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1. Introduction

Affine hypersurfaces have been widely studied over past decades. Especially, hypersurfaces equipped with some
additional structure apart from the induced one. This additional structure can be either induced from the ambient space
(seee.g.[1] and [2]) or given in some independent way (see e.g. [3] and [4]). Moreover some interesting results connecting
special Kdhler and special para-Kédhler geometry with some class of affine hyperspheres have been recently obtained in [5]
and [6].

In [3], M. Kon studied 2n-dimensional affine hypersurfaces f : M — R"*! with an almost complex structure J invariant
relative to the second fundamental form h (i.e. satisfying h(JX, JY) = h(X, Y) for every X, Y € TM). In other words, (h, J) was
almost Hermitian structure on M. For such hypersurfaces, in a natural way, we have an almost symplectic form  defined
by the condition w(X, Y) = h(X, JY).

On the other hand, in [4], the author studied affine hypersurfaces f : M — R2"*! with a transversal vector field &
additionally equipped (independently of the induced structure) with an almost symplectic structure w. When f is non-
degenerate, there exists exactly one tensor J, of type (1, 1) on M such that

o(X, J,Y) = h(X,Y),
where h is the second fundamental form on M. In this case, ], is non-singular and h-antisymmetric. In [4], the following
results were obtained:

Theorem 1.1 ([4]). Let f : M — R be a non-degenerate affine hypersurface with a transversal vector field £ and an almost
symplectic form w. Equality R(X, Y)w = 0 for every X, Y € X(M) holds if and only if dimM = 2 and £ is locally equiaffine or
dimM > 4and V is flat.
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In the case when the second fundamental form is positive definite and the transversal vector field £ is locally equiaffine,
the above theorem generalises to an arbitrary power of R. Namely, we have

Theorem 1.2 ([4]). Let f : M — R?*"*! be a non-degenerate affine hypersurface (dim M > 4) with a locally equiaffine transversal
vector field & and an almost symplectic form w. Additionally, assume that the second fundamental form is positive definite on M.
If Rlw = 0 for some positive integer | then V is flat.

As a consequence of the above theorem, it was shown the following

Theorem 1.3 ([4]). Let f : M — R"*1 be anon-degenerate affine hypersurface (dim M > 4)with a locally equiaffine transversal
vector field & and an almost symplectic form w. Additionally, assume that the second fundamental form is positive definite on M.
If V¥w = 0 for some positive integer k then V is flat.

The main purpose of this paper is the study of affine hypersurfaces with the Lorentzian second fundamental form
equipped with an almost symplectic structure. In particular, we study the properties of affine hypersurfaces for which there
exists an almost symplectic structure w satisfying condition R* - @ = 0. In consequence, we obtain some constrains on
affine hypersurfaces with the property Vo = 0. Note that the affine higher order parallel hypersurfaces were studied by
many authors. In particular, L. Vrancken obtained several important results in [7]. However, hypersurfaces studied in [7] are
parallel relative to the second fundamental form (i.e. Vkh = 0). In this paper, we study the affine hypersurfaces parallel
relative to a symplectic form.

In Section 2, we briefly recall the basic formulas of affine differential geometry. We also recall some basic definitions from
indefinite linear algebra as well as symplectic geometry that will be used later in this paper.

Section 3 contains the main results of this paper. In this section, we focus on the Lorentzian case. We start with an affine
hypersurface with the Lorentzian second fundamental form. We show that if there exists an almost symplectic structure w
satisfying condition R* - @ = 0 or V¥&w = 0 for some positive integer k then the shape operator must have a very special
form. More precisely, we obtain that the rank of the shape operator S must be < 1 provided dim M > 6 and the transversal
vector field is locally equiaffine.

2. Preliminaries

We briefly recall the basic formulas of affine differential geometry. For more details, we refer to [8]. Let f : M — R™*!
be an orientable connected differentiable n-dimensional hypersurface immersed in the affine space R"*! equipped with its
usual flat connection D. Then, for any transversal vector field &, we have

DxfiY = fu( VxY) + h(X, Y)§ (2.1)

and

Dxé = —fi(SX) + ©(X)§, (2.2)

where X, Y are the vector fields tangent to M. It is known that V is a torsion-free connection, h is a symmetric bilinear form
on M, called the second fundamental form, S is a tensor of type (1, 1), called the shape operator, and t is a 1-form, called the
transversal connection form. The vector field & is called equiaffine if t = 0. When dr = 0 the vector field & is called locally
equiaffine.

When h is non-degenerate then h defines a pseudo-Riemannian metric on M. In this case, we say that the hypersurface
or the hypersurface immersion is non-degenerate. In this paper, we always assume that f is non-degenerate. We have the
following

Theorem 2.1 ([8], Fundamental Equations). For an arbitrary transversal vector field & the induced connection V, the second
fundamental form h, the shape operator S, and the 1-form t satisfy the following equations:
R(X,Y)Z = h(Y,Z)SX — h(X, Z)SY,
(Vxh)(Y,Z)+ t(X)h(Y,Z) = (Vyh)(X, Z) + t(Y)h(X, Z),
(VxSXY) — T(X)SY = (VyS)(X) — =(Y)SX,
h(X,SY) — h(SX,Y) =2dt(X,Y).

—~ o~ o~
e N
a U AN W
NSNS AN AN

Egs. (2.3),(2.4),(2.5), and (2.6) are called the equations of Gauss, Codazzi for h, Codazzi for S and Ricci, respectively.
Let f : M — R™! be an affine hypersurface with a transversal vector field £. On M, we define a tensor field C of type
(0, 3) by the formula

C(X,Y,Z):=(Vxh)Y,Z)+ t(X)h(Y, Z)

forallX,Y,Z € x(M). The tensor field C is called the cubic form. It is easy to verify that the cubic form C is symmetric in all
three variables.
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On the space R"*!, we have the standard volume form determined by the determinant det[-].If f : M — R"*!is an affine
hypersurface with a transversal vector field &, then on M we define the induced volume form by the formula

Q(Xh s ,Xn) = det [f*xl, .. ~7f*Xn7 ‘i:]
for every Xy, ..., X, € xX(M). The following theorem holds:

Theorem 2.2 ([8]). If f : M — R™ ! is an affine hypersurface with a transversal vector field & then
Vx0 = t(X)f forevery X € TM.
In particular, the following conditions are equivalent:

(1) Vo =0,
(2) © = 0 (thatis & is equiaffine).

Let w be a non-degenerate 2-form on manifold M. The form w we call an almost symplectic structure. It is easy to see that
if a manifold M admits some almost symplectic structure then M is an orientable manifold of even dimension. Structure
w is called a symplectic structure, if it is almost symplectic and additionally satisfies dw = 0. Pair (M, w) we call (almost)
symplectic manifold, if w is (almost) symplectic structure on M.

Recall [9] that affine connection V on an almost symplectic manifold (M, w) we call an almost symplectic connection if
Vw = 0. An affine connection V on an almost symplectic manifold (M, w) we call a symplectic connection if it is almost
symplectic and torsion-free.

Now, we recall a well-known theorem about Jordan normal form (see e.g. Th. A.2.6 in [10]).

Theorem 2.3 (Jordan). If A : V — V is an endomorphism of real finite dimensional vector space V then there exists a basis of V
such that the matrix of the endomorphism A in this basis has a form

., 0 ... O
0 L, ... O
. , (2.7)
L0 0 ... L
where L; is the Jordan block corresponding to the eigenvalue A\; and given by the formula
A 0 0 ... O 0
1 » 0 ... O 0
0o 1 A ... O 0
S € M(ki, ki, R), (2.8)
0 0 0 ... XN 0
(0 0 0 ... 1 N
when A; is real, or by the formula
B; 0 O ... O 0
I B 0 ... O 0
o I B ... O 0
L € M(2k;, 2k;, R), (2.9)
0 0 O B; 0
[0 0 0 I B
where
o o ,31' _ 1 0
R R pOvepe
when A; = a; + 1B; (B # 0) is complex.
A square matrix P of dimension n is called the sip matrix (standard involutory permutation) [ 10] if it has a form:
00 --- 0 1
o o0 --- 1 0
: s (2.10)
0 1 0 0
1 0 0 0



174 M. Szancer / Journal of Geometry and Physics 119 (2017) 171-186

Note that P is a non-singular symmetric matrix and P? = I. In particular, all its eigenvalues are equal £1. Moreover, it is
easy to verify that we have the following formula for the signature of P:

nn e
(7, 7) R if n is even
igP 2 2 (2.11)
SBE=Y/n+1 n—-1 :
+ , , if nis odd.
2 2
Theorem 2.4 (Th.6.1.5[10]). Let H be a real invertible and symmetric matrix of dimension n. Then, for every square n dimensional
and H-selfadjoint matrix A (i.e. ATH = HA) there exists a basis {eq, .. ., e,} such that
A=/1@ - @) ®Ji+1D - ®Jrys, (2.12)

where 1, ..., ] are Jordan blocks of type (2.8) and J; 11, . . . , Je+s are Jordan blocks of type (2.9). Moreover

H=eP1® - - ©&Pt®Pi1 D D Prys, (2.13)

where P; is a sip matrix of dimension equal to dimension of matrix Jj forj=1,...,t +sandgj = *1forj=1, ..., t. The signs
&j are determined uniquely by (A, H) up to permutation of signs in the blocks of (2.13) corresponding to the Jordan blocks of A
with the same real eigenvalue and the same size.

3. Hypersurfaces with parallel symplectic structure

In this section, we study the properties of affine hypersurfaces equipped with an almost symplectic structure w satisfying
condition R¥w = 0 (and in particular V¥w = 0) for some positive integer k.
First, we recall three lemmas from [4].

Lemma 3.1 ([4]). Let T be a tensor of type (0, p) and let V be an affine torsion-free connection. Then, for every k > 1 and for any
2k + p vector fields Xjﬂ, e Xil, Y1, ..., Y, the following identity holds:

k 1 1 k k
R -TYXL XY, xRk xR v, Y)

= ngn a(VH*T) X1y X gty - - o Xt X g V1o -0 Vo), (3.1)
acJ
where 7 ={a: I, —» {—1, 1}} and sgna :=a(1)--- - - a(k).

Lemma 3.2 ([4]). Let f : M — R*"1 be a non-degenerate affine hypersurface (dim M > 4) with a transversal vector field & and
an almost symplectic form w. Let x € M. If there exists a positive integer 2 < s < 2n and a basis {eq, . .., e2,} of T{M such that
h(ei, e;) = €6, & = £1fori,j=1,...,s h(ej,e;) =0fori=1,...,5,j=s+1,...,2nand Se; = Aje; fori = 1,...,5s,
Ai € R. Then, foreveryk,j=1,2,...,s,k Zjand foreveryi=1,...,2n,i #j, i # k we have

R'w(ex. €, ex, €, ..., e, €, e, ) = (—1)epef M Mwle, ) (3:2)
foreveryl e N.
Lemma 3.3 ([4]). Let f : M — R*'*! be a non-degenerate affine hypersurface (dimM > 4) with a transversal vector field &

and an almost symplectic form w. Let x € M and let X, Y, Zy, Z, be vectors from TyM such that SX = AX, SZ; = 0,SZ, = 0,
h(Z1,Z,) = 0and h(Y, Z;) = 0. Then, for every | > 1 we have

R¥o(X,Z1,22,21, 22, ..., 21,22, Y)
4]
= (=1'2?h(Z1, Z1)h(Zy, Zo)Y (X, Y). (3.3)

Before proceeding note that if the second fundamental form is not positive definite then Theorem 1.2 do not hold in
general. Indeed, we have the following example [4]:

Example 3.4. Let us consider an immersion

X

y
FiR?x (R\{O) xR > (x,y,2,t) — Z eR’
X —t

2 4 2zt
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with a transversal vector field

0
0
EREXx (R\{0) xRy >(x,y,2,t) > | =t | eR>.
0
—t2
It is easy to see that & is equiaffine (t = 0) and
_4Z -—
— 0 0 0
f2
0 0 0 O 0 2 0 o
s= |9 0 0 01 4 he t?
0 0 0 1 0 0 0 2
0 00O 5]
2
[0 0 5 0]

in the canonical basis {-, L;ly 2. 2}onR? x (R\ {0}) x Ry From the form of h, it follows that f is non-degenerate. If z > 0
then h has signature (3,1) so is Lorentzian. If z < 0 then h has signature (2,2). Since S is nonzero, the connection V induced
by & cannot be flat.

Let w be an almost symplectic structure given by the following matrix:

01 0 0

oo |-1 0 0 0
=lo 0 0 1
0 0 -1 0

in the canonical basis {2, %, 2 2} By straightforward computations (see [4] for details), it can be shown that R*» = 0.

In a further part of this section, we focus on the Lorentzian case. That is affine hypersurfaces with the Lorentzian second
fundamental form for which there exists an almost symplectic structure w satisfying the condition R‘w = 0. The above
example shows that the condition R« = 0 do not have to necessarily imply flatness of the induced connection V. However,
we shall show the following

Theorem 3.5. Let f : M — R?>™! (dimM > 6) be a non-degenerate affine hypersurface with a locally equiaffine transversal
vector field & and an almost symplectic form w. If R*w = 0 for some k > 1 and the second fundamental form is Lorentzian on M
(that is has signature (2n — 1, 1)) then the shape operator S has the rank < 1.

In order to prove Theorem 3.5, we need several lemmas. In all the below lemmas, we assume that f : M — R?>"*! is
a non-degenerate affine hypersurface with a locally equiaffine transversal vector field £ and an almost symplectic form w.
About objects V, h, S and t, we assume that they are induced by &. If it is not clearly stated otherwise, we assume also that
dimM > 4 (so it is a weaker assumption than that in Theorem 3.5).

Lemma 3.6. If h is Lorentzian of signature (2n-1,1) and dt = 0, then for every point x of manifold M there exists a basis

{e1, ..., e} of TyM such that S and h in this basis have one of the following forms:
Ay, 0 .- 0 0 1 0 --- O 0
0 Ay - 0 0 o1 --- 0 0
S=|: = (34)
0 O Aon—1 0 0 0 1 0
L0 O 0 Aon 0 0 0 -1
where Aq, ..., Aoy € R;
A1 O 0 0 10 0 0
0 X 0 0 0 1 0 0
S=1: . .. L h=1 0 ] (3.5)
0 0 o y 0 0 1 0
) -y B 0 0 -1
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where A1, ..., Aon—z, @, B,y €R,y #0;

A - 0 0 0 1 ... 00 0
S=1o « 0 ol|h=]o 00 1/ (3.6)
0 -+ 1 « 0 0 01 0
0 - 0 1 « 0 100
where A1, ..., Ayn—3, ¢ € R.

Proof. Since dr = 0 then by the Ricci equation, the operator S is h-selfadjoint. Let x € M. By the virtue of Theorem 2.4, there
exists a basis {e, ..., ex,} of TuM such that

5=51® - @)®Jr1 D DJigs,
where J, ..., J; are the Jordan blocks of type (2.8) and J;11, . . ., J+s are the Jordan blocks of type (2.9). Moreover,
h=eP1® - - PP ®Pry1® - B Prys,

where P; is a sip matrix forj = 1,...,t 4 s. Since the signature of h is (2n — 1, 1) and the signature of P}, by (2.11), has
the form (dim P;/2, dim P;/2) when dim P; is even and has the form ((dim P; + 1)/2, (dim P; — 1)/2) when dim P; is odd thus
dim P; < 3. Moreover, in the above decomposition, there might be at most one j such that dim P; > 1. Summarising we have
the following possibilities:

(1) dimP; = 1 for every j. In this case, all the Jordan blocks J; are one dimensional and taking into the account the signature
of h, the matrices S and h are as in (3.4).

(2) There exists exactly one j = jo such that dim P;; = 2 and for the other j we have dim P; = 1. In this case, the Jordan
blocks J; are one dimensional for j # jo and the Jordan block J;, is two dimensional. Then, either J;, has the form (2.9)
and S and h are as follows:

M 0 - 00 10 -~ 0 0
0 4 -~ 0 0 01 -~ 0 0

S=\|: - |h=| o (3.7)
0 0 --- a b 00 -~ 0 1
0 0 -~ —b a 00 -~ 1 0

since all ; = 1, or Jj, has the form (2.8). In the latter case, &j, = %1 since the signatures of P, and —P;, are the same. For
the remaining j, it must be ¢; = 1. In this way, we obtain that S and h have the form given by the following formulas:

A 0 - 0 0 10 - 0 0
0 4 - 0 0 01 ... 0 0

S=1: - . . \h=|: | (3.8)
0 0 -~ a 0 00 -~ 0 g,
0 0 - 1 a 00 -« g O

Now, in a straightforward way, we can transform (3.8) into (3.5).

(3) There exists exactly one j = jo such that dimP;;, = 3 and for remaining j we have dimP; = 1. In this case, the
Jordan blocks J; are one dimensional for j # jo and the Jordan block Jj, is three dimensional and as such must have the
form (2.8). Moreover we have gj, = 1 since signature of —P;, is (1, 2). Summarising, S and h can be expressed in the
form (3.6).

The proof of the Lemma is completed. O

Lemma 3.7. If S and h have the form (3.5) then

R(ean—1, €2n)Sezn = — det |:_ozy g] €n—1, (3.9)

R(e2n—1, €2n)Sean—1 = — det |:_ay Z] en- (3.10)

Proof. By (3.5), we have

Sexn—1 = 0yp—1 — Yeu, Sey = yer—1+ Peo.
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Now, the Gauss equation and the form of h imply that
R(ean—1, e2n)Sean = h(ean, Sean)Sean—1 — h(€an—1, Sean)Sezn
= —BSex—_1 — ySean = —(Ba + y*)ezn_1,
what proves (3.9). In a similar way, we get
R(ean—1, €an)Sean—1 = h(ean, Sean—1)Sean—1 — h(ean—1, Sean—1)Sezn
= ySesn_1 — aSexy = —(Ba + y?)ean,
what proves (3.10). O

Lemma 3.8. If S and h are of the form (3.5) then for every k > 1 we have

2%
R™w(exn—1, €z, .., €n_1, €2n, €, €2n)

4k
o k
= det [_y g} w(ei, exn)
ifi<2n—1,

2k+1
R w(ean—1, €, . .., €201, €20, €1, X, €1, X)

4k

k
= 4ky det |:_Oly gi| (€n-1, €2n)

for X = ey_q0r X = ey,

2k-+1
R w(exn—1, €an, ..., m—1, €2n,€1,X, €1, Y)

4k
o k
=2. 4"‘1(05 — B)det |:—y g] o(@n—1, €2n),
forX =ey_qandY =eypor X = ey andY = ey,_1.

Proof. First note that, by the Gauss equation, we have

R(ean—1, €2n)e2n—1 = —Sezn,
R(lelf]s € )eZn = —Seon_1,
R(ezn—1,€2:)ei =0

fori < 2n — 1. For every k > 1, we have

2k
R%w(ezn—1, €, . .., €2n—1, €21, €, €21)

4k
2k—1
=-R o(R(ezn-1, €2n)€2n-1, €215 - - . , €}, €21)

2k—1
— R w(ean—1, R(ezn—1, €2n)en, . . ., €, €2n)

2k—1
— R™ w(ean—1, e, . .., R(ean—1, €2n)ei, €21)
———

0
— R* 'w(ezn_1, €2, - .., €, R(€on_1, €2n)e2n)
= yR* ' w(ean_1, €an, . .., €, €2n)
— YR¥* 1w(ean_1, an, . .., €i, €23)
+ yR* 'w(ean—1, €an, ..., €, €2n)
— yR* 'w(ean_1, e, . .., €, €2)

2%—1
+ R w(ezn—1,€m, ..., €, Sexu_1)

2k—1
=R "w(em—1, e, - .., €, Sean—1),

177

(3.11)

(3.12)

(3.13)
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since in the above sum, terms 1, 3, ..., 4k — 1 have an opposite sign to terms 2, 4, ..., 4k. In a similar way, we get
2k—1
R w(em—1, €, ..., €, Sezu_1)
2k—2
= —R™ “w(ew_1,€m, ..., €, R(ea_1, €n)S€m_1)

o V| p2k-2
= det R w(€n—1, €215 - - -, €iy €21 ),
|:_y ﬂi| ( 2n—1, €2n i 2n)

where the last equality is a consequence of Lemma 3.7. In particular, for k = 1, we get
o
R2w(ean_1, €2n, €2n—1, €2n, €i, €2n) = det |:_y E] w(e;, exn).

Now, assume that the formula (3.11) is true for some k > 1. Then, for k 4+ 1, we get

2k+2
R w(em—1, €, - .., €n—1, €21, €, €21)

4k+4

o V| p2k
= det |:—)/ ﬂ] R™w(e—1, €, - - ., €2n—1, €2, €, €21)

4k

W
= det v B w(ej, ezp).

Now, by the induction principle, the formula (3.11) holds for any k > 1. Proofs for (3.12) and (3.13) we do in parallel. In a
similar way, like in the proof of (3.11), one may note that for every X, Y and for any [ > 1 we have

141
R™ w(exn—1, €z, ..., €m—1, 20,01, X,01,Y)

21
|
= —Rw(e—1, €, . .., €2n—1, €21, €1, R(€2n_1, €20)X, €1, Y)

202
|
— Rw(ew—1,€m, ..., em_1, €2, €1, X, €1, R(exn—1, €21)Y)

21-2

Let us denote

I
A(X,Y) :=Rw(exn-1,en, ..., -1, €2, €1,X,01,Y)

20-2
for I > 1. Then, the last equality can be rewritten as follows:
A(X, Y) = —Al(R(ezn—1, e20)X, Y) — Ai(X, R(€an—1, €20)Y). (3.14)

When X, Y € {ey,_1, e2,} then directly from the form of S and h as well as the formula (3.14) and the Gauss equation, we
obtain the following four recursive formulas:

Ar1(ean—1, €2n—1) = 2y Al(€2n-1, €2n—1) + BA(€2n, €2n—1) + BAI(€2n-1, €2n), (3.15)
Alr1(ean—1, €2n) = BAI(€2n, €2n) + ctAi(€2n-1, €2n-1), (3.16)
Arr1(ean, ean—1) = atAl(€an—1, €an—1) + BAi(€2n, €2n), (3.17)

Ar1(ean, e2n) = —2yAl(€2n, €xn) + aAl(ean, €2n-1) + Al(€2n-1, €2n)- (3.18)

Since for X, Y € {e;;_1, €2n}, we have
A1(X,Y) = —w(R(e1, X)e1, Y) — w(eq, R(e1, X)Y) = w(SX, Y),
so we also obtain the following:
Ai(ean—1, €n-1) = y@(€an—1, €2n),
Ai(ean—1, €2n) = aw(ezn—1, €2n),
)=

Aq(ean, e2n—1) = —Bw(em_1, €n),

Ai(ean, e2n) = y(ean—1, €n).
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Now, using the above formulas and the recursive formulas (3.15)-(3.18), we can compute
Ax(ean—1, €n—1) = (2y° — B* + af)w(exn_1. €2n),
Ax(ean—1, €2n) = Y(B + a)w(en_1, €n),
Ax(ean, e2n—1) = Y (B + a)w(en_1, €n),
Ax(ean, exn) = (—2y% + o® — af)w(em—1, ),

and

As(ezn—1. ean—1) = 4y(y* + aB)w(ean1. e2n), (3.19)
As(ean—1, €2n) = 2(a — )y + af)w(ean—1. €zn). (3:20)
As(ean, ean-1) = 2(a — )y + af)w(ean—1. ezn), (321)
As(ean, ean) = 4y (y* + aB)w(ean-1, ean). (322)

Moreover, (3.16) and (3.17) imply that Aj(ezn, €2n_1) = Ai(€2n_1, €2n) for I > 2. Thus, for [ > 2, we have
Ar1(ean—1, €2n—1) = 2yA(€an-1, €2n—1) + 2BAl(€2n-1, €2n), (3.23)
Arr1(ean—1, €2n) = atA(€2n-1, €2n-1) + BAi(€2n, €2n), (3.24)
Ar1(ean, ean—1) = atA(€an—1, €an—1) + BAi(€2n, €n), (3.25)
Ar1(ean, ean) = —2yAi(ean, €2n) + 20tAi(€2n-1, €2n). (3.26)

The formulas (3.19)-(3.22) imply that (3.12) as well as (3.13) hold for k = 1. Assume now that (3.12) and (3.13) hold for
some k > 1. By the formulas (3.23)-(3.26), we obtain

Aziy3(€2n—1, €2n-1) = 2y Asky2(€2n—1, €2n—1) + 2BA2k12(€20-1, €2n)
= 2y(2yAxr1(ean—1, €an—1) + 2BAzk+1(€2n-1, €2n))
+ 2B(ctAzkr1(€2n-1, €2n—1) + BAaks1(€2n, €2n))
= (4y” + 2B + 2*)Asr1(€2n-1, €2n-1)
+ 4By Asir1(ean—1, €n),

since Azkt1(€2n—1, €2n—1) = Aok+1(€2n, €2n) by (3.12) (by assumption it holds for k). Now, using the formulas (3.12) and (3.13),
we obtain

k
Agr3(€2n-1, €2n-1) = (4y> + 20 B + 28>)4"y det |:—aJ/ E] @(ean-t, en)
k
+ 4y B2 - 4 (o — B)det [_ay Z] w(en—1, €zn)

o k+1
= 4“1y det [—y Z] @(€2n-1, €2n)-
In a similar way, we get
Agiy3(€2n-1, €2n) = atAopia(€an—1, €2n—1) + BAzk+2(€2n, €21)
= a(2yAxk—1(€n—1, €2n—1) + 2BAx—_1(€2n—1, €21))
+ B(—2yAzx—1(e2n, €2n) + 2aAk_1(€2n-1, €20))
= (2ay — 2By )Ax—1(en—1, €2n—1) + 4 BAzk_1(€21-1, €20)

k+1
=2 4%a — B)det |:_ozy Zi| w(ean-1, €n)

and

Asi3(€an, €2n) = —2yAskr2(€2n, €2n) + 20Azk12(€20-1, €2n)
= —2y(—2yAss1(ezn, €2n) + 2aAzi11(€2n-1, €2n))
+ 2a(aAzkt1(€2n—1, €2n-1) + BAzkr1(€2n, €20))
= (47 + 208 + 20 YAgks1(€2n—1. €20-1) — 4y Agic1(€20-1, €2n)

k+1
o
= 41y det [_V gi| @(ean—1, €n) = Agit3(€2n—1, €2n—1)-

Because we also have Ay 3(€2n, €2n—1) = Aar+3(€2n—1, €2r) SO, in consequence, we have proven that the formulas (3.12) and
(3.13) hold for k + 1. Now, by the induction principle, these formulas hold for every k > 1. The proof is completed. O
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Lemma 3.9. If S and h are of the form (3.6) then for every k > 1,i # 2n — 2,i < 2n we have

Rfw(ean—2, €ans - - - » €2n—2, €an, € €2n) = ¥ w(e;, ean) (3.27)
2k
and
Rko(X1, ean, - - -, Xk, €2n, €1, €21) = 0, (3.28)
I
2k
where X; € {ean_2, ean_1} for s =1, ..., k and for some s we have X; = e,,_1. If additionally we assume that w(ezn_1, €2n) = 0
then the following formulas hold:
R'o(X1, €an, - .., Xk, €an, €an_2, €21) = 0, (3.29)
—_—
2k
where X; € {ean_2, €1} fors=1,..., kand k > 1.
REw(€2n-1, €2ns €21-2, €2ns - - - » €212, €20y €202, €2n—1) = (— 1) ok ew(ezn_2, ean) (3.30)
2k—2
for k > 2.
R‘o(X1, €2, . .., Xk, €20, €2n-2, €2n-1) = 0, (3.31)
[ ———
2k
where X € {ean_2, ean_1} fors=1,...,k k > 2 and for some s # 1 we have X; = e;_1.

Proof. (3.6) and the Gauss equation imply

R(ezn—2, €2n)ean—2 = Sean_p = aeyn_y + €1,
R(ean—2, €an)ean = —Sean = —aeyy.

Fori < 2n—2ori=2n— 1we have
R(ean—2, ean)e; = 0.
Moreover
R(ean—1, €n)ean = 0, R(ean—1, €an)ean—1 = —Sean = —aexy,
and
R(ean—1, €2n)ean—2 = Sean—1 = a1 + ezp.
By straightforward computations, we get

Row(e2n-2, €2n, €, €2n) = —w(R(€21_2, €2n)€;, €2n)
— w(ej, R(ezn—2, €an)ean) = aw(e;, exy)
and
Row(e2-1, €2n, €, €2n) = —w(R(€21-1, €2n)e;, €2n)
— (e, R(ezn—1, €2n)e2,) = 0.

Thus the formulas (3.27) and (3.28) hold for k = 1. Assume now that these formulas hold for some k > 1. Then,

Rk“w(Eanz, €m, - - - €2, €2, €;, €2p)
2k+2
= — R w(ean—1, €on, €2n—2, €2, - - ., €1, €2n)
0
- Rkw(eznfz, €, €2n—1, €25 - - - » €, €2)
0
+ aR*w(ean—2, €2n, €2n—2, €2, - - - , €, €20)

k+1
=o't w(e;, ),
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where the last equality is an immediate consequence of (3.27) and (3.28). We also have

R (X, €20, X1, €2, -, Xk, €20, €1, €21)
2k+2
= —R*w(R(Xo, €20)X1, €an, - - -, Xk, €20, €0, €2)
— R (X1, R(Xo, €2n)e2ns - - -, Xk €21, €5, €2n)
— Rfw(X4, eans - . ., R(Xo, €20)Xk, €21, €5, €2n)
— R*w(X1, en, - . ., Xis RXo, €2n)€2n. €1, €2n)
— R*w(X1, en, - . ., Xk, €2n, RXo, €2n)ei, €2n)
— R*o(X1, ean, - . ., X, €20, €, R(Xo, €2n)e2n).

Note, that summand containing R(Xo, ez, )e; is equal to zero. Indeed, if Xo = e,,_, then R(Xp, exs)e; = 0, if Xo = e;;,_1 then
R(Xo, ean)e; = 0 fori < 2n — 2. This is because e; is orthogonal to Xy and e,,,. If i = 2n — 1 then R(Xo, e3,)e; = —aeo, and
zeroing comes from antisymmetry of Rw relative to the last two variables. In order to show that also all other summands of
the above sum are equal to zero we need to consider the following two cases:

(1)

Xo = esn_1. In this case, all summands containing R(Xy, e, )e,, are equal to zero since R(Xg, e2,)e2, = 0. Summands
with R(Xp, €25 )ean—1 are also equal to zero because R(Xg, €25 )ean—1 = —aes, and R¥w is antisymmetric relative to s and
s+ 1variable fors = 1, 3, ..., 2k + 1. Whereas, if for some s we have X; = e;,_1 then R(Xp, €2,,)Xs = aes,_1 + €5, and
in particular we have

X
R<w(- ces R(X07 EZH)XSs €, .-, 6y eZn)
k
=aRo(...,ex_1,6m,...,6,€3)=0

by (3.28).
Xo = eyn_». In this case, summands with R(Xp, e2;)e2n—1 are equal to zero since R(Xp, e2)e2n—1 = 0. For summands
containing R(Xo, €, )e2,, We have

Ro(...,R(Xo, €n)em, ...) = —aR (..., esn,...) =0,

since R(Xp, e2)e2n = —aey, and the last equality can be deduced from the fact that there exists s > 0 such that
Xs = e;;,—1 and from the formula (3.28). Since R(Xp, €21)e2n—2 = ®e,_2 + e2p—1 thus, in case of summands containing
R(Xo, €2n)ean—2, we have

Ra(..., R(Xo, €an)e2n—2. €20, - - .)
= O{Rka)(. .., €n—2, €29, .. )
+ Rka)( .y @2n—1, €20, . . ) =0.

This is because both summands on the right hand side contain at some position e;,;,_1 so we can use (3.28).

In this way, we have shown that

et 1
R w(Xo, €an, X1, €205 - . ., Xk, €2n, €1, €2n) = 0.

2k+2

Now, by the induction principle, the formulas (3.27) and (3.28) hold for every k > 1.
In order to prove (3.29) note that

and

Row(ezn—2, €an, €2n—2, €2n)
= —w(R(e21-2, €2n)€2n—2, €2n) — w(€2n—2, R(€2n_2, €2n)€2n)

= —w(en_1,e:m) =0

Rax(ezn—1, €n, €2n—2, €2n)
= —w(R(e21-1, €2n)€2n—2, €21) — w(€2n—2, R(€2n_1, €2n)€21)
= —aw(eypn—_1, ;) =0.

That is, the formula (3.29) holds for k = 1. Now, assume that it holds for some k > 1. Then,

k1
R (X0, €an, - - - » Xks €2n €202, €21)
y
= —R*w(R(Xo, €2n)X1, €2, - - - » Xk, €2n, €2n—2, €2n)
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i

— R*w(X1, R(Xo, e2n)ean, - . ., X, €an, €2n-2, €2n)
I

— R*o(X1, ean, - . ., Xk €20, R(Xo, €2n)€2n—2, €2n)
y

— R*o(X1, ean, - . ., Xk, €20, €2n—2, R(X0, €2n)e2n).

Ion = €32 then
R(Xo, €2n)e2n = —aeyy
and

R(Xo, €20)Xs =0 for X; = exn_1,
R(Xo, €20)Xs = atezp 2 + €1 forXs = ey .

Then, we have

k1
R w(Xo, €, - . ., Xk, €21, €2n-2, €21)
k
= —R'w(X1, ez, ..., Xk, €2n, R(Xo, €2n)€2n—2, €21)
k
= —R'w(X1, ez, ..., Xk, €2n, €201, €2n),

since all remaining summands can be expressed as a linear combination of summands of the form (3.29) and by assumption
they all are equal to zero. Note also that the last summand in the above equality is equal to zero either by virtue of (3.27)
(and assumption w(ezn—1, €2,) = 0) or by virtue of (3.28).

[fX() = €3—1 then

R(Xo, €2n)e2n =0
and

R(Xo, €20)Xs = —acenn dlaXs = ex_1,
R(Xo, €2n)Xs = at€an—1 + €an dlaX; = exn_.

Now, in the similar way like for Xy = e5,_3, we obtain

1
R (X, ean, - - - » Xk, €2ns €202 €2n)
k
= —R'o(X1, e, ..., Xk, €2n, R(Xo, €2n)ean—2, €2n)
k
= —aR w(X1, e, ..., Xk, €2n, €201, €21) =0

by virtue of (3.27) or (3.28). In this way, we have shown that the formula (3.29) holds for k+ 1 thus by the induction principle
this formula holds for every k > 1.
In order to prove (3.30) and (3.31) note first that we have
R2w(ean—1, €an, €2n-2, €2, €202, €2n—1)
= —a’w(exm_2, €n) — & w(€an_1, €xn),
————
0
R2w(ean—2, €an, €2n—1, €21, €2n—2, €2n—1)
= aRw(ew—1, €2, €2n—2, €2n—1)
— aRw(ezn—1, €2, €2n-2, €27-1) = 0,
R2w(ean—1, €an, €2n—1, €21, €2n-2, €2n—1)
= —a’w(ezn_1, e2n) = 0.

Thus, the formulas (3.30)-(3.31) hold for k = 2. Assume now that they hold for some k > 2. Then,

k+1
R*" w(ean—1, €, €2n—2, €2n, - - -, €202, €21, €202, €27_1)

2%
k
= —aR w(exn—1, €, €m—2, €, - . ., €2n—2, €2n—1)

k
— aR w(ezn—2, e, €20—1, €2n» - - - » €202, €27—1)

k
— aR*w(exn—2, €n, - . ., €2n—1, €20, €2n—2, €2n—1)

I
+ R'w(ean—2, €n, - .., €2n-1, €21)
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+ aR*w(ezn—2, €, - - -, €22, €2n)

= (=1 w(ean—2, €2n),
since all summands but the first one are equal to zero by the virtue of (3.31), (3.27) (case i = 2n — 1) and (3.29). Thus, the
formula (3.30) holds for k + 1. In a similar way, we compute

R w(Xo, €ans - - - Xies €20, €202, €20-1)
—_—
2k+2
= —R*0(R(Xo, €20)X1, €2, - - - » Xk, €20, €202, €201)

k
— R*w(X1, R(Xo, €2n)ean, - . . Xk, €2n, €2n—2, €2n-1)

k
— R'o(X1, ean, . . ., Xk, €2n, R(Xo, €21)€2n-2, €2n-1)
— Rk(X1, ean, - - -, Xk, €an, €22, R(X0, €2n)ean_1)-

By assumption, there exists s > 1 such that X; = ez,_1.
Let Xo = e,,_,. We have the following possibilities:

(1) X1 # ean-1.
(2) X1 = ey,_1 and for some s > 1, we have X; = ep,_1.
(3) Xi=eypy1and Xy = -+ =Xy = ez 2.

In the case (1) or (2), the above sum (similarly like in the proof of (3.29)) is a linear combination of summands of the form
(3.31) so, by assumption, is equal to zero. In the case (3), we obtain
R w(Xo, €ans - -+ Xy €20, €20-2, €20-1)
2k+2
= kaR*w(ean_1, €an, - . ., €an—2, €20, €212, €2n—1)
— (k — DaR*w(ean—1, €an, - - ., €2n—2, €20, €2n—2, €21—1)

k
— R*w(€21-1, €21, €2n—1, €2n, - - . , €2n-2, €2n, €2n—2, €2n—1)

k
— R*w(e21-1, €2n, €2n—2, €2n, - - ., €2n—1, €20, €202, €2n—1)
k
— aR w(ezn—1, €, . - ., Xk, €21, €202, €2n—1)

k
= —R w(en—1, €, €n—1, €2n5 - - ., €2n—2, €21, €20—2, €20—1)

— R¥w(€an—1, €ans €2n-25 €2n, - - - » €201, €20 €202, €2n—1) = O,
where the last equality is a consequence of the formula (3.31) for k. In this way, we have shown that if Xq = e,,_, then
R w(Xo, ean, - - -, Xk, €2n, €202, €20-1) = 0.
—_—
2k+2

In case of Xy = e,,_1 we have

1
R w(Xo, ean, - . ., Xk, €2n, €2n-2, €2n-1)
—_— ———

2%k+2
k
= —R*w(R(Xo, €21)X1, €21, X2, €21, - . ., Xk, €20, €202, €2n-1)
k
— R*o(X1, e2n, R(Xo, €20)X2, €2n, - . ., Xk, €20, €202, €2n—-1)

— R*o(X1, €2n, X2, €2n, - - ., RXo, €20)Xk, €2n, €2n—2, €2n_1)

+ R¥ox(X1, €, X2, €2n, - - - Xicy €20, €201, €21)

+ aR*o(X1, ean, X2, €2n, - - - » Xcs €20, €202, €20n),
since R(Xo, €2n)e2n = 0 and R(Xo, e2n)ean—1 = —aez,. Now, in a similar way like in the previous case, we have the following
possibilities:

(1) Forsomes > 1, we have X; = eyp_1.
(2) Xy =eypy_1and Xy = -+ = X = exn2.
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In case of (1) by assumption, we have that all summands of the above sum (except the last two) are equal to zero. In case
of (2), we obtain

R w(Xo, €an, - - - Xis €20, €2n-2, €2n-1)
2k+2
— R¥w(ezn_1, €an, R(Xo, €2n)€2n-2, €2ns - - - , €202, €21, €202, €2—1)
— Rw(ean—1, €2n, €2n-2. €20, . . ., RXo, €20)€20-2, €21, €202, €20-1)
+ R'o(X1, e, X2, €an, - ., Xk, €20, €2n_1, €21)
+ aR'o(X1, exn, X2, €an, - - - X, €20y €202, €21)
= —aRka)(eZH_l, €, €2n-1, €215 + - - » €202, €20, €202, €2n_1)
— aR (€201, €2n, €2n-2, €20, - - -, €201, €20, €202, €20—1)
— R*w(ean_1, €an, €n_2, €xn, . .., RXo, €2n)€2n_2, €20, €202, €2n_1)
+ R'o(X1, e, X2, €n, - - ., Xk, €2, €201, €2n).

Also, in this case, all summands of the above sum (except the last two) are equal to zero.

Now it is enough to note that zeroing of the last two summands is an immediate consequence of (3.27), (3.28) and (3.29).
Summarising we have shown that the formula (3.31) holds for k + 1. Now, by the induction principle, the formulas (3.30)
and (3.31) hold for every k > 2. The proof of the lemma is completed. O

Lemma 3.10. If S and h are of the form (3.6) and « = O then for every k € N, k > 1 the following equalities hold:

Rfw(ean—1, €an—2, - -, €2n—1, €2n_2, €i, €an_1) = Klw(e;, exn_1) (3.32)

2k
fori=1,...,2n—2and

I
R*w(ean—1,€m-2, .., €01, €2n-2, €2n-1, €21, €2n—2, €2n—1) (3.33)
2%-2
= (k — 1)!w(ean—1, €2n).

Proof. The form of S and h and the Gauss equation imply that
R(ean—1, €2n—2)e2n—1 = —Sean—2 = —€z—1

and
R(ezn—1, €2n—2)ei = 0

fori=1,...,2n — 2. Additionally, note that

Row(e2n—1, €2n—2, €, €an—1) = —w(R(€21-1, €2n—2)€;, €2n—1)
— w(ej, R(ezn—1, €2n—2)e2n—1)
= w(e;, ean—1),

that is the formula (3.32) holds for k = 1. Assume now that the formula (3.32) holds for some k > 1. Then, we have

k+1
R w(exn—1, €2n—2, - .., €2n—1, €2n—2, €i, €2n—1)

2k+2
= (k+ DR*o(€zn-1, €2n-2, - - - » €201, €212, €is €20—1)
= (k + 1D!w(e;, e2n—1).

Now, by the induction principle, the formula (3.32) holds for every k > 1. In order to prove (3.33) note first that
R(€2n—1, €an)ean—2 = Sean_1 = ez
and

R(ezn—1, €an)ean—1 = —Sezn = 0.
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Thus,

Row(ezn—1, €2n, €2n—2, €2n-1)
= —w(R(e21-1, €2n)€2n—2, €2n—1) — @(€2n—2, R(€2n_1, €2n)€2n—1)

= w(en, en—1),
that is the formula (3.33) holds for k = 1. Assume now that it holds for some k > 1. Then,

k+1
R w(emn—1, €2n-2, - - -, €2n—1, €2n—2, €2n—1, €21, €2n—2, €2n—1)

2k

k
=k -R'w(em—1, €m—2, ..., €1, €2n—2, €2n—1, €21, €202, €2n—1)

2k—2
= k(k — 1)lw(ean—1, e2n) = klw(ezn—1, €21).

Now, by the induction principle, the formula (3.33) holds for ever k > 1. The proof is concluded. O

From Lemmas 3.6, 3.9 and 3.10, we obtain the following lemma:

Lemma 3.11. Let f : M — R?>"*! be an affine hypersurface with a Lorentzian second fundamental form h and with an almost
symplectic form w. If R*w = 0 for some k > 1 then for every point x € M there exists a basis e+, . . ., ey, of TyM such that the
shape operator S and the second fundamental form h can be expressed in this basis either in the form (3.4) or in the form (3.5).

Proof. Without loss of generality, we may assume that k > 2. By Lemma 3.6, S and h can be expressed in the form (3.4), (3.5)
or (3.6). We will show that the case (3.6) is impossible. Since w is non-degenerate, there existsi < 2n such that w(e;, ez,) # 0.
Fori=1,...,2n—3and fori = 2n — 1, since R‘w = 0, we have that «*w(e;, e;) = 0 by virtue of Lemma 3.9. Now, it
follows that @ = 0. If w(e;, e3,) # 0 only for i = 2n — 2, then in particular we have that w(e;;_1, e2,) = 0. Now, using again
Lemma 3.9 (formula (3.30)), we obtain

(=1 "ok w(ezn—2, €2n) = 0.

So again we get « = 0. The above implies that we can use Lemma 3.10. The formulas (3.32) and (3.33) immediately imply
that w(e;, e2,_1) = 0 fori = 1, ..., 2n, what contradicts the assumption that w is non-degenerate. Summarising the case
(3.6) is impossible. O

Proof of Theorem 3.5. Letx € M and let {eq, ..., e,} be the basis from Lemma 3.11. If S and h are of the form (3.4), then in
the same way as in the proof of Theorem 1.2 (see [4] for details), we obtain that S is equal to zero thus rank S, = 0. Assume
now that S and h have the form (3.5). If R¥w = 0 then R*w = 0 and R%**'w = 0. Denote

— a vy
W = det [—y ﬁ] .
Since w is non-degenerate, we can find i < 2n such that w(e;, e5,) # 0.1fi < 2n — 1 then by virtue of Lemma 3.8 (formula
(3.11)) W = 0.Finally, if w(ean—1, €2n) # 0thenagain using Lemma 3.8 (formula (3.12)), we obtain W = 0. By assumption, we
have dim M > 6. Without loss of generality (rearranging vectors of the basis if needed) we may assume that the eigenvalues
A, ..., Apof Sarenonzeroand Aptq = - -+ = Agp—p = 0.
By virtue of Lemma 3.2 in a similar way like in the proof of Theorem 1.2 (see [4] for details), we show that A3 = 14 = 0.
Now, by Lemma 3.3 (appliedto X = e1,Z; = e3,Z; = e4,Y = ¢;ifi 2 4and appliedto X = e1,Z; = e4,Z; = e3,Y = ¢; if
i # 3), we obtain A; = 0. Thus, we have ,; = - - - = Ay, = 0. Summarising

B

As a consequence of Theorem 3.5, we have the following:

rank Sy = rank [_ay y] <1 O

Theorem 3.12. Let f : M — R*"*! (dimM > 6) be a non-degenerate affine hypersurface with a locally equiaffine transversal
vector field & and an almost symplectic form w. If V¥w = 0 for some k > 1 and the second fundamental form is Lorentzian on M
(that is has signature (2n — 1, 1)) then the shape operator S has the rank < 1.

Proof. If VK& = 0 for some k then, of course, we have that also VZ*& = 0 and now by Lemma 3.1, we get R‘w = 0. Now,
thesis is an immediate consequence of Theorem 3.5. O
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