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Canonical quantization and the spectral action; a nice example
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Abstract

We study the canonical quantization of the theory given by Chamseddine–Connes spectral action on a particular finite spectral
triple with algebra M2(C) ⊕ C. We define a quantization of the natural distance associated with this noncommutative space and
show that the quantum distance operator has a discrete spectrum. We also show that it would be the same for any other geometric
quantity. Finally we propose a physical Hilbert space for the quantum theory. This spectral triple had been previously considered
by Rovelli as a toy model, but with a different action which was not gauge invariant. The results are similar in the two cases, but
the gauge invariance of the spectral action manifests itself by the presence of a non-trivial degeneracy structure for our distance
operator.
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1. Introduction

One of the great successes of noncommutative geometry is the computation of the standard model action coupled to
Euclidean gravity from an almost commutative spectral triple on which is defined the Chamseddine–Connes action [1]:

S(D) = 〈ψ |Dψ〉 + Tr

(
χ

(
D2

m2
0

))
(1)

whereD is the Dirac operator, ψ the spinor field, χ a smooth approximation of the characteristic function of [0; 1] and
m0 a mass scale. The very appealing feature of this action is that it treats gravity and other forces on the same footing,
the gauge bosons of the standard model together with the Higgs field appearing naturally as inner perturbations of
the Dirac operator D → D + A + J AJ−1. The action (1) only depends on the eigenvalues of the Dirac operator,
as required by the spectral action principle put forward in [1]. This principle is a generalization of diffeomorphism
invariance which can be naturally formulated in the algebraic language of noncommutative geometry.

Several quantization procedures are possible. The renormalization group approach has been most intensively
studied, in particular by Connes. It has recently led to a prediction for the Higgs mass (under the “big
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desert” hypothesis; see [2]). However non-perturbative attempts also exist, namely canonical quantization [3], and
path-integral quantization [4]. See also the intriguing approach of [5] where the authors use mathematical tools from
loop quantum gravity.

In this paper we will focus on the canonical quantization of a toy model directly taken from [3]. In the latter paper
the author succeeded in canonically quantizing the theory defined by the action Tr(DM D) where M is a matrix with
null determinant whose purpose is to get a non-trivial space of solutions, since the extremum of the quadratic action
S(D) = Tr(D2) is trivially D = 0. However this does not follow the spectral action principle,1and as the author points
out in [3] it is crucial to extend the explorations in that direction. Path quantizations on several finite spectral triples for
the action Tr(D2) have been worked out in [4]. Canonical quantization would not work in this setting by the already
quoted fact that the phase space is trivial. Instead we will use the spectral action of Chamsedinne and Connes (without
matter) and look for the canonical quantization of the theory that it defines on the finite spectral triple considered
in [3]. In particular we will show that distance is a well-defined observable in the quantum theory, with a discrete
spectrum. This is in complete agreement with the results of [3,4], although they are obtained in a slightly different
context.

The paper is organized as follows. In Section 2 we recall the definitions of the finite spectral triple and of the
spectral action that we use. In Section 3 we compute the spectrum of the square of the Dirac operator, and use it to
compute the spectral action. We also determine the phase space. In Section 4 we use canonical quantization to define
a Hilbert space for the quantum theory which bears a unitary representation of the gauge group. In Section 5 we
recall the precise definition and formula for the classical distance and construct its quantized version. In Section 6 we
propose a physical Hilbert space in which states are gauge invariant. Section 7 contains discussion and an outlook.
Finally, in the appendix we prove some mathematical results that we need concerning our finite spectral triple.

We use Planck units throughout the paper.

2. Definitions

We recall here for convenience the definition of the spectral triple (A,H,D) studied in [3].

Definition 1. The C∗-algebra is A = M2(C) ⊕ C; the Hilbert space is H = M3(C), with the scalar product defined
by ∀ψ,ψ ′

∈ H, 〈ψ |ψ ′
〉 = Tr(ψ∗ψ ′).

The representation ofA inH is given by π : A −→ End(H), π(a)ψ = π(M, α)ψ =

(
M 0
0 α

)
ψ with M ∈ M2(C),

α ∈ C.

The real structure is J (ψ) = ψ∗. There is also another operator χ on H which is called the chirality and plays the
role of the volume form. Since we will not make use of it in the core of this paper we refer the reader to the appendix
for its definition.

For any m =

(
m1
m2

)
, m1,m2 ∈ C, let us write A(m) =

(
02 m
m∗ 0

)
where 02 is the null 2 × 2 matrix. As proven in [6],

for any such m there is a Dirac operator on H defined by Dmψ = A(m)ψ + ψ A(m)∗, that is to say

Dm = ∆(m)+ J∆(m)J−1 (2)

where ∆(m) : H −→ H is the left multiplication by A(m).
It is this class of Dirac operators that is used in [3] and that we will mainly consider in this paper. We think a

clarification is needed here: this is not the most general Dirac operator on (A,H) (see Appendix A, where we also
show that the sector of the theory that we consider here can be viewed as a gauge theory compatible with a given fixed
structure on the base space). However, to allow comparison with previous results we will stick to this simple form for
Dirac operators. It must be said that another reason is that we are not yet able to deal with the most general case, even
at the classical level (see Appendix B).

For the sake of simplicity we will often write A instead of A(m). Note that our A plays the role of the D in [3]
which should not be confused with D.

We now define the spectral action we will use throughout the paper.

1 However, in [4] it is shown that extremizing the action of [3] is equivalent to extremizing the spectrally invariant action Tr(D̃2) on a submanifold
of the configuration space, where D̃ in an effective Dirac operator constructed out of D.
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Definition 2. The spectral action is (in Planck units)

S(m) = Tr

(
χ

(
D2

m

m2
0

))
where m2

0 ∈]0; +∞[ is a cut-off parameter, and χ a suitable approximation of the characteristic function of [0; 1].
This action is defined on the configuration space C of all Dirac operators on H of the form (2), which is identified
with C2 with coordinate m.

Roughly, the spectral action just counts the number of eigenvalues of D2
m which are below the cut-off.

3. Computation of the spectral action

Let λ be an eigenvalue of D2
m and ψ an associated eigenvector. Thus

D2
mψ = A2ψ + 2Aψ A + ψ A2

= λψ. (3)

Since A = A∗ it is diagonalizable, write A = P B P−1 with B a diagonal matrix, and write φ = P−1ψP . Then (3)
is equivalent to

B2φ + 2BφB + φB2
= λφ (4)

with B =diag(λ1, λ2, λ3); (4) gives for all i, j in {1; 2; 3}

[(λi + λ j )
2
− λ]φi j = 0. (5)

Thus Sp(D2
m) = {(λi + λ j )

2
|λi , λ j ∈ Sp(A)}. But we must look for the multiplicities. It is clear that 4λ2

i is of
multiplicity 1, whereas (λi + λ j )

2 is of multiplicity 2 for i 6= j , but we must add the multiplicities if it happens that
some values of (λi + λ j )

2 coincide. In fact it is easy to calculate the λi in terms of m. One finds

λ1 = 0, λ2 = −‖m‖, λ3 = ‖m‖.

So the eigenvalues of D2
m are: 0 with multiplicity 3 = 1 + 2, ‖m‖

2 with multiplicity 4 = 2 + 2, and 4‖m‖
2 with

multiplicity 2 = 1 + 1.
As a direct application of the above, one gets

S(m) = 3 + 4χ

(
‖m‖

2

m2
0

)
+ 2χ

(
4‖m‖

2

m2
0

)
. (6)

Let us suppose that χ(x) = 1 for x ≤ 1 − δ and χ(x) = 0 for x ≥ 1. Then one has S(m) = 3 for ‖m‖ ≥ m0,
S(m) = 7 for m0

2 ≤ ‖m‖ < (1−δ)1/2m0 and S(m) = 9 for ‖m‖ < (1−δ)1/2 m0
2 , with a smooth interpolation between

each of the domains where S is constant.
The equations of motion are obtained by extremizing the action with respect to m. It is clear that every Dirac

operator is a solution to these equations except for those whose parameter m falls in the small shells where S is
not constant. The phase space Γ , which is the space of solutions of the equations of motion,2 has a structure which
depends on δ, but the latter can be chosen as small as one wishes and has no physical importance. Thus Γ can be taken
to be

Γ = Γ1 t Γ2 t Γ3.

It has three components: Γ1 = {m ∈ C2, ‖m‖ ≤
m0
2 }, Γ2 = {m ∈ C2, m0

2 < ‖m‖ < m0} and Γ3 = {m ∈ C2, ‖m‖ ≥

m0}.
We end this section with a few remarks. First, one can do exactly the same computation with Dm = D0

+ ∆(m)+
J∆(m)J−1 where D0 is a fixed Dirac operator. Here one can see ∆(m) as a perturbation of the “metric” D0 by the

2 We use the terminology of [3] here. Sometimes the phase space is called the space of motion when one adopts this point of view.
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1-form ∆(m). The action is again a function of m but with a translation from m to m − µ where µ = m(D0) is the
parameter associated with D0.

Gauge equivalent Dirac operators are related by A → Au
= u Au∗

+ u[D0, u∗
], where u is a unitary element of

π(A). The unitaries of π(A) are of the form
(

U 0
0 eiθ

)
where U ∈ U (2). One can readily check that in terms of the

parameter m the gauge transformation A → Au amounts to m → mu
= e−iθU (m + µ)− µ, where U ∈ U (2). Thus

the gauge equivalence classes are the 3-spheres of C2 centered on −µ. One can verify in this way that the spectral
action is manifestly gauge invariant (remember there is a translation by −µ if D0

6= 0). The gauge group is easily
seen to be U (1)× U (2)/U (1) = U (2).

4. Quantization

From the last section we see that the algebra of functions on phase space will be a direct product. Because of this
we will perform canonical quantization on each connected component of the phase space and take the orthogonal
direct sum of the three Hilbert spaces involved.

We write Γa with a = 1, 2, 3 and mi,a, m̄i,a for the coordinates on Γa , with i = 1, 2. We have the symplectic
structure

Ωa = i(dm1,a ∧ ¯dm1,a + dm2,a ∧ ¯dm2,a) (7)

and the canonical Poisson bracket relations

{mi,a,m j,a} = {m̄i,a, m̄ j,a} = 0, {mi,a, m̄ j,a} = iδi j . (8)

The canonical quantization is given by mi,a → m̂i,a , m̄i,a → ˆ̄mi,a = m̂∗

i,a , and {; } → −i[, ] at least for the
canonical Poisson bracket relations. The hatted mi,a’s are operators on a Hilbert space. Thus one has the canonical
commutation relations

[m̂i,a, m̂ j,a] = [m̂∗

i,a, m̂∗

j,a] = 0, [m̂i,a, m̂∗

j,a] = −δi j . (9)

This is the usual algebra of two uncoupled quantum harmonic oscillators. In this case it is well known that
there is a unique choice of Hilbert space representation up to unitary equivalence. We choose to represent m̂1,2 by
creation operators and m̂∗

1,2 by destruction operators. Thus we define the Hilbert space Ka with orthonormal basis
{|sa, ta〉, s, t ∈ N}.

The annihilation and creation operators act by

m̂∗

1,a |sa, ta〉 =
√

s|sa − 1, ta〉

m̂∗

2,a |sa, ta〉 =
√

t |sa, ta − 1〉

m̂1,a |sa, ta〉 =
√

s + 1|sa + 1, ta〉

m̂2,a |sa, ta〉 =
√

t + 1|sa, ta + 1〉 (10)

with the convention that |sa, ta〉 = 0 if s or t is negative. We also define the vacuum state |0a, 0a〉 = |0a〉. The basis
ket |sa, ta〉 is an eigenvector of the number operator defined by Na = m̂1,am̂∗

1,a + m̂2,am̂∗

2,a , and we have

Na |sa, ta〉 = (s + t)|sa, ta〉. (11)

Now we define K = K1 ⊥ ⊕K2 ⊥ ⊕K3. The operators m̂i,a and m̂∗

i,a act trivially on Kb with b 6= a. Thus we
have the canonical commutation relations

[m̂i,a, m̂ j,b] = [m̂∗

i,a, m̂∗

j,b] = 0, [m̂i,a, m̂∗

j,b] = −δi jδab Pa (12)

where Pa is the orthogonal projector on Ka . The total number operator is N = N1 + N2 + N3.
Now we must see how gauge transformations are implemented in K. The gauge transformation m → mu acts on

K, and this action is naturally decomposed by the eigenspaces of Na . Indeed, the eigenspace of Na for the eigenvalue
n ∈ N is spanned by |sa, ta〉 =

1
√

s!t !
m̂s

1m̂t
2|0a〉 with s + t = n and can be identified with the space of homogeneous

polynomials of degree n in the two variables m1,m2. On this space u = (U, eiθ ) acts by the change of variable
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t m →
t m U and an overall multiplication by einθ . In fact if U = eiφU ′ with U ′ in SU (2), the eiφ part will also

contribute by a phase, so we can just look for the action of U ′
∈ SU (2). But we know that the space of homogeneous

polynomials of degree n in two variables is an irreducible unitary representation of SU (2) of spin n
2 . The unitarity

is easy to see in the Bargmann representation where we identify vectors in Ka with C-analytic functions on C2. The
identification is given by

∑
s,t

as,t |s, t〉 =

∑
s,t

as,t
√

s!
√

t !
m̂s

1m̂t
2|0〉 7−→

(
m 7→

∑
s,t

as,t
√

s!
√

t !
ms

1mt
2

)
. (13)

Note that we have dropped the index a for simplicity. The first two sums are Hilbert sums, and we have∑
s,t

|as,t |
2 < ∞. (14)

The last sum in (13) is the power series representation of an analytic function which is defined on C2 thanks to
(14). The scalar product in the Bargmann representation is given by

( f, g) =
1
π2

∫
C2

dm f̄ (m)g(m)e−‖m‖
2
. (15)

We immediately see the SU (2) invariance. Note that, because of the unicity of the extension of analytic functions,
we are allowed to interpret the Bargmann representation of Ka as the space of restrictions to Γa of entire functions on
C2 such that (15) is finite.

Thus the scalar product is gauge invariant, that is, K is a unitary representation of the gauge group.

5. Quantization of the distance

We first recall some definitions. In the following, A stands for any unital C∗-algebra, and (A,H,D) could be any
spectral triple.

Definition 3. A state s on A is any linear form such that

(1) s(a∗a) ≥ 0 (positivity),
(2) s(1A) = 1 (normalization).

The space of all states on A is denoted by S(A). For all s, s′
∈ S(A), let d(s, s′) be

d(s, s′) = sup
a∈A

{|s(a)− s(a′)|, ‖[D, π(a)]‖ ≤ 1}. (16)

This defines a distance on S(A).

A state is called pure if it is not a convex combination of two other states. Several notions of spaces can be associated
with a C∗-algebra, which all coincide when the algebra is commutative: the primitive spectrum, the structure space,
and the space of pure states. The latter is appropriate for dealing with the distance defined above. For our case
A = M2(C)⊕C the pure states are given by p′(M, α) = α and pξ (M, α) = ξ∗Mξ where ξ ∈ C2 is normalized. Two
normalized vectors give the same state iff they are collinear, that is iff their images in the complex projective line are
the same, so the space of pure states of A is of the form S1 t S2 where S1 can be identified with CP1 and S2 = {p′

}

is a single point.
In [7] the authors compute the distance between the two pure states pξ and p′. The result is

d(pξ , p′) = ‖m‖
−1

= (m1m̄1 + m2m̄2)
−1/2 (17)

provided that ξ and m are collinear, which means that pξ = p[m] where we write [m] for the class of m in CP1. The
distance is infinite if ξ and m are not collinear. In the appendix we give a different proof for this result and generalize
it to a wider class of Dirac operators. See Theorem 8.
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Let us emphasize that, exactly like in general relativity, the points, that is the pure states, have no physical meaning
in themselves (except for one as we shall see). Now let us use “general covariance” to rewrite (17) entirely in terms
of the metric. Let us call dm the distance function determined by Dm , and let s, s′ be any two points. Then one has

dmu (s, s′) = dm(su, s′u) (18)

where u is any unitary of A, playing here the role of an active diffeomorphism. It acts on a state s through
su(a) = s(uau−1) so that pu

ξ = pu−1ξ . Note that p′ is invariant under u. So one has

d(m) := dm(p[m], p′) = dmu (p[mu ], p′) = ‖m‖
−1. (19)

This d , viewed as a function of the metric, is gauge invariant. Thus it is a function of the geometry only (an
observable), and it is this function that we want to quantize. Note that although a direct reference to the fixed point
pξ in the noncommutative “manifold” has disappeared, as expected, the point p′ remains, since it has the uncanny
property of being “diff-invariant”. This is not surprising since it represents in itself a component of the manifold. So
this particular point has a physical meaning. Note also that in this very simple model the geometry (that is entirely
coded in ‖m‖) is completely determined by the value of d. This entails that any classical observable will be a function
of d .

Other types of distance can be computed, but they are always proportional to d; see [7] for details. In particular,
if one identifies CP1 with the sphere S2, such that [m] is the north pole, then the distance between two antipodal
points of the equator is 2d . Thus one can naturally assign a radius d to S1. The whole situation can then be pictorially
represented in R3 by the union of a sphere of radius d and a point sitting at a distance d above the north pole.3 So we
can see d as representing at the same time the distance between S1 and S2 and the radius of S1.

Now we pass to the quantization d̂ of d . The equations of motion, although trivial, enter the game here by selecting
a different expression for d in terms of the variables mi,a , m̄i,a , according to which component of the phase space m
belongs to. On the component Γa the expression for d is m1,am̄1,a + m2,am̄2,a . The first term can be quantized as

(1 − αa)m̂1,am̂∗

1,a + αam̂∗

1,am̂1,a (20)

for any real parameter αa which captures the ordering ambiguities (e.g. α = 1/2 corresponds to the symmetric
ordering). Thanks to the canonical commutation relations (12) this reduces to m̂1,am̂∗

1,a + αa Pa . Similarly the second
term is quantized as m̂2,am̂∗

2,a + βa Pa . Thus the distance operator is given by

d̂ =

(∑
i,a

m̂i,am̂∗

i,a + ka Pa

)−1/2

= (N + k1 P1 + k2 P2 + k3 P3)
−1/2 (21)

where we introduce the constants ka = αa + βa . The result is meaningful for k1, k2, k3 > 0. If we make the very
natural assumption that the ordering problem is resolved in the same way on each component then d̂ = (N + k I )−1/2,
with k = 1 for the symmetric ordering. We see that distance is quantized; the eigenvalues form a discrete set and
each one has a degeneracy (which might be viewed as unphysical, as we will see). More precisely, the spectrum is the
set {(n + k)−1/2

|n ∈ N} in Planck units, and the eigenvalue (n + k)−1/2 has multiplicity 3(n + 1). In particular the
underlying quantum noncommutative space has a maximum radius. In [3] Rovelli found the spectrum (2n + k)−1/2,
with k = 1 for the symmetric ordering, and no multiplicity. The factor of 2 in front of n in Rovelli’s formula comes
from his equations of motion which imply a relation between m1 and m2 that we do not have. On the other hand,
we get a non-trivial degeneracy structure which has two origins. The factor of 3 in the multiplicity comes from the
structure of the phase space (thus from the equations of motion), and the factor n + 1 from the action of the gauge
group. We will come back to this matter in the next section.

We see d̂ commutes with the unitary representation of the gauge group, and so it is a gauge-invariant observable, as
expected from the classical analysis. As we said above, any other gauge-invariant classical observable is a function of

3 However, one should not follow this representation to the letter since the distance between two points of different latitudes is infinite, as is the
distance between the isolated point and any point of the sphere except the north pole. Nevertheless, the distance between two points lying at the
same latitude is the Euclidean distance in R3. See [7] for details.
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d , and we expect that its quantization will be a function of d̂. This is in fact easy to see since any self-adjoint operator
O commuting with the unitary representation of the gauge group will be a scalar multiple of the identity on every
eigenspace of Na by Schur’s lemma. That means that O is of the form

O =

∑
0≤n<∞

a=1,2,3

fa(n)pa,n (22)

with pa,n the orthogonal projector on the eigenspace of Na for the eigenvalue n, and fa(n) ∈ R. This can be written
as O = f (d̂) with f = ( f1, f2, f3) a real function defined on the three components of the phase space which only
depends on the radius. Thus we see that not only distance is quantized, but also any other geometric quantity.

6. Physical Hilbert space

The Hilbert space K constructed above has two features which may be viewed as unphysical (of course the word
“unphysical” is to be taken with a grain of salt since this whole paper only deals with a mathematical toy model). In
this section, which is admittedly speculative, we will try to get rid of these unphysical features.

First, K is decomposed as a direct sum K = K1 ⊕ K2 ⊕ K3 where each summand corresponds to a component
of the classical phase space. However, Ka contains eigenvectors of N with eigenvalue outside the classically allowed
region for ‖m‖

2. Let us write Ka =
⊕

∞

n=0Kn
a , the decomposition into the eigenspaces of N . Then we propose that

the “physically allowed part” of K is

K′
=

⊕
0≤n<m2

0/4

Kn
1 ⊕

⊕
m2

0/4<n<m2
0

Kn
2 ⊕

⊕
n>m2

0

Kn
3 . (23)

The space K′ is a closed subspace of K which is invariant under N , with the same spectrum, but a degeneracy
divided by 3. Thus, all observables are well defined on K′, and only their degeneracy changes. But of course there
is an ambiguity in this procedure since N + k1 P1 + k2 P2 + k3 P3 is an equally possible quantization of ‖m‖

2 for
any values of the ki ’s. If we take k1 = k2 = k3 = k, then n becomes n + k in (23) and this only amounts to a
shift of the subspaces in the sum as long as k is positive. Observables would have the same spectrum and degeneracy
on the resulting subspace. However, if we do not take k1 = k2 = k3 the procedure ends up with a space on which
the observables have the same spectrum but not the same degeneracy. We must of course forbid that and choose
0 < k1 = k2 = k3 = k. Fortunately this is precisely the choice we already made in the definition of d̂. Another
procedure, which does not suffer from this ordering ambiguity, is suggested by the Bargmann representation. In this
representation, a general vector ofK is of the form ( f1, f2, f3)where the fi ’s are entire functions, as we already noted.
If we put a continuity condition on the boundary of Γ it prescribes f1 = f2 = f3 (by the maximum principle for
instance). This defines a space K′′ which is isomorphic to K′, invariant by N , and on which N has the same spectrum
and the same degeneracy. In the following we assume that we have used one of these procedures, for instance the last
one, to select a subspace that we will denote as K again, and call the kinematical Hilbert space.

The second annoying fact that we want to get rid of is that the gauge transformations only act as symmetries of
the Hilbert space K. There should exist a physical Hilbert space Hphys whose states (i.e. lines) entirely describe
the physical system without mathematical redundancy. We look for a description of Hphys as well as a map
Ψ : K −→ Hphys. We call Kn the eigensubspace of K corresponding to the eigenvalue n of N , and if v ∈ K we
write v =

∑
∞

n=0 v
n as the corresponding decomposition.

We propose that the map Ψ satisfies the following conditions, for all v ∈ K:

(1) Ψ(Cv) ⊂ CΨ(v), which means that a kinematical state corresponds to a single physical state,
(2) ∀u ∈ SU (2), Ψ(u.v) ∈ CΨ(v), since gauge related kinematical states represent the same physical state,
(3) ∀u ∈ SU (2), Ψ(u.v + v) ∈ CΨ(v), since u.v + v is the superposition of physically equivalent states.

We can already see that condition (2), together with the fact that SU (2) acts irreducibly onKn , forbid Ψ from being
linear. Indeed, a linear Ψ would require that all the vectors in the orbit O(v) under SU (2) be linearly independent in
order to be consistent with condition (2). It is also easy to see that conditions (2) and (3) are equivalent to

Ψ(Span(O(v))) ⊂ CΨ(v).

There are two more conditions that Ψ (and the scalar product on Hphys) must satisfy:
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(4) If vi
∈ Ki and v j

∈ K j with i 6= j , then Ψ(vi ) ⊥ Ψ(v j ).
(5) Let vi and v j be as above, and a, b ∈ C. Suppose also that ‖vi

‖ = ‖v j
‖ = 1 and |a|

2
+ |b|

2
= 1. Then

s = Ψ(avi
+ bv j ) must satisfy

|〈s|Ψ(vi )〉|

‖s‖‖Ψ(vi )‖
= |a|,

|〈s|Ψ(v j )〉|

‖s‖‖Ψ(v j )‖
= |b|.

This conditions are necessary in order to follow the general principles of quantum mechanics: two states in
which the observable N takes different values must be orthogonal, and they can be superposed. The probabilistic
interpretation must be the same at the kinematical and the physical level, and this is precisely what condition (5)
means. In fact we can even generalize this condition to a superposition of an arbitrary number of eigenstates, and we
will need to do so below.

By the above conditions, Hphys must contain orthonormal vectors (εi )i∈N, which are eigenvectors of N . We ask as
a last minimality condition that this orthonormal system is a Hilbert basis for Hphys. Then by condition (5), we must
have for all vi

∈ Ki , v j
∈ K j , Ψ(vi

+ v j ) = f i (vi )εi
+ f j (v j )ε j , with | f i (vi )| = ‖vi

‖. Using the generalization
of this condition to arbitrary sums of this type we get for all v ∈ K

Ψ(v) = Ψ

(
∞∑

i=0

vi

)
=

∞∑
i=0

f i (vi )εi (24)

where the f i ’s are some functions which must satisfy | f i (vi )| = ‖vi
‖. Thus Ψ is uniquely determined up to arbitrary

phases. We can take for instance

Ψ(v) = Ψ

(
∞∑

i=0

vi

)
=

∞∑
i=0

‖vi
‖εi . (25)

The physical Hilbert space is also determined, but abstractly so: it is the Hilbert space spanned by the eigenvectors
εi . All the observables are well defined on it, with the same spectrum as on K, but without degeneracy. At this point,
we might want a more concrete representation of Hphys. We can look for gauge-invariant states in the Bargmann
representation. These would be SU (2)-invariant functions on C2, that is, functions of the form f (‖m‖

2). Of course,
except for the constant ones these cannot be C-analytic and we must extend our space to find solutions. We also want
our function space to be a Hilbert space generated by eigenvectors of N . In the Bargmann representation we have
N = m1

∂
∂m1

+ m2
∂
∂m2

. Thus we set g(m) = f (‖m‖
2) and look for the solutions of the differential equation:

N (g) = ng ⇐⇒ ‖m‖
2 f ′(‖m‖

2) = n f (‖m‖
2), ∀m ∈ C2.

The solution is g(m) = f (‖m‖
2) = k‖m‖

2n where k is a constant. So we will represent εi by the function
ei

: m 7→ ki‖m‖
2i where ki is a normalization factor. If we choose ki =

1
√

i !
then the map

∑
aiε

i
7−→

∑
ai ei,

which takes a Hilbert sum to a power series, is well defined. Then Hphys is identified with the set of functions of the
form g(m) =

∑
∞

i=0 bn‖m‖
2n , where

∑
∞

i=0 n!|bn|
2 < ∞. However, this identification is not canonical since we had

to make a choice of normalization factors. Unfortunately we are not aware of a more natural interpretation of Hphys.

7. Outlook and puzzles

The example we have studied is well behaved because there exists a simple, if not polynomial, relation between
‖m‖ and d and the canonical quantization procedure naturally equips us with a number operator which can be viewed
as a quantization of ‖m‖

2, up to a constant. Can we hope that everything will go that well when we come to models
of physical interest? In fact, in the first natural generalization of our model, which is considering the configuration
space of all Dirac operators (A.14), the formula for d in terms of ‖m‖ and ‖n‖ already promises to be quite involved,
since in the case where [m] = [n] it already contains a supremum (see Theorem 8). We can also consider the issue of
the eigenvalues of the Dirac operator, since every observable is computable in terms of them. In our nice example, the
parameter ‖m‖ is, up to a sign, the only non-trivial eigenvalue of the Dirac operator and this can also be seen as the
reason for our success. What would happen for less nice examples? For simplicity of exposition, let us collectively
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call λ the eigenvalues of the Dirac operator and m the parameter directly appearing in it. As the spectral triple grows
in size, the computations of λ in terms of m would certainly turn out to be intractable. Thus we may be led to think
that the computation of observables like d out of m would also be intractable, whereas it would be simpler in terms
of λ. Thus, the λ would possibly provide a better choice of coordinate on phase space than m (see [8]). They would
also ensure gauge invariance before quantization. This is not necessarily a good thing. For instance in the case at hand
we would end up with just one real parameter ‖m‖ and there would not be any symplectic structure. Moreover, in
the general case the eigenvalues λ have complicated relations between them. The question of which method is best in
general will have to wait for future investigations.

However, there is another approach, also pioneered in [3]. Since the classical formulae for the distance, or maybe
other geometric quantities, may lead to analytical difficulties, we might be satisfied with a direct quantization of the
Dirac operator. In [3] the author defines D̂ on Ĥ := H ⊗ K in the following way. First we identify Ĥ with 3 × 3
matrices with entries in K; then we define Â ∈ H⊗ B(K) by

Â =

 0 0 m̂1
0 0 m̂2

m̂∗

1 m̂∗

2 0

 (26)

and for any decomposed tensor ψ ⊗ φ ∈ Ĥ we set

D̂(ψ ⊗ φ) = Â(φ)ψ + ψ Â(φ) (27)

where

Â(φ) =

 0 0 m̂1(φ)

0 0 m̂2(φ)

m̂∗

1(φ) m̂∗

2(φ) 0

 ∈ Ĥ (28)

and the product in (27) is the matrix product. For any normalized φ ∈ K, which represents a quantum geometry, we
have a projection

〈φ|.〉 : Ĥ −→ H
ψ ⊗ ξ 7−→ ψ〈φ|ξ〉 (29)

and a Dirac operator Dφ on H defined by4

Dφ(ψ) = 〈φ|D̂(ψ ⊗ φ)〉, ∀ψ ∈ H. (30)

From this point of view, the expectation value dφ of d in the state φ should be given by Connes’ distance formula (16)
with the Dirac operator Dφ . The main advantage of dφ compared with 〈φ|d̂|φ〉 is that we do not need to have solved
d in terms of m to get a formula in the quantum setting. Another is that we do not have ordering ambiguities. But do
the two values agree? It is easy to see that in our example

dφ = (〈φ|m̂1|φ〉〈φ|m̂1
∗
|φ〉 + 〈φ|m̂2|φ〉〈φ|m̂2

∗
|φ〉)−1/2. (31)

This value is clearly different from 〈φ|d̂|φ〉: for instance in a state |s, t〉, which is an eigenstate of d̂, (31) gives an
infinite result. The difference clearly comes from having taken the expectation value first in one case, and last in the
other case. Which way is correct we do not know.

So it seems we have raised more questions than we have answered. It is only by studying more complex examples
and comparing the different approaches revealed at the end that we will get some insight. For the moment we will be
happy if we have successfully exposed the main issues and motivated more work along those lines.
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4 We depart a little from Rovelli’s analysis which he has carried entirely withinHφ = H⊗ φ ' H, but it amounts to the same for our purpose.
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Appendix A. Dirac operators on (A, H, J, χ)

The fixed structures are the algebra A = M2(C) ⊕ C, the Hilbert space H = M3(C), together with the
representation π of A:

π(A ⊕ a) : H −→ H

ψ 7−→

(
A 0
0 a

)
ψ (A.1)

the charge conjugation:

J : H −→ H
ψ 7−→ ψ∗ (A.2)

and finally the chirality:

χ : H −→ H
ψ 7−→ ψγψψγ (A.3)

where ψγ = π(I2 ⊕ −1) =

(
1 0
0 −1

)
. We are looking for all Dirac operators D such that (A,H,D) (χ , π , J are

understood) satisfy the axioms of a finite spectral triple. It turns out that H, π , J and π are entirely determined by a
symmetric matrix µ ∈ M2(Z) called the multiplicity matrix. In our case,

µ =

(
1 −1

−1 1

)
. (A.4)

Since it is degenerate, the Poincaré duality axiom will not be fulfilled, but we ignore this point. Let us explain on
this example how we recover H, π , J and χ from µ (further details can be found in [6]). We define H first:

H =

⊕
1≤i, j≤2

Hi j , with Hi j = Cni ⊗ C|µi j | ⊗ Cn j (A.5)

where n1 = 2 and n2 = 1. This corresponds to the dimension of the fundamental representation of M2(C) and C
respectively.

Since |µi j | = 1 we have

H = C2
⊗ C2

⊕ C2
⊗ C ⊕ C ⊗ C2

⊕ C ⊗ C (A.6)

where the summands are mutually orthogonal and endowed with the usual Hermitian product. Charge conjugation is
defined by

J : Hi j −→ H j i

x ⊗ y 7−→ ȳ ⊗ x̄ . (A.7)

The representation π is defined in the following way:

π(a1 ⊕ a2) : Hi j −→ Hi j

x ⊗ y 7−→ ai x ⊗ y. (A.8)

There is also a representation on the right defined by Jπ J−1. Thus if we identify Cni ⊗ Cn j with Mni ,n j (C)
by x ⊗ y 7→

t x y, then A acts on the left by matrix multiplication on column vectors and on the right by matrix
multiplication on row vectors. In this way, H is identified with M3(C), and the decomposition H =

⊕
i j Hi j

corresponds to the block matrix decomposition

H 3 ψ =

(
ψ11 ψ12
ψ21 ψ22

)
(A.9)
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with ψ11 ∈ M2(C), ψ12 ∈ M2,1(C), ψ21 ∈ M1,2(C), ψ22 ∈ C. One can then readily verify that π , J and χ are given
by (A.1)–(A.3).

It is proven in [6] that a Dirac operator on π , J , χ can be uniquely decomposed in the form

D = ∆ + J∆J−1 (A.10)

where ∆ is linear on the right (∆(ψ.a) = ∆(ψ).a for all ψ ∈ H and a ∈ A), Hermitian and anticommutes with χ .
Furthermore, if we define the projection operators Pi j : H → Hi j given by the decomposition (A.5), then the matrix
elements ∆kl

i j = Pi j∆Pkl are of the form

∆kl
i j = δ jl Mik, j ⊗ In j (A.11)

with Mik, j ∈ M|µi j |ni ,|µk j |nk (C). If µi jµk j < 0 then Mik, j = M∗

ki, j ; otherwise Mik, j = 0. In the case at hand, this
constrains ∆ to have to following form:

∆ =

H11 H12 H21 H22
0 0 M12,1 ⊗ I2 0
0 0 0 M12,2

M∗

12,1 ⊗ I2 0 0 0
0 M∗

12,2 0 0


H11
H12
H21
H22

(A.12)

Since M12,1 ∈ M2,1(C) we can define m = M12,1 =

(
m1
m2

)
. Similarly we note n = M12,2 =

(
n1
n2

)
. We also define

A(m) =

(
0 m

m∗ 0

)
and similarly for A(n). Then ∆ has the following interpretation in terms of matrix multiplication:

∆(ψ) = A(m)ψE1 + A(n)ψE2 (A.13)

where E1 = π(I2 ⊕0) and E2 = π(0⊕1). Thus, the complete and most general Dirac operatorD such that (A,H,D)
is a finite spectral triple is

D(ψ) = A(m)ψE1 + A(n)ψE2 + E1ψ A(m)+ E2ψ A(n). (A.14)

If m = n then D(ψ) = A(m)ψ + ψ A(m) and it this sector of the theory that we consider in this paper.
Other cases are also of interest. In fact, using the results in [6] it is easy to see that if, and only if, m and n

are collinear, then the triple (A,H,D) comes from a gauge theory. More precisely, this gauge theory is defined on
(A0,H0,D0), with A0 = C ⊕ C, H0 = M2(C) on which A0 acts by diagonal matrices. Moreover, if we write
e1 = π(1 ⊕ 0) and e2 = π(0 ⊕ 1) then D0 is of the form

Dx,y(φ) = a(x)φe1 + a(y)φe2 + e1φa(x)+ e2φa(y) (A.15)

where φ ∈ M2(C), x, y ∈ C and a(z) =

(
0 z
z̄ 0

)
∈ M2(C). On this triple, we consider the module E = C2

⊕ C
and a Hermitian connection ∇ which depends on a vector µ ∈ C2. Then one recovers (A,H,D) by the formulae
given in [6] and one finds that m = xµ, n = yµ. Thus, the spectral triple (A,H,D) in the case m = n that we
consider in this paper can be viewed as a noncommutative vector bundle on the two-point noncommutative manifold
(A0,H0,D0) with

D0(φ) = a(x)φ + φa(x)∗. (A.16)

Appendix B. Computation of the distance

In this appendix we wish to compute the distance d(pξ , p′) for the Dirac operator (A.14).

Lemma 4. We have, for all a ∈ A,

‖[Dm,n, π(a)]‖B(H) = sup(|||[A(m), π(a)]|||, |||[A(n), π(a)]|||). (B.1)
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Proof. First let us explain the notation. For any T ∈ B(H), ‖T ‖B(H) = sup‖ψ‖=1 ‖Tψ‖, where the norm of Tψ is
the Hermitian norm in H. On the other hand, for any M ∈ M3(C) we write |||M ||| = sup‖X‖=1 ‖M X‖, where X ∈ C3

and the norm is the usual Hermitian norm on C3. Now we have, for all a ∈ A,

[Dm,n, π(a)]ψ = [A(m), π(a)]ψE1 + [A(n), π(a)]ψE2. (B.2)

Let us write ψ =
(
X1 X2 X3

)
where X i ∈ C3, and set A = [A(m), π(a)], A′

= [A(n), π(a)]. Then we have

[Dm,n, π(a)]ψ =
(

AX1 AX2 A′ X3
)
. (B.3)

It is clear then that ‖[Dm,n, π(a)]‖B(H) ≥ sup(|||A|||, |||A′
|||). To have the other inequality it suffices to choose a matrix

ψ of norm 1 that realizes the supremum of ‖[Dm,n, π(a)]ψ‖. Then we have

‖[Dm,n, π(a)]‖2
B(H) = ‖AX1‖

2
+ ‖AX2‖

2
+ ‖A′ X3‖

2

≤ sup(|||A|||, |||A′
|||)2(‖X1‖

2
+ ‖X2‖

2
+ ‖X3‖

2). (B.4)

This ends the proof. �

Lemma 5. We have

d(pξ , p′) = sup{ξ∗zξ | z ∈ M2(C), z∗
= z, ‖zm‖ ≤ 1, ‖zn‖ ≤ 1}. (B.5)

Proof. First it is known [7] that the supremum can be taken over self-adjoint a ∈ A. In that case if a = (A, α) it is an
easy calculation that for all X ∈ C2, y ∈ C,

[A(m), π(a)]
(

X
y

)
=

(
(α − A)my

〈(A − α)m|X〉

)
. (B.6)

Then one has

sup
‖X‖2+|y|2=1

‖(α − A)m‖
2
|y|

2
+ |〈(A − α)m|X〉|

2
= ‖(A − α)m‖

2. (B.7)

Finally we observe that pξ (a)− p′(a) = ξ∗ Aξ − αξ∗ξ = ξ∗zξ where we set z = A − α. �

We write H2 for the set of 2 × 2 Hermitian matrices. We will use the basis given by Pauli matrices:

σ 0
=

(
1 0
0 1

)
, σ 1

=

(
0 1
1 0

)
, σ 2

=

(
0 −i
i 0

)
, σ 3

=

(
1 0
0 −1

)
. (B.8)

What we have to do is to extremize the linear form φξ (z) = ξ∗zξ on the set C = Cm ∩ Cn where Cm : ‖zm‖
2

≤ 1,
Cn : ‖zn‖

2
≤ 1. It turns out that Cm and Cn are two (solid) cylinders. Let Bm (resp. Bn) be the bilinear form on H2

defined by polarization of ‖zm‖
2 (resp. ‖zn‖

2). For all h, h′
∈ H2,

Bm(h, h′) =
1
2
(〈hm|h′m〉 + 〈h′m|hm〉)

=
1
2
(〈m|(hh′

+ h′h)m〉)

=
1
2
〈m|{h, h′

}m〉 (B.9)

where we have introduced the Jordan bracket in the last line. The Pauli matrices satisfy

{σ i , σ j
} = 2δi j (B.10)

for i = 1, 2, 3. Since Bm(σ
0, σ i ) = 〈m|σ i m〉, in the basis of Pauli matrices the matrix of Bm (that we also call Bm) is

Bm =


‖m‖

2
〈m|σ 1m〉 〈m|σ 2m〉 〈m|σ 3m〉

〈m|σ 1m〉 ‖m‖
2 0 0

〈m|σ 2m〉 0 ‖m‖
2 0

〈m|σ 3m〉 0 0 ‖m‖
2

 . (B.11)
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Bm has the form ‖m‖
2 I4 + S, where S is obviously of rank 2 and has zero trace. Thus there exists an orthonormal

matrix O and a non-negative real λ such that

Bm = O>


‖m‖

2
− λ 0 0 0

0 ‖m‖
2
+ λ 0 0

0 0 ‖m‖
2 0

0 0 0 ‖m‖
2

 O. (B.12)

To find λ we just need the determinant of Bm which turns out to be zero by (B.11). Thus λ = ‖m‖
2 and it follows that

Cm is a cylinder with ellipsoid basis. Now we are looking for the eigendirections of Cm .

Definition 6. For any u ∈ H2 we write u =

(
u0
−→u

)
. We write . for the scalar product in the hyperplane W generated by

σ i , i = 1, 2, 3. We also define the map
−→
h : C2

\ {0} −→ W by

−→
h m =

1
‖m‖2

〈m|σ 1m〉

〈m|σ 2m〉

〈m|σ 3m〉

 . (B.13)

The map
−→
h m is actually none other than the Hopf fibration5 as can be seen through the following calculation:

〈m|σ 1m〉 = m̄1m2 + m1m̄2

〈m|σ 2m〉 = −i(m̄1m2 − m1m̄2)

〈m|σ 3m〉 = |m1|
2
− |m2|

2. (B.14)

In the sequel we will write [m] for the class of m in CP1, and we continue to denote by
−→
h the identification between

CP1 and S2
⊂ W given by the Hopf fibration.

Let −→u m be a vector in W orthogonal to
−→
h m and −→u ′

m =
−→
h m ×

−→u m . Then it is an easy exercise to verify that

V0(m) =

(
−1
−→
h m

)
, V2(m) =

(
1

−→
h m

)
V1(m) =

(
0

−→u m

)
, V ′

1(m) =

(
0

−→u ′

m

)
(B.15)

are eigenvectors for Bm , for the eigenvalues 0, 2, 1, 1 respectively. Thanks to the above we see immediately that Cm
and Cn have parallel axis if and only if [m] = [n]. In the same vein we have:

Lemma 7. The linear form φξ is bounded on Cm if and only if [ξ ] = [m]. In that case supCm
φξ (z) = ‖m‖

−1.

Proof. First we observe that φξ (
∑
µ zµσµ) =

∑
µ〈ξ |σµξ〉zµ = 〈V2(ξ)|z〉 where V2(ξ) is defined as in (B.15). Now

φξ is bounded on C if and only if its kernel is parallel to the axis of the cylinder, that is, iff V2(ξ) ⊥ V0(m). But by
Cauchy–Schwarz this is equivalent to

−→
h ξ =

−→
h m , and finally to [ξ ] = [m]. Now if [ξ ] = [m] then V2(ξ) = V2(m);

thus it is clear that the supremum of φξ is reached at a summit S(m) of the ellipsoid basis of Cm in the direction V2(m).
We write S(m) = λV2(m). Using Bm(S(m), S(m)) = 1 we find λ2

=
1

4‖m‖2 . The supremum will in fact correspond
to the positive square root, so we obtain finally

sup
Cm

φξ (z) = φξ (λV2(m)) =
1

2‖m‖
‖V2(m)‖2

=
1

‖m‖
. (B.16)

This concludes the lemma. �

5 Strictly speaking it is the Hopf fibration when restricted to any 3-sphere.
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From this lemma we get

Theorem 8. If [m] = [n] then the d(pξ , p′) is finite if and only if [ξ ] = [m] = [n] and its value is
sup(‖m‖

−1, ‖n‖
−1).

Proof. This clearly follows from the lemma since Bm = α2 Bn and Cm = αCn with α = ‖m‖/‖n‖. �

So we have recovered in a different way and slightly generalized the formula given in [7]. The generalization to
the case [m] 6= [n] is not known to us yet.
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