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Abstract

The notion of a generalized Lie bialgebroid (a generalization of the notion of a Lie bialgebroid)
is introduced in such a way that a Jacobi manifold has associated a canonical generalized Lie
bialgebroid. As a kind of converse, we prove that a Jacobi structure can be defined on the base
space of a generalized Lie bialgebroid. We also show that it is possible to construct a Lie bialgebroid
from a generalized Lie bialgebroid and, as a consequence, we deduce a duality theorem. Finally,
some special classes of generalized Lie bialgebroids are considered: triangular generalized Lie
bialgebroids and generalized Lie bialgebras. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Roughly speaking, a Lie algebroid over a manifafds a vector bundlet over M such
that its space of section§(A) admits a Lie algebra structure ][ and, moreover, there
exists a bundle map from A to TM which provides a Lie algebra homomorphism from
(I'(A), [, into the Lie algebra of vector field§(M) (see [24,27]). Lie algebroids are
a natural generalization of tangent bundles and real Lie algebras of finite dimension. But,
there are many other interesting examples, for instance, the cotangent Brinlef any
Poisson manifold/ possesses a natural Lie algebroid structure [1,2,7,30]. In fact, there is a
one-to-one correspondence between Lie algebroid structures on a vectordandlénear
Poisson structures on the dual bundfe(see [2,3]). An important class of Lie algebroids
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are the so-called Lie bialgebroids. This is a Lie algebrb&lich that the dual vector bundle

A* also carries a Lie algebroid structure which is compatible in a certain way with thét on
(see [16,25]). IiM is a Poisson manifold, then the p&lM, T*M) is a Lie bialgebroid. As

a kind of converse, it was proved in [25] that the base space of a Lie bialgebroid is a Poisson
manifold. Apart from the pai(TM, T*M) (M being a Poisson manifold), other interesting
examples of Lie bialgebroids are Lie bialgebras [5]. A Lie bialgebra is a Lie bialgebroid such
that the base space is a single point and there is a one-to-one correspondence between Lie
bialgebras and connected simply connected Poisson Lie groups (see [5,17,23,30]). We re-
mark that a connected simply connected abelian Poisson Lie group is isomorphic to the dual
space of areal Lie algebra endowed with the usual linear Poisson structure (the Lie—Poisson
structure). Moreover, Poisson Lie groups are closely related with quantum groups (see [6]).

As itis well known, a Jacobi structure on a maniféltis a 2-vectorA and a vector field
E onM suchthatpA, A] = 2E A Aand [E, A] = 0, where [] is the Schouten—Nijenhuis
bracket [22]. If (M, A, E) is a Jacobi manifold one can define a bracket of functions,
the Jacobi bracket, in such a way that the sp@€&M, R) endowed with the Jacobi
bracket is a local Lie algebra in the sense of Kirillov [15]. Conversely, a local Lie algebra
structure orC*° (M, R) induces a Jacobi structure 8f[9,15]. Jacobi manifolds are natural
generalizations of Poisson manifolds. However, very interesting manifolds like contact and
locally conformal symplectic (I.c.s.) manifolds are also Jacobi and they are not Poisson.
In fact, a Jacobi manifold admits a generalized foliation whose leaves are contact or I.c.s.
manifolds (see [4,9,15]). IM is an arbitrary manifold, the vector bundiéd x R — M
possesses a natural Lie algebroid structure. Moreovéf, i§ a Jacobi manifold then the
1-jetbundler*M x R — M admits a Lie algebroid structure [14] (for a Jacobi manifold the
vector bundlg* M is not, ingeneral, a Lie algebroid). However, the gaMx R, T*M xR)
is not, in general, a Lie bialgebroid (see [31]).

On the other hand, in [12], we studied Jacobi structures on the dual bahttbea vector
bundleA suchthatthe Jacobi bracket of linear functions is again linear and the Jacobi bracket
of a linear function and the constant function 1 is a basic function. We proved that a Lie
algebroid structure oA and a 1-cocycleég € " (A*) induce a Jacobi structure et which
satisfies the above conditions. Moreover, we showed that this correspondence is a bijection.
We also consider two interesting examples: (i) for an arbitrary manifglthe Lie algebroid
A = TM x R and the 1-cocycley = (0, 1) € 2L(M) x C®(M,R) = I'(A*), we prove
that the resultant linear Jacobi structurefonV x R is just the canonical contact structure
and (ii) for a Jacobi manifold/, the Lie algebroidd* = T*M x R and the 1-cocycle
Xo=(—E,0 € X(M) x C*(M,R) = I'(A), we deduce that the corresponding linear
Jacobi StructuréA mxr, xo)» E(TMxR, xq)) ONTM x R is given by

A = AC 3AEC—t AY iAEV E =EY
(TMxR, Xg) = + o7 + » , (TMxR,Xo) = L

whereA® (resp.AY) is the complete (resp. vertical) lift M of A andE€ (resp.EV) is the

complete (resp. vertical) lift tdM of E. This Jacobi structure was introduced in [11] and it

is the Jacobi counterpart to the tangent Poisson structure first used in [28] (see also [3,8]).
Therefore, for a Jacobi manifold, it seems reasonable to consider the pgdr= TM x

R, ¢0 = (0,1)),(A* =T*M xR, Xg = (—E, 0))) instead of the pafTMx R, T*M x R).
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In fact, we prove, in this paper, that the Lie algebroidd x R and7*M x R and the
1-cocyclespg and X satisfy some compatibility conditions. These results suggest us to
introduce, in a natural way, the definition of a generalized Lie bialgebroid. The aim of
this paper is to discuss some relations between generalized Lie bialgebroids and Jacobi
structures.

The paper is organized as follows. In Section 2, we recall several definitions and results
about Jacobi manifolds and Lie algebroids which will be used in the sequel. In Section 3
we introduce the definition of a generalized Lie bialgebroid as a(pair¢g), (A*, Xo)),
whereA is a Lie algebroidA* (the dual bundle tel) is also a Lie algebroid angh € "' (A*)
(resp.Xo € I'(A)) is a 1-cocycle ofA (resp.A*). In addition, the Lie algebroidd, A* and
the 1-cocyclego, Xo must satisfy some compatibility conditions.d§ and X are zero,
we recover the notion of a Lie bialgebroid. MoreoverM, A, E) is a Jacobi manifold,
the pair((TM x R, (0, 1)),(T*M x R, (—E, 0))) is a generalized Lie bialgebroid. In fact,
extending a result of [25] for Lie bialgebroids, we prove that the base space of a generalized
Lie bialgebroid is a Jacobi manifold (Theorem 3.7). It is well known that the product of
a Jacobi manifold witiR, endowed with the Poissonization of the Jacobi structure, is a
Poisson manifold (see [22] and Section 2.2). We show a similar result for generalized Lie
bialgebroids. Namely, we prove that(ifA, ¢o), (A*, Xg)) is a generalized Lie bialgebroid
over M then it is possible to define a Lie bialgebroid structure on the dual pair of vector
bundles(A x R, A* x R) overM x R, in such a way that the induced Poisson structure on
M x R is just the Poissonization of the Jacobi structureMdifTheorem 3.9). Using this
result, we deduce that the generalized Lie bialgebroids satisfy a duality theorem, that is, if
((A, ¢0), (A*, X0)) is a generalized Lie bialgebroid, so(is&A*, Xo), (A, ¢0)).

In Section 4, we prove that it is possible to obtain a generalized Lie bialgebroid from
a Lie algebroid(A, [, ]. p), a 1-cocyclepo on it and a bisectior? € I'(A2A) satisfy-
ing [P, Plg, = [P, P] — 2P ANig, P = O (Theorem 4.1). This type of generalized Lie
bialgebroids are called triangular. Examples of triangular generalized Lie bialgebroids are
the triangular Lie bialgebroids in the sense of [25] and the generalized Lie bialgebroid
associated with a Jacobi structure. In Section 5, we study generalized Lie bialgebras, i.e.,
generalized Lie bialgebroids over a single point. Using the results of Section 4, we deduce
that generalized Lie bialgebras can be obtained from algebraic Jacobi structures on a Lie
algebra. This fact allows us to give examples of Lie groups whose Lie algebras are gen-
eralized Lie bialgebras. The study of this type of Lie groups is the subject of the paper
[13].

Finally, the paper closes with two appendices. In the first one, we show some facts about
the differential calculus on Lie algebroids inthe presence of a 1-cocycle and in the second one
we obtain, from a Lie algebroid over M and a 1-cocycleg € I"(A*), two Lie algebroid
structures on the pull-back; A of A over the canonical projectiom : M x R — M.

The notations, definitions and results in these appendices will be used throughout the paper
(particularly, in Sections 3 and 4). On the other hand, we must note that most of the results in
these appendices are a consequence of the application of standard techniques (see [10,24]).

Notation Throughout this paper, we will use the following notationMfis a differen-
tiable manifold of dimension, we will denote byC*> (M, R) the algebra o *° real-valued
functions onM, by 22%(M) the space ok-forms, byV* (M) the space ok-vectors, with
k > 2, by X(M) the Lie algebra of vector fields, kyythe usual differential o2*(M) =
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®1$2%(M) and by [ ] the Schouten—Nijenhuis bracket [1,30]. Moreoverdif> M is a
vector bundle oveM, I'(A) (resp.I" (A*)) is the space of sections df (resp. of the dual
bundleA* — M) andP € I'(A2A) then# : I'(A*) — I'(A) is the homomorphism of
C*° (M, R)-modules defined by

B#p(a) = P(a, B) fora, B e I'(A®). (1.1)

We also denote bygt: A* — A the corresponding bundle map.

Identifications We will also use the following identifications. Lét — M be a vector
bundle overM. Then, it is clear thai x R is the total space of a vector bundle owdr
Moreover, the spacE (A" (A x R)) of the sections of the vector bundié (A x R) - M
can be identified with" (A" A) @ I'(A"~1A) in such a way that

(P, )1, f1), ..., (ar, fr)
=Plas....a)+ Y (D Q@ ... .G ... . ) (1.2)

i=1
for(P, Q) € (N A& (AN Ay and(a;, fi) € T'(AHSC®(M,R)withi € {1,...,r}.
Under this identification, the contraction and the exterior product are given by

i@p (P, Q) = (ia P +ipQ, (—DFig 0),
(P,OA(P,Q)=(PAP, QAP +(-1)"PAQ) (1.3)
for (P, Q') € T'(A” A) ® I'(A"~YA) and(a, B) € I'(AKA*) @ ['(AF—1A%).

2. Jacobi manifoldsand Lie algebroids
2.1. Lie algebroids and Lie bialgebroids

A Lie algebroidA over a manifoldM is a vector bundled over M together with a Lie
algebra structure on the spaf&A) of the global cross-sections df — M and a bundle
mapp : A — TM, called theanchor mapsuch that if we also denote by: I"(A) — X(M)
the homomorphism of (M, R)-modules induced by the anchor map then,

1 po: (A, — XxM),[,]) is aLie algebra homomorphism and
2. forall f € C*°(M,R) and forallX,Y € I'(A), one has

[X. Y] = 71X, YT + (b (XD (/)Y.

The triple(A, [, ], p) is called aLie algebroid over Msee [24,27]).

A real Lie algebra of finite dimension is a Lie algebroid over a point. Another trivial
example of a Lie algebroid is the trip{&M, [, ], Id), whereM is a differentiable manifold,
TMis its tangent bundle and : TM — TM s the identity map.

If AisalLiealgebroid, the Lie bracket dn(A) can be extended to the so-callechouten
bracket], ] on the spacd”™(A*A) = &, " (A¥ A) of multi-sections of in such a way that
(@I (AFA), A [L]) is a graded Lie algebra (see [30]).
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On the other hand, imitating the usual differential on the sgatey), we define the
differential of the Lie algebroidd, d : I'(AFA*) — I'(A¥+14*), as follows. Forw €
I'(AkA*) andXo, ..., X; € T'(A),

k
do(Xo, ..., X) =Y (=D p(Xi)(@(Xo, ..., Xi, ..., Xp))
i=0
+Z(_1)l+]w(|[xl’X]]I5XO7"' s‘)’ziv s 9Xj7 s 1Xk)'

i<j

Moreover, since i= 0, we have the corresponding cohomology spaces. This cohomology
is theLie algebroid cohomology with trivial coefficientsee [24]).
Using the above definitions, it follows that a 1-cochaie I"(A*) is a 1-cocycle if and
only if
d[X, Y] = p(X)(9(Y)) — p(Y)(p(X)) forallX,Y e I'(A). (2.1)

On the other hand, recall that& bialgebroid[25] (see also [16]) is a dual paiA, A*) of
vector bundles equipped with Lie algebroid structufed, o) and([, ], o«), respectively,
such that the differential,dof A* satisfies

dJ[ X, Y] = [X,dyY] — [V, dX] for X,Y e I'(A).

An interesting example is the following.(M, A) is a Poisson manifold theiT*M, [, ] 4,
#,) is a Lie algebroid, where,[] 4 is the bracket of 1-forms defined by (see [1,2,7,30])

[.14:2MMm) x Y M) — 2 m),
[a. Bla = Lay)B — Latypya — 8(Ala, B)). (2.2)

Note that, for this algebroid, the differential is the operator-d —[A, -], which was
introduced by Lichnerowicz in [21] to define the Poisson cohomology. Moreover,Tivbn
we consider the trivial Lie algebroid structure, the gaix, 7*M) is a Lie bialgebroid (see
[25]).

2.2. Jacobi manifolds

A Jacobi structureon M is a pair(A, E), whereA is a 2-vector andt is a vector field
on M satisfying the following properties:

[A,A]=2EAA, [E, Al =0. (2.3)

The manifoldM endowed with a Jacobi structure is calledbaobi manifold A bracket of
functions (theJacobi bracketis defined by

{f. g} = A(Sf, 8g) + fE(g) — 9E(S)

forall f, g € C*°(M, R). Infact, the spac€°° (M, R) endowed with the Jacobi bracketis a
local Lie algebrain the sense of Kirillov (see [15]), that is, the mapping : C*°(M, R) x
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C®(M,R) — C>*(M, R) is R-bilinear, skew-symmetric, satisfies the Jacobi identity and
is a first-order differential operator on each of its arguments, with respect to the ordinary
multiplication of functions, i.e.,

{f1f2, 8} = filf2, g} + fol f1. 8} — fufell, g} for f1, f2, 8 € C°(M,R).

Conversely, a structure of local Lie algebra®’ (M, R) defines a Jacobi structure of

(see [9,15]). Note that if the vector field identically vanishes theW!, A) is a Poisson
manifold. Jacobi and Poisson manifolds were introduced by Lichnerowicz [21,22] (see also
[1,4,20,30,32)).

Remark 2.1. Let(A, E) be aJ~acobi structure on a manifattland consider on the product
manifold M x R the 2-vectorA given by

- 3
A=¢ A+ ANE],
Jt

wherer is the usual coordinate dR. Then, A defines a Poisson structure shx R (see
[22]). The manifoldM x R endowed with the structura is called thePoissonization of
the Jacobi manifoldM, A, E).

If M is a differentiable manifold then the tripi&@M x R, [, ], =) is a Lie algebroid over
M, wherer : TM x R — TM s the canonical projection over the first factor anpi$ the
bracket given by (see [24,26])

(X, ), ¥, )] = (X, Y], X(g) = Y(f)) (2.4)

for (X, f), (Y, g) € X(M) x C*(M,R) = I'(TM x R). In this case, the dual bundle to
TMxRis T*M xR and the spaceS (AF(TMx R)) andI" (A" (T*M x R)) can be identified
with VE(M) @ VE=L(M) and 2" (M) & 2" ~1(M) (see (1.2)). Under these identifications,
the differentials and the Schouten brackef of this Lie algebroid are

(o, B) = (3o, —5B), (2.5)
[(P, Q), (P, 0"] = ([P, P], D[P, 01 -0, P]) (2.6)

for (o, B) € 2" (M)® 2"X(M), (P, Q) € V*(M)® V*"L(M) and(P’, Q) e V¥ (M) &
VK1),

Onthe othgr hand, a Jacobi maning, A, E) has an associated Lie algebroft M x
R, |[, ]I (AE)» #(A,E))! where ||; ]I(A,E)» #(A,E) are defined by

[(@, f), B, Oa.E)=Li,)B — Laypyo — (A, B) + fLEB — gL
—ip(@ A B), AB, @) +#a(a)(g) — #a(B)(f)
+fE(g) — gE(f)), (2.7)

#oa e, f) =#a(a) +E
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for (a, ), (B, g) € 2Y(M) x C®(M, R), L being the Lie derivative operator (see [14]).
If d,. is the differential of this algebroid and@, Q) € V¥(M) & Vk—1(M), we have (see
[18,19])

dy(P, Q) = (—[A, P) +KEA P+ A A Q.[A, Q] — (k— 1)E A Q +[E, P)).
(2.8)

Remark 2.2. If (M, A, E) is a Jacobi manifold and ofiM x R (resp.7*M x R) we
consider the Lie algebroid structue], =) (resp.([. 1 4.£). #,£))) then the paikTM x
R, T*M x R) is not, in general, a Lie bialgebroid (see [31]).

3. Generalized Lie bialgebroids

Let A be a vector bundle ove¥f and A* the dual bundle tod. Suppose thaf[, ], o)
(resp. ([, 1%, p+)) is a Lie algebroid structure oA (resp.A*) and that¢g € I'(A*)
(resp.Xg € I'(A)) is a 1-cocycle in the corresponding Lie algebroid cohomology complex
with trivial coefficients. Then, we will use the following notation (see Appendix A):

d (resp. q) is the differential of(A, [, ], o) (resp.(A*, [, 1« o«))-

dg, (resp. dx,) is thego-differential (resp Xo-differential) of A (resp.A™).

L (resp.L.) is the Lie derivative ofA (resp.A*).

Ly, (resp.Lsx,) is thego-Lie derivative (respXo-Lie derivative).

[.14, (resp. [1+x,) is the ¢o-Schouten bracket (resp{o-Schouten bracket) on

(A, [ 1. p) (resp(A*, [, 1+, ps))-

o pg, (resp.psx,) is the representation df (resp.A*) on the trivial vector bundl#/ xR —
M given by (A.1).

o (0, ¢0) : I'(A) > X(M)xC®(M,R) (resp.p«, Xo0) : I'(A*) = X(M)xC>®(M,R))

is the homomorphism af > (M, R)-modules given by (A.7) antp, ¢o)* : 21(M) x

C®(M,R) — I'(A*) (resp.(px, Xo)* : 2L (M) x C®(M,R) — I'(A)) is the adjoint

operator of(p, ¢o) (resp.(p«, Xo)).

3.1. Generalized Lie bialgebroids and Jacobi structures on the base space

Suppose tha¥ is a differentiable manifold and I€f, ], ) be the Lie algebroid structure
on the vector bundlgM x R — M. As we know (see Appendix A), the 1-cochaig =
0,1) € Q¥ (M) x C>®(M,R) = I'(T*M x R) is a 1-cocycle. Thus, we can consider the
¢o-Lie derivativeLy, = L0,1) and thepo-Schouten bracket [¢, = [, ]0,1)-

Now, assume thdtA, E) is a Jacobi structure aif and denote by, ] (4. k). #(A,E)) the
Lie algebroid structure ofi*M x R — M and by d the differential of this Lie algebroid.
From (2.3) and (2.8), it follows thaty = (—E,0) € X(M) x C®°(M,R) = I'(TM x R)
is a 1-cocycle.

Using (1.3), (2.6), (2.8), (A.2) and (A.9), we also have thatXhedifferential d.x, =
d.(—£,0) Of the Lie algebroid7*M x R, [, 1.E). #(A,E)) is given by

dv—£,0(P, Q) = —[(A, E), (P, Dlo,1 (3.1)
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for (P, Q) € VK(M) @ V*~1(M). Note that d-£,0) is just the cohomology operator of
the ldifferentiable Chevalley—Eilenberg cohomology complex (éé [9,22]). Moreover,
compare Eq. (3.1) with the expression of the differential of the Lie algebroid associated
with a Poisson manifold (see Section 2.1).

For the above Lie algebroids and 1-cocycles, we deduce
Proposition 3.1.

1 I (X, ), (Y, g) € X(M) x C®(M,R) = I'(TM x R), then
di—e.0[(X, 1), Y, 9] =[(X, f), du—E,0(Y, ]0,1)
—[(Y, ), du—£,0(X, Hl0y-

2. If L, denotes the Lie derivative on the Lie algebr¢itf M x R, [, ] (4, £). #(A,E)) and
(P, Q) € VE(M) @ VF-1(M) = ' (A¥(TM x R)), then

(Ls—E,0) 0,0, O)+ (Lov)—E0P, Q) =0.

Proof.
1. Itfollows from (3.1), (A.11) and (A.14).
2. Using (1.3), (2.6), (3.1), (A.3), (A.9) and (A.15), we have that

(Ls—E,0) 0P, Q)+ (Lo1n)—E0P, Q)
=0i—£,0(Q, 0 +ioy(—[A, P]+(k—DEAP+ANANQ,[A, Q]
—(k—=2EANQ+[E, P])—(E, P].[E, Q] =0. O

Now, let(A, [, ], p) be a Lie algebroid angp € I'(A*) a 1-cocycle. Assume also that
the dual bundleA* admits a Lie algebroid structui@, ] «, o) and thatXg € I'(A) is a
1-cocycle.

Suggested by Proposition 3.1, we introduce the following definition.

Definition 3.2. The pair((A, ¢o), (A*, Xp)) is said to be a generalized Lie bialgebroid
overM ifforall X,Y e I'(A) andP € I'(AkA)

dexo[ X, YT = [X, dixo Y1 — [V, dixo X1 0 (3.2)
(Lsxo)go P + (Lpg)xo P = 0. (3.3)
Using (A.1), (A.4), (A.10), (A.12) and (A.15), we obtain that (3.3) holds if and only if
$o(Xo0) =0, p(Xo) = —p«(¢0), (3.4)
(L)goX +[ X0, X] =0 for X e I'(A). (3.5)

Note that (3.4) and (3.5) follow applying (3.3) 1 = f € C*(M,R) = I'(A°4) and
P=XeTl(A).
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Example 3.3.

1. In the particular case whepy = 0 andXg = 0, (3.2) and (3.3) are equivalent to
the condition d[ X, Y] = [ X, d.Y] — [Y, d. X]. Thus, the pairn (A, 0), (A*,0)) is a
generalized Lie bialgebroid if and only if the p&ut, A*) is a Lie bialgebroid.

2. Let(M, A, E) be a Jacobi manifold. From Proposition 3.1, we deduce that the pair
(TMx R, (0, 1)), (T*M x R, (—E, 0))) is a generalized Lie bialgebroid.

Next, we will show that if((A, ¢o), (A*, X)) is a generalized Lie bialgebroid ovéf, then
M carries an induced Jacobi structure. First, we will prove some results.

Proposition 3.4. Let((A, ¢o), (A*, Xp)) be a generalized Lie bialgebroid. Then,

(Lixo)dgy r X = [X, dixo f] (3.6)
forX e '(A)and f € C*(M, R).
Proof. Using (A.2) and the derivation law on Lie algebroids, we obtain that
d*Xo(l[X’ fYJI) = (d*Xof) A |[Xv Y]I + fd*Xol[Xv Y]I —fXo A |[X1 Y]I
H+dixo (0 (XN AY + p(X)(dixoY — p(X)(f)XoAY
forX,Y e I'(A) andf € C*°(M, R).
On the other hand, from (3.2), (A.2), (A.12) and (A.15), we deduce that
d*Xo(l[X’ fY]I) = (Ld)o)X(d*Xo fY)) — (L¢>0)fY(d*X0(X))
= ((Etbo)X(d*Xof)) ANY + (d*Xof) N (‘C(Po)XY
—P0(X)(Gixo /) AY + f(Lyo) x (Aixo¥) + 0 (X)(f)dix, Y
—f((Lp)xXoANY + Xo A (Lpg)xY — po(X)Xo A Y)
—p(X)(HXoAY — f(Lyy)y (DixoX) — idr(dixoX) A Y.
Thus, using again (3.2), it follows that
Aexo (P (X)) A Y = ((Lpg) xBsxo [ — Po(X)ixo f — f (L) x Xo
+fpo(X) X0 —idf(dixo, X)) A Y,
and so
d*Xo(p(X)(f)) - (£¢0)Xd*X0f + ¢0(X)d*Xof + f(ﬁ(po)XXO
— féo(X)Xo +idr(dixoX) =0,
which, by (3.5), (A.2) and (A.3), implies (3.6). O

Corollary 3.5. Under the same hypothesis as in Propositto#,for all f, g € C*°(M, R)
we have

[dixog, Oixo f1 = dixo(dgo f - Aexo8)-
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Proof. From (A.3), Proposition 3.4 and sincé)&i) = 0, we deduce that
[d*Xog» d*Xof]I = (L*Xo)d(pof(d*Xog) = d*Xo(d¢of : d*Xog)~ O

Remark 3.6. Using (A.6)—(A.8), it follows that

dgo f - dixog = 80,1y f - (0, $0) © (0s, X0)™) (5(0.1)8)
= 70,1 (((0, ¥0) © (px, X0)*) (50,1)8), f),

wherer (g, 1) is the representation of the Lie algebrgidM x R, [, ], =) on the vector bundle
M x R — M given by (A.5).

Now, we will prove the main result of this section.
Theorem 3.7. Let((A, ¢o), (A*, X0)) be a generalized Lie bialgebroid. Then, the bracket
of functions{, } : C*(M, R) x C*(M,R) - C*(M, R) given by
{f. g} i=dyf - dixog for f, g € C(M,R),
defines a Jacobi structure on.M

Proof. First of all, we need to prove thdt} is skew-symmetric. Using (3.4), (A.2) and
(A.8), we have that

{f, fY=df -def = (((p, ¢0) © (ps, X0)*)(8f, 0)) - (3f, 0). (3.7)
On the other hand, from (3.7) and Corollary 3.5, it follows thatd((o, ¢o) o (ox, X0)*)
(8f2,0) - (5f2,0)) = 0. Then (see (A.2))

0=(((p, $0) © (px, X0)*) (81, 0) - (8, 0))(Wxo f > — fX0)

=2f(((p, #0) o (px, X0)*) (81, 0) - (8/, 0))ds f. (3.8)

Thus, using (3.8) and (A.8), we deduce that(p, $o) o (ox, X0)*)(Sf, 0) - (5f,0))2 =0
forall f € C*°(M, R). This implies that

(((p, ¢0) 0 (p«, X0)") (81, 0)) - (3f,0) =0,

and, therefore, we conclude tHgt f} = 0 (see (3.7)) for allf € C*°(M, R), thatis,{, }
is skew-symmetric.

Using (A.2) and sincegl1 = ¢, we deduce thdt } is a first-order differential operator
on each of its arguments.

Now, let us prove the Jacobi identity. From Corollary 3.5, we have

gl - [dsxo8. thixo ST = dgoht - dexo ({f. 81 = {h, {1, 81}

Thus, using (A.8) and the fact thét, ¢o) is a Lie algebroid homomorphism, we deduce

70.1)([((p, $0) © (px, X0)*) (510.1)()), (0, P0) © (0x, X0)™) (50,1 (fN], )
= {h, {f. g}}.
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Consequently, sinceg,1) is a representation of the Lie algebrgiM x R, [,], =) on the
vector bundleM x R — M, this implies that (see Remark 3.6)

{f {g. h}}+1{g.{h, f1}+{h.{f. g}} =0 O
From (3.4) and (A.2), we have that
{f.g}=df -dig — fr(X0)(g) + go(Xo)(f) (3.9)

for f, g € C*°(M, R). Since the differential d is a derivation with respect to the ordinary
multiplication of functions we have that the mafi g) — df -d.g, for f, g € C°(M, R),

is also a derivation on each of its arguments. Thus, we can define the 2-vieet®? (M)
characterized by the relation,

ASf,8g) =df -dig = —dg - di f (3.10)
for f, g € C*°(M, R), and the vector field& € X(M) by
E = —p(Xo) = ps+(¢0). (3.11)

From (3.9), we obtain thatf, g} = A(Sf, dg) + fE(g) — gE(f) for f, g € C*(M, R).
Therefore, the pai¢A, E) is the Jacobi structure induced by the Jacobi bragKet

If (A, A*)is a Lie bialgebroid, then the pai¢A, 0), (A*, 0)) is a generalized Lie bialge-
broid and, by Theorem 3.7, a Jacobi structue E) can be defined on the base spate
Sincegg = X = 0, we deduce thak = 0, that is, the Jacobi structure is Poisson, which
implies a well-known result (see [25]): given a Lie bialgebroid A*) over M, the base
spaceM carries an induced Poisson structure.

3.2. Lie bialgebroids and generalized Lie bialgebroids

In this section, we will show a relation between generalized Lie bialgebroids and Lie
bialgebroids. For this purpose, we will use the notations and results contained in Appendix B.
Firstly, suppose that1 and A, are two Lie algebroids o such that the dual bundles
A7 and A3 are also Lie algebroids. Then, a direct computation shows the following result.

Lemma3.8. Let® : A1 — A2 be aLie algebroid isomorphism over the identity such that
its adjoint homomorphismd* : A3 — A7 is also a Lie algebroid isomorphism.(f1, A7)
is a Lie bialgebroid, so igAz, A3).

Next, assume thatM, A, E) is a Jacobi manifold. Consider oh = TM x R and on
A* = T*M x R the Lie algebroid structure$, ], ) and([. 14, £). #(A,E)), respectively.
Then, the pai(A, ¢o = (0, 1)), (A*, Xo = (—E, 0))) is a generalized Lie bialgebroid.
Now, the mapd : A = A x R — T(M x R) defined by® ((vy,, 20), t0) = vy, +
Ao(8/01))1, TOr x0 € M, vy, € TyyM andig, fo € R, induces an isomorphism between
the vector bundlest x R — M x RandT(M x R) — M x R. Thus,A = A x R
can be identified witl' (M x R) and, under this identification, the Lie algebroid structure

{, ]««»07 7%0) (see (B.1)) is just the trivial Lie algebroid structure BaM x R).
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Thepair([,] k). #(A,E)) andthe 1-cocycl&y = (—E, 0) allow us tointroduce the Lie

algebroid structure] ]IA()f‘OyE), #4.£)%9) (see (B.2)) on the vector bundfg = A* x R —
M x R. A'long computation, using (2.2), (2.7) and (B.2), shows that

[@ ). B DV ) = [ @+ Fd). @* B+ D0 ) = [a+f e, f+g o] ;.

#a )X, f) =Foap 0@ @+ fd) =#;@+ fdr)

for @, B time-dependent 1-forms ol and f, § € C>®°(M x R, R), whereA is the Pois-
sonization of the Jacobi structutd, E) and®* : T*(M x R) — A* = A* x Ris the
adjoint isomorphism ofp.

Therefore,A* = A* x R can be identified/w\ith?"*(M x R) and, under this identifi-

cation, the Lie algebroid structur§, ]IfX’E), #M,E) Xo) is just the Lie algebroid structure
([.1.#5 onT*(M x R). Consequently, using Lemma 3.8, we deduce that, for this par-
ticular case, the paitA, A*) is a Lie bialgebroid, when we consider dnand A* the Lie
algebroid structureq, J%°, 7%0) and([, ] (ﬁO,E)’ #4.1)%0), respectively.

In this section, we generalize the above result for an arbitrary generalized Lie bialgebroid.
In fact, we prove the following theorem.

Theorem 3.9. Let ((A, ¢o), (A*, Xp)) be a geperalized Lie bialgebroid and, E) the
induced Jacobi structure over M. Consider an= A x R (resp.A* = A* x R) the Lie

algebroid structurg[[, J#, 5%) (resp.([, 1X°, 7.%0)). Then,

1. The pair(A, A*) is a Lie bialgebroid ovens x R.
2. If Alistheinduced Poisson structure dfix R thenA is the Poissonization of the Jacobi
structure(A, E).

Proof. Denote byd (respds, d% andd, *°) the differential of the Lie algebroidd, [, 1, )
(resp.(A*, [.T,. ), (A, [.T%, 5%) and(A*, [ 1.X°, 5. %0)).

1. If X, Y e I'(A) then, using (A.2), (B.1) and (B.4) and the properties of the derivative
with respect to the time of a time-dependent multisection, it follows that

~ Xor & o e s o ax v
d*XOI[Xa Y]I¢0:e_l (d*XO[X’ Y]I +XQ/\ [[E,Y}] +X0/\ [[X,E]]

-9 o~ - -9 o~ - .
+¢0(X)a_z(d*X°Y) - ¢0(Y)5(d*x0X) — ¢0(X)Xo

oY ianf( f(X/\aZf] V)X
A¥+¢o( )Xo ¥+¢o( )Xo W—d)o( )Xo
92X

5 VN I 90X
Szt E(q&o(X))Xo A —— — —(¢o(¥Y))Xo A ar

ot at

= L A ) ¢
+d*X0(¢O(X)) A 5 - d*XO(¢O(Y)) AN E) .
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On the other hand, using (3.4), (A.10), (A.12), (B.4) and (B.5) and the fact that
(8/01)(9o(2)) = ¢po(dZ/0t) for Z € I'(A), we have that

. a il
[X,d.5 7% = ([X,d*xoy]¢0+[x,xo]/\EJFXO/\[[X,E}]

oF
—po(X)Xo A e + ¢0(X) (d*xoY) + ¢o(X) Xo

/\82Y 85{/\' Oy V) + 8(¢ (Y))BXAX
— — — Al — -— .
32 ar | 9oiTXo 9 0 ot 0

Finally, from (3.2) and (3.5), we deduce that
opx, yp%e =[x, d. °71% — [7,d.°x1%.

2. If f,§ € C®°(M x R, R) then, using (3.4), (B.3) and (B.4) and Theorem 3.7, we obtain
that

L - .~ af 08 -
AGf. 85 =dnf. 4, = e (df - dyg — a—fp(Xoxg) + a—meo)(f)) :

On the other hand, from (3.10) and (3.11), we conclude thate+ (3/91) AE) = A,
that is, A is the Poissonization afA, E). O

Now, we discuss a converse of Theorem 3.9.

Theorem 3.10. Let(A,[,], p) be a Lie algebroid ang € I'(A*) a 1-cocycle. Suppose
that ([, ], Px) is a Lie algebr0|d structure om* and thatXg € I'(A) is a 1-cocycle.
Consider onA = A x R (resp.A* = A* x R) the Lie algebroid structurg[, ] %, 5%°)

(resp.(|[,]|* ° 5:%0)). If (A, A*) is a Lie bialgebroid then the paif(A, ¢o), (A*, X)) is
a generalized Lie bialgebroid

Proof. Let{,} be the induced Poisson bracket@nx R. Then, from (B.3) and (B.4) and
Theorem 3.7, it follows that

o S T - Af . agaf
{f.g} =€ (df 08 + 8—fP(X0)(f) + a—{p*(qbo)(g) + 8—fa—{¢o(Xo)>

for f,§ € C®(M x R, R). Since{, } is skew-symmetric, we have tht 1} = 0 which
implies thatgo(Xo) = 0. Moreover, if f € C*°(M, R) then, using thatf, r} = —{¢, [},
we conclude thap (Xg) = —p+(¢0).

Now, from (B.1), (B.4) and (B.5) and sincd, °[X,Y]% = [X,d, y]%
—[Y, 3. °x] %, we deduce (3.2).
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Finally, if X € I"(A) then, using the computations in the proof of Theorem 3.9 and the
fact that

d.X[x, &% =[x, d. @)% - [e'y, d, O x]
forall Y € I"(A), we prove that[ Xo, X] + (£.)¢,X) A Y = 0. But this implies that
[ Xo, X] + (L1)goX = 0. O

In [25] it was proved that if the paitA, A*) is a Lie bialgebroid then the pain*, A)
is also a Lie bialgebroid. Using this fact, Lemma 3.8, Theorems 3.9 and 3.10 and since the
Lie algebroids(A, [, 10, 5%0) and(A, [,]%°, 5%) are isomorphic (see Appendix B), we
conclude that a similar result holds for generalized Lie bialgebroids.

Theorem 3.11. If ((A, ¢0), (A*, X0)) is a generalized Lie bialgebroid, so {$A*, Xo),
(A, ¢0)).

4. Triangular generalized Lie bialgebroids

Let M be a differentiable manifold andl, ], =) be the Lie algebroid structure am x
R — M. Then, the sectiopg = (0,1) € 21(M) x C¥*(M,R) = I'(T*M x R) is a
1-cocycle. Denote by and£ (resp.S(o, 1) andLg,1)) the differential and the Lie derivative
(resp. thepo-differential and thepo-Lie derivative) of the Lie algebroidT™ x R, [, ], 7)
and by [ ](0.1) the¢o-Schouten bracket (see Section 2.2 and Appendix A).

Suppose thata, E) € V2(M)® X(M) = I'(A2(TM x R)). From (2.3), (2.6) and (A.9),
we have that

(A, E)isaJacobistructuref < [(A, E), (A, E)] 0,1 =0. (4.2)

Moreover, if(A, E) is a Jacobi structure aif and([, [ 4. k). #(A,E)) is the Lie algebroid
structure orf * M x R then along computation, using (1.2), (1.3) (A.3) and (A.6), shows that
the Lie bracket[] (4, £) and the anchor maEQA,E) can be written using the homomorphism
#AE) Ql(M) X CPM,R)=ET'(T*M x R) - X(M) x C®°(M,R) = I'(TM x R)

and the operator§ g 1) andd o 1) as follows:

[(a, 1), B, D) a.6) = (L0 1 @) (Bs &) — (L0144 £ B.0) (A f)
=500 (A, E)(@, ), (B, 8))
=it ) 00,18 &) — ity 1 (8. G0.1) (@ 1))
+500 (A, E)(@, f), (B, &), (4.2)
#(A,E) =m oA E).

Compare Eq. (2.2) with the above expression of the Lie algebroid bracket ).
Now, let(A, [, ], o) be a Lie algebroid oveM and¢g € I"(A*) a 1-cocycle. Moreover,
let P € I"(A%A) be a bisection satisfying

[P, Py, =0.
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We shall discuss what happens on the dual buadle— M. Eq. (4.2) suggests us to
introduce the bracket,[| .p on I" (A*) defined by

[¢, ¥]1sp = (Lotpr ) ¥ — (Log)#tp )P — Ago (P (P, ¥))
= ittp(@)Ago ¥ — it (y)Upo® + oo (P (@, ¥)) (4.3)

for ¢, v € I'(A*).

Theorem 4.1. Let (A, [, ], p) be a Lie algebroid over M¢g € I'(A*) a 1-cocycle and
P € I'(A?A) a bisection ofA — M satisfying[ P, P]4, = 0. Then,

1. The dual bundlet* — M together with the bracket defined(#.3)and the bundle map
pxp = po#tp 1 A* — TMis a Lie algebroid

2. Xo= —#p(¢o) € I'(A) is a 1-cocycle

3. The pair((A, ¢o), (A*, X)) is a generalized Lie bialgebroid

Proof. If we consider the Lie algebroid structue, ] %°, 5%°) onA = A x R - M x R

and the bisectio? = e’ P € I'(A%A) then, from (B.1) and (B.3) and Theorem A.3, it
follows that [P, P] % = 0. Thus, using the results of Mackenzie and Xu [25], we deduce
that the vector bundle* — M x R admits a Lie algebroid structur, ], 5), where

p 1 A* — T(M x R) is the bundle map given by = 5% o #3 and [, ] is the bracket on
I'(A*) defined by

5 Ul =i, ~dPU —i. - d?¢ 4 d(P(d. U Y A%
[o.v] = l#ﬁ((p)d 14 l#ﬁ('/f)d ¢ +d?(P(p, ) for ¢, v € I'(AY),
whered? is the differential of the Lie algebroidd, [, ], 5%°).

Now, if [, ]I;P denotes the natural extension of the brackdt.p to I"(A*), we will
prove that

[6. 91} =e <[¢ ¥l p+é(Xo) (—‘”—w) ¥ (Xo) (—¢ —¢>) =[¢.v1.
(4.4)

If d is the differential of the Lie algebroidd, [, ], ) (see Appendix B) then, from (4.3)
and (A.2) and the definition afg, we have that

[6. 9] =e" (i#P(q;)axZ — iy, ()06 + d(P($, V)

~ - 9 7 9 7
FPT 300 + gy 90 2 — (i, 5 0) a_ff) ,
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Using the fact thad /37 (P (¢, ¥)) = i#P(d;)(al/;/M) - i#P(v;)(aé/at), we obtain that
T S AN
[6. 918 =€ (l#P(¢3> (d‘” +don E) ~ () <d¢ oA 5)

- .o I
+d(P(@, ¥)) — (P(¢, ¥))o + 5 (F(@, 1/f))tlﬁo) .

Thus, from (B.3), we deduce (4.4).
On the other hand, using (B.1) and (B.2), it follows that

- B A\ e -
p(p) =€’ (P*P(¢) + Xo(d’)&) )

for ¢ € I'(A*), wherep,p is the natural extension t&'(A*) of p,p. Therefore, from
Proposition B.2, we prove (1) and (2). A
Now, if we consider o (resp.A*) the Lie algebroid structurd, ] %, 5%0) (resp.(|[,]|£9,

2-p~9)) then the paifA, A*) is a Lie bialgebroid (see [25]). Consequently, using Theorem
3.10, we conclude th&t A, ¢o), (A*, Xp)) is a generalized Lie bialgebroid. O

Let(A,[,], p) be alLie algebroid angg € I"'(A*) a 1-cocycle. Suppose thdt, ] «, ox)
is a Lie algebroid structure oA* and thatXg € I'(A) is a 1-cocycle. Moreover, assume
that((A, ¢o), (A*, X)) is ageneralized Lie bialgebroid. Then, the géi, ¢o), (A*, Xo))
is said to be ariangular generalized Lie bialgebroiifi there existsP e I'(A%A) such that
[P, P]y, =0and

[.1:=1L1:p, Px = Pxp, Xo = —#p(¢0).

Note that a triangular generalized Lie bialgebr@id, ¢o), (A*, X0)) such thatpg = O is
just atriangular Lie bialgebroid(see [25]). On the other hand, (M, A, E) is a Jacobi
manifold then, using (4.1) and (4.2), we deduce that the @& x R, (0, 1)), (T*M x

R, (—E, 0))) is a triangular generalized Lie bialgebroid.

5. Generalized Lie bialgebras
In this section, we will study generalized Lie bialgebroids over a point.

Definition 5.1. A generalized Lie bialgebra is a generalized Lie bialgebroid over a point,
that is, a pain(g, ¢o), (g*, Xo)), where(g, [, ]¢) is a real Lie algebra of finite dimension
such that the dual spagé is also a Lie algebra with Lie bracket]f", Xo € g andgg € g*

are 1-cocycles op* andg, respectively, and

dixol X, Y18 = [X, duxo Y15 — [V, dixo XI5, (5.1)
$o(Xo) =0, (5.2)
igo(dX) + [Xo, X]¢ =0 (5.3)

forall X, Y € g, d, being the differential orig*, [,19").
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Remark 5.2. In the particular case whety = 0 andXo = 0, we recover the concept of a
Lie bialgebra that is, a dual paifg, g*) of Lie algebras such thatflX, Y]¢ = [X, d,Y]% —
[Y,d.X]% for X, Y € g (see [5]).

Next, we give different methods to obtain generalized Lie bialgebras.

Proposition 5.3. Let(h, [,]9) be a Lie algebrar € A% and X € h such that
[r.r]" —2XoAr=0,  [Xo,r]" =0. (5.4)

Then, ifg = h x R, the pair((g, (0, 1)), (g*, (—Xo, 0))) is a generalized Lie bialgebra

Proof. Consider ory the Lie bracket []? given by
[(X, 3), (¥, w]® = ([X, 1", 0) (5.5)

for (X, 1), (Y, u) € g. One easily follows thapg = (0, 1) € h* x R = g* is a 1-cocycle.
On the other hand, the spacég = A%(h x R) can be identified with the produsfh x b
(see (1.2)) and, using (1.3), (5.4) and (5.5) and Theorem A.3, we have teatr, Xo) €
A%h x b = A?g satisfies P, P]§ = 0.

Therefore, from Theorem 4.1, we deduce that there exists a Lie brackgtamd the
pair ((g, (0, 1)), (g*, —#p(0, 1))) is a generalized Lie bialgebra. Moreover, we have that
#p(0,1) = (Xo, 0) (see (1.1) and (1.3)). O

Remark 5.4.

1. Note that this method of finding generalized Lie bialgebras is related to find algebraic
Jacobi structures.
2. Using (1.2), (1.3) and (4.3) it follows that the Lie brackg®[ ong* is given by

[(or. ). (B. )] = (coad; o) — COals, (g — ig, (ot A B) — ju COATk o
+2 coady B, —r(a, B)) (5.6)

for (o, 1), (B, n) € g*, where coad h x h* — h* is the coadjoint representation lpf
overh* defined by(coadya)(Y) = —a[X, ¥]Y for X, Y € h anda € h*.

Corollary 55. Let (b, [,]) be a Lie algebra andZ (h) the center ofy. If r € A2h, X €
Z(h) and

[r,r]" —2XgAr =0,

then the pair((h, 0), (h*, — X)) is a generalized Lie bialgebra

Proof. Using Proposition 5.3, we have thiat = b x R, (0, 1)), (g* = b* xR, (—Xo. 0)))
is a generalized Lie bialgebra. Furthermore, from (5.6) and sifice Z(h), we deduce
that the Lie bracket og* is given by

[(e. ). (B. w]¥ = (coad; ) B — coady g — ig, (@ A B). —r (. B)) (5.7)
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for (a, 1), (B, n) € g*. Thenh andh* are Lie algebras, where the Lie bracket ighis
defined by

[ 817" = coad, @)B — coady ga — i, (@ A p) (5.8)

for «, 8 € b*. Moreover, using (5.5), (5.7) and (5.8) and the fact that (0, 1)),
(g%, (— X0, 0))) is a generalized Lie bialgebra, we conclude th@t 0), (h*, —Xp)) is
a generalized Lie bialgebra. O

Remark 5.6. From (5.8) and Corollary 5.5, we deduce a well-known result (see [5]): if
(h,[,19) is a Lie algebra; € A2h is a solution of the classical Yang—Baxter equation (that
is, [, r]9 = 0) and onh* we consider the bracket defined by

[, 1Y = coady, ) B — coad;, g for o, B € b,
then the paixh, h*) is a Lie bialgebra.

Examples5.7.

1. Let(b, [,]9) bethe Lie algebra of the Heisenberg graiifll, 1). Then)y = ({e1, e, e3})
and

le1, e2]" = e3, ez € Z(h).

If we taker = e1 A e andXg = —e3, we have thatf r]9 — 2Xo A » = 0 and thus,
using Corollary 5.5, we conclude théh, 0), (h*, e3)) is a generalized Lie bialgebra.
Note thatr and Xg induce the canonical left-invariant contact structurédai, 1).

2. Denote byy = su(2) = {4 € gl(2,C)/AT = —A, traceA = 0} the Lie algebra of the
special unitary grouU(2) and byoi, o2 andos the Pauli matrices

(o1 [0 i (1 0
=11 0)0 27\ o) BT\ lo 1)

Then, the matricefe; = 3io1, e2 = 3i02, e3 = 3io3) form a basis of) = su(2) and if
[,19 is the Lie bracket oy, we have that

b

[elv eZ]h = —ea3, [el, eS]h = e, [62’ 63] = —e1.

Sincer = e A e2 andXg = e3 satisfy equations (5.4J(su(2) x R, (0, 1)), (su(2)* x
R, (—Xo, 0))) is a generalized Lie bialgebra. Note that |]T‘(2)XR is the Lie bracket
on su(2) x R then, from (5.5), it follows thatsu(2) x R, [,]5*@*R) is just the Lie
algebra of the unitary grougi (2). Moreover,r and X induce a left-invariant contact
structure orSU(2).

3. LetGl(2, R) be the general linear group ahd= gl(2, R) its Lie algebra. A basis df
is given by the following matrices:

(o1 (o0 (1 0 (10
Vo o) “2?7\1 0)0 “T\o -1) “T\o 1)
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If [,]1Y is the Lie bracket oy, we have that
[e1. €2]" = e3, [e1. e3]" = —2e1, [e2. e3]" = 22, es € Z(h).

Therefore, ifr = e1 A e3+ (e1 — 3e3) A es andXg = —ea, we deduce that
[r, r]h —2XoAr =0.
Consequently(h, 0), (h*, —Xo)) is a generalized Lie bialgebra (see Corollary 5.5).
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Appendix A. Differential calculuson Lie algebroidsin the presence of a 1-cocycle

Let (A,[,]. p) be a Lie algebroid oveM and¢o € I'(A*) be a 1-cocycle in the
Lie algebroid cohomology complex with trivial coefficients. Using (2.1), we can define a
representatiopg, of A on the trivial vector bundléd/ x R — M given by

Pgo(X) f = p(X)(f) + do(X) f (A1)

forX e I'(A) andf € C*(M, R). Thus, one can consider the standard cohomology com-
plex associated with the vector bundiex R — M and the representatign, (see [24]).
The cohomology operatorgl : I'(A¥A*) — I'(A¥+14*) of this complex will be called
thego-differentialof A. If d is the differential of the Lie algebroi4, [, ], o) then we have

dgow =do + o Aw  for w e I'(AFA). (A.2)
Remark A.1. If ¢gis a closed 1-form on a manifold thengg is a 1-cocycle for the trivial
Lie algebroid(TM, [, ], Id) and we can consider the operatgy.dSome results about the

cohomology defined by, were obtained in [9,18,29]. These results were used in the study
of locally conformal Kahler and I.c.s. structures.

If k> 0andX € I'(A), we can also define the Lie derivative (associated with the rep-
resentationpy,) with respect taX, (L) x : I'(AFA*) — I'(An¥A*), as follows (see [24]):

(Lpo)x =g 0ix +ix o gy, (A.3)

whereiy is the usual contraction hy. It is called thepo-Lie derivativewith respect taX.
A direct computation proves that

(Log)xw = Lxw + ¢o(X)w, (A.4)
L being the usual Lie derivative of the Lie algebraitl, [, ], o).
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Remark A.2.

1. If we consider the Lie algebroi(fTM x R, [, ], ) (see Section 2.2), using (2.5), we
deduce thatpg = (0,1) € 21 (M) x C®(M,R) = I'(T*M x R) is a 1-cocycle.
Thus, we have the corresponding representatign) of TM x R on the vector bundle
M x R — M which, in this case, is defined by

mo,0((X, ). g =X(g) +fg (A.5)

for (X, f) € X(M) x C*(M,R) andg € C*°(M, R). From (1.2), (2.5) and (A.2), we
obtain that thepo-differential 64, = 8(0,1) is given by

S0.1)(@, B) = (o, — 8B) (A.6)

for (a, B) € 2KM) @ 2K 1(M) = I'(AN(T*M x R)).
2. Let(A,[,1. p) be a Lie algebroid oveds andgg € I'(A*) be a 1-cocycle. The homo-
morphism ofC* (M, R)-modules(p, ¢o) : I'(A) — X(M) x C*°(M, R) given by

X = (p(X), ¢o(X)) (A7)

induces a Lie algebroid homomorphism over the identity between the Lie algebroids
(A, [.1. p) and(TM x R, [, ], 7). Moreover, if (o, ¢po)* : 21 (M) x C®°(M,R) —

I’ (A*) is the adjoint homomorphism @b, ¢o), then(p, ¢o0)*(0, 1) = ¢o. AS a conse-
quence, forf € C*°(M, R),

(0, $0)*(Bf. f) = (0, $0)* (50,1 f) = dgo f. (p. )" (6£.0) =df.  (A8)

In[1], a skew-symmetric Schouten bracket was defined for two multilinear maps of acom-
mutative associative algebaverR with unit as follows. LefP andP’ be skew-symmetric
multilinear maps of degree andk’, respectively, and, ... , fiiw_1 € 3. If Ais any
subset off1,2, ..., (k + k' — 1)}, let A’ denote its complement and| the number of
elements inA. If |A| = [ and the elements iA are{is, ..., i;} in increasing order, let us
write f4 for the ordered-uple(f;,, ..., fi,). Furthermore, we write4 for the sign of the
permutation which rearranges the elements of the ord@redt’ — 1)-uple (A’, A), in the
original order. Then, the Schouten brackePodndP’, [P, P'](0.1), is the skew-symmetric
multilinear map of degrek + k' — 1 given by

[P.Plon(fL - s frak—1)
= Y eaP(P'(fa), fa) + (=D " epP'(P(£3), f5).

|A|=k' |B|=k

One can prove that # andP’ are first-order differential operators on each of its arguments,
sois [P, P'l,1)- In particular, ifM is a differentiable manifold an§ = C*°(M, R), we
know that a-linear skew-symmetric first-order differential operator can be identified with
ak-section ofTM x R — M. Under this identification, an easy computation, using (1.3)
and (2.6), shows that

[(P, Q) (P', Q)]0 =[(P, Q). (P, Q)] + (=D k — 1)(P, Q)
A (P', Q)=&K =D (P, Q) A (P, Q) (A9)
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for (P, Q) € V(M) ® V*"1(M) and(P’, Q") € V¥ (M) & V¥'~1(M), where [] is the
Schouten bracket of the Lie algebrdgiM x R, [, ], 7).
Suggested by (A.9), we prove the following result.

Theorem A.3. Let(A, [, ], p) be aLie algebroid angg € I"(A*) a 1-cocycle. Then, there
exists a unique operatiofy ] 4, : I'(AFA) x ['(A¥ A) — ['(AF*=14) such that

[X. f1go = e (XD (), [X, Y14 =[X, 71, (A.10)
[P. Plgo = (—D[P’, Py, (A11)
[P. P’ AP g =[P, Plgy A P+ (—DX VP ALP, P4,

—(iggP) A P' A P" (A.12)

for f € C*(M,R), X,Y € I'(A), P € I'(A¥A), P’ € I(A\FA) and P” € (A} A).
This operation is given by the general formula

[P, Py =[P, Pl + (=" Lk = DP A (igyP') — (K" — D) (ipyP) A P

(A.13)
Furthermore, it satisfies the graded Jacobi identity
(DML P, Py, P Tgo + (DX ILP”, Plgo, Pl
+(=D[L P', P"1 40, Plgo = O. (A.14)

Proof. We define the operation [, : I'(AFA) x I'(A¥ A) — I'(AFT=14) by (A.13).
Using (A.13) and properties of the Schouten bracket of multi-sections, efe deduce
(A.10)-(A.12). To prove the graded Jacobi identitity (A.14), we proceed by inductién on
using the properties of the Schouten bracket and the fagiifth®., P'1) = —[ig P, P'1+

(—DFI[ P, igy P'] for P e I'(AFA) andP’ € I'(AF A). O

The operation [] 4, is called thepg-Schouten bracketf (A, [, ], o). Now, if X € I'(A)
andP e I'(AFA), we can define thgg-Lie derivativeof P by X as follows:

(Lyg)x(P) =1[X, Plg,- (A.15)
Using (A.4), (A.13) and (A.15) and relation (15) in [25], we obtain that
(Loo)x(iwP) = ip((Lyy) x®) +in((Lyg)x P) + (kK — D)do(X)iy, P (A.16)

forw € I'(A¥A*), P € I'(AFA) andX e I'(A).

Appendix B. Time-dependent sections of a Lie algebroid

Let(A,[.], p) bealLiealgebroid ove¥, ¢p € I"'(A*) be al-cocycleand; : M xR —
M be the canonical projection over the first factor. We consider the-mdp(A) x C*
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(M xR, R) »> C®(M x R, R) given by

X F = pOO() + 4000 L
It is easy to prove thatis an action ofA on M x R in the sense of [10] (see Definition 2.3
in [10]). Thus, ifz; A is the pull-back ofA overs; then the vector bundle; A — M x R
admits a Lie algebroid structur§, ] %, 5%) (see Theorem 2.4 in [10]). For the sake of
simplicity, when the 1-cocycleyg is zero, we will denote by[, ], 5) the resultant Lie
algebroid structure omyA — M x R. On the other hand, it is clear that the vector
bundlestyA — M x R andA = A x R — M x R are isomorphic and that the space of
sectionsI"(A) of A - M x R can be identified with the set of time-dependent sections
of A — M. Under this identification, we have thak[ Y] (x, r) = [X;, ¥;] (x) and that
S(X)(x,1) = p(X)(x)for X, Y € I'(A) and(x, t) € M x R (see [10]). In addition,

.- S )4 ~ X o e = -0
[X 717 = [X, 7T + ¢o(X0) - —go()—=,  5™(X) = 5(X) + go(X),
(B.1)
whergd X /91r) € I'(A) denotes the derivative df with respect to the time.

Remark B.1. Note that if [, ] is a bracket on the spacg(A), p : I'(A) — X(M) is a
homomorphism of > (M, R)-modules angy is a section of the dual bundig* then we can
consider the bracket, | ° on I"(A) and the homomorphism @> (M x R, R)-modules
p% : I'(A) — X(M x R) given by (B.1). Moreover, if the triplgA, [, ] %, 5%) is a
Lie algebroid oveM x R, it is easy to prove thaf, ], p) is a Lie algebroid structure on
A — M and thatpg is a 1-cocycle.

Now, let¥ : A — A be the isomorphism of vector bundles over the identity defined
by ¥ (v, 1) = (€v,1) for (v,1) € A x R = A. Using¥ and the Lie algebroid struc-
ture ([, 1, 5%0), one can introduce a new Lie algebroid structdfe] %, 5%) on the
vector bundleA — M x R in such a way that the Lie algebroidd, [, ]I"’0 p%0) and
(A, [,]1%, p%) are isomorphic. We have that

[X, V]9 =¢" <[X Y1 + ¢o(X) (ﬂ - Y) do(¥) (—X _ x))

~ ~ ~ 0
prX) =e' <,5(X) + ¢o(X)5) (B.2)

forall X, Y e I'(A) (this Lie algebroid structure was considered in [12]).
In conclusion, we have proved the following.

Proposition B.2. LetA — M be a vector bundle over a manifold M. Suppose {hit:
I'(A) x I'(A) — I'(A) is a bracket on the spacE(A), thatp : I'(A) - X(M) is a
homomorphism of *°(M, R)-modules and thapg is a section of the dual bundlé*. If
[.]J% : I'(A) x I'(A) — I'(A) and % : I'(A) - X(M x R) (respectively[,] % :
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I'(A) x I'(A) - I'(A) and % : I'(A) — X(M x R)) are the bracket or"(A) and the
homomorphism of*°(M x R, R)-modules given byB.1) (respectively (B.2)) then the
following conditions are equivalent:

1. The triple(A, [, ], p) is a Lie algebroid andy is a 1-cocycle
2. The triple(A, [, ] %, p*) is a Lie algebroid
3. The triple(A, [, ] %, 5%) is a Lie algebroid

Remark B.3. Let(A, [, ], p) be aLie algebroid ovel andgg € I"(A*) a 1-cocycle. Id
(resp.dfo andd¢0) is the differential of the Lie algebroidd, [, 1", 5) (resp.(A, [, 1%, %)
and(4, [, ], p%))and[, ] %0 is the Schouten bracket of the Lie algebroid [, ] %°, 5%°)
then

99

a0 f=df+Lgo @b =dh+g0n T, (B.3)
a¢o]?=e—t (af+ %450)7 a¢oq§=e—t (a¢oq~5+¢0/\ 2—?), (B.4)
L S . P X .

[X. p]|¢o=|[X’ P]|¢0+¢O(X) <P+E>—¥/\I¢OP (B.5)

for f € C°(M xR, R), ¢ € I'(A*) = I'(A* x R), X € I'(A) and P € I"(A2A).
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