
Journal of Geometry and Physics 106 (2016) 342–351

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Uniqueness of the momentum map
Chiara Esposito a,∗, Ryszard Nest b
a Department of Mathematics, Chair of Mathematics X (Mathematical Physics), Campus Hubland Nord Emil-Fischer-Strasse 31, 97074
Würzburg, Germany
b Department of Mathematical Sciences, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

a r t i c l e i n f o

Article history:
Received 10 December 2014
Received in revised form 4 March 2016
Accepted 29 March 2016
Available online 27 April 2016

Keywords:
Momentummap
Poisson Lie groups
Uniqueness
Poisson action

a b s t r a c t

We give a detailed discussion of existence and uniqueness of the momentum map
associated to Poisson Lie actions, which was defined by Lu. We introduce a weaker notion
of momentum map, called infinitesimal momentum map, which is defined on one-forms
and we analyze its integrability to the Lu’s momentummap. Finally, the uniqueness of the
Lu’s momentum map is studied by describing, explicitly, the tangent space to the space of
momentum maps.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we focus on the study of properties of the momentum map associated to actions of Poisson Lie groups on
Poisson manifolds.

The momentum map for actions of Lie groups (without additional structures) on Poisson manifolds provides a
mathematical formalization of the notion of conserved quantity associated to symmetries of a dynamical system. The
definition of momentum map in this standard setting only requires a canonical action (i.e. an action preserving the Poisson
structure on themanifold) and its existence is guaranteedwhenever the infinitesimal generators of the Lie algebra action are
Hamiltonian vector fields (modulo vanishing of a certain Lie algebra cohomology class), as can be seen e.g. in [1, Chapter 10]
and [2, Chapter 4]. A generalization of the momentummap to the case of actions of Poisson Lie groups on Poissonmanifolds
has been introduced by Lu in [3,4]. The associated reduction theory has been studied by Lu (see e.g. [3]) in the case of actions
on symplectic manifolds and for actions on Poisson manifolds in [5]. It is worthwhile to mention that Poisson Lie group
actions on Poisson manifolds naturally appear in the study of R-matrices (see e.g. [6]); thus, studying the properties of the
associated momentum map can be useful for the comprehension of the integrable systems associated to the R-matrices.

The detailed construction of Lu’s momentummap and its basic properties are recalled in the following section. Basically,
given a Poisson Lie group (G, πG) one introduces its dual (G∗, πG∗) and, under fairly general conditions, G∗ carries a
Poisson action of G called dressing action (and vice versa). The Lie algebra g of G is naturally identified with the space of
(left)-invariant one-forms on G∗:

θ : g → Ω1(G∗)G
∗

: ξ → θξ . (1.1)

Given a Poisson manifold (M, π) with a Poisson action of G, a momentum map is a (smooth) Poisson map

J : M → G∗, (1.2)
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such that the infinitesimal action g → Γ (TM) : ξ → ξM is induced by J via

ξM = π ♯(J∗(θξ )). (1.3)

A standard example of a momentum map is the identity map G∗
→ G∗, which induces the infinitesimal dressing action.

On one hand, the Poisson structure on G gives its Lie algebra a structure of a Lie bialgebra (g, δ) and hence a structure
of Gerstenhaber algebra on ∧

• g. On the other hand, the Poisson bracket on M makes Ω1(M) into a Lie algebra with
bracket [·, ·]π which also induces a structure of Gerstenhaber algebra on Ω•(M). This allows us to observe that the map
α, which associates to an element ξ of g a one-form αξ = J∗(θξ ), can be generalized to a morphism of Gerstenhaber
algebras

α : (∧• g, δ, [·, ·]) −→ (Ω•(M), ddR, [·, ·]π ). (1.4)

We refer to α as the infinitesimal momentum map (cf. Section 3.1 and Proposition 3.2). The existence of the infinitesimal
momentummap has been discussed in [7] and its rigidity properties have been recently studied in [8] as a generalization of
the results obtained in [9]. A reduction theory associated to the infinitesimal momentum map can be found in [10].

The main subject of this paper is the study of the properties of the infinitesimal momentum map and its relation to the
usual momentum map. In particular, we show under which conditions it integrates to the usual momentum map. The fact
that α is map of Gerstenhaber algebras reduces to two equations

α[ξ,η] = [αξ , αη]π (1.5)
dαξ = α ∧ α ◦ δ(ξ). (1.6)

We observe that Eq. (1.6) is aMaurer–Cartan type equation; in fact, whenM = G∗ it is precisely theMaurer–Cartan equation
for the Lie group G∗. When Ω• is formal, it admits explicit solution modulo gauge equivalence and we get the following
(cf. Theorem 3.8)

Theorem 1.1. Suppose that M is a Kählermanifold. The set of gauge equivalence classes of α ∈ Ω1(M, g∗) satisfying the equation

dαξ = α ∧ α ◦ δ(ξ) (1.7)

is in bijective correspondence with the set of the cohomology classes c ∈ H1(M, g∗)1 satisfying

[c, c] = 0. (1.8)

The conditions under which an infinitesimal momentummap α integrates to the momentummap J (cf. Theorem 3.6 for the
details) can be summarized in the following

Theorem 1.2. Let (M, π) be a Poisson manifold and α : g → Ω1(M) an infinitesimal momentum map. Suppose that M and G
are simply connected and G is compact. Then D = {αξ − θξ , ξ ∈ g} generates an involutive distribution on M × G∗ and a leaf
JF of D is a graph of a momentum map if

π(αξ , αη) − πG∗(θξ , θη)|F = 0, ξ , η ∈ g. (1.9)

In Section 3.2we study concrete cases of this globalizationquestion andprove the existence anduniqueness/non-uniqueness
of a momentum map associated to a given infinitesimal momentum map when the dual Poisson Lie group is abelian and,
respectively, the Heisenberg group. For the second case the result is as follows (cf. Theorem 3.10).

Theorem 1.3. Let G be a Poisson Lie group acting on a Poissonmanifold M with an infinitesimal momentummap α and such that
G∗ is the Heisenberg group. Let ξ, η, ζ denote the basis of g dual to the standard basis x, y, z of g∗, with z central and [x, y] = z.
Then

π(αξ , αη) = k (1.10)

where k is a constant on M. The form α lifts to a momentum map J : M → G∗ if and only if k = 0. When k = 0 the set of
momentum maps with given α is one dimensional with free transitive action of R.

Finally, in the last section, we study the question of infinitesimal deformations of a given momentummap. The main result
is Theorem 4.1, which describes explicitly the space tangent to the space of momentum maps at a given point. The main
result can be formulated as a statement that the space of momentum maps has a structure of manifold (in an appropriate
C ∞ topology). Let H : M → g∗ be a smooth map. We denote by Hξ the corresponding smooth map on M given by the
pullback of H .

1 Here c can be interpreted as an element of Hom(g∗,H•

dR(M)), which is a differential graded Lie algebra.
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Theorem 1.4. Infinitesimal deformations of a momentum map are given by smooth maps H : M → g∗ satisfying the equations

ξMHη − ηMHξ = H[ξ,η] (1.11)

{Hξ , ·} = −π ♯(αad∗
H ξ ) (1.12)

for all ξ, η ∈ g. Here ad∗ denotes the coadjoint action of G on g∗.

This theorem has the following corollary (cf. Corollary 4.2).

Corollary 1.5. Suppose that G is a compact and semisimple Poisson Lie group with Poisson action on a Poisson manifold M and
with a momentum map J. Any smooth deformation of J is given by integrating a Hamiltonian flow on M commuting with the
action of G.

2. Preliminaries: Poisson actions and momentummaps

In this sectionwe recall the notion of themomentummap, introduced by Lu in [3,4], in the setting of actions of Poisson Lie
groups on Poisson manifolds. A Poisson Lie group (G, πG) is a Lie group G equipped with a multiplicative Poisson structure
πG. The corresponding Lie algebra g inherits an extra structure δ : g → g ∧ g, defined by the linearization of πG at e. This is
often called cobracket, since it provides a Lie algebra structure to the dual space g∗; for this reason, the pair (g, δ) is said to be
the Lie bialgebra correspondent to the Poisson Lie group (G, πG). Integrating the Lie algebra g∗ we get a Lie group G∗, which
is also equipped with a multiplicative Poisson structure πG∗ . A one-to-one correspondence between Poisson Lie groups and
Lie bialgebras has been established by Drinfel’d [11], under the condition that G is connected and simply connected (we
keep these assumptions throughout the paper).

Let (G, πG) be a Poisson Lie group and (M, π) a Poisson manifold.

Definition 2.1. An action Φ : G × M → M is said to be a Poisson action if it satisfies

{f ◦ Φ, g ◦ Φ}G×M = {f , g}M ◦ Φ, ∀f , g ∈ C ∞(M), (2.1)

where {·, ·}G×M and {·, ·}M are the Poisson bracket induced by πG ⊕ π and π , respectively.

Given an action Φ : G × M → M , we denote by ξ → ξM the Lie algebra anti-homomorphism from g to Γ (TM) which
defines the infinitesimal generator of this action.

Canonical actions of Lie groups on Poisson manifolds are a class of examples of Poisson actions. Indeed, if G carries the
trivial Poisson structure, the action is Poisson if and only if it preserves π , i.e. if and only if it is canonical. In this setting the
definition of momentum map reads:

Definition 2.2. A momentummap for the Poisson action Φ : G × M → M is a map J : M → G∗ such that

ξM = π ♯(J∗(θξ )) (2.2)

where θξ is the left invariant 1-form on G∗ defined by Eq. (1.1) and J∗ is the pullback to one-forms Ω1(G∗) → Ω1(M).

In other words, the momentum map generates ξM by means of the following construction

g
θ // Ω1(G∗)

J∗ // Ω1(M)
π♯

// Γ (TM)

where, for ξ ∈ g, αξ = J∗(θξ ). Notice that the map θ is a Lie algebra morphism. It is useful to recall that a Poisson structure
π defines a skew-symmetric operation [·, ·]π : Ω1(M) × Ω1(M) → Ω1(M) by

[α, β]π = Lπ♯(α)β − Lπ♯(β)α − d(π(α, β)). (2.3)

Furthermore, it provides Ω1(M) with a Lie algebra structure such that π ♯ is a Lie algebra morphism (for more details see
e.g. [12]).

In general, J∗ is not a Lie algebra homomorphism; for this reason we need the concept of equivariance of the momentum
map.

Definition 2.3. A momentummap for the Poisson action Φ is said to be G-equivariant if it intertwines Φ and the dressing
action of G on G∗.

It is useful to recall that a momentum map is G-equivariant if and only if it is a Poisson map, i.e.

J∗π = πG∗ . (2.4)

The proof of this claim can be found in [3]. Finally, we can say that a Hamiltonian action in this context is a Poisson action
induced by an G-equivariant momentum map. This definition generalizes Hamiltonian actions in the canonical setting of
Lie group actions.
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3. The infinitesimal momentummap

The conditions for the existence and the uniqueness of the momentum map J are quite complicated, as it has been
showed by Ginzburg in [7]. For this reason the author introduces an infinitesimal version of themomentummap, in terms of
one-forms and he proves its existence and uniqueness. In the following we study the conditions under which the
infinitesimal momentummap determines a momentummap J . We describe the theory of reconstruction of the momentum
map J from the infinitesimal one α in two explicit cases. Finally, we provide the conditions which ensure the uniqueness of
the momentum map.

3.1. The structure of a momentum map

Given the Poisson Lie group G∗, we identify g with the space of left invariant 1-forms on G∗ via the map θ defined in
Eq. (1.1); this space is closed under the bracket defined by πG∗ and the induced bracket on g, by the above identification,
coincides with the original Lie bracket on g (the proof can be found in [13]). For any ξ ∈ g, we denote by θξ the left invariant
form on G∗, whose value at identity is ξ . The basic property of θ ’s is the Maurer–Cartan equation for G∗:

dθξ = θ ∧ θ ◦ δ(ξ). (3.1)
Let us denote by ad∗

x : g → g the coadjoint action for a fixed x ∈ g∗.

Proposition 3.1. Let θξ , θη be two left invariant one-forms on G∗, such that θξ (e) = ξ , θη(e) = η. Then we have
(i) The map θ : g → Ω1(G∗)G

∗

is a Lie algebra morphism, i.e.

θ[ξ,η] = [θξ , θη]πG∗ ; (3.2)
(ii) For any left-invariant vector field X ∈ Γ (TG∗) and the corresponding x ∈ g∗

LXπG∗(θξ , θη) = x([ξ, η]) + πG∗(θad∗
x ξ , θη) + πG∗(θξ , θad∗

x η). (3.3)

Proof. (i) First, we prove that [θξ , θη]πG∗ is a left-invariant 1-form. Let us consider an element x ∈ g∗ and the corresponding
left-invariant vector field X ∈ Γ (TG∗). We contract X with the bracket [θξ , θη]πG∗ to show that we obtain a constant.
Using the properties of Lie derivative we easily get

ιXdπG∗(θξ , θη) = (LXπG∗)(θξ , θη) + πG∗(LXθξ , θη) + πG∗(θξ , LXθη)

ιXL
π

♯

G∗ (θξ )
θη = LXπG∗(θη, θξ ) − πG∗(θξ , LXθη)

ιXL
π

♯

G∗ (θη)
θξ = LXπG∗(θη, θξ ) − πG∗(θη, LXθξ ).

Thus, from the formula

LXπG∗(θξ , θη) = (LXπG∗)(θξ , θη) + πG∗(LXθξ , θη) + πG∗(θξ , LXθη) (3.4)

we get

ιX [θξ , θη]πG∗ = (LXπG∗)(θξ , θη).

Finally, since LXπG∗(e) =
tδ(x) and tδ(x)(ξ , η) = x([ξ, η]), Eq. (3.2) is proved.

(ii) Moreover, we have

LXπG∗(θξ , θη) = (LXπG∗)(θξ , θη) + πG∗(LXθξ , θη) + πG∗(θξ , θη)

=
tδ(x)(ξ , η) + πG∗(θad∗

x ξ , θη) + πG∗(θξ , θad∗
x η),

since LXθξ = θad∗
x ξ . This concludes the proof. �

As a direct consequence of the above proposition, we can prove the following

Proposition 3.2. Given a Poisson action Φ : G × M → M with G-equivariant momentum map J : M → G∗, the forms
αξ = J∗(θξ ) satisfy the following identities:

α[ξ,η] = [αξ , αη]π (3.5)
dαξ = α ∧ α ◦ δ(ξ). (3.6)

Proof. Let us prove the first relation.

[αξ , αη]π = [J∗(θξ ), J∗(θη)]π

(a)
= J∗([θξ , θη]πG∗ )

(b)
= J∗θ[ξ,η]

= α[ξ,η].
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We used the G-equivariance of J in (a) and Eq. (3.2) in (b). The second relation is quite easy, in fact we have

dαξ = dJ∗(θξ )

= J∗dθξ

= J∗(θ) ∧ J∗(θ) ◦ δ(ξ)

= α ∧ α ◦ δ(ξ). �

Last proposition motivates a new, weaker, definition of momentum map in terms of one-forms onM .

Definition 3.3. An infinitesimal momentummap for the action Φ is a map α : g → Ω1(M) such that

(i) It induces the fundamental vector field of Φ via

ξM = π ♯(αξ ) (3.7)

(ii) It is a Lie algebra morphism

α[ξ,η] = [αξ , αη]π (3.8)

(iii) It satisfies the Maurer–Cartan condition

dαξ = α ∧ α ◦ δ(ξ). (3.9)

As already said, a similar definition was already introduced in [7] (what is called cotangent lift) and the problem of its
existence and uniqueness has been exhaustively discussed. It is important to mention that the definition of cotangent lift
does not require conditions (3.8) and (3.9).

The above definition can be generalized to a morphism of Gerstenhaber algebras, which is defined as follows:

Definition 3.4. A Gerstenhaber algebra is a triple (A, ∧, [·, ·]) with A = ⊕i∈Z Ai such that (A, ∧) is a graded commutative
associative algebra, (A, [·, ·]) with A(i)

= Ai+1, is a graded Lie algebra, and for each a ∈ A(i) one has that [a, ·] is a derivation
of degree iwith respect to ∧.

A complete description of such structure can be found in [14].
On one hand, the Poisson structure on G gives its Lie algebra a structure of a Lie bialgebra (g, δ) and hence a structure

of Gerstenhaber algebra on ∧
• g. On the other hand, the Poisson bracket on M induces a structure of Lie algebra on Ω1(M)

with bracket [·, ·]π ; this induces a Gerstenhaber algebra structure on Ω•(M). Thus, the following generalization is quite
natural:

Definition 3.5. An infinitesimal momentummap for the Poisson action Φ is a morphism of Gerstenhaber algebras

α : (∧• g, δ, [·, ·]) −→ (Ω•(M), ddR, [·, ·]π ). (3.10)

Notice that the induced action does not reduce to the canonical one when the Poisson structure on G is trivial. In fact, if
δ = 0 the Maurer–Cartan condition implies that αX is a closed form, but in general this form is not exact. If, for example,M
is simply connected, αX is also exact and we can recover the usual definition of momentum map and Hamiltonian action.

The following theorem describes the conditions in which an infinitesimal momentum map α : g → Ω1(M) determines
a momentum map J : M → G∗.

Theorem 3.6. Let (M, π) be a Poisson manifold and α : g → Ω1(M) an infinitesimal momentum map. Then:
(i) The set {αξ − θξ , ξ ∈ g} generate an involutive distribution D on M × G∗.
(ii) If M is connected and simply connected, the leaves F of D coincide with the graphs of the maps JF : M → G∗ satisfying

α = J∗F (θ) and G∗ acts freely and transitively on the space of leaves by left multiplication on the second factor.
(iii) The vector fields π ♯(αξ ) define a morphism from g to Γ (TM). If they integrate to the action Φ : G × M → M, then Φ is a

Poisson action and JF is its G-equivariant momentum map if and only if the functions

ϕ(ξ, η) := π(αξ , αη) − πG∗(θξ , θη) (3.11)

satisfy the condition

ϕ(ξ, η)|F = 0 (3.12)

for all ξ, η ∈ g.

Proof. (i) Using the Maurer–Cartan equations for α and θ , the g-valued form α − θ on M × G∗ satisfies d(α − θ) =

(α − θ) ∧ (α − θ). As a consequence, from the dual formulation of the Frobenius theorem, it defines a distribution
on M × G∗. Let F be a generic leaf and let pi, i = 1, 2 denote the projection onto the first (resp. second) factor in
M × G∗. Since the linear span of θξ , ξ ∈ g at any point u ∈ G∗ coincides with T ∗

uG
∗, the restriction of the projection

p1 : M × G → M to F is an immersion. Finally, since dim(M) = dim(F ), p1 is a covering map.
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(ii) Under the hypothesis thatM is simply connected, p1 is a diffeomorphism and

JF = p2 ◦ p−1
1

is a smooth map whose graph coincides with F . It is immediate, that α = J∗F (θ). Moreover, since θ ’s are left invariant
it follows immediately that the action of G∗ on the space of leaves by left multiplication of the second factor is free and
transitive.

(iii) Suppose that Eq. (3.12) is satisfied. Then

π(αξ , αη) = J∗F (πG∗(θξ , θη))

and ker JF ∗ coincides with the set of zero’s of αξ , ξ ∈ g. Hence, JF is a Poisson map and, in particular,

JF ∗(π
♯(αξ )) = π

♯

G∗(θξ ),

i.e. it is a G-equivariant map. �

3.1.1. The Kähler case
Let us consider the case in whichM is a Kähler manifold (the compatibility between Poisson structures and Kähler forms

has been studied, e.g. [15,16]). This case plays an important role in our theory, since the Maurer–Cartan equation (3.9)
can be explicitly solved. More precisely, we can define an equivalent class of solutions of the Maurer–Cartan equation as
follows:

Definition 3.7. Two solutions α and α′ of Eq. (3.9) are said to be gauge equivalent, if there exists a smooth function
H : M → g∗ such that

α′
= exp(adH)(α) +

 1

0
dt exp t(adH)(dH). (3.13)

The gauge equivalence classes defined above can be related to the cohomological classes H1(M, g∗), as proved in the
following

Theorem 3.8. Suppose that M is a Kähler manifold. The set of gauge equivalence classes of α ∈ Ω1(M, g∗), satisfying Eq. (3.9) is
in bijective correspondence with the set of the cohomology classes c ∈ H1(M, g∗) satisfying

[c, c] = 0. (3.14)

Proof. Given a manifold M , the de Rham complex (Ω•(M), d) always has a structure of commutative differential graded
algebra (CDGA). If M is a Kähler manifold, it follows that this CDGA is formal (as proved in [17]) i.e. there is a map between
the complex Ω•(M) and its cohomology H•

dR(M). As a consequence,

(Hom (g∗, Ω•(M)), d, [·, ·]) (3.15)

is a formal differential graded Lie algebra and, in particular, there exists a bijection between the equivalence classes of
Maurer–Cartan elements of (Hom (g∗, Ω•(M)), d, [·, ·]) and Maurer–Cartan elements of (Hom (g∗,H•

dR(M)), [·, ·]). Since a
Maurer–Cartan element in (Hom (g∗,H•

dR(M)), [·, ·]) is an element c ∈ H1(M, g∗) satisfying

[c, c] = 0, (3.16)

the claim is proved. �

3.2. The reconstruction problem

In this section we discuss the conditions under which the distribution D defined in Theorem 3.6 admits a leaf satisfying
Eq. (3.12). In particular, we analyze the case where the structure on G∗ is trivial and the Heisenberg group case.

3.2.1. The standard case
Suppose that G∗

= g∗ is abelian. Then, the forms αξ satisfy dαξ = 0 for any ξ ∈ g and, under the hypothesis of
Theorem 3.6, we have αξ = dHξ , for some Hξ ∈ C ∞(M).

Theorem 3.9. Suppose that G is a Lie group with trivial Poisson structure and M is compact. Then an infinitesimal momentum
map defines a map H : g → C ∞(M) : ξ → Hξ such that

d{Hξ ,Hη} = dH[ξ,η], ∀ξ, η ∈ g. (3.17)

The element c(ξ , η) = {Hξ ,Hη}−H[ξ,η] is a two-cocycle c on gwith values inR. The infinitesimal momentummapH is generated
by a momentum map J if this cocycle vanishes and, in this case, J is unique.
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Proof. Let us denote by evξ the linear functions g∗
∋ z → z(ξ). Then θξ = d(evξ ) and the leaves of the distribution D

coincide with the level sets onM × g∗ of the functions

{Hξ − evξ | ξ ∈ g}. (3.18)

Furthermore, we have

ϕ(ξ, η)(m, z) = {Hξ ,Hη} − z([ξ, η]), ∀m ∈ M. (3.19)

In this case, Eq. (3.8) reduces to

d{Hξ ,Hη} = dH[ξ,η], (3.20)

thus

{Hξ ,Hη} − H[ξ,η] = c(ξ , η), (3.21)

for some constants c(ξ , η). By the Jacobi identity, the constants c(ξ , η) define a class [c] ∈ H2(g, R). Suppose that this class
vanishes (for instance, if g semisimple). Then, there exists a z0 ∈ g∗ such that c(ξ , η) = z0([ξ, η]). Thus, given a leaf F ,
we have

ϕ(ξ, η)|F = 0 (3.22)

if and only if F is given by

Hξ − evξ − z0(ξ) = 0. (3.23)

In other words, the space of leaves of D which give a momentum map coincides with the affine space modeled on
{z ∈ g∗

: z|[g,g] = 0} (which vanishes when g is semisimple). This concludes the proof. �

3.2.2. The Heisenberg group case
Suppose now that G∗ is the Heisenberg group. Let x, y, z be a basis for g∗, with [x, y] = z. Let ξ, η, ζ be its dual basis of

g. The cocycle δ on g is given by

δ(ξ) = δ(η) = 0 and δ(ζ ) = ξ ∧ η, (3.24)

thus

dαξ = dαη = 0 and dαζ = αξ ∧ αη. (3.25)

The Lie bialgebra structure on g∗ can be either

[ξ, η] = 0, [ξ, ζ ] = ξ, [η, ζ ] = η (3.26)

or

[ξ, η] = 0, [ξ, ζ ] = η, [η, ζ ] = −ξ . (3.27)

The result below turns out to be independent of the choice (the computations has been done using the second choice, which
corresponds to G = R n R2, with R acting by rotation on R2).

Let us denote by

δ(ξ) =


i

ξ 1
i ∧ ξ 2

i . (3.28)

Applying the Cartan formula L = [ι, d] and Eq. (3.8) we get
i

π(αη, αξ1i
)αξ2i

−


i

π(αξ , αη1i
)αη2i

= α[η,ξ ] − dπ(αη, αξ ). (3.29)

In our case it gives the following relations

dπ(αξ , αη) = α[ξ,η]

dπ(αζ , αη) = α[ζ ,η] + π(αη, αξ )αη

dπ(αζ , αξ ) = α[ζ ,ξ ] − π(αξ , αη)αξ

which are also satisfied for θ . Let I denote the ideal generating our distribution D . Then, from above,

dϕ(ξ, η) ∈ I (3.30)

and

ϕ(ξ, η)|F = 0 =⇒ dϕ(ζ , η)|F and dϕ(ζ , ξ)|F ∈ I . (3.31)
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Let F be a leaf of D and X , Y and Z the left-invariant vector fields on G∗ corresponding to x, y, z, resp. From Eq. (3.3), we get

L ∗

Z (πG∗(θξ , θη)) = L ∗

X (πG∗(θξ , θη)) = L ∗

Y (πG∗(θξ , θη)) = 0
L ∗

Z (πG∗(θξ , θζ )) = L ∗

Y (πG∗(θξ , θζ )) = 0
L ∗

Z (πG∗(θη, θζ )) = L ∗

X (πG∗(θη, θζ )) = 0
L ∗

X (πG∗(θξ , θζ )) = 1
L ∗

Y (πG∗(θη, θζ )) = 1.

In particular, πG∗(θξ , θη) is invariant under left translations. Since πG∗ is zero at the identity, we get

πG∗(θξ , θη) = 0. (3.32)

Since dϕ(ξ, η) ∈ I , the function ϕ(ξ, η) is leafwise constant. Using Eqs. (3.11) and (3.32) it follows that π(αξ , αη) is also
leafwise constant. Thus, we have that the Poisson structure π(αξ , αη) is a constant k on M . Furthermore, if k = 0, from
Eq. (3.30) follows that

ϕ(η, ζ )|F = c1 and ϕ(ξ, ζ )|F = c2 (3.33)

for some constants c1 and c2. Setting F ′
= id × exp(c1x) exp(c2y) we get

ϕ(η, ζ )|F ′ = ϕ(ξ, ζ )|F ′ = ϕ(ξ, η)|F ′ = 0. (3.34)

We can summarize the results obtained in the Heisenberg case in the following

Theorem 3.10. Let G be a Poisson Lie group acting on a Poisson manifold M with an infinitesimal momentum map α and such
that G∗ is the Heisenberg group. Let ξ, η, ζ denote the basis of g dual to the standard basis x, y, z of g∗, with z central and
[x, y] = z. Then

π(αξ , αη) = k (3.35)

where k is a constant on M. The form α lifts to a momentum map J : M → G∗ if and only if k = 0. When k = 0 the set of
momentum maps with given α is one dimensional with free transitive action of R.

4. Infinitesimal deformations of a momentummap

Finally, we study the infinitesimal deformations of a given momentum map J . Let us consider a Hamiltonian action
of a Poisson Lie group (G, πG) on a Poisson manifold (M, π), with momentum map J : M → G∗ and suppose that
[−ϵ, ϵ] ∋ t → Jt : M → G∗, ϵ > 0, is a differentiable path of G-equivariant momentum maps for this action. We can
assume that Jt(m) is of the form

J(m) exp(tH(m) + t2λ(t,m)), (4.1)

where exp : g∗
→ G∗ is the exponential map; we assume H : M → g∗

: m → H(m) to be differentiable and λ to be a map
from ] − ϵ, ϵ[ ×M to G∗.

Theorem 4.1. In above notation, for any ξ, η ∈ g, we have

ξMHη − ηMHξ = H[ξ,η] (4.2)

{Hξ , ·} = −π ♯(αad∗
H ξ ). (4.3)

Proof. Here we can assume that Jt(m) = J(m) exp(tH(m)) and we consider αt
ξ = J∗t (θξ ) = ⟨dJt , θξ ⟩. Let us compute

βξ =
d
dt


t=0

⟨dJt , θξ ⟩ =
d
dt


t=0

⟨d(J exp(tH)), θξ ⟩. (4.4)

First note that

d(J exp(tH)) = (Rexp(tH))∗dJ + (LJ)∗d exp(tH) (4.5)

where R and L are the right and left multiplication, respectively. Calculating the derivative d
dt


t=0 we get:

d
dt


t=0

⟨(Rexp(tH))∗dJ, θξ ⟩ =
d
dt


t=0

⟨dJ, (Rexp(tH))
∗θξ ⟩ (4.6)

= ⟨dJ, θad∗
H ξ ⟩ = αad∗

H ξ (4.7)
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and

d
dt


t=0

⟨(LJ)∗d exp(tH), θξ ⟩ =
d
dt


t=0

⟨d exp(tH), (LJ)
∗θξ ⟩ (4.8)

=
d
dt


t=0

⟨d exp(tH), θξ ⟩. (4.9)

The differential of the exponential map exp : g∗
→ G∗ is a map from the cotangent bundle of g∗ to the cotangent bundle

of G∗. It can be trivialized as d exp : g∗
× g∗

→ G∗
× g∗. Furthermore, (exp−1, id) : G∗

× g∗
→ g∗

× g∗, thus the map
g∗

× g∗
→ g∗

× g∗ is given by tH + o(t2). We obtain

d
dt


t=0

⟨d exp(tH), θξ ⟩ =
d
dt


t=0

⟨d(tH + o(t)), θξ ⟩

= d⟨H, ξ⟩

and finally

βξ = αad∗
H ξ + dHξ . (4.10)

Since π ♯(αt
ξ ) = ξM is independent of t , π ♯βξ = 0 and Eq. (4.3) is proved. Now, since Jt is a family of Poisson maps, one has

π(αt
ξ , α

t
η)(m) = πG∗(θξ , θη)(Jt(m)). (4.11)

Applying d
dt


t=0 to both sides, we get

π(βξ , αη)(m) + π(αξ , βη)(m) = LH(πG∗(θξ , θη))(J(m)). (4.12)

Using Eq. (4.10) we obtain the formula

LH(πG∗(θξ , θη))(J(m)) = H([ξ, η]) + πG∗(θad∗
H ξ , θη) + πG∗(θξ , θad∗

Hη) (4.13)

which proves Eq. (4.2). �

This theorem provides an explicit description of the tangent space of the momentummap at a given point and it implies the
following

Corollary 4.2. Suppose that M is a Poisson manifold with a Poisson action of a compact semisimple Poisson Lie group G. Then
any infinitesimal deformation of a momentum map J : M → G∗ as above is generated by a one parameter family of gauge
transformations.

Proof. Eq. (4.2) implies that H ∈ H1(g, C∞(M, g∗)). Since G is compact semisimple, H is a Lie coboundary, i.e. there exists
a function

j : M → g∗ (4.14)

such that

ξM j = Hξ . (4.15)

In particular, it is easy to check that π ♯(αad∗
H ξ )f =


Xξ1i

j ξ 2
i (f ), where we use the notation δ(ξ) =


ξ 1
i ⊗ξ 2

i . Now observe
that

ξ{j, f } = ξMπ(dj, df ) = (ξMπ)(dj, df ) + {ξM j, f } + {j, ξM f } (4.16)

hence

{Hξ , f } = {ξM j, f } = ξ{j, f } − (ξMπ)(dj, df ) − {j, ξM f } (4.17)
= ξ{j, f } − δ(ξ)(j, f ) − {j, ξM f } (4.18)

= ξ{j, f } − ξ 1
M j ξ 2(f ) − {j, ξM f }. (4.19)

Substituting Eqs. (4.15) and (4.17) in Eq. (4.3) we get

ξ{j, f } − {j, ξM f } = 0. (4.20)

In other words the Hamiltonian vector field associated to j commutes with the group action and is tangent to the derivative
of Jt at t = 0 as claimed. �
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