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a b s t r a c t

Weconstruct a regularized index of a generalizedDirac operator on a complete Riemannian
manifold endowedwith a proper action of a unimodular Lie group.We show that the index
is preserved by a certain class of non-compact cobordisms and prove a gluing formula for
the regularized index. The results of this paper generalize our previous construction of
index for compact group action and the recent paper of Hochs andMathai who studied the
case of a Hamiltonian action on a symplectic manifold. As an application of the cobordism
invariance of the index we give an affirmative answer to a question of Hochs and Mathai
about the independence of the Hochs–Mathai quantization of the metric, connection and
other choices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Paradan [1] introduces a regularized topological index of a Dirac-type operator on a non-compact manifoldM endowed
with an action of a compact group G. In [2] (see also [3] for a review) we constructed an analytic counterpart of this index
and proved that the two indexes coincide (see also [4]). The regularized index depends on an additional data, namely an
equivariant map fromM to the Lie algebra of G, called the taming map. The regularized index was used in [5] as a method to
prove a conjecture of Vergne [6]. The method of [2] was also used in [7] to construct a regularized Dolbeault cohomology of
a non-compact G-manifold.

Mathai and Zhang [8] defined an index of a Dirac operator on a manifold endowed with a proper cocompact action of a
non-compact group. Hochs and Mathai [9] considered a Hamiltonian action of a non-compact group G on a non-compact
symplectic manifold M . They constructed a regularized index of the spinc-Dirac operator without assuming that the action
is cocompact and showed that this index has the Guillemin–Sternberg ‘‘quantization commutes with reduction’’ property.
The regularization of the index used in [9] is very similar to the one introduced in [2], with themomentmap playing the role
of the taming map. In this sense, the Hochs–Mathai construction can be viewed as a combination of ideas from [8] and [2].

In this note we combine the methods of [2] and [9] to construct an analytical index of a generalized Dirac operator on
a non-compact manifold endowed with a proper action of a non-compact Lie group. In the case of a Hamiltonian group
action on a symplectic manifold our index coincides with the construction of [9]. We show that our index is invariant under
a certain class of non-compact cobordisms. We also prove a gluing formula for this index. From the cobordism invariance of
the index we immediately conclude that the index is independent of the metric, the connection and other data used in its
definition. That gives an affirmative answer to a question posed by Hochs and Mathai, cf. Remark 3.8 and 6.2 of [9].
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1.1. The construction of the index

Suppose M is a complete Riemannian manifold on which a non-compact unimodular Lie group G acts by isometries. Let
E = E+

⊕ E− be a G-equivariant Z2-graded self-adjoint Clifford module over M . We refer to the pair (E, v) as a tamed
Clifford module.

Consider a Dirac operator D±
: Γ (M, E±) → Γ (M, E∓) associated to a Clifford connection on E .

Following [8,9] we consider a smooth cutoff function χ : M → [0,∞), whose support intersects all G-orbits in compact
sets and which satisfies


G χ(g · x)2 dg = 1. Since the group G is unimodular, such a function always exists by [10, Ch. VII,

Section 2.4].
A section s ∈ Γ (M, E) is called transversally compactly supported if the support of s is cocompact. We denote by

Γ∞
tc (M, E) the space of smooth transversally compactly supported sections of E and by Γ∞

tc (M, E)
G the subspace of

G-invariant elements of Γ∞
tc (M, E). Consider the operator

Dχ : χ Γ∞

tc (M, E)
G

→ χ Γ∞

tc (M, E)
G, Dχ (χs) := χ Ds, for s ∈ Γ∞

tc (M, E).
It is shown in [8] that if the quotient space M/G is compact than the operator Dχ is Fredholm and its index is independent
of the choice of the function χ . Thus one can define the regularized index of D by indG D := indDχ for any cutoff function
χ . IfM/G is not compact then Dχ is not necessarily Fredholm and a regularization is needed to define its index.

Let v : M → g = LieG be a G-equivariant map, such that the induced vector field v on M does not vanish outside of a
cocompact subset ofM . We call v a taming map, and we refer to the pair (E, v) as a tamed Clifford module.

Let f : M → [0,∞) be a G-invariant function which increases fast enough at infinity (see Section 2.10 for the precise
condition on f ). We consider the deformed Dirac operator

Dχ,f v := Dχ +
√

−1 c(f v) : χ Γ∞

tc (M, E)
G

→ χ Γ∞

tc (M, E)
G,

where c : TM ≃ T ∗M → End E is the Clifford module structure on E . Our principal result is Theorem 2.15, which states
that the deformed Dirac operator is Fredholm and its index indG Dχ,f v is independent of the choice of the functions χ, f and
of the Clifford connection on E , used in the definition of D. We denote this index by indG(E, v) and call it the (analytic) index
of (E, v).

1.2. The cobordism invariance

In Section 3, we introduce the notion of a cobordism between tamed Clifford modules. Roughly speaking, this is a usual
cobordism, which carries a taming map. Our notion of cobordism is very close to the notion of non-compact cobordism
developed by V. Ginzburg, V. Guillemin and Y. Karshon [11–13]. We prove that the index is preserved by a cobordism.

1.3. The gluing formula

SupposeΣ ⊂ M is a cocompactG-invariant hypersurface, such that the vector field v does not vanish anywhere onΣ .We
endow the openmanifoldM \Σ with a complete Riemannianmetric andwe denote by (EΣ , vΣ ) the induced tamed Clifford
module onM \Σ . In Section 4, we prove that the tamed Clifford modules (EΣ , vΣ ) and (E, v) are cobordant. In particular, they
have the same index. We refer to this result as the gluing formula.

The gluing formula takes especially nice form ifΣ dividesM into 2 disjointmanifoldsM1 andM2. Let (E1, v1) and (E2, v2)
be the restrictions of (EΣ , vΣ ) to M1 and M2, respectively. Then the gluing formula implies

indG(E, v) = indG(E1, v1)+ indG(E2, v2).
In other words, the index is additive.

1.4. SpinC -reduction and a topological formula for the index

After the first version of this paper has been released,Hochs andMathai, [14], proved a version of ‘‘quantization commutes
with reduction’’ for indG(E, v) in the following interesting situation.

Consider a G-equivariant SpinC -structure on M . Let L be the determinant line bundle of this SpinC -structure. We also
assume that the tamingmap v is constructed using the SpinC -connection, as in section 6.2 of [14]. Hochs andMathai showed
that for large enough integer p, the index indG(E ⊗ Lp, v) is equal to the index of the Dirac operator on the SpinC -reduction
M0 ofM , see [15] and section 3 of [14] for the definition of SpinC -reduction.

Since, by our assumptions, the SpinC -reduction M0 is a compact manifold, the Atiyah–Singer index theorem gives a
topological formula for the index Dirac operator onM0. Hence, the Hochs–Mathai ‘‘quantization commutes with reduction’’
result gives, in particular, a nice topological formula for indG(E ⊗ Lp, v), cf. formula (1.2) of [14].

2. Equivariant index for a unimodular group action on non-compact manifolds

In this section we introduce our main objects of study: tamed non-compact manifolds, tamed Clifford modules, and the
(analytic) equivariant index of such modules.

Throughout the paper (M, gM) is a complete Riemannian manifold without boundary.
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2.1. Clifford module and Dirac operator

Let C(M) denote the Clifford bundle of M (cf. [16, Section 3.3]), i.e., a vector bundle, whose fiber at every point x ∈ M is
isomorphic to the Clifford algebra C(T ∗

x M) of the cotangent space.
A (Z2-graded self-adjoint) Clifford module on M is a Z2-graded Hermitian vector bundle E = E+

⊕ E− over M endowed
with a graded action

(a, s) → c(a)s, where a ∈ Γ (M, C(M)), s ∈ Γ (M, E),
of the bundle C(M) such that the operator c(v) : Ex → Ex is skew-adjoint, for all x ∈ M and v ∈ T ∗

x M .
A Clifford connection on E is a Hermitian connection ∇

E , which preserves the subbundles E± and
[∇

E
X , c(a)] = c(∇LC

X a), for any a ∈ Γ (M, C(M)), X ∈ Γ (M, TM),

where ∇
LC
X is the Levi-Civita covariant derivative on C(M) associated with the Riemannian metric onM .

The Dirac operator D : Γ (M, E) → Γ (M, E) associated to a Clifford connection ∇
E is defined by the following

composition:

Γ (M, E)
∇

E

−−−−→ Γ (M, T ∗M ⊗ E)
c

−−−−→ Γ (M, E).
In local coordinates, this operator may be written as D =


c(dxi)∇E

∂ i
. Note that D sends even sections to odd sections and

vice versa: D : Γ (M, E±) → Γ (M, E∓).
Consider the L2-scalar product on the space of sections Γ (M, E) defined by the Riemannian metric on M and the

Hermitian structure on E . By [16, Proposition 3.44], the Dirac operator associated to a Clifford connection ∇
E is formally

self-adjoint with respect to this scalar product. Moreover, it is essentially self-adjoint with the initial domain smooth,
compactly supported sections, cf. [17], [18, Th. 1.17].

If W is a manifold with boundary, then by a Clifford module over it we will understand a smooth vector bundle E over
W , whose restriction to the set of the interior points W int of W has a structure of a Clifford module over W int. (Usually we
require some additional structure of E near the boundary of W , but we will formulate these requirements when we need
them.)

2.2. Group action. The index.

Let G be a unimodular Lie group and suppose that there is a proper action of G on M by isometries. Assume that there is
given a lift of this action to E , which preserves the grading, the connection and the Hermitian metric on E . Then the Dirac
operator D commutes with the action of G. Hence, KerD = KerD+

⊕ KerD− is a G-invariant subspace of Γ (M, E). Let
(KerD±)G ⊂ KerD±

denote the space of G-invariant elements of KerD±.
If M is compact, then the spaces KerD± and, hence, (KerD±)G are finite dimensional. In this situation we define an

equivariant index of D by

indG(D) = dim(KerD+)G − dim(KerD−)G. (2.1)
The index depends only on M and the equivariant Clifford module E = E+

⊕ E− and does not depend on the choice of the
connection ∇

E and the metric hE . We set
indG(E) := indG(D),

and refer to it as the index of E .
Our goal is to define an analogue of (2.1) for a G-equivariant Clifford module over a complete non-compact manifold. If

the group G is compact, then this was done on [2]. If the group G is not compact, but M is a symplectic manifold and the
action of G onM is Hamiltonian, the index was constructed in [9]. We now combine the ideas of [2] and [9] to construct the
index for a general complete G-manifold.

2.3. Cutoff function along the orbits

Let dg denote the Haar measure on G. Following [8,9] we make the following definition.

Definition 2.4. A smooth function χ : M → [0,∞), whose support intersects all G-orbits in compact sets and which
satisfies

G
χ(g · x)2 dg = 1 (2.2)

is called a cutoff function onM .

Note that a cutoff function always exists by [10, Ch. VII, §2.4].
LetM/G denote the space of G-orbits in M and let q : M → M/G denote the quotient map.
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Definition 2.5. A subset V ⊂ M is called cocompact if q(V ) ⊂ M/G is compact.

Definition 2.6. A section s ∈ Γ (M, E) is called transversally compactly supported if the support of s is cocompact.We denote
by Γ∞

tc (M, E) the space of smooth transversally compactly supported sections of E and by Γ∞
tc (M, E)

G the subspace of
G-invariant elements in Γ∞

tc (M, E).

Notice that if s ∈ Γ∞
tc (M, E) then χs is a smooth compactly supported section of E .

Define the operator

Dχ : χ Γ∞

tc (M, E)
G

→ χ Γ∞

tc (M, E)
G

by

Dχ (χs) := χ Ds, s ∈ Γ∞

tc (M, E). (2.3)

It is shown in [8] that if the quotient spaceM/G is compact than the operatorDχ is Fredholm and its index is independent
of the choice of the function χ . Thus one can define the regularized index of D by

indG D := indDχ

for any cutoff function χ . As before, indG(D) depends only onM and the equivariant Clifford module E = E+
⊕ E− and we

set indG(E) := indG(D).

2.7. A tamed non-compact manifold

When M/G is not compact to define the index we need an additional structure on M . This structure is given by an
equivariant map v : M → g, where g denotes the Lie algebra of G and G acts on it by the adjoint representation. Such a
map induces a vector field v onM defined by

v(x) :=
d
dt


t=0

exp(tv(x)) · x. (2.4)

The following definition extends Definition 2.4 of [2].

Definition 2.8. LetM be a complete G-manifold. A taming map is a G-equivariant map v : M → g, such that the vector field
v onM , defined by (2.4), does not vanish anywhere outside of a cocompact subset ofM . If v is a taming map, we refer to the
pair (M, v) as a tamed G-manifold.

If, in addition, E is a G-equivariant Z2-graded self-adjoint Clifford module over M , we refer to the pair (E, v) as a tamed
Clifford module overM .

The index we are going to define depends on the (equivalence class) of v.

Remark 2.9. SupposeM is a symplectic manifold and that the action of G onM is Hamiltonian with moment mapµ : M →

g∗. Following Hochs andMathai [9] we introduce a family of scalar products ⟨·, · ⟩x (x ∈ M) on g∗ which is G-invariant in the
sense that

⟨Ad g(ξ),Ad g(η) ⟩g·x = ⟨ξ, η ⟩x, for all x ∈ M, ξ , η ∈ g∗.

For x ∈ M set H(x) := ⟨µ(x), µ(x) ⟩x and let v(x) ∈ g denote the dual of µ(x) with respect to the scalar product ⟨·, · ⟩x.
Then the vector field (2.4) is equal to one half of the vector field XH

1 introduced in [9, Section 2]. Thus the construction of
the index below generalizes the construction of Hochs and Mathai to manifolds which are not symplectic.

2.10. A rescaling of v

Our definition of the index uses certain rescaling of the vector field v. By this we mean the product f (x)v(x), where
f : M → [0,∞) is a smooth positive function. Roughly speaking, we demand that f (x)v(x) tends to infinity ‘‘fast enough’’
when q(x) ⊂ M/G tends to infinity. The precise conditionswe impose on f are quite technical, cf. Definition 2.12. Luckily, our
index turns out to be independent of the concrete choice of f . It is important, however, to know that at least one admissible
function exists. This is guaranteed by Lemma 2.13 below.

We need to introduce some additional notations.
For a vector u ∈ g, we denote by LE

u the infinitesimal action of u on Γ (M, E) induced by the action on G on E . Let
∇

E
u : Γ (M, E) → Γ (M, E) denote the covariant derivative along the vector field u induced by u. The difference between

those two operators is a bundle map, which we denote by

µE (u) := ∇
E
u − LE

u ∈ End E . (2.5)
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Wewill use the same notation |·| for the norms on the bundles TM, T ∗M, E . Let End (TM) and End (E) denote the bundles
of endomorphisms of TM and E , respectively. We will denote by ∥ · ∥ the norms on these bundles induced by | · |. Let χ be
a cutoff function as in Section 2.3. To simplify the notation, set

ν = |v| + ∥∇
LCv∥ + ∥µE (v)∥ + |v| + 1. (2.6)

Definition 2.11. We say that a function h : M → [0,∞) tends to infinity as q(x) → ∞ and write limq(x)→∞ h(x) = ∞ if
for arbitrary large number R > 0 there exists a compact set K ∈ M/G such that for all x ∉ q−1(K)we have h(x) > R.

Definition 2.12. We say that a smooth G-invariant function f : M → [0,∞) on a tamed G-manifold (M, v) is admissible for
(E, v,∇E ) if

lim
q(x)→∞

f 2|v|2

|df ||v| + f ν + 1
= ∞. (2.7)

Lemma 2.13. Let (E, v) be a tamed Clifford module and let ∇
E be a G-invariant Clifford connection on E . Let χ : M → [0,∞)

be a cutoff function. Then there exists an admissible function f for (E, v,∇E , χ).

Proof. The proof for the case when the group G is compact given in [2, Section 8] does not use the compactness of G and
works in our new situation. �

2.14. Index on non-compact manifolds

We use the Riemannian metric on M , to identify the tangent and the cotangent bundles of M . In particular, we consider
v as a section of T ∗M .

Let f be an admissible function and let Dχ be the operator defined in (2.3). Consider the deformed Dirac operator

Dχ,f v = Dχ +
√

−1 c( f v) : χ Γ∞

tc (M, E)
G

→ χ Γ∞

tc (M, E)
G. (2.8)

This operator is essentially self-adjoint, cf. the remark on page 411 of [17].
Our first result is the following analogue of Theorem 2.9 from [2].

Theorem 2.15. Suppose f is an admissible function. Then
1. The kernel of the deformed Dirac operator Dχ,f v has finite dimension.
2. The index

indG Dχ,f v := dimKerD+

χ,f v − dimKerD−

χ,f v (2.9)

is independent of the choices of the cutoff function χ , the admissible function f , and the G-invariant Clifford connection ∇
E on E .

The proof of the first part of the theorem is given in Section 6. The second part of the theorem is proven in Section 3.7 as
an immediate consequence of Theorem 3.6 about cobordism invariance of the index.

We refer to the pair (D, v) as a tamed Dirac operator. The above theorem allows us to defined the index of a tamed Dirac
operator indG(D, v) := indG(Dχ,f v). Since indG(D, v) is independent of the choice of the connection on E , it is an invariant
of the tamed Clifford module (E, v). We set indG(E, v) := indG(D, v) and refer to it as the (analytic) index of a tamed Clifford
module (E, v).

3. Cobordism invariance of the index

In this section we adopt the notion of cobordism between tamed Cliffordmodules and tamed Dirac operators introduced
in [2] to the case of a non-compact groupG.We show that the index introduced in Section 2.14 is invariant under a cobordism.
We use this result to prove Theorem 2.15.1.

3.1. Cobordism between tamed G-manifolds

Note, first, that for cobordism to be meaningful one must make some compactness assumption. Otherwise, every
manifold is cobordant to the empty set via the noncompact cobordism M × [0, 1). Since our manifolds are non-compact
themselves, we cannot demand cobordism to be compact. Instead, we demand the cobordism to carry a taming map to g.

Definition 3.2. A cobordism between tamed G-manifolds (M1, v1) and (M2, v2) is a triple (W , v, φ), where
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(i) W is a complete Riemannian G-manifold with boundary;
(ii) v : W → g is a smooth G-invariant map, such that the corresponding vector field v does not vanish anywhere outside

of a cocompact subset ofW ;
(iii) φ is a G-equivariant, metric preserving diffeomorphism between a neighborhood U of the boundary ∂W of W and

the disjoint union

M1 × [0, ε)

  
M2 × (−ε, 0]


. We will refer to U as the neck and we will identify it with

M1 × [0, ε)
  

M2 × (−ε, 0]

.

(iv) the restriction of v

φ−1(x, t)) to M1 × [0, ε) (resp. toM2 × (−ε, 0]) is equal to v1(x) (resp. to v2(x)).

3.3. Cobordism between tamed Clifford modules

If M is a Riemannian G-manifold, then, for any interval I ⊂ R, the product M × I carries natural Riemannian metric and
G-action. Let π : M × I → M, t : M × I → I denote the natural projections. We refer to the pull-back π∗E as a vector
bundle induced by E . We view t as a real valued function onM , and we denote by dt its differential.

Definition 3.4. Let (M1, v1) and (M2, v2) be tamed G-manifolds. Suppose that each Mi, i = 1, 2, is endowed with a
G-equivariant self-adjoint Clifford module Ei = E+

i ⊕E−

i . A cobordism between the tamed Clifford modules (Ei, vi), i = 1, 2,
is a cobordism (W , v, φ) between (Mi, vi) together with a pair (EW , ψ), where

(i) EW is a G-equivariant (non-graded) self-adjoint Clifford module overW ;
(ii) ψ is a G-equivariant isometric isomorphism between the restriction of EW to U and the Clifford module induced on the

neck

M1 × [0, ε)

 
M2 × (−ε, 0]


by Ei.

(iii) On the neck U we have c(dt)|ψ−1E±

i
= ±

√
−1 .

Remark 3.5. Let E
op
1 denote the Clifford module E1 with the opposite grading, i.e., E

op±
1 = E∓

1 . Then, indG(E1, v1) =

− indG(E
op
1 , v1).

Consider the Clifford module E over the disjoint union M = M1 ⊔ M2 induced by the Clifford modules E
op
1 and E2. Let

v : M → g be the map such that v|Mi = vi. A cobordism between (E1, v1) and (E2, v2) may be viewed as a cobordism
between (E, v) and (the Clifford module over) the empty set.

One of the main results of this paper is the following theorem, which asserts that the index is preserved by a cobordism.

Theorem 3.6. Suppose (E1, v1) and (E2, v2) are cobordant tamed Clifford modules. Let D1,D2 be Dirac operators associated to
G-invariant Clifford connections on E1 and E2 and let χ1, χ2 be cutoff functions on M1 and M2. Then, for any admissible functions
f1, f2

indG

D1,χ1 +

√
−1 c(f1v1)


= indG


D2,χ2 +

√
−1 c(f2v2)


.

The proof of the theorem is given in Section 7.

3.7. The definition of the analytic index of a tamed Clifford module

Theorem 3.6 implies, in particular, that, if (E, v) is a tamed Clifford module, then the index indG(Dχ,f v) is independent
of the choice of the admissible function f , the cutoff function χ , and the Clifford connection on E . This proves part 2 of
Theorem 2.15 and (cf. Section 2.14) allows us to define the (analytic) index of the tamed Clifford module (E, v)

indG(E, v) := indG(Dχ,f v), f is an admissible function.

Theorem 3.6 can be reformulated now as follows.

Theorem 3.8. The indexes of cobordant tamed Clifford modules coincide.

3.9. Index and zeros of v

As a simple corollary of Theorem 3.6, we obtain the following Lemma.

Lemma 3.10. If the vector field v(x) ≠ 0 for all x ∈ M, then indG(E, v) = 0.

Proof. Consider the product W = M × [0,∞) and define the map ṽ : W → g by the formula: ṽ(x, t) = v(x). Clearly,
(W , ṽ) is a cobordism between the tamed G-manifold M and the empty set. Let EW be the lift of E to W . Define the Clifford
module structure c : T ∗W → End EW by the formula

c(x, a)e = c(x)e ±
√

−1 ae, (x, a) ∈ T ∗W ≃ T ∗M ⊕ R, e ∈ E±

W .

Then (EW , ṽ) is a cobordism between (E, v) and the Clifford module over the empty set. �
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3.11. The excision property

We will now amplify the above lemma and show that the index is independent of the restriction of (E, v) to a subset,
where v ≠ 0.

Let (Mi, vi) i = 1, 2, be tamed n-dimensional G-manifolds. Let U be an open n-dimensional G-manifold. For each i = 1, 2,
let φi : U → Mi be a smooth G-equivariant embedding. Set Ui = φi(U) ⊂ Mi. Assume that the boundaryΣi = ∂Ui of Ui is a
smooth hypersurface inMi. Assume also that the vector field vi induced by vi onMi does not vanish anywhere onMi \ Ui.

Lemma 3.12. Let (E1, v1), (E2, v2) be tamed Clifford modules over M1 and M2, respectively. Suppose that the pull-backs
φ∗

i Ei, i = 1, 2 are G-equivariantly isomorphic as Z2-graded self-adjoint Clifford modules over U. Assume also that v1 ◦ φ1 ≡

v2 ◦ φ2. Then (E1, v1) and (E2, v2) are cobordant. In particular, indG(E1, v1) = indG(E2, v2).

Proof. An explicit cobordism between (E1, v1) and (E2, v2) is constructed in section 12.2 of [2]. �

The following lemma is, in a sense, opposite to Lemma 3.12.

Lemma 3.13. Let v1, v2 : M → g be tamingmaps, which coincide out of a compact subset of M. Then the tamed Cliffordmodules
(E, v1) and (E, v2) are cobordant. In particular, indG(E, v1) = indG(E, v2).

Proof. The proof is a verbatim repetition of the proof of Lemma 3.16 in [2]. �

4. The gluing formula

If we cut a tamed G-manifold along a G-invariant hypersurfaceΣ , we obtain a manifold with boundary. By rescaling the
metric near the boundary we may convert it to a complete manifold without boundary, in fact, to a tamed G-manifold. In
this section, we show that the index is invariant under this type of surgery. In particular, ifΣ dividesM into two piecesM1
and M2, we see that the index on M is equal to the sum of the indexes onM1 and M2. In other words, the index is additive.

4.1. The surgery

Let (M, v) be a tamed G-manifold. Suppose Σ ⊂ M is a smooth G-invariant hypersurface in M . For simplicity, we
assume that Σ is cocompact. Assume also that the vector field v induced by v does not vanish anywhere on Σ . Suppose
that E = E+

⊕ E− is a G-equivariant Z2-graded self-adjoint Clifford module over M . Denote by EΣ the restriction of the
Z2-graded Hermitian vector bundle E to MΣ := M \Σ .

Let gM denote the Riemannian metric on M . In section 4.2 of [2] by a rescaling of gM we constructed a complete
Riemannian metric gMΣ on MΣ and a Clifford action cΣ : T ∗MΣ → End (EΣ ) compatible with this metric. It follows, from
the cobordism invariance of the index (Lemma 3.12), that our index theory is essentially independent of the concrete choice
of gMΣ .

Theorem 4.2. The tamed Clifford modules (E, v) and (EΣ , vΣ ) are cobordant. In particular,

indG(E, v) = indG(EΣ , vΣ ).

We refer to Theorem 4.2 as a gluing formula, meaning thatM is obtained fromMΣ by gluing alongΣ .

Proof. To prove the theorem it is enough to construct a cobordismW betweenM and MΣ .
Consider the productM × [0, 1], and the set

Z :=

(x, t) ∈ M × [0, 1] : t ≤ 1/3, x ∈ Σ


.

Set W := (M × [0, 1]) \ Z . Then W is a G-manifold, whose boundary is diffeomorphic to the disjoint union of M \ Σ ≃

(M \Σ)× {0} andM ≃ M × {1}. To finish the proof we need to construct a complete Riemannian metric gW onW , so that
the condition (iii) of Definition 3.2 is satisfied. For the case when the group G is compact it is done in section 13 of [2]. The
same construction works without any changes for a non-compact G. �

4.3. The additivity of the index

Suppose that Σ divides M into two open submanifolds M1 and M2, so that MΣ = M1 ⊔ M2. The metric gMΣ induces
complete G-invariant Riemannian metrics gM1 , gM2 on M1 and M2, respectively. Let Ei, vi (i = 1, 2) denote the restrictions
of the Clifford module EΣ and the taming map vΣ toMi. Then Theorem 4.2 implies the following Corollary.

Corollary 4.4. indG(E, v) = indG(E1, v1)+ indG(E2, v2).

Thus, we see that the index of non-compact manifolds is ‘‘additive’’.
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5. Functions on a cobordism

In this section we define the notions of an admissible and cutoff functions on a cobordism and prove the existence of
such functions.

5.1. A cobordism

Let (E, v) be a tamed Clifford module over a complete G-manifoldM . Let (W , vW , φ) be a cobordism between (M, v) and
the empty set, cf. Definition 3.2. In particular, W is a complete G-manifold with boundary and φ is a G-equivariant metric
preserving diffeomorphism between a neighborhood U of ∂W ≃ M and the productM × [0, ε).

Let π : M × [0, ε) → M be the projection. A G-invariant Clifford connection ∇
E on E induces a connection ∇

π∗E on the
pull-back π∗E , such that

∇
π∗E
(u,a) := π∗

∇
E
u + a

∂

∂t
, (u, a) ∈ TM × R ≃ T (M × [0, ε)). (5.1)

Let (EW , vW , ψ) be a cobordism between (E, v) and the unique Clifford module over the empty set, cf. Definition 3.4.
In particular, ψ : EW |U → π∗E is a G-equivariant isometry. Let ∇

EW be a G-invariant connection on EW , such that
∇

EW |φ−1(M×[0,ε/2)) = ψ−1
◦ ∇

π∗E
◦ ψ .

5.2. An admissible function on a cobordism

Definition 5.3. A smoothG-invariant function f : W → [0,∞) is an admissible function for (EW , vW ,∇EW , χ), if it satisfies
(2.7) and there exists a function h : M → [0,∞) such that f


φ−1(y, t)


= h(y) for all y ∈ M, t ∈ [0, ε/2).

Lemma 5.4. Suppose h is an admissible function for (EM , v,∇E ). Then there exists an admissible function f on (EW , vW ,∇EW )
such that the restriction f |M = h.

Proof. For the case when G is compact the proof is given in section 8 of [2]. The proof does not use the compactness of G
and extends to non-compact case without any changes. �

5.5. A cutoff function on a cobordism

Definition 5.6. A smooth function χ : W → [0,∞) is called a cutoff function on cobordism if its support intersects all
G-orbits in compact sets, it satisfies (2.2), and there exists a cutoff function η : M → [0,∞) such that χ


φ−1(y, t)


= η(y)

for all y ∈ M, t ∈ [0, ε/2).

Lemma 5.7. Suppose η is a cutoff function on M. Then there exists a cutoff function χ on W, such that χ |M = η.

Proof. Recall that we are given a neighborhood U of ∂W and a diffeomorphism φ : U → M × I . We write φ(x) = (y, t)
where y ∈ M and t ∈ [0, ε).

Let α and β be smooth functions [0,∞) → [0, 1] such that

α(t) =


0, for t <

ε

3
,

1, for t >
2ε
3
,

and

α2
+ β2

≡ 1. (5.2)

Let χ1 be any cutoff function onW and define a new function χ2 onW by

χ2(x) =


χ1(x), for x ∉ U,
α(t)χ1(x)+ β(t)η(y), for x = (y, t) ∈ U ≃ M × I.

Then the support of χ2 intersects the orbits of G in compact sets and

χ2
2 = α2χ2

1 + β2η2 + 2αβχ1η = α2χ2
1 + β2η2 + ψ,

where we set ψ := 2αβχ1η. Hence, from (5.2) and the definition of the cutoff function (2.2) we obtain
G
χ2
2 (g · x) dg = 1 +


G
ψ(g · x) dg.
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It follows that the function

χ(x) :=
χ2(x)

1 +

G ψ(g · x)dg

1/2
is a cutoff function whose restriction to ∂W is equal to η. �

6. Proof of Theorem 2.15.1

6.1. The operator D2
f v

Consider the operator

Df v := D +
√

−1c(f v).

It follows from (2.3) that

Dχ,f v(χs) := χ Df vs, s ∈ Γ∞

tc (M, E),

and, hence,

D2
χ,f v(χs) := χ D2

f vs, s ∈ Γ∞

tc (M, E), (6.1)

6.2. Calculation of D2
χ,f v

Let f be an admissible function and set u = f v. Consider the operator

Au =


c(ei) c(∇LC

ei u) : E → E, (6.2)

where ē = {e1 · · · en} is an orthonormal frame of TM ≃ T ∗M and ∇
LC is the Levi-Civita connection on TM . One easily checks

that Au is independent of the choice of ē (it follows, also, from equation (6.3) below).
Recall that we denote byLu the infinitesimal action of u onΓ (M, E) induced by the action of G on E . Then the restriction

of Lu to Γ∞
tc (M, E)

G is equal to 0. Combining Lemma 9.2 of [2] with (2.5) we obtain

D2
u = D2

+ |u|2 +
√

−1 Au − 2
√

−1µE (u) : Γ∞

tc (M, E)
G

→ Γ∞

tc (M, E)
G. (6.3)

Since both Au and µE (u) commute with multiplication by χ , we conclude from (2.3), (6.1) and (6.3) that

D2
χ,u = D2

χ + |u|2 +
√

−1 Au − 2
√

−1µE (u) : χΓ∞

tc (M, E)
G

→ χΓ∞

tc (M, E)
G. (6.4)

6.3. Proof of Theorem 2.15

It is shown in section 9.3 of [2] that there exists a real valued function r(x) onM such that limq(x)→∞ r(x) = +∞ and

|u|2 +
√

−1 Au − 2
√

−1µE (u) ≥ r(x).

It follows now from (6.4) that

D2
χ,u ≥ D2

χ + r(x). (6.5)

By Proposition 3.9 of [9] the operator Dχ,u is Fredholm. �

7. Proof of Theorem 3.6

The proof is a minor modification of the proof of Theorem 3.7 in [2]. We only sketch it here, stressing the couple of places
where it defers from [2].

By Remark 3.5, it is enough to show that, if (E, v) is cobordant to (the Clifford module over) the empty set, then
indG(Dχ,f v) = 0 for any admissible function f .

Let (W , EW , v) be a cobordism between the empty set and (E, v) (slightly abusing the notation, we denote by the same
letter v the taming maps onW andM).

In Section 5 we showed that there exist a cutoff function and an admissible function on W whose restriction to M are
equal to χ and f respectively. By a slight abuse of notation, we denote these functions by the same letters χ and f .

Let W̃ be the manifold obtained fromW by attaching a cylinder to the boundary, i.e.,

W̃ = W ⊔

M × (0,∞)


.

The action of G, the Riemannian metric, the map v, the functions χ, f and the Clifford bundle EW extend naturally from W
to W̃ .
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Let us consider two anti-commuting actions (left and right action) of R on the exterior algebraΛ•C = Λ0C⊕Λ1C, given
by the formulas

cL(t) ω = t ∧ ω − ιtω; cR(t) ω = t ∧ ω + ιtω. (7.1)
Note, that cL(t)2 = −t2, while cR(t)2 = t2.

Set Ẽ = E ⊗Λ•C and define the grading and the Clifford action c̃ : T ∗W̃ → End Ẽ on Ẽ by the formulas

Ẽ+
:= EW ⊗Λ0C; Ẽ−

:= EW ⊗Λ1C; c̃(v) :=
√

−1 c(v)⊗ cL(1) (v ∈ T ∗W̃ ).

Let D̃ be a Dirac operator on Ẽ and consider the operator

D̃χ,f v := D̃χ +
√

−1 c̃(f v).

Note that vmight vanish somewhere near infinity on the cylindrical end of W̃ . In particular, the index of D̃χ,f v is not defined
in general.

Let p : W̃ → R be amap, whose restriction toM×(1,∞) is the projection on the second factor, and such that p(W ) = 0.
For every a ∈ R, consider the operator

Da := D̃χ,f v − 1 ⊗ cR((p(t)− a)).
By Lemma 10.4 of [2] we have

D2
a = D̃2

χ,f v − B + |p(x)− a|2, (7.2)

where B : Ẽ → Ẽ is a uniformly bounded bundle map.
It follows now from Proposition 3.9 of [9] that the operator Da is Fredholm.

Proposition 7.1. indG(Da) = 0 for all a ∈ R.
Proof. Since

Da − Db = cR(b − a) : χΓ∞

tc (W̃ , Ẽ) → χΓ∞

tc (W̃ , Ẽ)

is bounded operator depending continuously on a, b ∈ R, the index indG(Da) is independent of a. Therefore, it is enough to
prove the proposition for one particular value of a.

Let ∥B(x)∥, x ∈ W̃ , denote the norm of the bundle map Bx : Ẽx → Ẽx and let ∥B∥∞ = supx∈W̃ ∥B(x)∥. Choose a ≪ 0
such that a2 > ∥B∥∞. Since p(x) ≥ 0 we have |p(x) − a|2 ≥ a2 > ∥B∥∞. Thus it follows from (7.2) that D2

a > 0, so that
KerD2

a = 0. Hence, indG(D2
a) = 0. �

Theorem 3.6 follows now from Proposition 7.1 and the following Theorem.

Theorem 7.2. indG(Da) = indG(Dχ,f v).
Proof. For compact group G the proof is given in section 11 of [2]. This proof works without any changes in our current
situation. �
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