m,6
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restricted to M is N(PA6, n,m). This section does vanish on B1 and B2. We claim that

B1 = {(f̃ , lp̃) ∈ PD6 : f12 ≠ 0} and (4.68)

B2 = PE6. (4.69)

Furthermore, we claim that the section ΨPA6 ⊕ Q vanishes on each of the points of B1 and B2 with multiplicities of 4 and
3 respectively. Assuming that claim, we conclude that

e(LPA6)e(Wn,m,6), [PA5]

= N(PA6, n,m)+ 4N(PD6, n,m)+ 3N(PE6, n,m). (4.70)

Since

e(LPA6) = 4y + (4d − 18)a,

we immediately get (4.66). �

We now start the proof of (4.68), (4.69) and the multiplicity claims. We need to show that

{(f̃ , lp̃) ∈ PA5 : f02 = 0, f12 ≠ 0} = {(f̃ , lp̃) ∈ PD6 : f12 ≠ 0} and (4.71)

{(f̃ , lp̃) ∈ PA5 : f02 = 0, f12 = 0} = PE6. (4.72)

First we note that the left hand side (4.71) is a subset of its right hand side. To seewhy that is so, first we take a look at (4.62).
This says that if anA5-singularity degenerates and theHessian is zero, then it has to bemore degenerate than aD5-singularity.
Hence, it has to be at least as degenerate as a D6-singularity. Hence, the left hand side (4.71) is a subset of its right hand side.

Next, we note that the left hand side of (4.72) is a subset of its right hand side. This follows from (4.48). Hence the left
hand sides of both (4.62) and (4.72) are subsets of their respective right hand sides.

We will now show the converse; let us start with (4.71). We will simultaneously prove the following statements

PA5 ⊃ PD6, (4.73)

PA6 ∩ PD6 = ∅. (4.74)

Since PA5 is a closed set, (4.73) implies that the right hand side of (4.71) is a subset of its left hand side.

Claim 4.26. Let (f̃ , lp̃) ∈ PD6. Then there exists a solution (f̃ (t), lp̃(t)) ∈ PA3 near (f̃ , lp̃) to the set of equations

f02(t) ≠ 0, f02(t)A
f (t)
4 = 0, f02(t)2A

f (t)
5 = 0. (4.75)

Moreover, whenever such a solution (f̃ (t), lp̃(t)) is sufficiently close to (f̃ , lp̃) it lies in PA5, i.e., Af (t)
6 ≠ 0. In particular,

(f̃ (t), lp̃(t)) does not lie in PA6.

It is clear that Claim 4.26 proves (4.73) and (4.74) simultaneously.
Proof of Claim 4.26. We note that the only solutions to (4.75) are of the form

f02(t) = t, f21(t) =

5f31(t)±


−15f12(t)D

f (t)
7

15f12(t)

 t,

f40(t) = 3

5f31(t)±


−15f12(t)D

f (t)
7

15f12(t)

2

t, t ≠ 0 (but small). (4.76)

The second equation comes from solving a quadratic arising from f02(t)2A
f (t)
5 = 0 while the third is from solving

f02(t)A
f (t)
4 = 0 and using f21(t) from the second equation. Since (f̃ , lp̃) ∈ PD6 we conclude that f12 ≠ 0 and Df

7 ≠ 0
(using Lemma 3.7).

Next, to show that Af (t)
6 ≠ 0, we observe

f02(t)3A
f (t)
3 =

Df (t)
7

f12(t)
t2 + O(t3) using (4.76), for either choice of


f12D

f
7 . (4.77)

This proves the claim, since t is small and non zero and Df
7 ≠ 0.

Corollary 4.27. Let Wn,m,6 and Q be as in (4.15) with k = 6. Suppose (f̃ , lp̃) ∈ PD6 ∩ Q−1(0). Then the section

ΨPA6 ⊕ Q : PA5 −→ LPA6 ⊕ Wn,m,6

vanishes around (f̃ , lp̃) with a multiplicity of 4.
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Proof. First we note that if (f̃ , lp̃) ∈ PD6 then f12 ≠ 0 and Df
7 ≠ 0. The claim now follows immediately from (4.77) and

using the fact thatQ−1(0) intersectsPD5 transversely. This is because each branch of

f12D

f
7 contributes with amultiplicity

of 2. Hence, the total multiplicity is 4. �

Next we will prove that the right hand side of (4.72) is a subset of its left hand side. We will simultaneously prove that

PA5 ⊃ PE6, (4.78)

PA6 ∩ PE6 = ∅. (4.79)

Claim 4.28. Let (f̃ , lp̃) ∈ PE6. Then there exists a solution (f̃ (t), lp̃(t)) ∈ PA3 near (f̃ , lp̃) to the set of equations

f02(t) ≠ 0, f02(t)A
f (t)
4 = 0, f02(t)2A

f (t)
5 = 0. (4.80)

Moreover, whenever such a solution (f̃ (t), lp̃(t)) is sufficiently close to (f̃ , lp̃), it lies in PA5, i.e., Af (t)
6 ≠ 0. In particular

(f̃ (t), lp̃(t)) does not lie in PA6.

Note that Claim 4.28 proves (4.78) and (4.79) simultaneously.

Proof of Claim 4.28. It is easy to see that the only solutions to (4.80) are of the form

f21(t) = t, f02 =
3t2

f40(t)
, f12 =

2f31(t)
f40(t)

t −
3f50(t)
5f40(t)2

t2, t ≠ 0 (but small). (4.81)

Since (f̃ , lp̃) ∈ PE6 we conclude that f40, f30 ≠ 0.
To show that any such solution satisfies the condition Af (t)

6 ≠ 0, we observe that

f02(t)3A
f (t)
6 = −15f03(t)t3 + O(t4) using (4.81). (4.82)

This proves the claim, since t is small and non zero and f03(t) ≠ 0. �

Corollary 4.29. Let Wn,m,6 and Q be as in (4.15) with k = 6 Suppose (f̃ , lp̃) ∈ PE6 ∩ Q−1(0). Then the section

ΨPA6 ⊕ Q : PA5 −→ LPA6 ⊕ Wn,m,6

vanishes around (f̃ , lp̃) with a multiplicity of 3.

Proof. First we note that if (f̃ , lp̃) ∈ PE6 then f03 ≠ 0 and f40 ≠ 0. The claim now follows immediately from (4.82) and
using the fact that Q−1(0) intersects PE6 transversely. �

4.12. Degenerate contribution to the Euler class: computing N(A7)

We are now ready to prove the formula for N(A7).

Theorem 4.30. If d ≥ 7, then

N(PA7, n, 0) = 5N(PA6, n, 0)− N(PA6, n, 1)+ (5d − 24)N(PA6, n + 1, 0)
− 6N(PD7, n, 0)− 7N(PE7, n, 0). (4.83)

Note that combining this result with Theorems 4.25, 4.19, 4.18 and (4.53) we arrive at the formula for N(A7) as stated in
Theorem 1.3.

Remark 4.31. We are not claiming that

N(PA7, n,m) = 5N(PA6, n,m)− N(PA6, n,m + 1)+ (5d − 24)N(PA6, n + 1,m)
− 6N(PD7, n,m)− 7N(PE7, n,m).

The above equation is only true whenm = 0. We will see shortly wherem = 0 plays a role.

Proof. We continue with the setup of the proof of Theorem 4.25; v andw are fixed non zero vectors that belong to γ̂ |lp̃ and

the quotient space

π∗TP2/γ̂


|lp̃ respectively while fij denotes the directional derivative as defined in (4.23). Let Wn,0,7 and

Q be as in (4.15) with k = 7 andm = 0. We note that the space PA7 can be described as

PA7 = {(f̃ , lp̃) ∈ PA6 : f 402A
f
7 = 0, f 502A

f
8 ≠ 0, f02 ≠ 0},
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where Af
k is as defined in (3.1). This follows from Lemma 3.4. Define a section of the following line bundle

ΨPA7 : PA6 −→ LPA7 := γ ∗5
D ⊗ γ̂ ∗7

⊗


π∗TP2/γ̂

∗8
⊗ γ ∗5d

P2

given by

{ΨPA7(f̃ , lp̃)}(f
⊗5

⊗ v⊗7
⊗ w⊗8) := f 402A

f
7. (4.84)

Let us now define the following three sets

M := {(f̃ , lp̃) ∈ PA6 : f02 ≠ 0},

B1 := {(f̃ , lp̃) ∈ PA6 : f02 = 0, f12 ≠ 0},

B2 := {(f̃ , lp̃) ∈ PA6 : f02 = 0, f12 = 0, f03 ≠ 0} and

B3 := {(f̃ , lp̃) ∈ PA6 : f02 = 0, f12 = 0, f03 = 0}. (4.85)

Note that M belongs to the smooth part of the variety PA6. This follows from the fact that the section ΨPA6 defined in the
proof of Theorem 4.25 is transverse to zero when f02 ≠ 0.

Restricted toM , the sectionΨPA7 is transverse to zero if d ≥ 7. The proof follows from the setup of the proof of Lemma 4.9,
by taking partial derivatives with respect to f00, f10, f01, f20, f11, f30, f40, f50, f60 and f70. Note that we required the condition
f02 ≠ 0 to achieve transversality because in the last four steps we compute the derivative with respect to f40, f50, f60 and f70.

Since Q is a generic section, the signed number of zeros of the section

ΨPA7 ⊕ Q : PA6 −→ LPA7 ⊕ Wn,0,7

restricted to M is N(PA7, n, 0). This section does vanish on B1 andB2. We claim that

B1 = {(f̃ , lp̃) ∈ PD7 : f12 ≠ 0} and (4.86)

B2 = {(f̃ , lp̃) ∈ PE7 : f12 = 0, f03 ≠ 0}. (4.87)

Furthermore, we claim that the section ΨPA7 ⊕ Q vanishes on each of the points of B1 and B2 with multiplicities of 6 and
7 respectively. We also claim that the section ΨPA7 ⊕ Q does not vanish on B3; this is where we use that Q is a section of
Wn,0,7 as opposed to Wn,m,k. Assuming these claims, we conclude that

e(LPA7)e(Wn,0,7), [PA6]

= N(PA7, n,m)+ 6N(PD7, n,m)+ 7N(PE7, n,m).

Since

e(LPA7) = 5y − λ+ (5d − 24)a,

we immediately get (4.83).
We now start the proof of (4.86) and (4.87) and the multiplicity claims. We need to show that

{(f̃ , lp̃) ∈ PA6 : f02 = 0, f12 ≠ 0} ≡ {(f̃ , lp̃) ∈ PD7 : f12 ≠ 0} and (4.88)

{(f̃ , lp̃) ∈ PA6 : f02 = 0, f12 = 0, f03 ≠ 0} ≡ {(f̃ , lp̃) ∈ PE7 : f03 ≠ 0}. (4.89)

Firstwenote that the left hand side of (4.88) is a subset of its right hand side. To seewhy that is so, firstwe take a look at (4.74).
This says that if anA6-singularity degenerates and theHessian is zero, then it has to bemore degenerate than aD6-singularity.
Hence the left hand side of (4.88) has to be a subset of its right hand side.

Next,we note that the left hand side of (4.89) is a subset of its right hand side. To seewhy that is so,we take a look at (4.79).
This says that if an A6-singularity degenerates and the Hessian is zero and f12 = 0, then it has to be more degenerate than a
E6-singularity. Hence the left hand side of (4.89) has to be a subset of its right hand side.

Hence the left hand sides of both (4.88) and (4.89) are subsets of their respective right hand sides. Wewill now start with
the proof of the converse.

We will first prove that the right hand side of (4.88) is a subset of its left hand side. We will simultaneously prove

PA6 ⊃ PD7, (4.90)

PA7 ∩ PD7 = ∅. (4.91)

Claim 4.32. Let (f̃ , lp̃) ∈ PD7. Then there exists a solution (f̃ (t), lp̃(t)) ∈ PA3 near (f̃ , lp̃) to the set of equations

f02(t) ≠ 0, f02(t)A
f (t)
4 = 0, f02(t)2A

f (t)
5 = 0, f02(t)3A

f (t)
6 = 0. (4.92)

Moreover, whenever such a solution (f̃ (t), lp̃(t)) is sufficiently close to (f̃ , lp̃) it lies in PA6, i.e., Af (t)
7 ≠ 0. In particular

(f̃ (t), lp̃(t)) does not lie in PA7.
Note that Claim 4.32 proves (4.90) and (4.91) simultaneously.
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Proof of Claim 4.32. We claim that the only solutions to (4.92) are of the form

f02(t) = t2 + O(t4), (4.93)

f21(t) =
f31(t)
3f12(t)

t2 +


β(t)
f12(t)

t3 + O(t4), (4.94)

f40(t) =
f31(t)2

3f12(t)2
t2 + O(t3),

f50(t)−
5f31(t)2

3f12(t)


= −15β(t)t2 + O(t3), t ≠ 0 (but small),

where β(t) := −
f03(t)f31(t)3

162f12(t)4
+

f22(t)f31(t)2

18f12(t)3
−

f41(t)f31(t)
18f12(t)2

+
f60(t)

90f12(t)
(4.95)

for just one choice of a branch of
√
β(t).8 Wewill see shortly that β(t) ≠ 0. The value for f40 can be calculated using f21, f02

and f02(t)A
f (t)
4 = 0 while the fourth equation follows by using the first three equations and f02(t)2A

f (t)
5 = 0. Let us now

explain how we obtain (4.93) and (4.94). The equation f02(t)3A
f (t)
6 = 0 is a cubic equation in f21(t), i.e., it is of the form

A3(f02(t))f21(t)3 + A2(f02(t))f21(t)2 + A1(f02(t))f21(t)+ A0(f02(t)) = 0.

Since (f̃ , lp̃) ∈ PD7, we conclude that f12(t) ≠ 0. It follows that as f02(t) goes to zero A2 remains non zero. Hence, there exists
a unique holomorphic function P(f02(t)), of f02(t) (close to the zero function), such that if we make a change of variables

f21(t) = H + P(f02(t))

then our cubic equation becomes

Â3(f02(t))H3
+ Â2(f02(t))H2

+ Â0(f02(t)) = 0.

The argument is same as in the proof Lemma 3.4, where we show the existence of B(x); it is an application of the Implicit
Function Theorem. In fact, we observe that

P(f02) =
1

3A3


−A2 +


A2
2 − 3A1A3


.

This is defined even when A3 = 0 as can be seen by a standard binomial expansion, i.e.,

P(f02(t)) =
f31(t)
3f12(t)

f02(t)+ O(f02(t)2) =
f31(t)
3f12(t)

t2 + O(t4).

The other root has the property that P(f02(t)) goes to a non-zero constant as f02(t) goes to zero.
Since Â2(0) ≠ 0, we can divide out by Â2(f20(t)) and get

ˆ̂A3(f02(t))H3
+ H2

+
ˆ̂A0(f02(t)) = 0. (4.96)

By a simple calculation, it is easy to see that

ˆ̂A0(f02(t)) = −
β(t)
f12(t)

f02(t)3 + O(f02(t)4).

Assuming β(t) ≠ 0 we can make a change of coordinates

f̂02 = f02(t)

f12(t)

ˆ̂A0(f02(t))
−β(t)f02(t)3

 1
3

, Ĥ = H(1 +
ˆ̂A3(f02(t))H)

1
2 .

Our cubic equation (4.96) now becomes

Ĥ2
−
β(t)
f12(t)

f̂ 302 = 0. (4.97)

Now, it is easy to see that the only small solutions to (4.97) are of the form

Ĥ =


β(t)
f12(t)

t3, f̂02 = t2

8 In other words, choosing the other branch of the square root does not give us any extra solutions.
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for just one choice of
√
β(t). In other words, by choosing just one branch of

√
β(t), we get all the possible small solutions of

(4.97). By inverting the change of coordinates, (H, f02) −→ (Ĥ, f̂02), we conclude that the only small solutions to (4.96) are
of the form

H =


β(t)
f12(t)

t3 + O(t4), f02(t) = t2 + O(t4).

(Note that the transformation (H, f02) −→ (Ĥ, f̂02) is identity to first order, i.e., the Jacobian matrix of this transformation
at the origin is the identity matrix.) Combining the expression for P(f02) and H gives us (4.94) and (4.93). It remains to show
that β(t) ≠ 0. To see this, note that

β(t) =
Df (t)
8

90f12(t)
−

f30(t)f31(t)D
f (t)
7

54f12(t)3
. (4.98)

Since (f̃ , lp̃) ∈ PD7, D
f
7 = 0 and Df

8 ≠ 0. Therefore, by (4.98) we conclude β(t) ≠ 0.
To see why any such solution satisfies Af (t)

7 ≠ 0, we simply observe that

f02(t)4A
f (t)
7 = 630f12(t)2β(t)t6 + O(t7) using (4.95). (4.99)

This finishes the proof of the claim. �

Corollary 4.33. Let Wn,0,7 and Q be as in (4.15) with k = 7 and m = 0. Suppose (f̃ , lp̃) ∈ PD7 ∩ Q−1(0). Then the section

ΨPA7 ⊕ Q : PA6 −→ LPA7 ⊕ Wn,0,7

vanishes around (f̃ , lp̃) with a multiplicity of 6.

Proof. First we note that if (f̃ , lp̃) ∈ PD7, then β ≠ 0 (this follows from (4.98)). The claim now follows immediately from
(4.95) and using the fact that Q−1(0) intersects PD7 transversely. �

Next we will prove that the rhs of (4.89) is a subset of its lhs. We will simultaneously show that

PA6 ⊃ PE7, (4.100)

PA7 ∩ PE7 = ∅. (4.101)

Claim 4.34. Let (f̃ , lp̃) ∈ PE7. Then there exists a solution (f̃ (t), lp̃(t)) ∈ PA3 near (f̃ , lp̃) to the set of equations

f02(t) ≠ 0, f02(t)A
f (t)
4 = 0, f02(t)2A

f (t)
5 = 0, f02(t)3A

f (t)
6 = 0. (4.102)

Moreover, whenever such a solution (f̃ (t), lp̃(t)) is sufficiently close to (f̃ , lp̃) it lies in PA6, i.e., Af (t)
7 ≠ 0. In particular

(f̃ (t), lp̃(t)) does not lie in PA7.

Note that Claim 4.34 proves (4.100) and (4.101) simultaneously.

Proof of Claim 4.34. We claim that the only solutions to (4.102) are of the form

f12(t) = t, f21(t) = −
3

2f03(t)
t2 + O(t3)

f02(t) = −
9

4f31(t)f03(t)
t3 + O(t4), f40(t) = −

3f31(t)
f03(t)

t + O(t2), t ≠ 0 (but small). (4.103)

Since (f̃ , lp̃) ∈ PE7, we conclude that f31, f03 ≠ 0 (this follows from Lemma 3.10). Let us now explain how we obtained the
solutions. First, we set f12(t) = t . Using f02(t)2A

f (t)
5 = 0 we can solve for f02(t)

f21(t)
and get

f02(t)
f21(t)

=
10f31(t)−


100f31(t)2 − 60f50(t)t
2f50(t)

=
3

2f31(t)
t + O(t2). (4.104)

Note that the equality of the first and last terms remains valid even when f50 = 0. We will justify shortly why we did not
choose the other branch of the square root. Plugging in the value of f02 from (4.104) in equation f02(t)3A

f (t)
6 = 0 and by using

the Implicit Function Theorem, we get the expression for f21(t) in (4.103). And now using the value of f21(t) and (4.104) we
get the expression for f02(t) in (4.103).
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It remains to justify why we did not choose the other branch of the square root. It is easy to see that if we chose the other
branch, it would imply that as f02(t) and f21(t) go to zero, the ratio Lt :=

f21(t)
f02(t)

tends to a finite number L, since f31 ≠ 0. Using

f03(t)3A
f (t)
6 = 0 we can solve for f31(t) as a quadratic equation and get that

f31(t) =
30Lt f12(t)±

√
10


−15L3t f02(t)f03(t)+ 45L2t f02(t)f22(t)− 15Lt f02(t)f41(t)+ f02(t)f60(t)

10
.

It is now easy to see that f31(t) tends to zero as f12(t) and f02(t) tend to zero. This gives us a contradiction, since f31 ≠ 0.
To show that any solution satisfies Af (t)

7 ≠ 0, we simply observe that

f02(t)4A
f (t)
7 = −

2835
16f03(t)2

t7 + O(t8) using (4.103). (4.105)

This completes the proof of the claim. �

Corollary 4.35. Let Wn,0,7 and Q be as in (4.15) with k = 7 and m = 0. Suppose (f̃ , lp̃) ∈ PE7 ∩ Q−1(0). Then the section

ΨPA7 ⊕ Q : PA6 −→ LPA7 ⊕ Wn,0,7

vanishes around (f̃ , lp̃) with a multiplicity of 6.

Proof. First we note that if (f̃ , lp̃) ∈ PE7, then f03 ≠ 0. The claim now follows immediately from (4.103) and using the fact
that Q−1(0) intersects PE7 transversely. �

It remains to show that the section ΨPA7 ⊕ Q does not vanish on B3. First, let us define the spaces

S := {(f̃ , p̃) ∈ D × P2
: f (p̃) = 0, ∇f |p̃ = 0, ∇

2f |p̃ = 0, ∇
3f |p̃ = 0} and Ŝ := π−1(S),

where π : D × PTP2
−→ D × P2 is the projection map. We note that if d ≥ 3, then S is a smooth manifold of dimension

κd−8; this follows from the setupof Lemma4.3 by takingpartial derivativeswith respect to f00, f10, f01, f20, f11, f02, f30, f21, f12
and f03.

Next, we note that Wn,0,7 −→ D × PTP2 is the pullback of the bundle over D × P2; this is where we use that m = 0.
Let us denote the corresponding bundle on D × P2 by Wn,0,7. Note that the rank of Wn,0,7 is κd − 7. Since the dimension of
S is one less than the rank of Wn,0,7, the zeros of a generic smooth section of W −→ D × P2 will not intersect S. Finally,
we note that any section of Wn,0,7 −→ D × PTP2 is the pullback of a section of Wn,0,7 −→ D × P2 (or said in a different
way, any section of Wn,0,7 −→ D × TP2 can be pushed forward to a section of Wn,0,7 −→ D × PTP2). Hence, the zeros of
a generic smooth section of Wn,0,7 −→ D × PTP2 does not intersect Ŝ. Since B3 is a subset of Ŝ, we conclude that Q−1(0)
does not intersect B3.

The fact that B3 is a subset of Ŝ is easy to see. If (f̃ , lp̃) ∈ B3, then f02 = 0; this implies that ∇
2f |p̃ = 0. Moreover, (4.60)

implies that f21 = 0. Combined with the fact that f12 = 0 and f03 = 0 we conclude that ∇
3f |p̃ = 0. Hence B3 is a subset of

Ŝ. This completes the proof.

Remark 4.36. It is actually true that B3 = Ŝ. Since we did not actually need this stronger fact, we did not prove it here. This
fact would be needed if we wanted to compute N(PA7, n,m) for m ≠ 0.

Remark 4.37. There is an error in the formula for N(A6) obtained by Kerner in his published version; he has corrected that
in his updated arXiv version. There is also a mistake in the formula for N(A7) obtained by Kerner in the published version. In
the updated arXiv version, there is a mistake in his formula for the cohomology class [A7] in Proposition 1.2. Kerner agrees
that there is indeed some mistake he is making while computing the cohomology class [25].
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