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a b s t r a c t

In this work we study a particular class of Lie bialgebras arising from Hermitian structures
on Lie algebras such that the metric is ad-invariant. We will refer to them as Lie bialgebras
of complex type. These give rise to Poisson Lie groups G whose corresponding duals G∗
are complex Lie groups. We also prove that a Hermitian structure on g with ad-invariant
metric induces a structure of the same type on the double Lie algebra Dg = g ⊕ g∗,
with respect to the canonical ad-invariant metric of neutral signature on Dg. We show
how to construct a 2n-dimensional Lie bialgebra of complex type starting with one of
dimension 2(n − 2), n ≥ 2. This allows us to determine all solvable Lie algebras of
dimension ≤6 admitting aHermitian structurewith ad-invariantmetric.We present some
examples in dimensions 4 and 6, including two one-parameter families, where we identify
the Lie–Poisson structures on the associated simply connected Lie groups, obtaining also
their symplectic foliations.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The notion of Poisson Lie group was first introduced by Drinfeld [10] and studied by Semenov-Tyan-Shanskii [29] to
understand theHamiltonian structure of thehidden symmetry groupof a completely integrable system. These groups appear
in the theory of Poisson–Lie T-dual sigma models [16]. Lie bialgebras, the infinitesimal counterpart of Poisson Lie groups
(see [10,31]), are in a natural one-to-one correspondence with Lie algebra structures on the vector space Dg = g⊕ g∗ with
some compatibility conditions. Dg with this Lie algebra structure is called the double of the Lie algebra g. The classification
of Lie bialgebras for complex semisimple g was carried out in [7]. On the other hand, since non-semisimple Lie algebras
play an important role in physical problems, there is more recent work on the classification problem of low-dimensional Lie
bialgebras (see, for instance, [25] and the references therein).

The purpose of this paper is to study a particular class of Lie bialgebras arising from classical r-matrices of a special type
and to present some new examples of Poisson Lie groups in this setting. We obtain Poisson Lie groups such that their duals
turn out to be complex Lie groups. In fact, if J is a complex structure on a Lie algebra g, then a new bracket [·, ·]J can be
defined on g as follows:

[x, y]J = [Jx, y] + [x, Jy], x, y ∈ g,

and the integrability condition for J (see Section 2.2) implies that [·, ·]J satisfies the Jacobi identity, that is, J is a classical
r-matrix on g (see Lemma 3). Moreover, gJ := (g, [·, ·]J) is a complex Lie algebra. If g carries also an ad-invariant metric g
such that (J, g) is a Hermitian structure, then g admits a Lie bialgebra structure. Such a Lie bialgebra will be called of complex
type. We prove that the Lie algebra structure on the dual g∗ is isomorphic to gJ , and therefore g∗ is a complex Lie algebra. This
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implies that the simply connected Poisson Lie group G associated to the Lie bialgebra g has the remarkable property that its
dual Poisson Lie group G∗ is a complex Lie group. Furthermore, we prove that the double Lie algebra Dg admits a complex
structure J (induced by J), such that (J, 〈· , ·〉) is a Hermitian structure on Dg, where 〈· , ·〉 is the canonical ad-invariant
metric of neutral signature on Dg. It turns out that when g is a Lie bialgebra of complex type, then so is Dg.

Also, beginning with a Lie algebra g equipped with a Hermitian structure such that the metric is ad-invariant, we can
apply, under certain conditions, the double extension method (see [13,15,23]) in order to construct a new Lie algebra of
dimension dim g+ 4 endowed with a similar structure. This construction leads us to determine all solvable Lie algebras of
dimension≤6 admitting a Hermitian structure with ad-invariant metric.

The paper is organized as follows. In Section 2.1 we define Lie bialgebras, Poisson Lie groups and recall from [2] how to
obtain a Lie bialgebra from a classical r-matrix. Section 2.2 is devoted to preliminary results on the complex Lie algebra gJ
constructed from a complex structure J on g and in Section 2.3 we define metric Lie algebras and discuss some properties of
Hermitian structures with ad-invariant metrics.

In Section 3 we prove that every Hermitian structure with ad-invariant metric gives rise to a Lie bialgebra of complex
type. In this case, we show that the double Lie algebraDg also has such a structure.We obtain, as a corollary, that a complex
structure on g induces a Lie bialgebra structure of complex type on the double D(T ∗g) of the cotangent Lie algebra T ∗g. We
provide several examples startingwith solvable Lie algebras. In case g is compact semisimple, we show that our construction
yields a Lie bialgebra which is not equivalent to the standard one obtained by [21].

Section 4 is devoted to the study of Lie bialgebras of complex type obtained by a double extension process. By applying
this constructionwe can prove that every solvablemetric Lie algebra of dimension atmost 6withmetric of signature (2r, 2s)
admits a Lie bialgebra structure of complex type.

In the last sectionwe study the simply connected Poisson Lie groups associated to some Lie bialgebras of complex type in
dimension 4 and 6, obtaining also their symplectic foliations. We get a linearizable Poisson structure on R4 and we exhibit
two one-parameter families {Πλ

1 }, {Π
λ
2 } of Lie–Poisson structures on R6 (λ > 0) such that Πλ

1 is not equivalent to Πλ
2 for

each λ > 0, but as λ→ 0 these families converge to the same Poisson structureΠ0. When λ→∞we have an analogous
situation, with both families converging to the same Poisson structure Π∞. We point out that the structures Π0 and Π∞
on R6 are not equivalent. On the other hand, there is a unique nilpotent Lie algebra of dimension 6 admitting Lie bialgebra
structures of complex type, giving rise to Lie–Poisson structures on R6 which cannot be obtained as deformations of the
previous ones.

2. Preliminaries and basic results

2.1. Lie bialgebras and Poisson Lie groups

Let g be a real Lie algebra and δ : g →
∧2

g a 1-cocycle with respect to the adjoint representation. The pair (g, δ) is
called a Lie bialgebra if δ∗ :

∧2
g∗ → g∗ induces a Lie algebra structure on g∗ (see [10]).

Amultiplicative Poisson structure on a Lie group G is a smooth sectionΠ of
∧2 TG such that the following conditions are

satisfied:

(1) {f , g} := 〈df ∧ dg,Π〉 defines a Lie bracket on C∞(G,R);
(2) the multiplicationm : G×G→ G is a Poisson mapping, that is, the pull back mappingm∗ : C∞(G,R)→ C∞(G×G,R)

is a homomorphism for the Poisson brackets.1

A Lie group equipped with a multiplicative Poisson structure is called a Poisson Lie group.
If G is a connected, simply connected Lie group with Lie algebra g, there is a one-to-one correspondence between

multiplicative Poisson structures on G and Lie bialgebra structures δ on g (see [11]). The correspondence is established
as follows:

(dΠ)e = δ. (1)

We will say that a linear operator r ∈ End(g) is a classical r-matrix if the g-valued skew-symmetric bilinear form on g

given by

[x, y]r = [rx, y] + [x, ry]

is a Lie bracket, that is, it satisfies the Jacobi identity. g equipped with the Lie bracket [·, ·]r will be denoted by gr . The next
result is a consequence of [2, Corollary 2.9] (see also [28]):

Proposition 1. If r is a classical r-matrix and g admits a non-degenerate symmetric ad-invariant bilinear form such that r is
skew-symmetric, then r gives rise to a Lie bialgebra (g, δr).

1We recall that the Poisson bracket on C∞(G× G,R) is defined by

{f , g}(x, y) = {f (x, ·), g(x, ·)}(y)+ {f (·, y), g(·, y)}(x), x, y ∈ G.
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The 1-cocycle δr above is defined as follows. Let g be a non-degenerate symmetric ad-invariant bilinear form on g such
that r is skew-symmetric. We consider the metric g on g as a linear isomorphism g : g → g∗, g(x)(y) = g(x, y). Via this
isomorphism, the Lie bracket [·, ·]r on gr induces a Lie bracket [·, ·]∗ on (gr)∗ = g∗, given as follows:

[α, β]∗ = g([g−1α, g−1β]r), α, β ∈ g∗.

We denote by δr : g→
∧2

g the dual of [·, ·]∗. If we look upon R := r ◦ g−1 as an element in
∧2

g, we observe that (g, δr)
is an exact Lie bialgebra, since

δr(x) = ad(x)R for all x ∈ g,

that is, δr is a coboundary.
For a Lie bialgebra coming froma classical r-matrix r , the corresponding Poisson structure onG given by (1) is the bivector

field
←

R −
→

R , where
←

R (resp.
→

R ) is the left (resp. right) invariant bivector field on G whose value at the identity e of G is
R = r ◦ g−1 (see [2,8]).

In Section 3 we will apply the above proposition to the particular case when the r-matrix is a complex structure on the
Lie algebra.

Remark 2. Given a bivector R ∈
∧2

g, the coboundary δR defined by δR(x) = ad(x)R for x ∈ g induces a Lie bialgebra
structure on g if and only if the Schouten bracket2 [R, R] is ad(g)-invariant:

[R, R] ∈
(∧3

g

)g

.

When R satisfies this condition we say that R is a solution of themodified Yang–Baxter equation (MYBE). In particular, this is
trivially satisfied when [R, R] = 0, which is known as the classical Yang–Baxter equation (CYBE).

If g admits ametric as above and r = R◦g ∈ End(g), then theMYBE and the CYBE in terms of r are equivalent, respectively,
to:

[x, Br(y, z)] + [y, Br(z, x)] + [z, Br(x, y)] = 0, x, y, z ∈ g,

Br(x, y) = 0, x, y ∈ g,

where

Br(x, y) := [rx, ry] − r ([x, y]r) .

2.2. Complex structures as r-matrices and associated Lie algebras

A complex structure on a real Lie algebra g is an endomorphism J of g satisfying J2 = −id and the integrability condition
NJ ≡ 0, where

NJ(x, y) = [Jx, Jy] − [x, y] − J[Jx, y] − J[x, Jy] for x, y ∈ g. (2)

IfG is a Lie groupwith Lie algebra g, by left translating the endomorphism J weobtain a complexmanifold (G, J) such that left
translations are holomorphic maps. We point out that (G, J) is not necessarily a complex Lie group since right translations
are not in general holomorphic.

Let gC denote the complexification of g, then we have a splitting

gC
= g1,0 ⊕ g0,1,

where g1,0 (resp. g0,1) is the eigenspace of J of eigenvalue i (resp.−i). It follows that

g1,0 = {x− iJx : x ∈ g}, g0,1 = {x+ iJx : x ∈ g},

hence g0,1 = σ(g1,0), where σ : gC
→ gC is conjugation with respect to the real form g, that is, σ(x+ iy) = x− iy, x, y ∈ g.

The integrability of J is equivalent to the fact that both, g1,0 and g0,1, are complex Lie subalgebras of gC. When g1,0 is abelian
J is called an abelian complex structure (see [3]) and it follows that g0,1 is also abelian. This is equivalent to the condition
[Jx, Jy] = [x, y], x, y ∈ g.

When g1,0 is an ideal of gC, then g0,1 is also an ideal and (g, J) is called a complex Lie algebra. In this case, ad(x), x ∈ g,
are complex linear maps:

ad(x) ◦ J = J ◦ ad(x). (3)

IfG is a connected Lie groupwith Lie algebra g and (G, J) is the complexmanifold obtained by left translating J , the above con-
dition is equivalent to (G, J) being a complex Lie group, that is, both, right and left translations on G are holomorphic maps.

2 For the definition and properties of the Schouten bracket see, for instance, [17].
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We will say that two complex structures J1, J2 on g are equivalent if there exists a Lie algebra automorphism ϕ : g→ g

such that ϕ ◦ J1 = J2 ◦ ϕ.
As a consequence of the integrability condition of a complex structure J we obtain the following lemma (see also [5,18]).

Lemma 3. If J is a complex structure on g then J is a classical r-matrix. Moreover, (gJ , J) is a complex Lie algebra.

Proof. Using that NJ ≡ 0 (see (2)), we compute

J[x, y]J = J([Jx, y] + [x, Jy]) = −[x, y] + [Jx, Jy],
[x, Jy]J = [Jx, Jy] + [x, J(Jy)] = [Jx, Jy] − [x, y],

therefore

J[x, y]J = [x, Jy]J . (4)

Setting adJ(x) = [x, ·]J , (4) says that adJ(x) satisfies (3) for all x ∈ gJ , in other words, (gJ , J) is a complex Lie algebra and the
lemma follows. �

Lemma 4. (1) gJ is an abelian Lie algebra if and only if J is an abelian complex structure.
(2) (g, J) is a complex Lie algebra if and only if it is isomorphic to (gJ , J).
(3) (g, J) is a complex Lie algebra if and only if adJ(x) = 2J ◦ ad(x) for any x ∈ g.

Proof. Assertion (1) is straightforward from the definition of [·, ·]J .
To prove (2), assume first that (g, J) is a complex Lie algebra. Then

[x, y]J = 2J[x, y], x, y ∈ g.

It follows that ϕ = − 1
2 J is a Lie algebra isomorphism from g onto gJ that commutes with J .

The converse follows from Lemma 3.
The only if part of (3) is straightforward. To prove the converse, assume that adJ(x) = 2 J ◦ ad(x) for any x ∈ g. Therefore,

ad(x) = −
1
2
J ◦ adJ(x),

and composing with J on the left we obtain

J ◦ ad(x) =
1
2

adJ(x) = −
1
2

adJ(x) ◦ J2 = −
1
2
J ◦ adJ(x) ◦ J = ad(x) ◦ J,

where the third equality follows from Lemma 3. Hence, (g, J) is a complex Lie algebra. �

The next proposition gives a complex Lie algebra isomorphism between (gJ , J) and g1,0 (see also [18]).

Proposition 5. If J is a complex structure on g, then (gJ , J) and g1,0 are isomorphic as complex Lie algebras.

Proof. Consider g as a complex vector space with multiplication by i given by the endomorphism J . Let ϕ : gJ → g1,0 be the
complex linear map defined as follows:

ϕ(x) = i(x− iJx) = (J + i id)(x), x ∈ gJ ,

where id is the identity operator. It is easily checked that ϕ is a Lie algebra isomorphism, where the Lie bracket on g1,0 is the
complex bilinear extension of [·, ·]. �

Remark 6. (i) Observe that in the above proposition J − i id gives an isomorphism between gJ and g0,1.
(ii) We point out that if g is a solvable (resp. nilpotent) Lie algebra with a complex structure J , then gJ is solvable (resp.
nilpotent). The converse is not true, that is, we can obtain a solvable Lie algebra gJ starting from a non-solvable Lie algebra
g. We recall from [30] the definition of a regular complex structure on a reductive Lie algebra g. A complex structure J on g

is called regular if there exists a σ -stable Cartan subalgebra h of gC such that [h, g1,0] ⊂ g1,0, where σ is conjugation in gC

with respect to g. If g is a product of an abelian ideal and a semisimple ideal s, it was shown in [30] that when the simple
factors in s are compact or belong to the following list:

sl(2,R), sp(2n,R), so∗(2n), e6(−14), e6(2), any real form of: e7, e8, f4, g2,

then any complex structure J on g is regular and satisfies u ⊂ g1,0 ⊂ b for some Borel subalgebra b of gC with unipotent
radical u. Therefore, gJ ∼= g1,0 is always solvable.

On the other hand, if g is a real non-compact semisimple Lie algebra with a compact Cartan subalgebra or a real split
semisimple Lie algebra, it follows from results of [19] that for the canonical Koszul operator J on g, gJ is also solvable.

The next result is a straightforward consequence of Proposition 5.

Corollary 7. If J1 and J2 are equivalent complex structures on g, then gJ1 is isomorphic to gJ2 .
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2.3. Metric Lie algebras and Hermitian structures

A metric on g is a non-degenerate symmetric bilinear form on g. A Hermitian structure (J, g) on g is a pair of a complex
structure J and a metric g on g such that J is skew-symmetric. We will say that two Lie algebras with Hermitian structures
(g1, J1, g1) and (g2, J2, g2) are equivalent if there exists a Lie algebra isomorphism ϕ : g1 → g2 which is also an isometry
between g1 and g2 satisfying ϕ ◦ J1 = J2 ◦ ϕ.

Ametric Lie algebra is a pair (g, g) of a Lie algebra g equippedwith an ad-invariantmetric g , that is, the following condition
holds for all x, y, z ∈ g:

g([x, y], z) = g(x, [y, z]).

Equivalently, the endomorphisms ad(x) are skew-symmetric for all x ∈ g. Note that in this case g is unimodular (i.e.,
tr(ad(x)) = 0 for all x ∈ g). The Killing form on a semisimple Lie algebra is an example of an ad-invariant metric. However,
for non-semisimple Lie algebras, there are obstructions for the existence of ad-invariant metrics: for instance, if such a
metric exists, then z⊥ = [g, g], where z denotes the centre of g. In particular, we have that dim z + dim[g, g] = dim g, so
that a solvable Lie algebra with trivial centre cannot admit an ad-invariant metric. The metric Lie algebra (g, g) is called
indecomposable if every proper ideal of g is degenerate.

We will study Hermitian structures (J, g) on g where g is ad-invariant. First, we prove some results which impose
restrictions on the complex structure or the metric. The next lemma gives a necessary condition on the signature of the
metric. It can be shown by induction on dim V and its proof is omitted.

Lemma 8. Let V be a real vector space with a Hermitian structure (J, g). Then the signature of g is of the form (2r, 2s), 2r+2s =
dim V .

Proposition 9. Let g be a Lie algebra endowed with a Hermitian structure (J, g) such that the metric g is ad-invariant. If any of
the conditions (i)– (iii) below holds, then g is abelian.

(i) The Kähler form ω on g defined by ω(x, y) = g(Jx, y) is closed.
(ii) J is abelian.
(iii) J ◦ ad(x) = ad(x) ◦ J for all x ∈ g.

Proof. (i) Suppose that the 2-form ω is closed, so that

ω([x, y], z)+ ω([y, z], x)+ ω([z, x], y) = 0 for all x, y, z ∈ g.

Since g is ad-invariant and J skew-symmetric, from the definition of ω we obtain

ω([x, y], z) = g(J[x, y], z), ω([y, z], x)
= g(z, [y, Jx]), ω([z, x], y) = −g(z, [x, Jy]),

so that

g(J[x, y] − [Jx, y] − [x, Jy], z) = g(J[Jx, Jy], z) = 0

for all x, y, z ∈ g, where we have used the integrability of J . Since g is non-degenerate, we have that [Jx, Jy] = 0 for all
x, y ∈ g, and hence g is abelian.
(ii) Let us assume now that J is abelian. Then

g([Jx, y], z) = −g(y, [Jx, z])
Ď
= g(y, [x, Jz]) = g(J[x, y], z),

where in equality (Ď)we have used the fact that J is abelian. Since g is non-degenerate, we have that J[x, y] = [Jx, y] for all
x, y ∈ g, and from this we obtain easily that [Jx, y] = [x, Jy]. However, [Jx, y] = −[x, Jy] as J is abelian, and hence [Jx, y] = 0
for all x, y and g is abelian.
(iii) Suppose now that J ◦ ad(x) = ad(x) ◦ J , or equivalently, J[x, y] = [Jx, y] for all x, y ∈ g. Then we have

g([Jx, y], z) = −g(y, [Jx, z]) = −g(y, J[x, z]) = −g([x, Jy], z),

so that [Jx, y] = −[x, Jy] and therefore J is abelian. From (ii) g is abelian. �

3. Lie bialgebras and Hermitian structures

Let g be a Lie algebra with a Hermitian structure (J, g). We consider the metric g on g as a linear isomorphism g : g→
g∗, g(x)(y) = g(x, y). Via this isomorphism, the Lie bracket [·, ·]J on gJ induces a Lie bracket [·, ·]∗ on (gJ)∗ = g∗, given as
follows:

[α, β]∗ = g([g−1α, g−1β]J), α, β ∈ g∗
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and J induces an endomorphism J∗ : g∗ → g∗,

J∗α = −α ◦ J, α ∈ g∗. (5)

We denote by δJ : g→ g ∧ g the dual of [·, ·]∗.

Theorem 10. Let (J, g) be a Hermitian structure on g such that g is ad-invariant. Then (g, δJ) is a Lie bialgebra such that
(g∗, [·, ·]∗, J∗) is a complex Lie algebra isomorphic to (gJ , [·, ·]J , J). In particular, if G and G∗ are the corresponding simply
connected Poisson Lie groups, then G∗ is a complex Lie group.

Proof. The fact that (g, δJ) is a Lie bialgebra is a consequence of Proposition 1. It follows from [2, Proposition 2.8] that
(g∗, [·, ·]∗) ∼= (gJ , [·, ·]J). Moreover, since J∗ ◦ g = g ◦ J , Lemma 3 implies that

(g∗, [·, ·]∗, J∗) ∼= (gJ , [·, ·]J , J)

as complex Lie algebras. �

A Lie bialgebra of the form (g, δJ) as above will be called a Lie bialgebra of complex type and a Poisson Lie group
corresponding to it, a Poisson Lie group of complex type.

Example 11. The cotangent Lie algebra T ∗h of a Lie algebra h is defined as the semidirect product T ∗h := hncoad h∗. If H
denotes the simply connected Lie group with Lie algebra h, the cotangent bundle T ∗H has a natural Lie group structure
with corresponding Lie algebra T ∗h. There is a canonical ad-invariant metric of neutral signature 〈· , ·〉 on T ∗h, defined as in
(6) below. According to Theorem 10, every skew-symmetric complex structure on T ∗h determines a multiplicative Poisson
structure on T ∗H such that (T ∗H)∗ is a complex Lie group. It should be pointed out that Hermitian structures (J, 〈· , ·〉) on
T ∗h are in one-to-one correspondence with left invariant generalized complex structures on H , as shown in [1].

It is well known [10] that given a Lie bialgebra (g, δ), the vector space Dg = g ⊕ g∗ becomes a Lie algebra with the
following bracket:

[(x, α), (y, β)] =
(
[x, y] + coad∗(α)y− coad∗(β)x, [α, β]∗ + coad(x)β − coad(y)α

)
,

for x, y ∈ g, α, β ∈ g∗, where coad stands for the coadjoint representation of g on g∗, and coad∗ stands for the coadjoint
representation of g∗ on g. Note that both g and g∗ are subalgebras ofDgwith this Lie bracket. There is a canonical ad-invariant
metric 〈· , ·〉 of neutral signature on Dg given by

〈(x, α), (y, β)〉 = α(y)+ β(x) (6)

for x, y ∈ g, α, β ∈ g∗. Given an almost complex structure J on g we define an almost complex structure J on Dg by

J(x, α) = (Jx, J∗α), (7)

where J∗ is defined as in (5). Note that J is skew-symmetric with respect to the metric (6) and that both subalgebras, g and
g∗, are J-invariant.

When the bialgebra structure on g is trivial, that is, δ = 0, the Lie algebra Dg is the cotangent Lie algebra T ∗g. It was
proved in [4] that if J is a complex structure on g and we define J as in (7), then J is a complex structure on the cotangent
algebra T ∗g. Moreover, (J, 〈· , ·〉) is a Hermitian structure on T ∗g, where 〈· , ·〉 is the canonical ad-invariant neutral metric.
More generally, we have:

Proposition 12. Let g be a Lie algebra with a Hermitian structure (J, g) such that g is ad-invariant and J the almost complex
structure defined in (7). Then J is integrable on Dg.

Proof. Since J is integrable on g, J∗ is integrable on g∗ (see Theorem 10) and both g and g∗ are subalgebras of Dg, we only
have to check that

NJ((x, 0), (0, β)) = 0, for all x ∈ g, β ∈ g∗.

To calculate NJ((x, 0), (0, β)) (see (2)), we do the following computations, using the definition of the Lie bracket:

[J(x, 0),J(0, β)] = (− coad∗(J∗β)(Jx), coad(Jx)(J∗β)),
[(x, 0), (0, β)] = (− coad∗(β)x, coad(x)β),
J[J(x, 0), (0, β)] = (−J coad∗(β)(Jx), J∗ coad(Jx)β),
J[(x, 0),J(0, β)] = (−J coad∗(J∗β)x, J∗ coad(x)J∗β).

Let us begin with the first coordinate; then, for ψ ∈ g∗, we compute

(coad∗(J∗β)(x))ψ = (−x ◦ ad∗(J∗β))ψ = −x([J∗β,ψ]∗)
= −x(J∗[β,ψ]∗) (since (g∗, J∗) is a complex Lie algebra)
= −J∗[β,ψ]∗(x) = [β,ψ]∗(Jx)
= (Jx)[β,ψ]∗ = −(coad∗(β)(Jx))ψ,
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and from this one easily verifies that the first coordinate of NJ((x, 0), (0, β)) vanishes. Let us compute now its second
coordinate. For v ∈ g, we have

(coad(Jx)(J∗β))v = −(J∗β)[Jx, v] = β(J[Jx, v])
= β([Jx, Jv] − [x, v] − J[x, Jv]) (using that NJ ≡ 0)
= J∗(coad(Jx)β)v + (coad(x)β)v + (J∗ coad(x)J∗β)v,

and from this we get that the second coordinate of NJ((x, 0), (0, β)) also vanishes. Therefore, NJ ≡ 0. �

Proposition 12 implies that (J, 〈· , ·〉) is a Hermitian structure on Dg, therefore, Theorem 10 yields:

Corollary 13. (1) Under the same hypotheses of the previous proposition, (Dg, δJ) is a Lie bialgebra of complex type.
(2) If J is a complex structure on an arbitrary Lie algebra g and 〈· , ·〉 is the canonical ad-invariant neutral metric on T ∗g, then

(J, 〈· , ·〉) is a Hermitian structure on T ∗g. In particular, D (T ∗g) is a Lie bialgebra of complex type.

Proof. The first assertion is a consequence of Proposition 12. For (2), use the fact that J defined as in (7) is a complex
structure on T ∗g (see [4]) and therefore (J, 〈· , ·〉) is a Hermitian structure on T ∗g. The second assertion now follows by
applying (1). �

Example 14. Let aff(R) be the non-abelian real 2-dimensional Lie algebra and let g := L2(1, 1) denote its cotangent Lie
algebra (see Example 11), which has a basis {e1, . . . , e4} such that the non-vanishing Lie bracket relations are

[e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e4. (8)

Let (J, g) be the Hermitian structure on g with ad-invariant g given by

Je1 = e2, Je3 = −e4,
g(e1, e4) = g(e2, e3) = 1,

(see [24]).
The Lie bracket [·, ·]J is given by

[e1, e3]J = e4, [e1, e4]J = −e3, [e2, e3]J = e3, [e2, e4]J = e4, (9)

hence, gJ is isomorphic, as a complex Lie algebra, to the complex analogue aff(C) of aff(R). If {e1, . . . , e4} denotes the dual
basis of g∗, from (9) and the definition of g , we have that the only non-trivial brackets on g∗ are

[e1, e3]∗ = −e1, [e1, e4]∗ = e2, [e2, e3]∗ = −e2, [e2, e4]∗ = −e1.

To determine the Lie algebra structure on Dg, it remains to compute the brackets of the form [ei, ej] =

(− coad∗(ej)ei, coad(ei)ej), which is done below:

[e1, e1] = −e3, [e2, e1] = e4,
[e1, e2] = −(e4 + e2), [e2, e2] = −e3 + e1,
[e1, e3] = e1 + e3, [e2, e3] = e2, [e3, e3] = −e1,
[e1, e4] = e2, [e2, e4] = −(e1 + e3), [e3, e4] = e2.

Dg is 3-step solvable, and observe that

z(Dg) = span
{
e4, e3 − e1

}
, [Dg,Dg] = span

{
e2, e3, e4, e1, e2, e1 + e3

}
.

The ad-invariant neutral metric 〈· , ·〉 on Dg is given by 〈ej, ej〉 = 1 for j = 1, . . . , 4, and the induced complex structure J
on Dg is as follows:

J|g = J, Je1 = e2, Je3 = −e4.

3.1. Compact semisimple bialgebras of complex type

We recall Samelson’s construction of a complex structure on a compact semisimple even dimensional Lie algebra g [27].
Let h be a maximal abelian subalgebra of g. Then we have the root space decomposition of gC with respect to hC:

gC
= hC

⊕

∑
α∈Φ

gC
α ,

whereΦ is a finite subset of (hC)∗ and

gC
α = {x ∈ gC

: [h, x] = α(h)x,∀h ∈ hC
}
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are the one dimensional root subspaces. Since h is even dimensional, one can choose a skew-symmetric endomorphism I of
h with respect to the Killing form such that I2 = −id. Samelson defines a complex structure on g by considering a positive
systemΦ+ of roots, which is a setΦ+ ⊂ Φ satisfying

Φ+ ∩ (−Φ+) = ∅, Φ+ ∪ (−Φ+) = Φ, α, β ∈ Φ+, α + β ∈ Φ ⇒ α + β ∈ Φ+.

Setting

m = h1,0
⊕

∑
α∈Φ+

gC
α ,

where h1,0 is the eigenspace of I of eigenvalue i, it follows that m is a (solvable) complex Lie subalgebra of gC which induces
a complex structure J on g such that g1,0 = m. This complex structure is skew-symmetric with respect to the Killing form
on g, hence we obtain a Lie bialgebra (g, δJ) of complex type. This is not equivalent to the standard Lie bialgebra structure
on g constructed in [21] (see also [20]). In fact, in the standard case, the Lie algebra g∗ is completely solvable,3whereas in
the complex type case, it is not.

Example 15. Let us consider g = su(2n+ 1) for n ≥ 2, hence gC
= sl(2n+ 1,C). We can take

h =


it1

. . .

it2n+1

 : tj ∈ R, t1 + · · · + t2n+1 = 0

 ,
and

h1,0
=


z1

. . .

z2n+1

 : zl ∈ C, z1 − z2n+1 = izn+1,
zr = izn+r , r = 2, . . . , n,

∑
l

zl = 0

 .
The corresponding complex structure J on g as above is determined by the complex subalgebra g1,0 of sl(2n + 1,C) given
by g1,0 = h1,0

⊕ n where

n = {all (2n+ 1)× (2n+ 1) strictly upper triangular complex matrices}.

According to Theorem 10 and Proposition 5, the Lie algebra g∗ associated to (g, δJ) is isomorphic to g1,0.
On the other hand, we recall from [21] that if we consider the standard Lie bialgebra structure on g, then g∗ is isomorphic

to the solvable Lie algebra

sb(2n+ 1,C) =
{
all (2n+ 1)× (2n+ 1) traceless upper triangular
complex matrices with real diagonal entries

}
.

Note that sb(2n + 1,C) is not a complex subalgebra of sl(2n + 1,C). Therefore, our construction yields a Lie bialgebra
structure on su(2n+ 1)which is not equivalent to the standard one.

We next provide families of metric Lie algebras admitting skew-symmetric complex structures where the ad-invariant
metric has signature (2, n).

3.2. Examples arising from Lorentzian ad-invariant metrics

We recall from [22] the classification of Lie algebras admitting ad-invariant metrics of signature (1, n− 1).

Theorem 16 ([22]). Each indecomposable non-simple Lie algebra with an ad-invariant Lorentzianmetric is isomorphic to exactly
one Lie algebra in the family

osc(λ) = span{e0, e1, . . . , e2m+1}

with λ = (λ1, λ2, . . . , λm), 1 = λ1 ≤ λ2 ≤ · · · ≤ λm, where

[e2i−1, e2i] = λie0, i = 1, . . . ,m,

3 Recall that a real solvable Lie algebra u is completely solvablewhen ad(x) has real eigenvalues for all x ∈ u.
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and the adjoint action of e2m+1 on span{e1, e2, . . . , e2m} is given by

Aλ :=


0 −λ1
λ1 0

. . .

0 −λm
λm 0

 .

The simply connected Lie group corresponding to osc(λ) is known as the oscillator group. The 4-dimensional Lie algebra
osc(1)will be denoted simply by osc. Since the metric on any Lie algebra of the family osc(λ) is Lorentzian these Lie algebras
do not admit Lie bialgebra structures of complex type (Lemma 8). However, trivial central extensions of them do admit such
structures.

Theorem 17. The direct extensions osc(λ)× R1,1 are Lie bialgebras of complex type.

Proof. Let osc(λ) = span{e0, e1, . . . , e2m+1} be as above. An ad-invariant metric on osc(λ) is defined by the following non-
trivial relations

g(e0, e2m+1) = g(ej, ej) = 1, for j = 1, . . . , 2m.

If we consider R1,1
= span{e2m+2, e2m+3}with the metric g(e2m+2, e2m+3) = 1, we obtain on osc(λ)× R1,1 an ad-invariant

metric of signature (2, 2m+ 2). The almost complex structure defined by

Je0 = e2m+3, Je2m+1 = e2m+2, Je2i−1 = e2i, for i = 1, . . . ,m,

is integrable and skew-symmetric with respect to g , proving the assertion. �

3.3. Examples arising from ad-invariant metrics of signature (2, n− 2)

We recall from [6] the classification of the Lie algebras with one dimensional centre admitting an ad-invariant metric of
signature (2, n− 2).

Theorem 18 ([6]). Let g be an indecomposable Lie algebra with one dimensional centre endowed with an ad-invariant metric of
signature (2, n− 2). Then g is isomorphic to one of the following Lie algebras: L2(1, 1), L3(1, 2), L2,λ(1, n− 3) or L3,λ(1, n− 3).

We describe below the Lie algebras mentioned in the above theorem: L2(1, 1)was introduced in Example 14, and for the
remaining cases we have
� L3(1, 2) = span{e0, e1, e2, e3, e4} with [e1, e2] = e0 and the adjoint action of e4 on the subspace span{e1, e2, e3} is given
by

L3 =

(0 0 0
1 0 0
0 1 0

)
.

� L2,λ(1, n − 3) = span{e0, e1, . . . , en−1} for n = 2m + 2 > 5 even and λ = (λ1, . . . , λm), 0 < λ1 ≤ · · · ≤ λm, with
[e1, e2] = e0, [e2i−1, e2i] = λie0, 2 ≤ i ≤ m, and the adjoint action of en−1 on span{e1, . . . , en−2} is given by(0 1

1 0
Aλ

)
,

with Aλ as in Theorem 16.
� L3,λ(1, n − 3) = span{e0, e1, . . . , en−1} for n = 2m + 3 > 5 odd, with [e1, e2] = e0, [e2i, e2i+1] = λie0, 2 ≤ i ≤ m, and
the adjoint action of en−1 on span{e1, . . . , en−2} is given by(

L3 0
0 Aλ

)
,

with λ and Aλ as above.

Theorem 19. Let g denote a Lie algebra as in the previous theorem. Then g× Rs is a Lie bialgebra of complex type, where s = 0
(resp. s = 1) if dim g is even (resp. odd).
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Proof. Weexhibit in each case aHermitian structure (J, g)where g is an ad-invariantmetric. The proofs of the ad-invariance
property and the integrability of J follow by standard computations.
� L2(1, 1) : see Example 14.
� L3(1, 2)× Re5 :

g(e0, e4) = −g(e1, e3) = g(e2, e2) = g(e5, e5) = 1,
Je0 = e3, Je1 = e4, Je2 = e5.

� L2,λ(1, n− 3) :

g(e0, en−1) = −g(e1, e1) = g(ei, ei) = 1, 2 ≤ i ≤ n− 2,

Je0 =
1
√
2
(e1 + e2), Jen−1 =

1
√
2
(e2 − e1), Je2i−1 = e2i, 2 ≤ i ≤ m.

� L3,λ(1, n− 3)× Ren :

g(e0, en−1) = −g(e1, e3) = g(e2i, e2i) = g(e2i+3, e2i+3) = 1, 1 ≤ i ≤ m,
Je3 = e0, Jen−1 = e1, Jen = e2, Je2i = e2i+1, 2 ≤ i ≤ m. �

We can obtain Lie bialgebras of complex type in arbitrarily high dimensions by applying an iterative doubling procedure.
In fact, it is a consequence of (1) in Corollary 13 that if (J, g) is a Hermitian structure on g such that g is ad-invariant,
then Dkg is a Lie bialgebra of complex type of dimension 2km,m = dim g, k ≥ 1, where Dkg is defined inductively by
D1g = Dg,Dkg = D

(
Dk−1g

)
.

In a similar way, the second assertion in Corollary 13 implies that if J is a complex structure on any Lie algebra g, then J
induces a Hermitian structure on T ∗g with respect to the neutral ad-invariant metric, therefore, Dk (T ∗g) is a Lie bialgebra
of complex type for k ≥ 1.

We point out that the ad-invariantmetric on eitherDkg orDk (T ∗g) has neutral signature for all k ≥ 1. In the next section
wewill develop amethod to construct a Lie bialgebra of complex type with ad-invariant metric of signature (2p+2, 2q+2)
starting with one whose corresponding metric has signature (2p, 2q).

4. Construction of examples via double extensions

The aim of this section is to obtain new examples of Lie bialgebras of complex type starting with a Hermitian structure
on a lower dimensional metric Lie algebra by a double extension process. As a consequence of our construction we show
that all solvable metric Lie algebras of dimension 4 and 6 with metrics of suitable signature admit Lie bialgebra structures
of complex type.

We begin by recalling the following result (see, for instance, [23]):

Theorem 20. Let (d, g) be an indecomposable metric Lie algebra. Then one of the following conditions holds:

(1) d is simple;
(2) d is 1-dimensional;
(3) d is a double extension d = dπ (g, h), where h is 1-dimensional or simple and π : h→ Derskew(g, g) is a representation of h

on g by skew-symmetric derivations.

We will restrict ourselves to the solvable case, and therefore we will consider only double extensions of a metric Lie
algebra by 1-dimensional Lie algebras. Following the notation in [6], we give the description of such extensions. Let h = RH
and h∗ = Rα, with α(H) = 1. The double extensions of the metric Lie algebra (g, g) by the one dimensional Lie algebra h

are determined by skew-symmetric derivations D ∈ Derskew(g, g):

dD := dD(g,R) := Rα ⊕ g⊕ RH

with Lie bracket

α ∈ z(dD), [x, y]dD = g(Dx, y)α + [x, y]g, [H, x]dD = Dx, (10)

for all x, y ∈ g. The ad-invariant metric on the double extension dD is obtained extending the ad-invariant metric on g via
the single relation g(α,H) = 1.

We will show next that beginning with a metric Lie algebra (g, g) equipped with a skew-symmetric complex structure
and certain skew-symmetric derivations, we can produce a skew-symmetric complex structure on double extensions of g.

Let (J, g) be a Hermitian structure on a Lie algebra g with ad-invariant metric g , and denote by R1,1
:= span{x0, y0} the

abelian pseudo-Euclidean Lie algebra with metric g(x0, y0) = 1. Consider the product metric Lie algebra g̃ = R1,1
× g, fix

c ∈ R, ỹ ∈ z(g) and let A be a skew-symmetric derivation of (g, g) commuting with J . Define the following skew-symmetric
derivation Ã of g̃:

Ãx0 = cx0, Ãy0 = −cy0 + ỹ, Ãx = −g(x, ỹ)x0 + Ax, (11)
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for all x ∈ g. We extend the complex structure J on g to a skew-symmetric almost complex structure J on the double
extension dÃ = dÃ(g̃,R) (see (10)) as follows:

J|g = J, Jx0 = α, Jy0 = H, J2
= −id. (12)

We shownext that J is integrable, that is,NJ ≡ 0. It follows from (2) thatNJ is skew-symmetric andNJ(u, Jv) = −JNJ(u, v),
for all u, v ∈ dÃ, therefore we only need to verify the vanishing of NJ(x0, y0),NJ(x0, x),NJ(y0, x) and NJ(x, y) for all x, y ∈ g.
In order to simplify notation we will denote d := dÃ and k(x) = −g(x, ỹ), x ∈ g. For x0, y0 ∈ R1,1, x ∈ g, we compute

NJ(x0, y0) = −[x0, y0]d − J[Jx0, y0]d − J[x0, Jy0]d + [Jx0, Jy0]d
= −

(
g(Ãx0, y0)α + [x0, y0]g̃

)
− J[α, y0]d − J[x0,H]d + [α,H]d

= −g(Ãx0, y0)α + JÃx0 = −cα + cJx0
= 0, (13)

NJ(y0, x) = −[y0, x]d − J[H, x]d − J[y0, Jx]d + [H, Jx]d
= −

(
g(Ãy0, x)α + [y0, x]g̃

)
− JÃx− J

(
g(Ãy0, Jx)α + [y0, Jx]g̃

)
+ ÃJx

= g(y0, Ãx)α − (k(x)α + JAx)− g(y0, ÃJx)x0 + (k(Jx)x0 + AJx)
= k(x)α − k(x)α − JAx− k(Jx)x0 + k(Jx)x0 + AJx
= −JAx+ AJx
= 0, (14)

NJ(x0, x) = −[x0, x]d − J[α, x]d − J[x0, Jx]d + [α, Jx]d
= −

(
g(Ãx0, x)α + [x0, x]g̃

)
− J

(
g(Ãx0, Jx)α + [x0, Jx]g̃

)
= 0,

since Ãx0 = cx0 is orthogonal to g and x0 is central in g̃. Now, take x, y ∈ g and compute

NJ(x, y) = −[x, y]d − J[Jx, y]d − J[x, Jy]d + [Jx, Jy]d

= −

(
g(Ãx, y)α + [x, y]g

)
− J

(
g(ÃJx, y)α + [Jx, y]g

)
− J

(
g(Ãx, Jy)α + [x, Jy]g

)
+ g(ÃJx, Jy)α + [Jx, Jy]g

= −g(k(x)x0 + Ax, y)α − [x, y]g + g(k(Jx)x0 + AJx, y)x0 − J[Jx, y]g + g(k(x)x0 + Ax, Jy)x0 − J[x, Jy]g
+ g(k(Jx)x0 + AJx, Jy)α + [Jx, Jy]g

= −g(Ax, y)α + g(AJx, y)x0 + g(Ax, Jy)x0 + g(AJx, Jy)α + Ng

J (x, y)
= 0,

since J is a skew-symmetric integrable almost complex structure on g which commutes with A. Therefore, NJ ≡ 0, as
asserted.

We show next that, conversely, if Ã is a skew symmetric derivation of g̃ and J is the almost complex structure on
dÃ = dÃ(g̃,R) defined by (12), then the integrability of J implies that there exist c ∈ R, ỹ ∈ z(g) and a skew-symmetric
derivation A of (g, g) commuting with J such that Ã takes the form (11).

Theorem 21. Let (J, g) be a Hermitian structure on a Lie algebra g with ad-invariant metric g, and consider the product metric
Lie algebra g̃ = R1,1

× g as above. Let Ã be a skew-symmetric derivation of g̃, dÃ = dÃ(g̃,R) the double extension of (g, g) given
by (10) and J the skew-symmetric almost complex structure on dÃ defined in (12). Then J is integrable if and only if there exist
c ∈ R, ỹ ∈ z(g) and a skew-symmetric derivation A of (g, g) commuting with J such that Ã is given by (11).

Proof. We have shown in the above paragraphs that when Ã is given by (11) for c ∈ R, ỹ ∈ z(g) and a skew-symmetric
derivation A of (g, g) commuting with J , then J is integrable on dÃ.

Conversely, suppose that the almost complex structure J is integrable. We will determine the form of the derivation Ã.
Recall that the integrability of J is equivalent to the vanishing of the Nijenhuis tensor NJ. From the calculation of NJ(x0, y0)
in (13) and the fact that NJ(x0, y0) = 0 we get

0 = NJ(x0, y0) = −g(Ãx0, y0)α + JÃx0.

Hence, applying J and setting c := g(Ãx0, y0), we obtain that

Ãx0 = cx0.

Since Ã is skew-symmetric, we see that g(Ãy0, y0) = 0, so that

Ãy0 ∈ (span{y0})⊥ = span{y0} ⊕ g
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and therefore Ãy0 = βy0 + ỹ for some β ∈ R and ỹ ∈ g. But, since Ã is skew-symmetric, we have

c = g(Ãx0, y0) = −g(x0, Ãy0) = −g(x0, βy0 + ỹ) = −β

and using now that Ã is a derivation of g̃, we obtain for x ∈ g

0 = Ã[y0, x]g̃ = [Ãy0, x]g̃ + [y0, Ãx0]g̃ = [βy0 + ỹ, x]g̃ = [ỹ, x]g,

so that ỹ ∈ z(g). Thus,

Ãy0 = −cy0 + ỹ, ỹ ∈ z(g).

Now take x ∈ g and observe that g(Ãx, x0) = −g(x, Ãx0) = −cg(x0, x) = 0, and hence Ãx ∈ (span{x0})⊥ = span{x0}⊕g,
so that there exist k ∈ g∗ and A ∈ End(g) such that

Ãx = k(x)x0 + Ax, for all x ∈ g.

Let us determine k. For x ∈ g, we compute g(Ãy0, x) = g(−cy0 + ỹ, x) = g(ỹ, x), but, on the other hand g(Ãy0, x) =
−g(y0, Ãx) = −g(y0, k(x)x0 + Ax) = −k(x), so that

k(x) = −g(x, ỹ), x ∈ g. (15)

We observe that k
(
[g, g]g

)
= 0 since the metric g on g is ad-invariant and ỹ ∈ z(g). It follows that Ã takes the form (11).

Now let us prove the statements regarding A ∈ End(g). For x, y ∈ g, we have

g(Ax, y) = g(Ãx− k(x)x0, y) = g(Ãx, y)

= −g(x, Ãy) = −g(x, k(y)x0 + Ay) = −g(x, Ay),

so that A is skew-symmetric. Next, we see that, for x, y ∈ g:

Ã[x, y]g̃ = Ã[x, y]g = k([x, y]g)︸ ︷︷ ︸
=0

x0 + A[x, y]g = A[x, y]g

[Ãx, y]g̃ + [x, Ãy]g̃ = [k(x)x0 + Ax, y]g̃ + [x, k(y)x0 + Ay]g̃
= [Ax, y]g + [x, Ay]g.

Therefore, using that Ã is a derivation of g̃, we obtain that A is a derivation of g. Finally, from the calculation of NJ(y0, x) in
(14) and NJ(y0, x) = 0 we obtain that

0 = NJ(y0, x) = −JAx+ AJx

for all x ∈ g, so that JA = AJ . This completes the proof. �

Let us compute next the associated Lie bracket [·, ·]J on dÃ. Keeping the notation from the previous theorem, it is easily
verified that the following relations hold for x, y ∈ g:

[x, y]J = [x, y]J , [x0, y0]J = −cx0,
[y0, x]J = k(x)x0 − k(Jx)α + Ax,
[α, y0]J = −cα, [α,H]J = cx0,
[H, x]J = k(x)α + k(Jx)x0 + AJx, [H, x0]J = cα,

where k ∈ g∗ is given by (15).
From these equations we see that

(
dÃ
)

J = Cy0 n (Cx0 × gJ) as complex Lie algebras, where

adJ(y0) =


c z1 · · · zn
0
... M + iN
0


with respect to an ordered C-basis {x0, v1, . . . , vn} of Cx0×gJ . Here, zl = k(vl)− ik(Jvl), for l = 1, . . . , n, and A =

(
M −N
N M

)
in the ordered R-basis {v1, . . . , vn, Jv1, . . . , Jvn} of g.
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4.1. Lie bialgebras of complex type in low dimensions

In the next paragraphs we apply the method developed in Theorem 21, starting with g = {0} and g = R2, to show that
all solvable metric Lie algebras of dimension four and six with metric of signature (2r, 2s) admit bialgebra structures of
complex type.
(i) We apply first Theorem 21 in the case g = {0}. Hence g̃ = R1,1 is spanned by {x0, y0} with the neutral metric
g(x0, y0) = 1 and the skew-symmetric endomorphism Ã is given by Ãx0 = cx0, Ãy0 = −cy0. In this case, the double
extension dÃ = Rα ⊕ R1,1

⊕ RH has the following Lie bracket relations

[x0, y0] = cα, [H, x0] = cx0, [H, y0] = −cy0,

the ad-invariant metric is given by g(x0, y0) = 1 = g(α,H), and the skew-symmetric complex structure J is determined
by Jx0 = α, Jy0 = H .

If c = 0, then dÃ is the pseudo-Euclidean abelian Lie algebra with metric of signature (2, 2) and its canonical skew-
symmetric complex structure.

If c 6= 0, then (dÃ, J, g) is equivalent to (L2(1, 1), J, g) from Example 14, considering the following basis of dÃ:

e1 := −c−1H, e2 := cy0, e3 := c−1x0, e4 := −cα.

(ii) Now we consider the case g = R2, the abelian 2-dimensional Euclidean Lie algebra. We take a basis {u, v} of g such
that g(u, u) = g(v, v) = 1 and Ju = v, and hence g̃ ∼= R1,3 is spanned by {x0, y0, u, v} with the ad-invariant metric
g(x0, y0) = g(u, u) = g(v, v) = 1. Any skew-symmetric endomorphism Ã of g̃ satisfying the conditions of Theorem 21
takes the following form, in the ordered basis {x0, y0, u, v}:

Ã =

c 0 −a −b
0 −c 0 0
0 a 0 −r
0 b r 0


for some a, b, c, r ∈ R. For all values of these parameters, the corresponding ad-invariant metric will have signature (2, 4).
There are two possible cases: the derivation Ã is nilpotent or not.

Suppose first that Ã is nilpotent, that is, c = r = 0. This is equivalent to the Lie algebra dÃ = Rα ⊕ R1,3
⊕ RH being

nilpotent (see [6]). If a = b = 0, we obtain that dÃ = R2,4. On the other hand, if a2 + b2 6= 0, we set

e1 := (a2 + b2)−1/4H, e2 := −(a2 + b2)−1/4y0, e3 := (a2 + b2)−1/2(−bu+ av),
e4 := (a2 + b2)−1/2(au+ bv), e5 := (a2 + b2)1/4x0, e6 := (a2 + b2)1/4α.

Thus for any choice of such a and b, the Lie bracket on dÃ in terms of the basis {e1, . . . , e6} is given by

[e1, e2] = −e4, [e1, e4] = −e5, [e2, e4] = −e6, (16)

and the Hermitian structure (J, g) on dÃ becomes

Je1 = e2, Je3 = −e4, Je5 = e6,
g(e3, e3) = g(e4, e4) = g(e1, e6) = −g(e2, e5) = 1.

It can be seen that (dÃ, J, g) is equivalent to the metric Lie algebra with skew-symmetric complex structure (L3(1, 2) ×
R, J, g) constructed in Section 3.3.

Remark 22. The Lie algebra L3(1, 2)×R can be found in Salamon’s list of 6-dimensional nilpotent Lie algebras admitting a
complex structure (see [26]). In his notation, this Lie algebra corresponds to (0, 0, 0, 12, 14, 24).

Assume next that Ã is not nilpotent, so that c2 + r2 6= 0. Let us suppose that a = b = 0, and hence ỹ = 0 (we are using
the notation from Theorem 21). The Lie bracket on the double extension dÃ = Rα ⊕ R1,3

⊕ RH is given by

[x0, y0] = cα, [H, x0] = cx0, [H, y0] = −cy0,
[H, u] = rv, [H, v] = −ru, [u, v] = rα,

the ad-invariant metric is obtained by adding the relation g(α,H) = 1 to the ad-invariant metric on g̃, and the skew-
symmetric complex structure J is defined as follows

Ju = v, Jx0 = α, Jy0 = H.

We have the following possibilities, depending on the conditions satisfied by the parameters c and r .
� If c = 0, r 6= 0, set

e1 := −r−1H, e2 := u, e3 := v, e4 := rα, e5 := r−1y0, e6 := rx0.
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The Lie bracket on dÃ in terms of the basis {e1, . . . , e6} is given by

[e1, e2] = −e3, [e1, e3] = e2, [e2, e3] = e4,

and the Hermitian structure is

Je1 = e5, Je2 = e3, Je4 = −e6,
−g(e1, e4) = g(e5, e6) = g(e2, e2) = g(e3, e3) = 1.

Therefore (dÃ, J, g) is equivalent to the metric Lie algebra with skew-symmetric complex structure (osc × R1,1, J, g)
constructed in Section 3.2.
� If c 6= 0, r = 0, set

e1 := −c−1H, e2 := c−1y0, e3 := cx0, e4 := −cα, e5 := u, e6 := v.

The Lie bracket on dÃ in terms of the basis {e1, . . . , e6} is given by

[e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e4,

and the Hermitian structure is

Je1 = e2, Je3 = −e4, Je5 = e6,
g(e1, e4) = g(e2, e3) = g(e5, e5) = g(e6, e6) = 1.

Hence, (dÃ, J, g) is equivalent to the metric Lie algebra with skew-symmetric complex structure (L2(1, 1) × R2, J, g)
constructed in Section 3.3.
� If c 6= 0, r 6= 0, we will consider two cases, according to the sign of r/c. If r/c < 0, then we set

e1 := −c−1H, e2 := c−1y0, e3 := cx0, e4 := u, e5 := v, e6 := −cα.

On the other hand, if r/c > 0, we set

e1 := −c−1H, e2 := c−1y0, e3 := cx0, e4 := v, e5 := u, e6 := −cα.

In both cases, {e1, . . . , e6} is a basis of dÃ such that its Lie bracket is given by

[e1, e2] = e2, [e1, e3] = −e3, [e1, e4] = λe5, [e1, e5] = −λe4,
[e2, e3] = e6, [e4, e5] = λe6,

(17)

for λ = |r/c| and it can be shown that dÃ is isomorphic to gλ := L2,λ(1, 3) from Section 3.3. The ad-invariant metric g is the
same for both cases and it is given by

g(e1, e6) = g(e2, e3) = g(e4, e4) = g(e5, e5) = 1,

whereas the skew-symmetric complex structures J1 and J2 corresponding to each case are given by

J1e1 = e2, J1e3 = −e6, J1e4 = e5,

for r/c < 0 and

J2e1 = e2, J2e3 = −e6, J2e4 = −e5,

for r/c > 0. Recall that for any µ ∈ C, the 3-dimensional complex Lie algebra r3, µ(C) has a basis {x0, x1, x2} with Lie
brackets given by: [x0, x1] = x1, [x0, x2] = µx2, and moreover, r3, µ(C) is isomorphic to r3, 1/µ(C) for µ 6= 0 (see [14]). It
turns out that (gλ)J1

∼= r3,−iλ(C) and (gλ)J2
∼= r3, iλ(C) as complex Lie algebras.

Remark 23. (i) Since (gλ)J1 and (gλ)J2 are not isomorphic for λ 6= 1, J1 and J2 are not equivalent and the corresponding
bialgebras (g, δJi), i = 1, 2, are not isomorphic. When λ = 1, it can be shown that J1 is still not equivalent to J2 and the
corresponding bialgebras are not isomorphic, even though, in this case, (g1)J1

∼= (g1)J2 . Therefore, there exist two non-
isomorphic Lie bialgebra structures on g1 such that they induce isomorphic Lie algebra structures on g∗1 (compare with
Theorem 1.12 in [21]).
(ii) Concerning the behaviour of the Lie bialgebras (gλ, δJi) for i = 1, 2 as λ approaches 0 or∞, we point out that when
λ → 0, we obtain in both cases (i = 1, 2) the Lie bialgebra L2(1, 1) × R2 with the structure constructed above. On the
other hand, if λ→∞, then the resulting Lie bialgebra is osc×R1,1. Therefore, (gλ, δJ1) and (gλ, δJ2) are non-isomorphic Lie
bialgebras which converge to the same bialgebra when λ→ 0 or λ→∞.

In [6], the indecomposable metric Lie algebras of dimension ≤6 have been classified. From this classification we can
determine all (not necessarily indecomposable) solvable metric Lie algebras with metric of signature (2r, 2s) in these
dimensions. We list below the non-abelian ones:

L2(1, 1), L3(1, 2)× R, L2(1, 1)× R2, osc× R1,1, L2,λ(1, 3) (λ > 0). (18)

Therefore, the results in this section can be summarized as follows:
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Table 1

g g∗

L2(1, 1) aff(C)
L3(1, 2)× R h3(C)
L2(1, 1)× R2 aff(C)× C
osc× R1,1 aff(C)× C

L2,λ(1, 3)
{

r3,−iλ(C) for the complex structure J1
r3,iλ(C) for the complex structure J2

Theorem 24. Every solvable metric Lie algebra (g, g), dim g ≤ 6, such that g has signature (2r, 2s) admits a skew-symmetric
complex structure and hence, a Lie bialgebra structure of complex type.

According to Theorem10, for any Lie bialgebra of complex type (g, δJ), its dual g∗ inherits a complex Lie algebra structure.
Table 1 exhibits g∗ when g is one of the algebras in (18) with the Hermitian structures considered above. The complex
Lie algebras aff(C) and r3,±iλ(C) in Table 1 have already been introduced, and h3(C) denotes the 3-dimensional complex
Heisenberg Lie algebra.

Remark 25. We point out that Theorem 24 is no longer true in dimension 8. In fact, it follows from [1] that the cotangent
algebra (T ∗r4, 〈 ·, ·〉) endowedwith its natural neutral ad-invariantmetric 〈 ·, ·〉 of signature (4, 4) does not admit any skew-
symmetric complex structure, where the Lie algebra r4 = span{e0, e1, e2, e3} is defined by

[e0, e1] = e1, [e0, e2] = e1 + e2, [e0, e3] = e2 + e3.

5. Symplectic foliations on some Poisson Lie groups of complex type

In this section we exhibit some examples of low dimensional simply connected Poisson Lie groups of complex type. The
underlying Lie groups are either solvable or nilpotent and thus they are diffeomorphic to Euclidean space.We also determine
the corresponding symplectic foliations in some cases.

In what follows we will denote ∂i := ∂
∂xi

and ∂i,j := ∂
∂xi
∧

∂
∂xj

. Also, for any function h ∈ C∞(Rn)we set hi :=
∂h
∂xi

and the
Hamiltonian vector field Xh associated to h is defined by Xh(g) = {h, g}. IfΠ is the Poisson structure corresponding to {·, ·},
the characteristic distribution associated toΠ is given by

Cx = {Xh|x : h ∈ C∞(Rn)} ⊂ TxRn.

Example 26. We consider the Lie algebra g := L2(1, 1) from Example 14. Let G denote the simply connected Lie group with
Lie algebra g; it is diffeomorphic to R4 and it can be realized as the following matrix group:

G =


1 x2 x4
0 e−x1 x3
0 0 1

 : xi ∈ R

 .
Identifying the matrix above with the point (x1, x2, x3, x4) ∈ R4, then R4 acquires a group structure given by

(x1, x2, x3, x4) ∗ (y1, y2, y3, y4) = (x1 + y1, x2e−y1 + y2, y3e−x1 + x3, x4 + y4 + x2y3).

The r-matrix J : g → g can be considered as an element R ∈
∧2

g via the ad-invariant metric g : g → g∗, by setting
R := J ◦ g−1 : g∗ → g. In this case, one can easily see that R = e1 ∧ e3 − e2 ∧ e4, where e1, . . . , e4 are as in (8). According
to Remark 2, the corresponding multiplicative Poisson tensorΠR determined by Rmaking G a Poisson Lie group is given by
ΠR =

←

R −
→

R . Performing standard computations, we arrive at the following expression forΠR:

ΠR = (e−x1 − 1)∂1,3 + x2∂1,4 − x2e−x1∂2,3 + (e−x1 − x22 − 1)∂2,4.

Equivalently, the Poisson bracket of two functions f , g ∈ C∞(R4) is given by

{f , g} = (e−x1 − 1)(f1g3 − f3g1)+ x2(f1g4 − f4g1)− x2e−x1(f2g3 − f3g2)+ (e−x1 − x22 − 1)(f2g4 − f4g2).

From this, we obtain that the Hamiltonian vector field Xf associated to f ∈ C∞(R4) can be expressed as

Xf = −
(
(e−x1 − 1)f3 + x2f4

)
∂1 +

(
x2e−x1 f3 − (e−x1 − x22 − 1)f4

)
∂2

+
(
(e−x1 − 1)f1 − x2e−x1 f2

)
∂3 +

(
x2f1 + (e−x1 − x22 − 1)f2

)
∂4.

Let us consider now any point p = (x1, x2, x3, x4) ∈ R4. It is easy to see that ΠR(p) = 0 if and only if x1 = x2 = 0,
whereas if x21 + x22 6= 0, then ΠR(p) has rank 4, where we consider ΠR(p) as a linear transformation ΠR(p) : T ∗p R4

→
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TpR4. Consequently, the symplectic foliation on R4 determined by ΠR can be described in the following way: each point
{(0, 0, x3, x4)} is a 0-dimensional leaf, there are no 2-dimensional leaves, and the open set

U = {(x1, x2, x3, x4) ∈ R4
: x21 + x22 6= 0}

is the remaining 4-dimensional symplectic leaf. The corresponding symplectic form on U, ω = (ΠR|U)
−1, is given by

ω =
1
∆

{
−(e−x1 − x22 − 1) dx1 ∧ dx3 − x2e−x1 dx1 ∧ dx4 + x2 dx2 ∧ dx3 − (e−x1 − 1) dx2 ∧ dx4

}
,

where∆ = (e−x1 − 1)2 + x22.
Let

Π
(1)
R = −x1∂1,3 + x2∂1,4 − x2∂2,3 − x1∂2,4

be the linear part ofΠR in a neighbourhood of (0, 0, x3, x4). It follows that the Lie algebra determined byΠ (1)
R is isomorphic

to aff(C). Therefore, according to [12],ΠR is analytically linearizable.

Example 27. Let n := L3(1, 2)×R be the nilpotent Lie algebra considered in Section 4.1, and denote byN the corresponding
simply connected Lie group, which is diffeomorphic to R6 and can be realized as the following matrix group:

N =





1 0 −
2
3
x22 0

1
6
x1x2 +

1
3
x4 −

1
6
x22 x6

0 1 −
2
3
x1 0

1
6
x21 −

1
6
x1x2 +

1
3
x4 x5

0 0 1 0 −
1
2
x1

1
2
x2 x4

0 0 0 1 0 0 x3
0 0 0 0 1 0 x2
0 0 0 0 0 1 x1
0 0 0 0 0 0 1


: xi ∈ R


.

Identifying the matrix above with the point (x1, . . . , x6) ∈ R6, then R6 acquires a group structure given by


x1
x2
x3
x4
x5
x6

 ∗

y1
y2
y3
y4
y5
y6

 =



x1 + y1
x2 + y2
x3 + y3

x4 + y4 −
1
2
(x1y2 − x2y1)

x5 + y5 +
1
6
x21y2 −

2
3
x1y4 +

(
−

1
6
x1x2 +

1
3
x4

)
y1

x6 + y6 −
1
6
x22y1 −

2
3
x2y4 +

(
1
6
x1x2 +

1
3
x4

)
y2


.

The r-matrix J : n → n determines a bivector R ∈
∧2

n by setting R := J ◦ g−1 : n∗ → n. In this case, one can easily see

that R = e4 ∧ e3 + e5 ∧ e1 + e6 ∧ e2, where e1, . . . , e6 are as in (16), and the multiplicative Poisson tensor ΠR =
←

R −
→

R
determined by Rmaking N a Poisson Lie group is given by:

ΠR = x1∂3,5 + x2∂3,6 − x2∂4,5 + x1∂4,6 −
1
6
(x21 + x22)∂5,6.

Note thatΠR(x1, . . . , x6) = 0 if and only if x1 = x2 = 0. The Poisson bracket of two functions f , g ∈ C∞(R6) induced byΠR
is given by

{f , g} = x1(f3g5 − f5g3)+ x2(f3g6 − f6g6)− x2(f4g5 − f5g4)+ x1(f4g6 − f6g4)−
1
6
(x21 + x22)(f5g6 − f6g5).

Therefore, the Hamiltonian vector field Xf associated to f ∈ C∞(R6) can be expressed as

Xf = (−x1f5 − x2f6) ∂3 + (x2f5 − x1f6) ∂4 +
(
x1f3 − x2f4 +

1
6
(x21 + x22)f6

)
∂5 +

(
x2f3 + x1f4 −

1
6
(x21 + x22)f5

)
∂6.

The symplectic foliation on R6 corresponding toΠR is the singular foliation associated to the characteristic distribution Cx,
and in what follows we are to determine its symplectic leaves. Clearly, Cx = {0} if and only if x1 = x2 = 0. Let us denote by
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pj, j = 1, . . . , 6, the projections pj(x1, . . . , x6) = xj. Then we have Xp1 = Xp2 = 0 and also

Xp3 = x1∂5 + x2∂6,
Xp4 = −x2∂5 + x1∂6,

Xp5 = −x1∂3 + x2∂4 −
1
6

(
x21 + x22

)
∂6,

Xp6 = −x2∂3 − x1∂4 +
1
6

(
x21 + x22

)
∂5.

Observe now that if x21+x22 6= 0, thenwe have that {Xp3

∣∣
x, Xp4

∣∣
x, Xp5

∣∣
x, Xp6

∣∣
x} is a basis ofCx. Moreover, from the expressions

obtained for Xpj(x) above, we can easily see that {∂3|x, ∂4|x, ∂5|x, ∂6|x} is another basis for Cx. From all these considerations
we obtain the following description of the symplectic leaves:
• the 0-dimensional leaves are the points {(0, 0, c3, c4, c5, c6)};
• there are no 2-dimensional leaves;
• the 4-dimensional leaves are the affine subspaces

Fc1,c2 = {(c1, c2, x3, x4, x5, x6) : x3, . . . , x6 ∈ R},

where c1, c2 are real constants such that c21 + c22 6= 0. The symplectic form ωc1,c2 on Fc1,c2 induced byΠC is given by

ωc1,c2 = −
1
6
dx3 ∧ dx4 − (c21 + c22 )

−1(c1 dx3 ∧ dx5 + c2 dx3 ∧ dx6 − c2 dx4 ∧ dx5 + c1 dx4 ∧ dx6),

where (x3, . . . , x6) are global coordinates on Fc1,c2 .
It follows from [9, Proposition 3.3] thatΠR is analytically linearizable. Let

Π
(1)
R = x1∂3,5 + x2∂3,6 − x2∂4,5 + x1∂4,6

be the linear part of ΠR in a neighbourhood of (0, 0, x3, x4, x5, x6). Observe that the Lie algebra determined by Π (1)
R is

isomorphic to the complex Heisenberg Lie algebra h3(C), considered as a real Lie algebra.

Example 28. We consider the Lie group Gλ with Lie algebra gλ := L2,λ(1, 3) from Section 4.1, for λ > 0. This group has the
following matrix realization:

Gλ =





1 x2 0 x4

√
λ

2
x5

√
λ

2
x6

0 e−x1 0 0 0 x3
0 0 1 0 0 0

0 0 0 cos(λx1) − sin(λx1)

√
λ

2
(x4 sin(λx1)+ x5 cos(λx1))

0 0 0 sin(λx1) cos(λx1)

√
λ

2
(−x4 cos(λx1)+ x5 sin(λx1))

0 0 0 0 0 1




,

for x1, . . . , x6 ∈ R. This induces the following multiplication on R6:


x1
x2
x3
x4
x5
x6

 ∗

y1
y2
y3
y4
y5
y6

 =


x1 + y1
y2 + x2e−y1
x3 + y3e−x1

y4 + x4 cos(λy1)+ x5 sin(λy1)
y5 − x4 sin(λy1)+ x5 cos(λy1)

x6 + y6 + x2y3 +
λ

2
sin(λy1)(x4y4 + x5y5)+

λ

2
cos(λy1)(x4y5 − x5y4)

 .

Recall from Section 4.1 the two inequivalent Hermitian structures (J1, g) and (J2, g) on gλ. The r-matrices Ji : gλ → gλ
determine a bivector Ri ∈

∧2
gλ by setting Ri := Ji ◦ g−1 : g∗λ → gλ, for i = 1, 2. One can easily see that

R1 = e1 ∧ e3 − e2 ∧ e6 + e4 ∧ e5,
R2 = e1 ∧ e3 − e2 ∧ e6 − e4 ∧ e5,



A. Andrada et al. / Journal of Geometry and Physics 58 (2008) 1310–1328 1327

where e1, . . . , e6 are as in (17), and the multiplicative Poisson tensorsΠλ
i =

←

Ri −
→

Ri determined by Ri are given by:

Πλ
1 = (e−x1 − 1)∂1,3 + x2∂1,6 − x2e−x1∂2,3 + (e−x1 − x22 − 1)∂2,6

− λx5e−x1∂3,4 + λx4e−x1∂3,5 + λ(x4 + x2x5)∂4,6 + λ(x5 − x2x4)∂5,6,

Πλ
2 = (e−x1 − 1)∂1,3 + x2∂1,6 − x2e−x1∂2,3 + (e−x1 − x22 − 1)∂2,6

− λx5e−x1∂3,4 + λx4e−x1∂3,5 − λ(x4 − x2x5)∂4,6 − λ(x5 + x2x4)∂5,6.

Note thatΠλ
i (x1, . . . , x6) = 0 if and only if x1 = x2 = x4 = x5 = 0. The characteristic distribution Cλi associated toΠλ

i
satisfies (Cλi )x = {0} if and only if x1 = x2 = x4 = x5 = 0. For the remaining points, dim(Cλi )x = 4 and

(Cλi )x = span {V |x, Wi|x, ∂3|x, ∂6|x} ,

where V andWi are the following vector fields on R6:

V = −
(
e−x1 − 1

)
∂1 + x2e−x1∂2 − λx5e−x1∂4 + λx4e−x1∂5,

W1 = −x2∂1 −
(
e−x1 − x22 − 1

)
∂2 − λ(x4 + x2x5)∂4 − λ(x5 − x2x4)∂5,

W2 = −x2∂1 −
(
e−x1 − x22 − 1

)
∂2 + λ(x4 − x2x5)∂4 + λ(x5 + x2x4)∂5.

Note that [V ,Wi] = 0 for i = 1, 2.We conclude that in both cases the 0-dimensional leaves are the points {(0, 0, c3, 0, 0, c6)}
and the open set U = {x ∈ R6

: x21 + x22 + x24 + x25 6= 0} is foliated by 4-dimensional symplectic manifolds, the integral
manifolds of the above distributions. Consider the disjoint union U = U1 ∪U2 ∪U3, where Ui, i = 1, 2, 3, are the sets

U1 = {x ∈ R6
: x21 + x22 6= 0, x4 = x5 = 0},

U2 = {x ∈ R6
: x24 + x25 6= 0, x1 = x2 = 0},

U3 = {x ∈ R6
: x21 + x22 6= 0, x24 + x25 6= 0}.

The set Ui, i = 1 or 2, has four connected components diffeomorphic to R4, and each of them is a leaf of both distributions,
since (Cλ1 )x = (C

λ
2 )x for x ∈ U1 ∪ U2. On the other hand, these distributions satisfy (Cλ1 )x 6= (C

λ
2 )x for each x ∈ U3, and

therefore, their integral manifolds through these points do not coincide. Nevertheless, the integral manifolds of Cλ1 and Cλ2
through c = (c1, . . . , c6) ∈ U3 are diffeomorphic to Sc ×R2, where Sc is a surface contained in {x ∈ U3 : x3 = c3, x6 = c6}.

Let(
Πλ

1

)(1)
= −x1∂1,3 + x2∂1,6 − x2∂2,3 − x1∂2,6 − λx5∂3,4 + λx4∂3,5 + λx4∂4,6 + λx5∂5,6(

Πλ
2

)(1)
= −x1∂1,3 + x2∂1,6 − x2∂2,3 − x1∂2,6 − λx5∂3,4 + λx4∂3,5 − λx4∂4,6 − λx5∂5,6,

be the linear parts ofΠλ
i in a neighbourhood of (0, 0, x3, 0, 0, x6). It follows that the Lie algebra determined by (Πλ

1 )
(1) (resp.

(Πλ
2 )
(1)) is isomorphic to r3,−iλ(C) (resp. r3, iλ(C)), considered as real Lie algebras.

Remark 29. (i) Replacing x2 by −x2, the vector field W1 is transformed into W2 while the other generators of the
distributions Cλ1 and Cλ2 remain unchanged. Thus, the corresponding leaves of both distributions are diffeomorphic.
However, these Lie–Poisson structures are not equivalent since the associated Lie bialgebras are non-isomorphic.
Furthermore, Πλ

1 and Πλ
2 , with λ 6= 1, are not equivalent as Poisson structures since their linear parts give rise to non-

isomorphic Lie algebras.
(ii) The Lie algebras r3,−iλ(C) and r3,iλ(C), considered as six-dimensional real Lie algebras, are real analytically degenerate.
In fact, the Poisson tensor

Π =
(
Πλ

1

)(1)
+ (x1∂1 + x2∂2) ∧ (x4∂4 + x5∂5)

is non-linearizable since it has rank 6 almost everywhere,while its linear part
(
Πλ

1

)(1) has rank atmost 4. Therefore, r3,−iλ(C)
is degenerate. A similar argument works for the Lie algebra r3,iλ(C).
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