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1. Introduction

It is the important task of mathematics to find solutions of newtonian equations of motion of manybody d-dimensional
mechanical systems represented in terms of series converging on the infinite time interval. These equations for N-body
systems with a potential energy U and massesmj, j = 1, . . . ,N look like

mj
d2xj
dt2

= −
∂U(x(N))

∂xj
, j = 1, . . . ,N, x(N) = (x1, . . . , xN ) ∈ RdN , xj = (x1j , . . . , x

d
j ). (1.1)

The existence of an equilibrium of the potential energymakes it possible to find such solutions with the help of fundamental
theorems among which is the Lyapunov center theorem.

The Coulomb systems of two and three negative equal charges e0 in the field of fixed two equal positive charges e′

have equilibrium configurations [1–3]. This fundamental fact allowed us to construct periodic [1,2], bounded [1,2] and
quasi-periodic [3] solutions close to the equilibria of the Coulomb equation of motion for the negative charges. For the line
systems we applied the Weinstein [4,5], Moser [6] and center Lyapunov [7–12] theorems which demand a knowledge of
the spectra of the matrix U0 of second derivatives of the potential energy at the equilibrium(for equal masses). The last two
theorems, guaranteeing the existence of the periodic solutions in terms of convergent series, restrict the values of e0

e′ through
a non-resonance condition. TheWeinstein theorem establishes the existence of the periodic solutionswithout this condition
but can be applied only for mechanical systems with a stable equilibrium (U0 is positive definite and the equilibrium is a
minimum of the potential energy). The construction of the bounded solutions in [2] for the line and planar systems does not
demand the non-resonant condition to be true and is based on the generalization of the semi-linearization Siegel technique
exposed in the section Lyapunov theorem in [7]. Periodic solutions are also found in planar Coulomb systems of n−1, n > 2
equal negative charges and one and three positive charges [13,14]. These solutions describe positions of the negative charges
in the form of regular polygons.
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The dynamics in the Coulomb system of a negative charge in a field of many fixed positive charges can be deduced
from [15–17].

Mechanical systems with an integral of motion and an equilibrium have U0 characterized by the zero eigenvalue [7]. This
does not allow one to find directly the solutions of their equations of motion on the infinite time interval with the help of
the mentioned theorems.

The mentioned space systems of two and three equal negative charges possess a rotational symmetry, its angular
momentum Q is an integral of motion and there is the continuum of equilibria parametrized by points of a circle centered
at the origin. The matrices of second derivatives of the potential energy at the equilibria are similar to the simplest matrix
U0 which corresponds to the equilibrium determined by the three equal negative charges located at a coordinate axis and
the two fixed positive charges located at an equal distance from the origin at another coordinate axis.

In this paper we find quasi-periodic solutions of the Coulomb equation of motion whose Euclidean norms are periodic
functions for the system of three equal negative charges in the field of two fixed positive charges. This result is an analog of
the result of [3] and a consequence of the representation of U0 as the direct sum of three three-dimensional matrices whose
eigenvalues are found explicitly.

We circumvent the obstruction of the zero eigenvalue as in [3] with the help of the procedure of the elimination of node
from the celestial mechanics (section 18 in [7]). The main idea of this procedure is to produce a canonical transformation
turning the integrals of motions into cyclic variables (a transformed Hamiltonian does not depend on them). Then linear
part of the equation of motion for themwill be zero and the canonical matrix, i.e the matrix generating the linear part of the
equation of motion, for remaining variables will not contain the zero eigenvalue (see the Appendix). The procedure of the
elimination of node is described in the following theorem (the proof of its first two statements are given in [7]).

Theorem 1.1. Let H(x, p) be a 2n-dimensional Hamiltonian, Q be its time independent integral and w(u, p) be a generating
function of the canonical transformation such that

vk =
∂w

∂uk
, xk =

∂w

∂pk
, k = 1, . . . , n, (1.2)

∂w

∂un
= Q (x, p), Wk,j =

∂2w

∂uk∂pj
, DetW ̸= 0. (1.3)

Then the transformed Hamiltonian H ′(u, v) does not depend on un. Let also the canonical matrix of H have doubly degenerate
zero eigenvalue, this canonical transformation and the Hamiltonian be holomorphic at a neighborhood of the equilibrium. Then
the canonical matrix of the 2(n − 1)-dimensional Hamiltonian equation

u̇j =
∂H ′

∂vj
, v̇j = −

∂H ′

∂uj
, j = 1, . . . , n − 1, (1.4)

does not have the zero eigenvalue for the equilibrium value Q 0 of Q and eigenvalues of the canonical matrices of H and H ′ are
identical.

A separation of cyclic variables, generated by integrals of motion, in a Hamiltonian equation is also described in [18].
We find w as

w =

n∑
j=1

gk(u1, . . . , un)pk,

where n = 9, for a special numeration of charge coordinates and momenta (xj; pj) = (xα
j ; p

α
j ), j = 1, 2, 3, α ≤ 3. Such the

representation for w, the equation for gk and its solution is inspired by the Celestial Mechanics [7]. As a result solutions of
the Coulomb equation are given by

xα
j (t) =

n−1∑
k=1

uk(t)[γk,j,α + γ ′

k,j,α cos(un(t)) + γ ′′

k,j,α sin(un(t))], (1.5)

where γ , γ ′, γ ′′ are constants and uk(t), k = 1, . . . , n are solutions of the equation with the Hamiltonian H ′. We show with
the help of the center Lyapunov theorem that (1.4) for our system possesses periodic solutions.

Let u(n−1), v(n−1) be a periodic solution of (1.4) with a period τ . Then

(
∂H ′

∂vn
)(u(n−1), v(n−1),Q 0) = H ′

n−1(t)

is also a periodic function such that

H ′

n−1(t) = H0
n−1(t) + ξ,

∫ t+τ

t
H0

n−1(s)ds = 0,
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where ξ is a constant. This implies that

un(t) =

∫ t

0
H ′

n−1(s)ds =

∫ t

0
H0

n−1(s)ds + ξ t = u0(t) + ξ t,

where u0 is periodic with the period τ . The last equality and (1.4) determine the quasi-periodic(doubly periodic) functions
xα
j (t) if γ

′
̸= 0 or γ ′′

̸= 0. We will show that their Euclidean norms are periodic functions.
Our paper is organized as follows. In the second section we find the structure of U0 for the simplest equilibrium. In the

third section we find the spectrum of U0. In the fourth section the node transformation is produced and the main result is
formulated in Theorem 4.1. In the Appendix we prove the second and third statements of Theorem 1.1.

2. Characteristics of equilibrium

For three identical negative charges inR3 in the field of two positive fixed charges located at the points b1, b2 the Coulomb
potential energy is given by

U(x(3)) =
1
2

3∑
j̸=k=1

ejek
|xj − xk|

− e0e′
∑

j,k=1,2

|xj − bk|−1, (2.1)

where ej = −e0 < 0, e′ > 0 and

|x|2 = (x1j )
2
+ (x2j )

2
+ (x3j )

2, xj = (x1j , x
2
j , x

3
j ) ∈ R3,

bj = (b1j , b
2
j , b

2
j ) ∈ R3, b1j = b3j = 0, b21 = −b22 = b.

The first partial derivatives of U look like

∂U(x(3))
∂xα

j
= −e20

3∑
k=1,k̸=j

xα
j − xα

k

|xj − xk|3
+ e0e′

2∑
k=1

xα
j − bα

k

|xj − bk|3
.

The equilibrium is determined by

x011 = −a, x013 = a, x012 = 0, x0αj = 0, α = 2, 3.

The first derivative in x2j is equal zero at it since b21 = −b22 = b. The other derivatives generate the following equilibrium
relation

5e20
4a2

−
2e′e0a

(
√
a2 + b2)3

= 0.

There are also the equilibria, which are characterized by this relation, determined by

x011 = −a cos ξ, x031 = −a sin ξ, x013 = a cos ξ, x033 = a sin ξ, x0α2 = 0, α = 1, 2, 3, x02j = 0.

From the equilibrium relation one derives

e20
4a3

= u′,
2e0e′

(
√
a2 + b2)3

= 5u′, (
√
a2 + b2)−1

=
1
2a

(
5e0
e′

)
1
3 , (2.2)

a = (4 − η′)−
1
2
√

η′b, η′
= (

5e0
e′

)
2
3 < 4,

e0
e′

<
8
5
. (2.3)

The second partial derivatives of U look like

∂U(x(3))

∂xα
j ∂x

β

k

=
∂U(x(3))

∂xβ

k ∂xα
j

= e20[
δα,β

|xj − xk|3
− 3

(xα
j − xα

k )(x
β

j − xβ

k )

|xj − xk|5
], α, β = 1, 2, 3, j ̸= k,

∂2U(x(3))

∂xβ

j ∂xα
j

= e20

3∑
k=1,k̸=j

[−
δα,β

|xj − xk|3
+ 3

(xα
j − xα

k )(x
β

j − xβ

k )

|xj − xk|5
]

+ e0e′

2∑
k=1

[
δα,β

|xj − bk|3
− 3

(xα
j − bα

k )(x
β

j − bβ

k )

|xj − bk|5
].
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Let U0 be the (main equilibrium) matrix of second derivatives at the equilibrium with ξ = 0 and δj,k be the Kronecker
symbol. We will prove that

U0
j,α;k,β = δα,βU0

α;j,k, j, k, α, β = 1, 2, 3. (2.4)

This representation leads immediately to the following result.

Proposition 2.1. Let the following numeration be true

(1, 1) = 1; (2, 1) = 2, (3, 1) = 3, (1, 2) = 4, (2, 2) = 5, (3, 2) = 6,

(1, 3) = 7, (2, 3) = 8, (3, 3) = 9, (2.5)

where the first and second number in the pairs is the lower and upper index of a charge coordinate. Then

U0
= U0

1 ⊕ U0
2 ⊕ U0

3 ,

where U0
α is the three dimensional square matrix with the components U0

α;j,k determined by (2.4).

Let us prove (2.4). It is clear that the 3 × 3matrix U0
3 coincides with the contribution of the first terms in the three square

brackets in the two expressions for the second derivatives of U . The contribution of the second terms in the first two square
brackets also have the similar structure at the equilibrium. Hence we have to prove only that

Tj(α, β) =

2∑
k=1

(xα
j − bα

k )(x
β

j − bβ

k )

|xj − bk|5

has the structure of (2.4) for j = k at the equilibrium. Let T 0
j (α, β) is the equilibrium value of Tj(α, β) and take into account

that |x0j − bk|
2

= a2 + b2, j = 1, 3, |x02 − bk|
2

= b2. We will prove that

T 0
j (α, β) = 2(a2 + b2)−

5
2 δα,β (a2δα,1 + b2δα,2), j = 1, 3; T 0

2 (α, β) = 2b−3δα,βδα,2. (2.6)

These equalities hold for α = 3. Let us put

T̃ 0
j (α, β) =

2∑
k=1

(x0αj − bα
k )(x

0β
j − bβ

k ).

Then

T̃ 0
1 (1, 2) = −((a − b11)b

2
1 + (a − b12)b

2
2) = −(ab − ab) = 0,

T̃ 0
3 (1, 2) = −((−a − b11)b

2
1 + (−a − b12)b

2
2) = ab − ab = 0,

T̃ 0
1 (1, 1) = (a − b11)(a − b11) + (a − b12)(a − b12) = 2a2,

T̃ 0
3 (1, 1) = (−a − b11)(−a − b11) + (−a − b12)(−a − b12) = 2a2,

T̃ 0
2 (2, 2) = T̃ 0

1 (2, 2) = T̃ 0
3 (2, 2) = (b21)

2
+ (b22)

2
= 2b2.

Simple arguments prove the second equality in (2.6) since x0α2 = 0 and bk has non-zero only in the second component. Hence
we proved (2.6) and (2.4).

Now let us calculate the elements of the matrices U0
j .

U0
3;2,1 = U0

3;1,2 = U0
3;2,3 = U0

3;3,2 =
e20
a3

= 4u′, U0
3;3,1 = U0

3;1,3 =
u′

2
.

(2.2)–(2.3) yield

U0
3;1,1 = U0

3;3,3 = −
e20
a3

(1 +
1
8
) +

2e0e′

(
√
a2 + b2)3

=
u′

2
, U0

3;2,2 = −8u′
+

2e0e′

b3
= u′g ′,
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where

g ′(u) = −8 + g∗ > −3, g∗ =
2e0e′

u′b3
= 40(4 − η′)−

3
2 = 5

√
27(3 − u)−

3
2 , u =

3η′

4
.

Hence

U∗(g ′) = u′−1U0
3 =

⎛⎜⎜⎜⎝
1
2

4
1
2

4 g ′ 4
1
2

4
1
2

⎞⎟⎟⎟⎠ .

Let

u∗ = 5
3e20
42a3

η′
= 5uu′, u′′

= 5(3 − u).

Then from (2.2)–(2.3) one derives

u′′

∗
=

6e0e′b2

(
√
a2 + b2)5

=
6e0e′

(2a)5
(
5e0
e′

)
5
3
4 − η′

η′
a2 = u′′u′,

6e0e′a2

(
√
a2 + b2)5

= u∗. (2.7)

We see that U0
2 differs from U0

3 only by the diagonal elements due to T 0
j . Hence

U0
2;1,1 = U0

2;3,3 =
u′

2
− u′′

∗
= (

1
2

− u′′)u′, U0
2;2,2 = −8u′

−
4e0e′

b3
= u′g ′′,

g ′′
= −(8 + 10

√
27(3 − u)−

3
2 ) = −8 − 2g∗.

That is

u′−1U0
2 =

⎛⎜⎜⎜⎝
1
2

− u′′ 4
1
2

4 g ′′ 4
1
2

4
1
2

− u′′

⎞⎟⎟⎟⎠ = U∗2 − u′′I,

where

U∗(g2) = U∗2 =

⎛⎜⎜⎜⎝
1
2

4
1
2

4 g2 4
1
2

4
1
2

⎞⎟⎟⎟⎠ , g2 = g ′′
+ u′′.

U0
1 differs fromU0

3 by the contributions of the second terms in the square brackets in the expressions of the secondderivatives
of U .

U0
1;2,1 = U0

1;1,2 = U0
1;2,3 = U0

1;3,2 = −
2e20
a3

= −8u′, U0
1;3,1 = U0

1;1,3 = −u′,

U0
1;2,2 = u′g, U0

1;1,1 = U0
1;3,3 = 14u′

− u∗ = (14 − 5u)u′. g = 16 + g∗.

That is

u′−1U0
1 =

⎛⎝14 − 5u −8 −1
−8 g −8
−1 −8 14 − 5u

⎞⎠ = −2U∗1 + u′′I,

U∗(g1) = U∗1 = 2−1

⎛⎝1 8 1
8 2g1 8
1 8 1

⎞⎠ , 2g1 = −g + u′′,

where I is the unit matrix.
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3. Spectrum of main equilibriummatrix

DetU∗j = 0 since U∗(q) has identical first and third rows. This permits to find roots of the characteristic polynomials p∗(q)
for U∗(q) and p′

j for U
′

j = u′−1U0
j .

p∗(λ, q) = −Det(−λI + U∗(q)) = −Det

⎛⎜⎜⎜⎜⎝
1
2

− λ 4
1
2

4 q − λ 4
1
2

4
1
2

− λ

⎞⎟⎟⎟⎟⎠

= −Det

⎛⎜⎜⎝
−λ 0 λ

4 q − λ 4
1
2

4
1
2

− λ

⎞⎟⎟⎠ = λ[(q − λ)(
1
2

− λ) − 16] − λ[16 −
1
2
(q − λ)]

= [(q − λ)(1 − λ) − 32]λ = [λ2
− (q + 1)λ + q − 32]λ.

Here we subtracted the third row from the first one of U∗(q) − λI and expanded the determinant in the elements of the
first row which are proportional to λ.

Roots of p∗(q) are given as follows

2λ = q + 1 ±

√
(q − 1)2 + 128, λ = 0.

The roots of p′

1

p′

1(λ
′) = −23p∗(−

λ′

2
+

5(3 − u)
2

, g1)

look like

λ′
= 5(3 − u) − g1 − 1 ±

√
(g1 − 1)2 + 128, λ′

= 5(3 − u) = ζ ′

1. (3.1)

Let ζ ′

2, ζ
′

3 be the roots corresponding to plus and minus before the sign of the square root

ζ ′

2 =
g + 5(3 − u)

2
− 1 +

√
(
g + 5(u − 3)

2
+ 1)2 + 128, (3.2)

ζ ′

3 =
g + 5(3 − u)

2
− 1 −

√
(
g + 5(u − 3)

2
+ 1)2 + 128. (3.3)

Proposition 3.1. Root ζ ′

3 is positive at 0 ≤ u ≤
6
5 and negative at 13

5 < u < 3. Moreover the inequalities

ζ ′

2 > ζ ′

1 > 0, ζ ′

3 < ζ ′

1 (3.4)

are true

Proof. (3.4) follows from g > 21, 0 < u < 3 and g−5(3−u)
2 > 2. Further the inequality

ζ ′

3 < 5(3 − u) +
g + 5(u − 3)

2
− 1 −

g + 5(u − 3)
2

− 1 < 5(3 − u) − 2

means ζ ′

3 < 0 if u > 13
5 .

The condition of positivity of ζ ′

3 looks like

(
g + 5(3 − u)

2
− 1)2 > (

g + 5(u − 3)
2

+ 1)2 + 128.

That is

g(5(3 − u) − 2) > 128. (3.5)

It is easy to see that ζ ′

3 > 0 for 0 ≤ u ≤
6
5 since g ≥ 21, 5(3 − u) − 2 ≥ 7 and

g(5(3 − u) − 2) > 147. ■

It is easy to check that ζ ′

3 > 0 at u =
7
5 ,

8
5 ,

9
5 and ζ ′

3 < 0 at u = 2. A conjecture arises that ζ ′

3 > 0 at 0 ≤ u ≤
9
5 and ζ ′

3 < 0
at 2 ≤ u < 3.
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The neutrality condition 3e0 = 2e′ leads to

u =
3
4
(
5e0
e′

)
2
3 =

3
4
(
10
3

)
2
3 =

5
2
(
3
10

)
1
3 <

5
2
(
1
3
)
1
3 <

5
2
(1, 4)−1

=
25
14

<
9
5
.

Characteristic polynomials p∗2 of U∗2 and p′

2 of U ′

2 = u′−1U0
2 look like

p∗2(λ) = p∗(λ, g2), p′

2(λ) = p∗2(λ + u′′, g2).

Hence the roots of p′

2(λ
′) are found as follows

2λ′
= −2u′′

+ g2 + 1 ±

√
(g2 − 1)2 + 128, λ′

= −u′′
= ζ ′

4.

Let ζ ′

5, ζ
′

6 be the roots corresponding to plus and minus before the sign of the square root.

Proposition 3.2. ζ ′

5 < 0 and ζ ′

5 > 0 at 0 < u ≤ 2, 14
5 ≤ u < 3, respectively. Moreover ζ ′

4 < 0, ζ ′

6 < 0 and |ζ ′

4| < |ζ ′

6|,
|ζ ′

5| < |ζ ′

6|, ζ
′

5 > ζ ′

4.

Proof. We have

2ζ ′

5 = g ′′
− u′′

+ 1 +

√
(g ′′ + u′′ − 1)2 + 128,

2ζ ′

6 = g ′′
− u′′

+ 1 −

√
(g ′′ + u′′ − 1)2 + 128.

Then ζ ′

4, ζ
′

6 < 0 since g ′′
+ 1⟨0, u′′

⟩0, ànd ζ ′

5 > 0 if

(|g ′′
| − u′′

+ 1)2 + 128 > (|g ′′
| + u′′

− 1)2, 4(u′′
− 1)|g ′′

| < 128. (3.6)

This is true if u′′
= 5(3− u) ≤ 1 that is u ≥

14
5 . Let us show that ζ ′

5 < 0 at the interval [0, 2] that is the inverse to (3.6) holds

(|g ′′
| − u′′

+ 1)2 + 128 < (|g ′′
| + u′′

− 1)2, 4(u′′
− 1)|g ′′

| > 128. (3.7)

This inequality is true at u = 0, 2. This follows that at these values of u it coincides with

56|g ′′
| > 128, 16|g ′′

| > 128,

respectively. These inequalities are true since at these values of u

g∗ = 5, |g ′′
| = 8 + 2g∗ = 18; g∗ = 15

√
3a > 25, |g ′′

| = 8 + 30
√
3 > 58. (3.8)

(3,7) is valid at the interval [0, 2]. This is checked substituting the minimum of |g ′′
|, u′′ at it into (3.7). We also have ζ ′

5 > ζ ′

4
since

2(ζ ′

5 − ζ ′

4) = g ′′
+ u′′

+ 1 +

√
(g ′′ + u′′ − 1)2 + 128,

implying for g ′
+ u′′ < 0

2(ζ ′

5 − ζ ′

4) > g ′′
+ u′′

+ 1 + |g ′′
+ u′′

− 1| > 0. ■

The roots of p′

3 are given by

2λ = g ′
+ 1 ±

√
(g ′ − 1)2 + 128, λ = 0 = ζ ′

7.

Let ζ ′

8, ζ
′

9 be the roots corresponding to plus and minus before the sign of the square root.

Proposition 3.3. Eigenvalues ζj of the nine-dimensional matrix

U0
= U0

1 ⊕ U0
2 ⊕ U0

3

are determined in the previous propositions and by the following relations

ζj = u′ζ ′

j , j = 1, . . . , 9, ζ ′

7 = 0, ζ8 > 0,

ζ9 < 0 at 0 < u < 9
4 , ζ9 > 0 at 9

4 < u < 3 and ζ9 = 0 at u =
9
4 .

Proof. We have

2ζ ′

8 = g ′
+ 1 +

√
(g ′ − 1)2 + 128,

2ζ ′

9 = g ′
+ 1 −

√
(g ′ − 1)2 + 128.
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It is obvious that ζ ′

8 > 0 since g ′ > −3 and the square root is greater than 2. It is obvious also that ζ ′

9 < 0 if

(g ′
− 1)2 + 128 > (g ′

+ 1)2, 4g ′ < 128,

that is

g ′ < 32, g∗ < 40.

This is true if 0 < u < 9
4 = u0, (5−1g∗(u0))2 =

27
(3−u0)3

= 64. ζ ′

9 > 0 if g∗ > 40, 9
4 < u < 3 and ζ ′

9 = 0 if g∗ = 40, u =
9
4 . ■

Proposition 3.4. The inequalities ζj < ζ2 for j ̸= 5 and ζ5 < ζ2 are true for 0 < u < 3 and 0 < u < 2, respectively. Moreover
(3.9) holds for 0 < u < 3,

ζ ′

8 < ζ ′

2, ζ ′

9 < ζ ′

2. (3.9)

ζ8 < ζ1, ζ9 > ζ4 > ζ6 are true for 0 < u < 1 and ζ ′

8 > ζ ′

1 = u′′ holds for 2 ≤ u < 3.

Proof. We have
g ′

− 1
2

=
g∗

2
−

9
2
,

g + 5(u − 3)
2

+ 1 >
g∗

2
+

3
2
,

g + 5(3 − u)
2

− 1 >
g∗

2
+ 7.

From these relations one deduces (3.9). Besides ζ ′

8 < ζ ′

1 = u′′
= 5(3 − u) and ζ ′

9 > ζ ′

4 = −u′′ for 0 ≤ u ≤ 1 since

2(ζ ′

8 − ζ ′

1) = g ′
− 2u′′

+ 1 +

√
(g ′ − 1)2 + 128 < 0,

2(ζ ′

9 − ζ ′

4) = g ′
+ 2u′′

+ 1 −

√
(g ′ − 1)2 + 128 > 0,

−3 ≤ g ′
≤ −8+5

√
27
8 ≤ 2 and 10 ≤ u′′

≤ 15.We derive also relying on (3.8) the inequality ζ ′

8 > ζ ′

1 = u′′ for 2 ≤ u < 3. ■

Let us consider

2(ζ ′

5 − ζ ′

9) = −g∗ − u′′
+

√
(g ′′ + u′′ − 1)2 + 128 +

√
(g ′ − 1)2 + 128.

For u = 0, 1 the sum of first two terms are greater than−20while the sum of the square roots exceeds 22 and the right-hand
side is greater than zero. The same is true for u ≥ 2 ((3.8) and u′′

≤ 5 are taken into account). That is we expect that ζ ′

5 > ζ ′

9.
We see also that there is the point at (0.3) at which ζ1 = ζ8.

The result about absence of resonances between ζ2 and other ζj allows one to apply the center Lyapunov theorem after
the elimination of node if all ζj, j ̸= 7 are non-zero. This condition is satisfied for 0 < u ≤

6
5 . Note that we have to rely also

on the well-known fact that the eigenvalues λj of the linear part of the Coulomb Hamiltonian vector field, i.e. canonical
matrix, are given by λj = ±

√
−ζj [1].

4. Elimination of node. Main result

Now we begin to apply the technique of the elimination of node. Let

x21 = x1, x22 = x2, x23 = x3, x11 = x4, x12 = x5, x13 = x6, x31 = x7, x32 = x8, x33 = x9 (4.1)

and the same numeration be true for momenta. Then the angular moment (the integral of motion corresponding to the
rotation around the second coordinate axis) is given by

Q =

3∑
j=1

(x3j p
1
j − x1j p

3
j ) =

6∑
j=4

(x3+jpj − p3+jxj).

Further the upper index will show a power. The generating function w(u(9), p(9)) of the canonical transformation (1.2)
with xj = uj, j = 1, 2, 3 is given by

w =

9∑
j=4

gk(u(9\3))pk + u1p1 + u2p2 + u3p3,

where (9 \ 3) = 4, . . . , 9. Let Q = v9 then (1.3) results in
9∑

j=4

∂gk
∂u9

pk =

6∑
j=4

(gj+3pj − gjpj+3),
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or
∂gk
∂u9

= gk+3,
∂gk+3

∂u9
= −gk, k = 4, 5, 6.

The partial solution is given by

g4 = u4c, g7 = −u4s, g5 = u5c + u6s, g8 = −u5s + u6c,

g6 = u7c + u8s, g9 = −u7s + u8c, c = cosu9, s = sinu9.

This solution is generated by the non-singular canonical transformation if u4 ̸= 0 since

DetW = DetG, Wk,j =
∂2w

∂uk∂pj
, Gj,k =

∂gj
∂uk

.

It is not difficult to check that DetG = DetG∗, |DetG∗| = |u4|, where

G∗j,k = Gj+3,k+3, G∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c 0 0 0 0 −u4s
−s 0 0 0 0 −u4c
0 c s 0 0 −u5s + u6c
0 −s c 0 0 −u5c − u6s
0 0 0 c s −u7s + u8c
0 0 0 −s c −u7c − u8s

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

G∗ is obtained from G by changing the order of rows through the rule: 4 → 2, 2 → 3, 3 → 5, 5 → 4. One has to take into
account that a determinant is multiplied by minus one if a row indexed by k becomes a row indexed by k+ 1 or k− 1. DetG∗

is easily calculated expanding it in the elements of the first and second rows

DetG∗ = cDet

⎛⎜⎜⎜⎜⎝
0 0 0 0 −u4c
c s 0 0 −u5s + u6c

−s c 0 0 −u5c − u6s
0 0 c s −u7s + u8c
0 0 −s c −u7c − u8s

⎞⎟⎟⎟⎟⎠ + u4sDet

⎛⎜⎜⎜⎜⎝
−s 0 0 0 0
0 c s 0 0
0 −s c 0 0
0 0 0 c s
0 0 0 −s c

⎞⎟⎟⎟⎟⎠

= −c2u4Det

⎛⎜⎜⎝
c s 0 0

−s c 0 0
0 0 c s
0 0 −s c

⎞⎟⎟⎠ − s2u4Det

⎛⎜⎜⎝
c s 0 0

−s c 0 0
0 0 c s
0 0 −s c

⎞⎟⎟⎠ = −u4.

As a result

xj = uj, j = 1, 2, 3; x4 = u4c, x7 = −u4s, x5 = u5c + u6s, x8 = −u5s + u6c, (4.2)

x6 = u7c + u8s, x9 = −u7s + u8c, c = cosu9, s = sinu9. (4.3)

From (4.2) one obtains

v4 = cp4 − sp7, v5 = cp5 − sp8, v6 = sp5 + cp8,

v7 = cp6 − sp9, v8 = sp6 + cp9, vj = pj, j = 1, 2, 3.

Let

v0 = sp4 + cp7

then

p4 = cv4 + sv0, p7 = cv0 − sv4, p5 = cv5 + sv6, p8 = cv6 − sv5,

p6 = cv7 + sv8, p9 = cv8 − sv7

and

Q = v9 = Q0 − u4v0, Q0 = u6v5 − u5v6 + u8v7 − u7v8, v0 = u−1
4 (Q0 − v9).

From these equalities one derives

v2
5 + v2

6 = p25 + p28, v2
0 + v2

4 = p24 + p27, v2
7 + v2

8 = p26 + p29.
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The squared Euclidean norms of the re-numerated charge coordinates are represented by

x24 + x27 = u2
4, x25 + x28 = u2

5 + u2
6, x26 + x29 = u2

7 + u2
8.

The squared Euclidean distances in re-numerated variables between three charges are given by

(x4 − x5)2 + (x7 − x8)2 = (u5 − u4)2 + u2
6,

(x4 − x6)2 + (x7 − x9)2 = (u7 − u4)2 + u2
8,

(x5 − x6)2 + (x8 − x9)2 = (u7 − u5)2 + (u8 − u6)2.

The new Hamiltonian in the new variables is given by (w does not depend on t)

H ′
= (2m)−1

8∑
j=1

v2
j + (2mu2

4)
−1(Q0 − v9)2 + U ′(u(8)), (4.4)

U ′(u(8)) = e20[((u1 − u2)2 + (u5 − u4)2 + u2
6)

−
1
2 + ((u1 − u3)2 + (u7 − u4)2 + u2

8)
−

1
2

+ ((u3 − u2)2 + (u7 − u5)2 + (u6 − u8)2)−
1
2 ]

− e0e′
[(u2

4 + (b − u1)2)−
1
2 + (u2

5 + u2
6 + (b − u2)2)−

1
2 + (u2

7 + u2
8 + (b − u3)2)−

1
2 ]

− e0e′
[(u2

4 + (b + u1)2)−
1
2 + (u2

5 + u2
6 + (b + u2)2)−

1
2 + (u2

7 + u2
8 + (b + u3)2)−

1
2 ].

The equilibrium in new variables is determined by vs = 0, s = 1, . . . , 9 and

u4 = −a, u7 = a, uj = 0, j ̸= 4, 7, u9 = ξ .

The variable u9 is cyclic. Since v9 = Q = const we have

u̇9 =
∂H ′

∂v9
= (mu2

4)
−1(Q − Q0), v̇9 = 0. (4.5)

The last two equations correspond to the zero eigenvalue of the canonical matrix of the Hamiltonian H and are easily
integrated since the right-hand side of the equation for u9 in (4.5) is a holomorphic function at the equilibrium.

Making the translation u4 → u4 + a, u7 → u7 − awe can apply the Lyapunov center theorem to the set of Eqs. (1.4) with
the Hamiltonian H ′ in (4.4) which is a holomorphic function in a neighborhood of the origin.

The center Lyapunov theorem, the four propositions of the previous section andTheorem1.1 imply the following theorem.

Theorem 4.1. Let u be such that all ζj, j ̸= 7 are non-zero. Let also 0 < u ≤ 2 or 2 < u < 3 and ζ5
ζ2

̸= n2, where n is
an integer. Then equation of motion (1.4) for n = 9, v9 = Q 0

= 0 and H ′, given by (4.4), which corresponds to the Coulomb
equation of motion (1.1) for N = 3, d = 3, the potential energy (2.1), possesses a periodic solution. It and its period τ (c) are
holomorphic functions in the parameter c at the origin and τ (0) = 2π

√
m
ζ2
. Moreover this solution generates the quasi-periodic

solution of (1.1) given by (1.5) with n = 9, where γ , γ ′, γ ′′ correspond to (4.1)–(4.3), such that the Euclidean norm |xj|2 is a
periodic function.

5. Conclusion

We formulated our main result in Theorem 4.1. In other words we established the existence of quasi-periodic solutions
of the Coulomb equation of motion whose Euclidean norms are periodic functions for the considered Coulomb systems. We
found the explicit form of eigenvalues of the matrix U0 of second derivatives of the potential energy at the equilibrium. This
enabled us to avoid a resonance between them and apply the center Lyapunov theorem and Theorem 1.1 for the proof of the
main result.

We hope that this result will help to understand better the corresponding quantum system and find a connection of a
discrete spectrum of the quantum Hamiltonian and the found periodic solutions of the classical Coulomb systems.

Appendix

Here we prove the third and second statements of Theorem 1.1. We deal with the Hamiltonian H in R2n which is a
holomorphic function at its equilibrium q0

H(q) =
1
2
(h0(q − q0), (q − q0)) + · · · , q = (x; p), x ∈ Rn, p ∈ Rn,
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where (.,.) is the Euclidean scalar product in R2n, h0 is a symmetric matrix and the three dots imply higher power terms in qj
in the Taylor expansion. The canonical matrix Jh0 is found from the linear part of the equation of motion q̇ = J∂H , where

J =

(
0 −I
I 0

)
.

I is the n × n unit matrix and ∂ is the vector of first partial derivatives. The direct and inverse canonical transformations of
q(n) = (x, p)(n) into q′

(n) = (x′, p′)(n) are given by

q′

j − q′0
j =

2n∑
k=1

M−1
j,k (qk − q0k) + · · · , qj − q0j =

2n∑
k=1

Mj,k(q′

k − q′0
k ) + · · · ,

whereMj,k is an invertiblematrix of the linear symplectic transformation inR2n and q′0 is the new equilibrium. IfM∗j,k = Mk,j
then (see the sections 2 and 15 in [7])

H ′(q′) =
1
2
(h′0(q′

− q′0), q′
− q′0) + · · · ,

where

h′0
= M∗h0M, M∗JM = J, J = −J−1

and J determines the symplectic structure in R2n. This yields

− Det(λI − Jh0) = Det(λJ + h0) = (DetM)−2Det(λJ + h′0).

That is the characteristic polynomials of the canonical matrices of the transformed and initial Hamiltonians have the same
roots.

Statement 2 follows from v̇n = 0, the fact that the characteristic polynomial of a canonical matrix is an even function in
the spectral parameter λ (see section 15 in [7]) and the fact that the characteristic polynomial of Jh0 is proportional to λ2. ■
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