
Journal of Geometry and Physics 59 (2009) 369–373

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

A higher twist in string theory
Hisham Sati ∗
Department of Mathematics, Yale University, New Haven, CT 06520, USA

a r t i c l e i n f o

Article history:
Received 6 June 2007
Received in revised form 10 November
2008
Accepted 20 November 2008
Available online 25 November 2008

Keywords:
Twisted cohomology
K-theory
Heterotic string theory

a b s t r a c t

Considering the gauge field and its dual in heterotic string theory as a unified field, we
show that the equations of motion at the rational level contain a twisted differential with a
novel degree seven twist. This generalizes the usual degree three twist that lifts to twisted
K-theory and raises the natural question of whether at the integral level the abelianized
gauge fields belong to a generalized cohomology theory. Some remarks on possible such
extension are given.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The classification of the Ramond–Ramond fields in type II string theory has been an important piece of progress in
recent years. In the absence of background fields, those are classified by K-theory of spacetime [1,2]. In the presence of
the Neveu–Schwarz fields, the RR fields are then described by twisted K-theory. The twisting in type II string theory comes
from the NSNS sector. Of particular interest is the twist coming from the rank three field H3 which shows up in IIA and IIB
string theory. One can pass from (twisted) K-theory to (twisted) cohomology through the (twisted) Chern character, which
is considered as a map from the former to the latter. In general, what is detected by (twisted) K-theory that is different from
that of (twisted) cohomology is the torsion information. At the rational level, the two descriptions coincide, and cohomology
is isomorphic to K-theory. Then, on the cohomology side, at the rational level, the fields of classical supergravity satisfy the
equations that specify de Rham cohomology, namely dF = 0 with the nilpotency condition d2 = 0. Similar description for
type I string theory can be given in terms of twisted KO theory (see [3]). What about heterotic string theory?
In the supergravity multiplet of heterotic string theory there is only one potential B2, whose field strength is H3. The

natural question is whether there is a generalized cohomology description of this in analogy to what happens in type I
and type II string theories. Freed [4] classified H3 and its dual H7, with potentials B2 and B6, via KOSp-theory. The charges
associated with B2 lie in KO0(X), but due to the presence of a magnetic current with a self-duality condition, the field B2
itself does not belong to KO1(X) but to the cohomology theory KOSp• = KO• × KSp•.
We know that in heterotic theories there is a coupling between the H-field and the Chern–Simons form of the gauge

theory via the Manton–Chapline coupling [5,6]. This suggests that the gauge fields, being related to H that way, might have
an interpretation of their own in terms of generalized cohomology. It is the purpose of this note to uncover such a structure.
Wework at the rational level and then propose the generalized cohomology lift.We are thus looking at a cohomology theory
related to the gauge fields, and while Reference [4] looks at Maxwell’s system for H3 and H7, we consider the system for F2
and ∗F2.
Note that a curvature being a K-theory element already appears in type IIA string theory where F2 = dA (in the constant

dilaton case, see [7]) which is the curvature of the spacetime bundle – the M-theory circle bundle – and is interpreted as the
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RR two-form, and fits into the K-theoretic description of the total RR field. We hope that, with this in mind, the transition
to considering the gauge fields in heterotic string theory as elements in generalized cohomology should perhaps not sound
too conceptually strange.
We assume an abelian reduction of the Yang–Mills group. We define a total gauge field which satisfies a twisted Bianchi

identity, except that now the twist is given by the degree seven field H7. We consider the corresponding complex and the
generator leading to a uniform degree differential. The appearance of a higher degree generator, which we identify, makes
contact with the discussion on higher generalized cohomology in string theory [8–11] and in M-theory [12–14].
The note is organized as follows. After reviewing the standard three-form twist, given by the NS H-field, on the

Ramond–Ramond fields, we present a degree seven twist in heterotic string theory.What is being twisted is not the RR fields,
but rather the abelianized gauge fields. We show that the twist makes up a differential, i.e. the expression squares to zero.
As usual, it is tempting to lift the rational equation to include torsion. We do not have a final answer on which generalized
cohomology theory is the right one, but we discuss some possibilities which fit into the discussion of the RR fields for type II
string theory [8–11] and for type I [4]. We should point out a caveat. This is that we do not have a clear handle on heterotic
string theory like we do on type II string theory. In the latter case, a number of points support the proposal of a relationship
between K-theory and string theory. Among the most obvious are the observation about RR charges and K-theory [15] and
the relationship between the geometry of K-theory and the geometry of Chan–Paton bundles over D-branes. However, the
situation in heterotic string theory is far from being analogous. The arguments provided here are based on duality. The final
answer could be arrived at through a derivation from the structure of the theory, or through an example which includes
subtle torsion fields. Both are outside the scope of this note.

2. Review of the three-form twist in type II

Here we recall the known case. In string theory, motivated by K-theory, one can combine the Ramond–Ramond of
different ranks, into one RR object as

F =
n∑
i

Fi, (2.1)

where i = 2p for IIA (i = 2p+ 1 for IIB) and n = 10 for IIA (and n = 9 for IIB). Here we have a twist by the B-field

dH3 = e
B2de−B2 = (d− dB2∧) = (d− H3∧). (2.2)

This differential satisfies

d2H3 = d
2
+ H3 ∧ d− H3 ∧ d− dH3 ∧−H3 ∧ H3∧, (2.3)

which gives zero because of (2.2), and the fact that the wedge product of two copies of an abelian odd-degree form is zero.
Thus it defines a twisted form of de Rham theoryΩk(X) but with the differential dH3 . This can be lifted to twisted K-theory.
Although the above presentation involved a cohomologically trivial H-field, the result is of course the same for the case
[H3] 6= 0. The equation of motion of the RR fields in twisted cohomology is

dFn − H3 ∧ Fn−2 = 0. (2.4)

3. The seven-form twist in the heterotic theory

Let us start with a general action of the form

S =
∫
H3 ∧ ∗H3 +

∫
F2 ∧ ∗F2 (3.1)

with a Chapline–Manton coupling H3 = CS3(A), where CS3(A) is the Chern–Simons three-form for the gauge field A, whose
curvature is F2 = dAA (dA is the gauge covariant derivative). This is part of the coupling of type I supergravity to Yang–Mills
theory, say in heterotic string theory.Wewould like to consider the casewhere the Yang–Mills group, E8×E8 or Spin(32)/Z2,
is broken down to an abelian subgroup, We assume manifoldsM10 such that this breaking via Wilson lines is possible. We
could consider the Cartan torus for example.
Let us vary the action with respect to A in order to get the gauge field equation of motion. We have (assuming the

abelian case)

δS
δA
= ∗H3 ∧ F2 − d ∗ F2 (3.2)

which implies the equation for the gauge field,
(d ∗ − ∗ H3∧)F2 = 0. (3.3)

We manipulate the above equation to put it in a more suggestive form. Namely, in order to write the operator as (d − O),
we define the combined curvature

F = F2 + ∗F2 (3.4)
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of the gauge field strength and its dual. The gauge field equation then will be written as
(d− ∗H3∧)F = 0. (3.5)

This suggests that the combined object F is the analog of the situation in the case of the Ramond–Ramond fields in type
II string theories. We can apply the ten-dimensional Hodge ‘‘∗’’ operator to H3 to give H7, and then the equation would be
written in an even nicer form

(d− H7∧)F = 0. (3.6)
We can check whether the new operator is actually a differential in a complex — a priori some higher-twisted de Rham
complex. Then we can check whether this can be argued to come from higher-twisted K-theory or other higher-twisted
generalized cohomology theory.
Let us first check whether there is a complex. Let us compute the square of the shifted differential

(d− H7)2 = d2 + H7 ∧ d− H7 ∧ d− dH7 ∧+H7 ∧ H7∧, (3.7)
which is zero for reasons analogous to those in the case of the three-form twist, namely because H7 is a closed odd form. In
the original Green–Schwarz formulation [16] of the heterotic anomalies, one takes dH7 = 0. Therefore, in this situation we
can define the twisted differential

dH7 = d− H7 (3.8)

which squares to zero, d2H7 = 0.

4. Possible lift to generalized cohomology

What we seek is a generalized cohomology theory Z such that
1. It is possible to twist Z-theory by H7.
2. The ‘‘Chern character’’ for H7-twisted Z-theory takes values in H7-twisted de Rham cohomology.
3. The class F is the image under this twisted Chern character of a more fundamental class G in H7-twisted Z-theory.
4. The differential d7 in the Atiyah–Hirzebruch spectral sequence for Z-theory is a topological obstruction in heterotic string
theory.

Looking for a cohomology theory Z with a particular twist is a little like looking for a ring R whose group of invertible
elements R× contains a particular subgroup. For example, the field C has units C×. The group-ring Z[C×] also has C× as
its group of units. Thus, starting with the group of units we cannot expect to pin down the desired theory without any
further constraints. Unfortunately, however, little is available about the relationship between the geometry of heterotic
string theory and the geometry of the desired generalized cohomology theory, the reason being partly due to the lack of
knowledge about the geometry associated to generalized cohomology theories (beyond K-theory, that is) in general. We
will nevertheless proceed with some plausibility arguments and consider candidates for such a theory.
Recall the case of twist in K-theory [17,18]: A twisting of complex K-theory over M is a principal BU⊗-bundle over M .

This can then be factorized into BU⊗ ≡ K(Z, 2)× BSU⊗. Then the twisting is a pair τ = (δ, χ) consisting of a determinantal
twisting δ, which is a K(Z, 2)-bundle over M and a higher twisting χ , which is a BSU⊗-torsor. Twistings are classified,
up to isomorphism, by a pair of classes [δ] ∈ H3(M,Z) and [χ ] in the generalized cohomology group H1(X, BSU⊗). The
former is what is usually referred to as twisted K-theory [19,21], where the twist is given by the Dixmier–Douady class.
The latter is of interest to us. The twistings of the rational K-theory of X are classified, up to isomorphism, by the group [17]∏
n>1 H

2n+1(M;Q). This shows that, in addition to the usualH3(M)-twisting, one can in principle have twistings fromH5(M)
and H7(M) and so on.
Is this what we are after? If this is the correct interpretation then we should be able to form a twisted complex using H7

in the context of K-theory. One immediate problem is that the Bott generator in K-theory does not have the right dimension
to be used in forming a complex. Another problem is that including any twist beyond dimension three of integral K-theory
would force us to include all higher twists as well.1 Thus wewill look beyond K-theory. However, the above argument is not
totally lost as one might be able to find a twisted generalized cohomology theory whose twists include those of K-theory.2
At least in the case of the determinantal twist, it was shown in [22] that twists of K-theory are included as ‘‘elliptic line
bundles’’ in the theory of topological modular forms, a fact that was used in [9]. There is a map K(Z, 3) → TMF coming
from the String orientation. A twist of K-theory of the form X → K(Z, 3) gives rise to an element of TMF(X) by composition
X → K(Z, 3)→ TMF . The map X → K(Z, 3) corresponds to a BS1 bundle over X which can be described geometrically as
a one-dimensional 2-vector bundle, hence a higher notion of a line bundle.
Here we present two possibilities. We start with the first one. We use the combination

F = u−11 F2 + u
−1
2 F8, (4.1)

where u1 has degree two and u2 has degree eight. The above expression has a uniform degree zero and seems plausible as
a unified expression. This is the case for the RR field in the heterotic theory [4]. A ‘hybrid’ theory like KOSpmight be what is

1 We thank Constantin Teleman for explaining this point.
2 We thank Matthew Ando for earlier explanation on this point.
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needed here, in which case one could have that u2 = u31. However, here we run into the same problem we had in the case
of K-theory: twists in low degrees will get in the way of twists in degree seven.
We consider the second possibility. Let R = R[[v2, v−12 ]] be a graded ring where v2 is the second generator of complex

oriented generalized cohomology theories. It is the higher degree analog of the Bott generator that appears in K-theory, and
in general vn has dimension 2pn − 2, so that at the prime p = 2, v2 has dimension 6. Let dH7 = d− v

−1
2 H7 be the twisted de

Rham differential of degree one. We denote byΩ idH7
(M10;R) the space of dH7-closed differential forms of total degree i on

M10.3 In the heterotic theory we then identify the total curvature as

F = F2 + v−12 F8, (4.2)

and thus as an element of degree two, i = 2, in the above space of forms. The equation dH7F = 0 defining the complex is, as
shown above, just the Bianchi identity and the equation ofmotion of the separate fields. The appearance of the higher degree
generator connects nicely with the discussion in [8–10] on generalized cohomology in type II (and to some extent type I)
string theories. Furthermore, the appearance of the w4 = 0 condition in [8], interpreted in [11] in the context of F-theory,
which is a condition in heterotic string theory is another hint for the relevance of generalized cohomology in heterotic string
theory. This is becausew4 = 0 is a condition known in type I and heterotic theory.
This can be made more precise. Since we expect elliptic cohomology to also appear in heterotic string theory – and

in fact that is where it seems more natural as in type IIA it was anticipated as the discussion in [8] shows – then we
have the condition W7(M10) = 0. This is an orientation condition in Morava K-theory and E-theory as W7 is the class
corresponding to the degree seven differential in the Atiyah–Hirzebruch spectral sequence of these theories. Note also that
the TMF orientation, 12p1 = 0 impliesW7 = 0 [8]. Given the appearance of theH7-twist, we then have themodified condition

W7 + [H7] = 0. (4.3)

There are two consequences. First, the analogous condition W3 + [H3] = 0 amounts to a modification by the H3-twist
of the notion of Spinc structure, which has to do with lifting the structure group of the tangent bundle to the connected
cover. Likewise, we interpret W7 + [H7] = 0 as a modification by the H7-twist of the generalized Spin structure. Second,
we expect the condition (4.3) to correspond to a differential d7 in the AHSS of twisted generalized theories, namely Morava
K-theory and elliptic cohomology, since the bare differential (i.e. the one with no twist) is the first nontrivial differential in
these theories, as was shown in [8]. This differential is at the prime p = 2. Hence the prime p = 2 seems to be playing an
important role in string theory. Therefore, it should not be very surprising that our generator in (4.2) is taken at the prime
2. Higher primes should also play a role, from a different point of view, and are being considered separately.
We stress again that we have not settled the question of lift to generalized cohomology, but we hope that the arguments

above would be helpful hints for achieving that goal. Some geometric aspects of the higher twist will be discussed in [20].

5. Further remarks

1. The higher-twisted Chern character: The construction of the higher-twisted Chern character should be interesting,
possibly by a generalization of [21,18]. At this stage we can give the following heuristic description using the ‘dual’ B6 of the
B-field. Let us define the twisted object

F̃ = e±B6F (5.1)

so that

dF̃ = (d± H7) ∧ F̃ . (5.2)

This defines a twisted cohomology. More importantly, a higher-twisted Chern character chH7 , which, in the cohomologically
trivial case H7 = dB6, would be of the form

ch±H7(x) = e
±B6ch(x). (5.3)

2. Five-form twisting?One can also askwhether one could look for twisting by a five-form field strength. The only five-form
field in string theory occurs is the RR field F5 in type IIB string theory. Consider the equation dH7 − F5 ∧ H3 = 0. If we form
the differential dF5 = d − v

−1F5 of uniform degree 1, i.e. v is a generator of degree 4, then we check d2F5 = −H3 ∧ F3. This
is zero if F3 = 0, and so we have a complex if we restrict to the NS fields. In this case, one also has to deal with S-duality
appropriately (see [9] and [23]) and this may require the use of the combined equation of motion

d(H7 − C0F7) = −F5 ∧ (F3 + C0H3). (5.4)

3. The nonabelian case: Generalizing to the nonabelian case where F2 is nonabelian, i.e. F2 = dAA, we must replace the
exterior derivative d with the covariant exterior derivative dA. We can see that the variation of H3 will now involve the

3 Subspaces ofM10 are also relevant. One such instance is if we consider the Hamiltonian formulation.
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full Chern–Simons term CS(A) = (A ∧ dA + 2
3A ∧ A ∧ A) which would give quadratic A terms. However, as usual, such

terms will combine to give exactly the nonabelian field strength F2 = dAA, and so the equation in this case would then be
(dA ∗ − ∗ H3) ∧ F2 = 0. The above simple manipulation of the Chern–Simons term is a direct consequence of the fact that
both the abelian and the nonabelian Chern–Simons Lagrangian give the same equation of motion, F2 = 0, except that this
is interpreted as an abelian field strength and a nonabelian field strength, respectively. Here what needs to be studied is
(D− H7)2. It would be interesting to see if an elliptic complex can be built for this case, along the lines of [24].
4. Relation toM-theory and other string theories:Wewould like to put the discussion of this note in the larger perspective
of string theory andM-theory.What seems to be emerging is the following structure: In type IIAwehave theRR fields twisted
byH3, in type IIB we have the NS fields twisted by F5, and in the heterotic theory we have the gauge fields twisted byH7. This
motivates us to conjecture the existence of a grand theory inwhich all the notions of RR, NS and gauge fields are unified. After
all, they all come from M-theory, and in particular the M-theory C-field (and its ‘dual’). We point out that similar analysis
for the M-theory fields was done in [12–14] where it was proposed that the M-theory fields themselves should live in some
generalized theory and attempts at characterization was made. The differential d+ G4 can be taken off-shell by taking into
account the (ghost) grading of the fields and multiplying G4 by a suitable± sign. We hope that the ideas in our proposals in
this direction prove useful in the future.
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