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a b s t r a c t

In a recent paper [C. Atindogbé, Scalar curvature on lightlike hypersurfaces, Appl. Sci.
11 (2009) 9–18], the present author considered the concept of extrinsic (induced) scalar
curvature on lightlike hypersurfaces. This scalar quantity has been studied on lightlike
hypersurfaces equipped with a given normalization. But a very important problem was
left open: How to characterize the set of all normalizations admitting a prescribed extrinsic
scalar curvature? In this paper, we provide various responses to this question, supported
by examples.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The scalar curvature is one of the most important concepts in (semi-) Riemannian geometry and its connected areas
such as general relativity, astrophysics, cosmology, etc. Lightlike hypersurfaces have the outstanding aspect that, due to the
degeneracy of the metric, the induced connection is not a Levi-Civita connection (except the totally geodesic case). Also, as
the induced (0, 2) induced Ricci tensor is not symmetric in general, one fails to construct this scalar quantity in the usual
way. But the lightlike geometry of hypersurfaces would be incomplete if this gap were not to be filled. In [1], an attempt has
been made in a very limited class of lightlike hypersurfaces in Lorentzian signature called lightlike hypersurfaces of genus
zero. The present author extended in [2] the construction of this extrinsic scalar curvature on all lightlike hypersurfaces
equippedwith a given normalization. But due to the non-uniqueness of the latter, the following question seems naturally to
arise: Given a specific normalization with induced extrinsic scalar curvature, say R, how can one characterize the set of all
normalizations with this prescribed extrinsic scalar curvature R? It is our purpose in this paper to consider various aspects
of this question.
It is well known that the normal bundle TM⊥ of the lightlike hypersurface Mn+1 of a semi-Riemannian manifold M

n+2

is a rank 1 vector subbundle of the tangent bundle TM . A complementary bundle of TM⊥ in TM is a rank n nondegenerate
distribution overM , called a screen distribution ofM , denoted by S(TM), such that

TM = S(TM)⊕Orth TM⊥, (1.1)

where ⊕Orth denotes the orthogonal direct sum. Existence of S(TM) is secured provided M be paracompact. A lightlike
hypersurface with a specific screen distribution is denoted by (M, g, S(TM)). We know [3] that for such a triplet, there
exists a unique rank 1 vector subbundle tr(TM) of TM overM , such that for any non-zero section ξ of TM⊥ on a coordinate
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neighborhoodU ⊂ M , there exists a unique section N of tr(TM) onU satisfying

g(N, ξ) = 1, g(N,N) = g(N,W ) = 0, ∀W ∈ Γ (ST (M)|U). (1.2)

Then TM is decomposed as follows:

TM|M = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)}⊕Orth S(TM). (1.3)

We call tr(TM) a (null) transversal vector bundle alongM . In fact, from (1.2) and (1.3) one shows that, conversely, a choice of
a transversal bundle tr(TM) determines uniquely the screen distribution S(TM). A vector field N as in (1.2) is called a null
transversal vector field of M . It is then noteworthy that the choice of a null transversal vector field N along M determines
both the null transversal vector bundle, the screen distribution and a unique radical vector field, say ξ , satisfying (1.2).
Whence, from now on, by a normalized lightlike hypersurfacewe mean a triplet (M, g,N), where g is the induced metric on
M along with a null transversal vector field N . In fact, in the case where the ambient manifoldM has a Lorentzian signature,
at an arbitrary point x inM , a real lightlike cone Cx is invariantly defined in the (ambient) tangent space TxM and is tangent
to M along a generator emanating from x. This generator is exactly the radical fiber ∆x = TxM⊥. Each null vector field
N, x 7−→ Nx ∈ Cx \∆x determines a normalization ofM . Let (M, g,N) be a normalized lightlike hypersurface. A null vector
field Ñ is a normalizing field for (M, g) if and only if Ñ = φN+ ζ , for some nowhere vanishing φ ∈ C∞(M) and ζ ∈ Γ (TM).
A change in normalization N −→ Ñ = φN + ζ is called isotropic scaling (from N) if ζ = 0, that is Ñ = φN . In such
a change of normalization the screen distribution corresponding to the null transversal vector field N is preserved while
there is an ‘‘homothetic’’ scaling in the radical vector field ξ̃ = 1

φ
ξ . It is called tangential scaling (from N) if φ = 1, that is

Ñ = N+ζ . Here a change in screen distribution occurs and the null vector fields N and Ñ are dual to the same radical vector
field ξ ∈ TM⊥, i.e 〈Ñ, ξ〉 = 〈N, ξ〉 = 1 as in (1.2). The general case Ñ = φN + ζ is calledmixed scaling (from N).
Now, on a normalized lightlike hypersurface (M, g,N), the local Gauss and Weingarten equations are given by

∇XY = ∇XY + B(X, Y )N, (1.4)

∇XN = −ANX + τ(X)N, (1.5)

∇XPY =
?

∇XPY + C(X, PY )ξ , (1.6)

∇Xξ = −
?

Aξ X − τ(X)ξ , (1.7)

for any X, Y ∈ Γ (TM), where∇,∇ and
?

∇ denote the Levi-Civita connection on (M, g), the induced connection onM and the
connection on the screen distribution S(TM) respectively, P the projection morphism of Γ (TM) on Γ (S(TM)) with respect
to the decomposition (1.1). The (0, 2) tensors B and C are the local second fundamental forms on TM and S(TM) respectively,
?

Aξ the local shape operator on S(TM) and τ a 1-form on TM defined by

τ(X) = g(∇XN, ξ).

Although S(TM) is not unique, it is canonically isomorphic to the factor vector bundle TM/TM⊥ [4]. As per [3, page 83], the
second fundamental form B ofM is independent of the choice of a screen distribution and satisfies for all X, Y ∈ Γ (TM)

B(X, ξ) = 0, and B(X, Y ) = g(
?

Aξ X, Y ).

Denote by R and R the Riemann curvature tensors of ∇ and ∇ , respectively. Recall the following Gauss–Codazzi
equations [3, p. 93]

〈R(X, Y )Z, ξ〉 = (∇XB)(Y , Z)− (∇YB)(X, Z)+ τ(X)B(Y , Z)− τ(Y )B(X, Z), (1.8)

〈R(X, Y )Z, PW 〉 = 〈R(X, Y )Z, PW 〉 + B(X, Z)C(Y , PW )− B(Y , Z)C(X, PW ), (1.9)

〈R(X, Y )ξ ,N〉 = 〈R(X, Y )ξ ,N〉 = C(Y ,
?

Aξ X)− C(X,
?

Aξ Y )− 2dτ(X, Y ), ∀X, Y , Z,W ∈ Γ (TM|U). (1.10)

Finally, we recall from [5] the following results. Consider on M a normalizing pair {ξ,N} satisfying (1.2) and define the
one-form

η(•) = g(N, •).

For all X ∈ Γ (TM), X = PX + η(X)ξ and η(X) = 0 if and only if X ∈ Γ (S(TM)). Now, we define [ by

[ : Γ (TM) −→ Γ (T ∗M)

X 7−→ X [ = g(X, •)+ η(X)η(•). (1.11)

Clearly, such a [ is an isomorphism ofΓ (TM) ontoΓ (T ∗M), and can be used to generalize the usual nondegenerate theory. In
the latter case, Γ (S(TM)) coincides with Γ (TM), and as a consequence the 1-form η vanishes identically and the projection
morphism P becomes the identity map on Γ (TM). We let ] denote the inverse of the isomorphism [ given by (1.11).
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For X ∈ Γ (TM) (resp. ω ∈ T ∗M), X [ (resp. ω]) is called the dual 1-form of X (resp. the dual vector field of ω) with respect to
the degenerate metric g . It follows from (1.11) that if ω is a 1-form onM , we have for X ∈ Γ (TM),

ω(X) = g(ω], X)+ ω(ξ)η(X).

Define a (0, 2)-tensor g̃ by

g̃(X, Y ) = X [(Y ), ∀X, Y ∈ Γ (TM).

Clearly, g̃ defines a non-degenerate metric onM which plays an important role in defining the usual differential operators
gradient, divergence, Laplacianwith respect to degenerate metric g on lightlike hypersurfaces ([5] for details). Also, observe
that g̃ coincides with g if the latter is non-degenerate. The (0, 2)-tensor g [·,·], inverse of g̃ is called the pseudo-inverse of g .
With respect to the quasi orthonormal local frame field {∂0 := ξ, ∂1, . . . , ∂n,N} adapted to the decompositions (1.1) and
(1.3) we have

g̃(ξ , ξ) = 1, g̃(ξ , X) = η(X), (1.12)
g̃(X, Y ) = g(X, Y ) ∀X, Y ∈ Γ (S(TM)),

and the following is proved [5].

Proposition 1.1. (α) For any smooth function f : U ⊂ M → R we have

gradg f = g [αβ]fα∂β where fα =
∂ f
∂xα

∂β =
∂

∂xβ
α, β = 0, . . . , n.

(β) For any vector field X onU ⊂ M

divg X =
n∑
α=0

εα g̃(∇XαX, Xα); ε0 = 1

(γ ) for a smooth function f defined onU ⊂ M we have

∆g f =
n∑
α=0

εα g̃(∇Xαgrad
g f , Xα).

In particular, ρ being an endomorphism (resp. a symmetric bilinear form) on (M, g, S(TM)), we have

tr ρ = traceg ρ =
n∑

α,β=0

g [αβ]g̃(ρ(∂α), ∂β)(
resp. traceg ρ =

n∑
α,β=0

g [αβ]ραβ

)
.

All manifolds will be assumed connected, paracompact and smooth.

2. Some technical results

The following lemma gives the behaviour of the induced geometric objects described above with respect to a change of
normalization N −→ Ñ = φN + ζ .

Lemma 2.1. Let {ξ,N} be a normalizing pair as in (1.2) and consider the change of normalization Ñ = φN+ζ with corresponding
radical vector field ξ̃ . Then,
(a) ξ̃ = 1

φ
ξ ,

(b) 2φη(ζ )+ ‖ζ‖2 = 0,
(c) BÑ(X, Y ) = 1

φ
BN(X, Y ),

(d) P̃Y = PY − 1
φ
g(ζ , Y )ξ ,

(e) C Ñ(X, PY ) = φCN(X, PY )− g(∇Xζ , PY )+
[
τN(X)+ X ·φ

φ
+
1
φ
BN(ζ , X)

]
g(ζ , Y ),

(f) ∇̃XY = ∇XY − 1
φ
BN(X, Y )ζ ,

(g) τ Ñ = τN + d ln |φ| + 1
φ
BN(ζ , ·),

(h) AÑ = φAN −∇.ζ +
[
τN + d ln |φ| + 1

φ
BN(ζ , ·)

]
ζ ,

(i)
?

Aξ̃ =
1
φ

?

Aξ − 1
φ2
BN(ζ , ·)ξ ,

for all tangent vector fields X and Y .
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Proof. The first two relations in items (a) and (b) are immediate consequences of relations g(Ñ, ξ̃ ) = 1, g(Ñ, Ñ) = 0 and
dim(TM⊥) = 1. Writing Gauss (resp. Weingarten) formulas for both pairs {ξ,N} and {̃ξ, Ñ}, we obtain, by identifications,
the relations in items (c) and (f) (resp. (g) and (h)). Now let Y ∈ Γ (TM), we have

Y = P̃Y + η̃(Y )̃ξ

= P̃Y + η̃(Y )
(
1
φ
ξ

)
= P̃Y +

1
φ
η̃(Y )ξ .

Then,

P̃Y = Y −
1
φ
η̃(Y )ξ

= Y −
1
φ
g(Ñ, Y )ξ

= Y −
1
φ
g(φN + ζ , Y )ξ

= Y −
1
φ
[φη(Y )+ g(ζ , Y )]ξ

= Y − η(Y )ξ −
1
φ
g(ζ , Y )ξ

= PY −
1
φ
g(ζ , Y )ξ

and the item (d) is derived. By using the definition of C Ñ , we have

C Ñ(X, P̃Y ) = g(AÑX, P̃Y )

(h)
= g

(
φANX −∇Xζ +

[
τN(X)+ X · (ln |φ|)+

1
φ
BN(ζ , X)

]
ζ , P̃Y

)
(d)
= g

(
φANX −∇Xζ +

[
τN(X)+ X · (ln |φ|)+

1
φ
BN(ζ , X)

]
ζ , PY −

1
φ
g(ζ , Y )ξ

)
(d)
= g(φANX −∇Xζ + [τN(X)+ X · (ln |φ|)+

1
φ
BN(ζ , X)]ζ , PY )

= C Ñ(X, PY ) = φCN(X, PY )− g(∇Xζ , PY )+
[
τN(X)+

X · φ
φ
+
1
φ
BN(ζ , X)

]
g(ζ , Y )

which establishes relation (e). Finally, we have

∇̃X ξ̃ = −
?

Aξ̃X − τ
Ñ(X )̃ξ .

But using (f) we get

∇̃X ξ̃ = ∇X ξ̃ −
1
φ
BN(X, ξ̃ )ζ

= ∇X ξ̃

(a)
= ∇X

(
1
φ
ξ

)
= −

X · (φ)
φ2

ξ +
1
φ
(−

?

Aξ X − τN(X)ξ)

= −

[
X · (φ)
φ2

+
1
φ
τN(X)

]
ξ −

1
φ

?

Aξ X .

Identifying the above two expression of ∇̃X ξ̃ , we get

−
?

Aξ̃X =
1
φ

?

Aξ X +
[
X · (φ)
φ2

+
1
φ
τN(X)

]
ξ −

1
φ
τ Ñ(X)ξ
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=
1
φ

?

Aξ X +
[
X · (φ)
φ2

+
1
φ
τN(X)

]
ξ −

1
φ

[
τN(X)+

X · (φ)
φ
+
1
φ
BN(ζ , X)

]
ξ

=
1
φ

?

Aξ X −
1
φ2
BN(ζ , X)ξ ,

and we obtain the relation in (i), which completes the proof. �

Now it seems noteworthy to clearly state the relationship between the Ricci (0, 2)-tensors induced by a normalizing null
vector field N and the one induced by a change in the normalization Ñ = φN + ζ . We have

Proposition 2.1. Let (M, g,N) be a normalized lightlike hypersurface with induced Ricci (0, 2)- tensor Ric and Ñ = φN + ζ a
change in normalization on M. Then, R̃ic being the Ricci (0, 2)-tensor induced by Ñ,

R̃ic(X, Y ) = Ric(X, Y )+
1
φ
B(X, Y )

[
τN(ζ )+

ζ (φ)

φ
+
1
φ
B(ζ , ζ )− divg(ζ )

]
+
1
φ
(∇NX ζ , Y )−

1
φ
B(ζ , Y )

[
τN(X)+

X(φ)
φ
+
1
φ
B(ζ , X)

]
+
1
φ
〈R(X, ζ )Y , ξ〉. (2.1)

Proof. This basically follows from the Proposition 2.1, and the fact that [2]

R̃ic(X, Y ) = Ric(X, Y )+ B̃(X, Y )tr AÑ − g(AÑX,
?

Aξ̃ Y )− η̃
(
R(̃ξ , Y )X

)
.

Note that by item (h) in Lemma 2.1 and Proposition 1.1,

tr AÑ = φtr AN − divg(ζ )+ τ
N(ζ )+

ζ · φ

φ
+
1
φ
B(ζ , ζ ).

Also,

η̃ = φη + 〈ζ , ·〉.

Then,

η̃
(
R(̃ξ , Y )X

)
= η

(
R(ξ , Y )X

)
−
1
φ

〈
R(X, ζ )Y , ξ

〉
. �

Corollary 2.1. Let (M, g,N) be a normalized lightlike hypersurfacewith induced Ricci tensor Ric. If the normalization data (φ, ζ )
preserves the induced Ricci tensor R then,

∇
N
ζ ζ − divg(ζ )ζ ∈ Ker B

N . (2.2)

Proof. Follows immediately from Proposition 2.1 in which one sets R̃ic(X, Y ) = Ric(X, Y ) for all X, Y tangent to M and
taking X = ζ . �

3. Normalizations with prescribed extrinsic scalar curvature

Recall that the induced Ricci tensor on a normalized lightlike hypersurface (Mn+1, g,N) of a (n+ 2)-dimensional semi-
Riemannianmanifold (M, ḡ) is not symmetric in general, and in [2] we introduced a symmetrized induced Ricci tensor Ricsym
onM as follows.

Ricsym(X, Y ) =
1
2
[Ric(X, Y )+ Ric(Y , X)] , (3.1)

where Ric(X, Y ) = trace{Z 7−→ R(Z, X)Y }. Using the usual general relativity notation

R(αβ) =
1
2

[
Rαβ + Rβα

]
(3.2)

where we have shortened Rαβ := Ricαβ .
In the sequel, for a change in normalization N −→ Ñ = φN + ζ , we define

Θ(φ, ζ ) = τN(ζ )+
ζ (φ)

φ
+
1
φ
B(ζ , ζ )− divg ζ (3.3)

and

Kζ =
?

Aξ ◦∇N· ζ (3.4)
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Many further results will be derived from the following.

Theorem 3.1. Let a normalized lightlike hypersurface (M, g,N) and a change in normalization Ñ = φN + ζ be given. Then, the
extrinsic scalar curvature R̃ with respect to Ñ is given by:

R̃ = R+
1
φ

(
tr

?

Aξ

)
Θ(φ, ζ )+

1
φ
trgKζ −

1
φ

τN ( ?

Aξ ζ
)
+

(
?

Aξ ζ
)
· (φ)

φ
+
1
φ
‖

?

Aξ ζ‖2

− 1φ Ric(ζ , ξ). (3.5)

Proof. The symmetrized Ricci formula expresses by using Proposition 2.1 that,

R̃icsym(X, Y ) = Ricsym(X, Y )+
1
φ
BN(X, Y )Θ(φ, ζ )+

1
φ

[
BN (∇Xζ , Y )+ BN (∇Y ζ , X)

]
−
1
2φ

[
BN(ζ , Y )

[
τN(X)+

X(φ)
φ
+
1
φ
BN(ζ , X)

]
+ BN(ζ , X)

[
τN(Y )+

Y (φ)
φ
+
1
φ
BN(ζ , Y )

]]

+
1
2φ

[
〈R(X, ζ )Y , ξ〉 + 〈R(Y , ζ )X, ξ〉

]
.

With respect to a g-quasi orthogonal frame (∂0 = ξ, ∂α), α = 1, . . . , nwith S(TM) = span{∂α}, we have

R̃ic(αβ) = Ric(αβ) +
1
φ
BNαβΘ(φ, ζ )+

1
φ

[
BN
(
∇
N
∂α
ζ , ∂β

)
+ BN

(
∇∂β ζ , ∂α

)]
−
1
2φ

[
BN(ζ , ∂β)

[
τN(∂α)+

∂α(φ)

φ
+
1
φ
BN(ζ , ∂α)

]
+ BN(ζ , ∂α)

[
τN(∂β)+

∂β(φ)

φ
+
1
φ
BN(ζ , ∂β)

]]

+
1
2φ

[
〈R(∂α, ζ )∂β , ξ〉 + 〈R(∂β , ζ )∂α, ξ〉

]
.

Hence, taking the trace from both sides leads to

R̃ = R+
1
φ

(
trg

?

Aξ

)
Θ(φ, ζ )+

1
φ
trgKζ −

1
2φ

τN ( ?

Aξ ζ
)
+

(
?

Aξ ζ
)
· (φ)

φ

+
1
φ
g̃(

?

Aξ ζ ,
?

Aξ ζ )+ τN(
?

Aξ ζ )+

(
?

Aξ ζ
)
· (φ)

φ
+
1
φ
g̃(

?

Aξ ζ ,
?

Aξ ζ )

+ 1
2φ

[
−Ric(ζ , ξ)− Ric(ζ , ξ)

]
,

which reduces to the required expression (3.5) using the fact that
?

Aξ ζ is screen-valued and then g̃(
?

Aξ ζ ,
?

Aξ ζ ) = ‖
?

Aξ
ζ‖2g . �

We derive immediately the following results on our initial open problem:

Corollary 3.1. Let (M, g,N) be a normalized lightlike hypersurface with extrinsic scalar curvature R. Then, a normalization data
(φ, ζ ) from N (i.e. a change in normalization N −→ Ñ = φN + ζ ) preserves the scalar quantity R if and only if[

τN +
dφ
φ
+
1
φ
BN(·, ζ )

]((
tr

?

Aξ

)
ζ−

?

Aξ ζ
)
+ trgKζ −

(
tr

?

Aξ

)
divg ζ − Ric(ζ , ξ) = 0. (3.6)

Proof. This is a straightforward use of relation (3.5) with the requirement R̃ = R and noting thatΘ(φ, ζ ) = τN(ζ )+ ζ (φ)

φ
+

1
φ
B(ζ , ζ )− divg ζ . �

Corollary 3.2 (Isotropic Scaling). Let R be the (induced) extrinsic scalar curvature on the data (M, g,N). Then, any isotropic
scaling Ñ = φN preserves the scalar quantity R.

Proof. Immediate from (3.6) using ζ = 0. �
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Now, using φ = 1 in relation (3.6) we derive the following

Corollary 3.3 (Tangential Scaling). Let R be the (induced) extrinsic scalar curvature on the data (M, g,N). Then, a tangential
scaling Ñ = N + ζ preserves the scalar quantity R if and only if.[

τN + BN(·, ζ )
] ((

tr
?

Aξ

)
ζ−

?

Aξ ζ
)
+ trgKζ −

(
tr

?

Aξ

)
divg ζ − Ric(ζ , ξ) = 0. � (3.7)

Corollary 3.4 (Mixed Scaling). Let R be the induced extrinsic scalar curvature on the data (M, g,N) in a semi-Riemannian
Einstein manifold (M, g). Then the mixed scaling normalization (and subsequently a choice of a screen distribution) N −→ Ñ =
φN + ζ preserves the scalar quantity R if any one of the following items holds:

(i) (tr
?

Aξ ) ∈ spec
(

?

Aξ

)
with ∇N -parallel eigenvector field ζ .

(ii) tr
?

Aξ= 0 and ζ ∈ Ker
?

Aξ is ∇N -parallel.
(iii) φ = cte 6= 0 and the ∇N -parallel vector field ζ satisfies BN(ζ , ·) = −λτN .
(iv) (M, g) is totally geodesic.
Proof. As the ambient manifold is assumed to be Einstein, we have Ric(ζ , ξ) = λg(ζ , ξ) = λg(ζ , ξ) = 0. Then, each item
from (i) to (iv) is a sufficient condition for (3.6). �

4. Some examples

In this section the readerwill be provided some examples forwhichwe examine preservation of the given extrinsic scalar
curvature under various (re-)normalizations.

4.1. The lightcone

Beyond all physical considerations, the null cone ∧n+10 ⊂ Rn+21 is one of the most important manifolds with lightlike
metric. In fact, as we known from [6], the null cone is, up to a homogeneous Riemannian factor, the only homogeneous
lightlike manifold on which a Lie group with finite center acts faithfully, isometrically and non-properly.
Consider the null cone ∧n+10 at the origin in Rn+21 . Set 〈, 〉

∧
n+1
0
the induced metric and N0 = 1

2t2

{
−t∂t +

∑n+1
a=1 x

a∂a

}
, a

normalizing null vector field on it. We know from [2] that R0 = n2−n
2t2
is the (induced) extrinsic scalar curvature on the data(

∧
n+1
0 , 〈, 〉

∧
n+1
0
,N0

)
. As we know from Corollary 3.4, very selective are data preserving R0.

We first examine tangential scaling from N0 preserving our extrinsic scalar curvature R0. In fact, let Ñ = N0 + ζ be such
a null vector field along ∧n+10 . We have from Corollary 3.3,[

τN0 + BN0(·, ζ )
] ((

tr
?

Aξ0

)
ζ−

?

Aξ0 ζ
)
+ trgKζ −

(
tr

?

Aξ0

)
divg ζ = 0,

as Ric(ζ , ξ0) = 0, where ξ0 = t∂t +
∑n+1
a=1 x

a∂a represents the position vector field in Rn+21 . But, by straightforward
calculation, we get τN0 = −g(·,N0) = −η0. Now P0, being the projectionmorphism onto the screen distribution associated

to N0, we have
?

Aξ0 X = −P0X and then tr(
?

Aξ0) = −n. Thus,

τN0

(
(tr

?

Aξ0)ζ−
?

Aξ0 ζ
)
= −η0

[
tr(

?

Aξ0)(P0ζ + η0(ζ )ξ0)+ P0ζ
]

= nη0(ζ ).
But

BN0
(
(tr

?

Aξ0)ζ−
?

Aξ0 ζ , ζ
)
= BN0 (−nζ + P0ζ , ζ )

= (−n+ 1)BN0(P0ζ , P0ζ )

= (−n+ 1)〈
?

Aξ0 ζ , P0ζ 〉
= (n− 1)〈P0ζ , P0ζ 〉
= (n− 1)‖ζ‖2.

Also, by direct calculation, we have

trgKζ = −divg ζ + η0(∇
N0
ξ0
ζ )

= −divg ζ + ξ0 · (η0(ζ ))+ η0(ζ ),
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as
(
∧
n+1
0 , 〈, 〉

∧
n+1
0
,N0

)
has a conformal screen [7] fromwhichwe infer CN0(ξ0, Pζ ) = 1

2t2
BN0(ξ0, Pζ ) = 0. Hence a tangential

scaling from N0 preserves the extrinsic scalar curvature R0 if and only if
(n+ 1)η0(ζ )+ ξ0 · (η0(ζ ))+ (n− 1)‖ζ‖2 + (n− 1)divg ζ = 0,

which is

(n− 3)‖ζ‖2 − ξ0 · (‖ζ‖2)+ 2(n− 1)divg ζ = 0, (4.1)
using item (ii) in Lemma 2.1 with ϕ = 1. In particular if n ≥ 2 and the tangent vector field ζ is required to have a constant
length, say l, the normalizing data (1, ζ ) from N0 preserves R0 if and only if the following partial differential equation,

divg ζ =
n− 3
2(n− 1)

l2 (4.2)

holds.

4.2. Cutting the pseudosphere S31

Consider the unit pseudosphere S31 of theMinkowski spaceR41, given by−t
2
+x2+y2+ z2 = 1. Cut S31 by the hyperplane

t − x = 0 of R41 and obtain a lightlike surfaceΣ of S
3
1 . It is an easy matter to verify that a normalization ofΣ is given by the

null transversal vector field

N = −
1
2

[
(1+ t2)∂t + (t2 − 1)∂x + 2ty∂y + 2tz∂z

]
alongΣ .
Let RΣ denote the extrinsic scalar curvature induced by N . It is our purpose to show that RΣ is invariant under mixed

scaling. In fact we show thatΣ is totally geodesic in the pseudosphere S31 and use Corollary 3.4, as S
3
1 is Einstein. Note that

the rank 1 screen distribution corresponding to the normalization with the above N is spanned by the spacelike vector field
W = z∂y − y∂z . Also, the radical distribution of Σ is spanned by the null (characteristic) vector field ξ = ∂t + ∂x with

〈N, ξ〉 = 1. Now, as
?

Aξ ξ = 0, it is sufficient to show that
?

Aξ W = 0. Let D and ∇ denote the flat connection on R41 and the
induced connection on the pseudosphere S31 respectively. We have,

−
?

Aξ W − τ(W )ξ = ∇W ξ = DW ξ = zD∂yξ − yD∂z ξ
= zD∂y(∂t + ∂x)− yD∂z (∂t + ∂x)
= 0.

Hence,
?

Aξ W = 0 andΣ is totally geodesic in S31 and the claim follows item (iv) in Corollary 3.4.

Remark. A similar interesting example is obtained when considering (M, g) to be a black hole event horizon in a C∞
Lorentzian manifold (M, g) satisfying a natural hypothesis, using the well known regularity and area theorem by Chrusciel
et al. [8]. LetΣa, a = 1, 2, be two achronalC2 embedded spacelike hypersurfaces, Sa = Σa∩M andM12 the part ofM between
S1 and S2. If S1 belongs to the past of S2 with area(S1) = area(S2) then, M12 is a totally geodesic lightlike hypersurface and
the same item (iv) in Corollary 3.4 ensures that every extrinsic scalar curvature is preserved by mixed scaling from a given
normalizing.

4.3. Special level hypersurfaces in the Robertson–Walker spacetime

Robertson–Walker spacetime is the solution of the Einstein field equations arising from the idea that our 4-dimensional
universe is spatially homogeneous as it admits a 6-parameter group of isometrieswhose surfaces of transitivity are spacelike
hypersurfaces of constant curvature. The spacetime metric is then given by

ds2 = −dt2 + S2(t)dΣ2,
where dΣ2 is the metric of the spacelike hypersurface Σ with spherical symmetries and constant curvature c = 1,−1 or
0. In the local spherical coordinate system (r, θ, ϕ),

dΣ2 = dr2 + f (r)2
(
dθ2 + sin2 θdϕ2

)
,

where f (r) =
{
sin r if c = 1
sinh r if c = −1
r if c = 0.

Now consider two null coordinates u and v such that u = t + r and v = t − r . Then, the above spacetime metric
transforms to

ds2 = −dudv + f 2(r)dΩ2,
with dΩ2 = dθ2 + sin2 θdϕ2. It follows that {u = constant} and {v = constant} are lightlike hypersurfaces of the
Robertson–Walker spacetime.
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Let

Mv0 = (M, g, v = v0 = constant)

and

Mu0 = (M, g, u = u0 = constant)

be a pair of these lightlike hypersurfaces, Dv and Du the 1-dimensional distributions generated by the null vector fields ∂v
and ∂u respectively inM .
Obviously, Du and Dv are null transversal vector bundle toMv0 andMu0 , respectively.
The intersectionMu0 ∩Mv0 is topologically a 2-sphere S2. Actually, the transversal null vector ∂v induces a normalization

onMu0 whose corresponding screen distribution is integrablewith leaves diffeomorphic to S2. We let Rv denote the extrinsic
scalar curvature induced on the triplet (Mu0 , g, ∂v). Assume ζ is a tangent vector field to Mu0 , parallel along null orbits of
∂u. Then in virtue of item (ii) in Corollary 3.4, the tangential scaling Ñ = ∂v + ζ preserves the extrinsic scalar curvature Rv
if and only ifMu0 has zero mean curvature.
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