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a b s t r a c t

We give a natural definition of geodesics on a Riemannian supermanifold (M, g) and
extend the usual geodesic flow on T ∗M associated to the underlying Riemannian manifold
(M,g) to a geodesic ‘‘superflow’’ on T ∗M. Integral curves of this flow turn out to be in
natural bijection with geodesics on M. We also construct the corresponding exponential
map and generalize the well-known faithful linearization of isometries to Riemannian
supermanifolds.
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1. Introduction

The geometry of supermanifolds is, after a first, pioneering, ‘‘Storm and Stress’’-period in the 70s and 80s, still in its
youth but with by now many mathematicians studying in detail the fundamentals as well as the applications of this
theory. Our work on Riemannian supermanifolds is motivated by at least two developments originating in physics and
relying on Riemannian geometry extended to the category of supermanifolds. First, we are interested in those aspects
of the ‘‘Stolz–Teichner program’’ on the geometrization of elliptic cohomology that relate to cobordisms of Riemannian
supermanifolds and to supermanifolds in general (see [1] for a detailed account). Of course, extending certain results of this
article to super loop spaces (compare [2] for the ungraded case) would give a direct connection to the physics literature
underlying elliptic cohomology, where the role of loop spaces is central (see, e.g., [3]). Second, work of Zirnbauer and
collaborators (see, e.g., [4]) shows the surprising importance of the notion of ‘‘supersymmetric spaces’’ for physics, notably
mesoscopic physics. In this context it is very natural to ask for a general theory of Riemannian supermanifolds with these
spaces replacing the symmetric spaces of ordinary Riemannian geometry. The subject of supersymmetric spaceswas, in fact,
the main motivation of the work of Goertsches [5] on Riemannian supergeometry.

The first cornerstone of Riemannian geometry is – after themetric itself – the notion of a geodesic curve. Upon extending
these notions, metrics and geodesics, to supermanifolds it looks highly reasonable to aim at fulfilling the following three
conditions:

(i) geodesic supercurves should reduce to the usual geodesics in the case of classical (ungraded) Riemannian manifolds
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(ii) an isometry fixing a point and having a trivial linearization in this point should be the identity morphism
(iii) geodesics should be closely related to integral curves of a ‘‘geodesic flow’’ on the (co-)tangent bundle of the given

Riemannian manifold.

The definition of a Riemannian metric on a supermanifold is fairly straight forward and seems to be generally accepted
in the literature. (See Definition 2.7.) The notion of geodesic supercurves proposed by Goertsches fulfills (i) and (ii), but
unfortunately we could not establish (iii) in this approach. Since the geodesic flow is a tool of great importance in the
geometry and analysis on a Riemannian manifold, we found it crucial not to give up condition (iii). Furthermore, the
discussion of initial conditions in [5] (see the beginning of Subsection 4.4 there) does not seem to be fully conclusive. Let
us underline that the equations chosen for defining geodesics in this article translate in local coordinates to a system of
second-order ODEs, whereas the geodesics of Goertsches give rise to second-order equations and first-order equations (for
the even resp. odd coordinates). This explains, at least on an intuitive level, why there might be no geodesic flow related to
Goertsches’ notion of geodesics.

Let us now proceed to a short description of the contents of this article.
First of all, we underline that we work throughout in the sheaf-theoretic framework, i.e., in the approach to

supermanifolds going back to Kostant and the Russian school around Berezin, Bernstein, Leites and Manin.
We define, in the second section, geodesics as ‘‘supercurves’’ that are autoparallel with respect to the natural even time

direction:

0 =
∇

dt


TΦ∗(∂t)


= (Φ∗

∇)∂t (∂t ◦ Φ∗),

where Φ∗
∇ is the pull-back of the Levi-Civita connection, ∂t is ∂

∂t and ∂t ◦ Φ∗ is a canonically defined vector field along
Φ (see the main text for more details). The preceding geodesic equations were already derived by Monterde and Muñoz
Masqué by a variational principle (compare Thm. 7.1 and Cor. 7.1 in [6]). Apparently, the solutions of this equation were
never studied in detail, excepting the observation that condition (i) above holds, already made in [6].

Theorem 2.21 then gives existence and unicity of geodesics in a Riemannian supermanifold M, with general initial
condition given by J in Mor(S, TM), with S being an arbitrary auxiliary supermanifold.

We also recall there the relation between locally free sheaves and supervector bundles as objects in the category of
supermanifolds, mainly in order to have a precise grip on (co-)tangent bundles.

In Section 3, we first remind the reader of the class of superfunctions on the total space of a supervector bundle that
are polynomial on the fibers, allowing us to define then a natural energy function H on the cotangent bundle T ∗M of a
Riemannian supermanifold (M, g). We give intrinsically (and in coordinates) the canonical symplectic form on T ∗M and
explicit the Hamiltonian vector field XH associated to H . We proceed then to show that ‘‘integral supercurves’’ of this vector
field (i.e., curves given by the geodesic flow) are in bijection with geodesics on (M, g), see Theorems 3.13 and 3.14. We also
give here a brief account of the analogous results in the case of odd Riemannian metrics.

The last section, 4, gives applications of the geodesic flow morphism constructed in the preceding section. First, we
show the existence of an exponential map generalizing the ungraded case and such that expq : TqM → M, for q in
the body of M, is a local diffeomorphism (Theorem 4.4). Finally, we prove the result that an isometry of a connected
Riemannian supermanifold fixing a point of the body and having the identity as its tangent map in this point, is already the
identity morphism of the supermanifold. This implies immediately the unicity of the ‘‘geodesic symmetries’’ in the sense of
Riemannian symmetric spaces, fixing a point in the body and having there minus the identity as their tangent map.

2. Riemannian metrics on supermanifolds

In this section we briefly recall several fundamental notions, giving ideas of proof of certain folkloristic facts
(Propositions 2.12, 2.14 and 2.20) only when we did not find a reference in the literature. We define supergeodesics
(Definition 2.17) differently from [5], but our definition also reduces to the standard definition in the ungraded case. We
end this section with the first important new result of the article, namely existence and unicity of a supergeodesic for a
given initial condition (Theorem 2.21).

We use throughout this article the sheaf-theoretic approach to supermanifolds going back to Kostant [7] and Leites [8],
thus basing our work on the following:

Definition 2.1. A supermanifold M of dimension m|n is a locally ringed space (M, OM), where OM is a sheaf of commutative
Z2-graded algebras onM , such that

(i) M is a Hausdorff second countable topological space,
(ii) every point m ∈ M has a neighborhood U such that the ringed space (U, OM |U) is isomorphic to a superdomain

Vm|n
= (V , ORm|n|V ) with V open in Rm.

Reminder 2.2. If X = (X, OX) and Y = (Y , OY) are ringed spaces, a morphism Φ : X → Y is a pair (Φ, Φ∗), whereΦ : X → Y is a continuous mapping and Φ∗
: OY → Φ∗OX is a collection of homomorphisms of rings Φ∗(U) : OY(U) →

OX(Φ−1(U)), for each open subset U of Y , compatible with the restriction mappings. If the ringed spaces are locally ringed
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spaces, i.e., all stalks have a unique maximal ideal, the morphism Φ∗
x : OY,Φ(x) → OX,x is supposed to be local for all x ∈ X, i.e.,

Φ∗
x (mΦ(x)) ⊂ mx.

We remark that the datum of such a collection Φ∗ of homomorphisms is equivalent to Φ∗
: Φ−1OY → OX a collection

of homomorphisms of rings Φ∗(V ) : (Φ−1OY)(V ) → OX(V ), for each open subset V of X , compatible with the restriction
mappings. Recall that the inverse image Φ−1OY of OY is defined as

(Φ−1OY)(V ) := lim
−→

W⊃Φ(V )
W open in Y

OY(W ).

This equivalence is due to the fact that Φ∗ and Φ−1 are adjoint functors, i.e.

Hom

OY,Φ∗OX

 ∼=
−→ Hom

Φ−1OY, OX


.

Proposition 2.3. Given supermanifolds M = (M, OM), N = (N, ON ) the following holds:
(i) there is a morphism of sheaves β : OM → C∞

M , called the reduction mapping, such that the following sequence:

0 −→ Onil
M −→ OM

β
−→ C∞

M −→ 0

is exact, where Onil
M is the sheaf of nilpotent elements of OM .

(ii) if Φ : N → M is a morphism of supermanifolds, then we have the following commutative diagram

OM Φ∗ON

C∞

M Φ∗C
∞

N .

//Φ∗

��
��
��
��
��

β

��
��
��
��
��

β

//
(Φ)

∗

For every supermanifold M = (M, OM), one defines TM(U) := DerR(OM(U)) for each open set U in M . Here
DerR(OM(U)) denotes the OM(U)-module of derivations of OM(U), where a homogeneous derivation ϕ is by definition
an element of EndR(OM(U))0 ∪ EndR(OM(U))1 such that

ϕ(ab) = ϕ(a)b + (−1)|ϕ| |a|aϕ(b) for all a, b ∈ OM(U).

TM is called the tangent sheaf and has the following structure (compare, e.g. [9], Satz 4.36 for the proof):

Theorem 2.4. TM is a locally free sheaf of OM-modules of rank (m, n).

The sections of TM are called vector fields. The R-vector space TM(U) has a natural Lie superalgebra structure given by the
following bracket [., .]

[X, Y ]f := X(Yf ) − (−1)|X | |Y |Y (Xf ),

satisfying the following graded Jacobi identity for each triple X, Y , Z of vector fields:

[X, [Y , Z]] = [[X, Y ], Z] + (−1)|X | |Y |
[Y , [X, Z]].

On a supermanifold one also has the numerical tangent space, defined as follows:
For every point p in M , the numerical tangent space T num

p M of M at p is the space spanned by the homogeneous
derivations ϕ : OM ,p → R satisfying

ϕ(fg) = ϕ(f )g(p) + (−1)|ϕ| |f |f (p)ϕ(g),

where OM ,p := lim−−→
U∋p OM(U) is the stalk of OM at p andf (p) = β(f )(p).

For any p ∈ U , there is a natural reduction map TM(U) → T num
p M sending a vector field X ∈ TM(U) to its value Xnum(p)

at p. Remark that, contrary to the classic case, a vector field is not determined by the collection of its numerical values at all
points.

There is a natural real vector bundle of rankm + n overM having the numerical tangent spaces as its fibers, canonically
splitting as the direct sum of (T numM)0 → M and (T numM)1 → M . Then Xnum is a smooth section of T numM → M . If
M = (M, Γ ∞

ΛE∗) with E a smooth real vector bundle over M , the ‘‘odd part’’ of the numerical tangent bundle, (T numM)1, is
in fact isomorphic to E.

We use again the letter β to denote the reductionmap to the numerical bundle composedwith the projection to the even
part of the tangent space:

β : TM →

M, Γ ∞

(TnumM)0


,

where

M, Γ ∞

(TnumM)0


is naturally isomorphic to the sheaf (M, Γ ∞

TM) of vector fields onM .
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For f ∈ OM(U) and X ∈ TM(U), we will often writef andX instead of β(f ) and β(X), respectively.

Definition 2.5. The cotangent sheaf of a supermanifold M is defined as the dual Ω1
M of TM .

Proposition 2.6. The OM-module sheaf Ω1
M is locally free of rank (m, n).

Definition 2.7. A (even) graded Riemannian metric on a supermanifold M is a graded symmetric even non-degenerate OM-
linear morphism of sheaves

g : TM ⊗OM TM → OM,

where non-degeneracy means that the mapping X → g(X, .) is an isomorphism from TM to Ω1
M .

A supermanifold equipped with a graded Riemannian metric is called a Riemannian supermanifold.

Remarks. Let q ∈ M , the morphism g defines a scalar superproduct gq on the real supervector space T num
q M as follows:

Let u, v be two numerical tangent vectors in T num
q M. Choose vector fields X, Y ∈ TM(U) where U is an open neighborhood

of q in M , fulfilling Xnum(q) = u and Y num(q) = v. We then set gq(u, v) := g(X, Y )(q). In general, this family of scalar
superproducts does not determine the graded Riemannian metric. By restriction to the even numerical vector fields this
scalar superproduct induces a pseudo-Riemannianmetricg onM , whereas the restriction to the odd numerical vector fields
gives a symplectic structure on the real vector bundle (T numM)1 → M . It follows notably that the odd dimension of a
Riemannian supermanifold is always even.

Our goal is to define the notion of supergeodesics, as ‘‘autoparallel curves’’ with respect to a connection. Let thus
M = (M, OM) be a supermanifold and E a locally free sheaf of OM-modules of finite rank onM .

Definition 2.8. A connection on E is an even morphism ∇ : E → Ω1
M ⊗OM E of sheaves of R-supervector spaces that

satisfies the Leibniz rule

∇(f · v) = df ⊗ v + f · ∇(v)

for all sections f ∈ OM(U) and v ∈ E(U) where df (X) := (−1)|X | |f |X(f ) for all X ∈ TM(U), and on all open subsets U of M .

Given a vector field X on M, we have a map ∇X : E → E defined via the canonical pairing ⟨., .⟩ between the tangent and
the cotangent sheaf, ∇X (v) = ⟨X, ∇(v)⟩. Then ∇X satisfies:

(∇X )(f · v) = X(f ) · v + (−1)|X | |f |f · (∇X )(v) and |(∇X )(v)| = |X | + |v|.

In the case E = TM , we speak of a connection on M.

Definition 2.9. We define the torsion of a connection ∇ on M by

T∇(X, Y ) := ∇XY − (−1)|X | |Y |
∇YX − [X, Y ].

Definition 2.10. IfM is equippedwith an even gradedRiemannianmetric g , a connection∇ is calledmetric if the connection
respects the metric in the following sense

∇g = 0, i.e. X(g(Y ⊗ Z)) = g(∇XY ⊗ Z) + (−1)|X | |Y |g(Y ⊗ ∇XZ) ∀X, Y , Z ∈ TM(U).

We also have the natural graded analogue of Christoffel symbols: If (qi) is a system of coordinates on U ⊂ M , the expansion

∇∂qi
∂qj =


k

Γ k
ij ∂qk

gives elements Γ k
ij ∈ OM(U) of parity |Γ k

ij | = |qi| + |qj| + |qk|.

Theorem 2.11. On a supermanifold M with a graded Riemannian metric g, there exists a unique torsion free and metric
connection ∇ , which will be called the Levi-Civita connection of the metric.

The proof follows immediately upon interpreting the usual six-term-formula in a graded sense and sheaf-theoretically.
A connection on M induces a connection on the vector bundle TM → M by reduction. Indeed, there exists a unique

connection ∇ onM such that∇β(X)(β(Y )) = β(∇XY ) ∀X, Y ∈ TM(U) and for all U open ofM.

In our case, the Levi-Civita connection associated to a graded Riemannianmetric induces the usual Levi-Civita connection
of the inducedmetricg onM . Moreover, in coordinates (qi), the reduction β(Γ k

ij ) of a Christoffel symbol Γ k
ij is the Christoffel

symbol of the Levi-Civita connection onM with respect to the corresponding coordinates onM .
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In the classical case, we have an explicit formula for Christoffel symbols. Adding appropriate signs this formula holds true
in the super context:

Proposition 2.12. In coordinates (qi) on U, the Christoffel symbols Γ k
ij of the Levi-Civita connection on a Riemannian

supermanifold are given by

Γ k
ij =

1
2


l


∂qigjl + (−1)|qi| |qj|∂qjgil − (−1)|ql|(|qi|+|qj|)∂qlgij


g lk, (2.1)

where gij := g(∂qi , ∂qj) ∈ OM(U) and g lk
∈ OM(U) are defined by


k g

ikgkj = δi,j.

Proof. Direct computation using the six-term-formula that defines the Levi-Civita connection.

A connection on M allows to define a covariant derivative of vector fields along a curve. We develop these notions here
in some detail for supermanifolds.

Definition 2.13. Let Φ = (Φ, Φ∗) : N → M be a morphism of supermanifolds and U an open set ofM . A vector field along
Φ : N → M on U is a morphism of supervector spaces

X : OM(U) → (Φ∗ON )(U)

such that its homogeneous components X0, X1 satisfy the following derivation property

Xα(fg) = Xα(f )Φ∗(g) + (−1)α·|f |Φ∗(f )Xα(g) for α = 0, 1 and f , g ∈ OM(U).

The set DerR

OM(U), (Φ∗ON )(U)


of all vector fields along Φ will also be denoted by T Φ

M (U). Remark that T Φ
M is naturally

a sheaf of Φ∗ON -modules overM .
Recall that a morphism of supermanifolds can be viewed as a morphism Φ∗

: OM → Φ∗ON of sheaves over M or as
a morphism Φ∗

: Φ−1OM → ON of sheaves over N . Accordingly, vector fields along Φ can also be viewed as a sheaf of
ON -modules over N : T Φ

N := DerR
Φ−1OM, ON


.

There are two standard ways of constructing vector fields along Φ . If X is a vector field on M, thenX := Φ∗
◦ X

is a vector field along Φ , and if Y is a vector field on N , we get the following vector field along Φ:

(TΦ∗)(Y ) := Y ◦ Φ∗.

We thus obtain two morphisms of sheaves over N , namely Φ−1TM
Φ∗

−→ T Φ
N and TN

TΦ∗

−→ T Φ
N , and their analogues over M .

Since knowledge of this sheaves will be useful in the sequel, we give a more explicit description.

Proposition 2.14.

(i) T Φ
M is a locally free sheaf of Φ∗ON -modules over M of the same rank as TM . More precisely, we have an isomorphism

T Φ
M

∼=
−→ Φ∗ON ⊗OM TM.

(ii) T Φ
N is a locally free sheaf of ON -modules over N of the same rank as TM . More precisely, we have an isomorphism

T Φ
N

∼=
−→ ON ⊗Φ−1OM

Φ−1TM.

Proof. We will prove only (i). Part (ii) then follows from the fact that Φ∗ and Φ−1 are adjoint functors.
We will construct two isomorphisms Q and S as below:

DerR

OM,Φ∗ON


HomOM


Ω1

M,Φ∗ON

 Φ∗ON ⊗OM TM.//Q
∼=

//S
∼=

Step 1:
We define Q on U , a chart domain of M with local coordinates (qi). Let D be a vector field along Φ on U,Q (U)(D) is then

the morphism of OM(U)-module such that

Q (U)(D)(dqi) = (−1)|i|D(qi) ∀i,

where dqi(∂qj) := δi,j.
Thus if ω =


i ωi · dqi, we have Q (U)(D)(ω) =


i(−1)|D| |ωi|+|i|Φ∗(ωi) · D(qi). It follows that Q (U) is a morphism of

(Φ∗ON )(U)-modules and Q is a Φ∗ON -module morphism.
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Step 2:
Similarly, we define S on a chart domain U . Let ϕ ∈ HomOM(U)


Ω1

M(U),Φ∗ON (U)

, then

S(U)(ϕ) =


i

(−1)|i|ϕ(dqi) ⊗ON (U) ∂qi , where ∂qi :=
∂

∂qi
.

A direct computation shows that both maps Q and S are isomorphisms of Φ∗ON -modules. �

Remark. The proof of Proposition 2.14 shows that the isomorphism L := S ◦ Q looks as follows in local coordinates on U ,
for a D ∈ T Φ

M (U):

L(D) =


i

(−1)|i|Q (D)(dqi) ⊗ ∂qi

=


i

D(qi) ⊗ ∂qi .

Furthermore, if (qi) are coordinates on M, then (∂̂qi) is a basis of T Φ
M (U) and we have

TΦ∗(Y ) = Y ◦ Φ∗
=


i

Y (Φ∗qi)∂̂qi

for all vector fields Y on N .

Given a connection on M and a morphism Φ : N → M, we introduce the associated pull-back connection in order to
get a covariant derivative along a curve. One has, in fact, the statement below:

Proposition/Definition 2.15. There exists a unique connection ∇ on T Φ
M such that the diagram

TM Ω1
M ⊗OM TM

T Φ
M

Φ∗Ω
1
N ⊗Φ∗ON

T Φ
M

//∇

��

Φ∗

��

Φ∗

//
∇

commutes. This connection is usually called the pullbackof ∇ via Φ and is denoted by Φ∗
∇ .

Remark. The vertical arrow is defined as follows. First there is a natural map from Ω1
M to Φ∗Ω

1
N induced by Φ∗ which is

also denoted by Φ∗. Given U an open set in M and ω ∈ Ω1
M(U), we get an element υ of Φ∗Ω

1
N (U):

υ(X) := ω(TΦ∗(X)) for X ∈ (Φ∗TN )(U),

whereω is defined byω : Φ∗ON (U) ⊗OM(U) TM(U) −→ Φ∗ON (U)

f ⊗ Y −→ (−1)|f | |ω|f · Φ∗(ω(Y ))

and the isomorphism T Φ
M

∼= Φ∗ON ⊗OM TM . Using Φ∗
: OM → Φ∗ON the map Φ∗

: Ω1
M −→ Φ∗Ω

1
N turns out to be a

morphism of OM-modules, that can be tensored with Φ∗
: TM → T Φ

M to obtain the arrow

Φ∗
: Ω1

M ⊗OM TM −→ Φ∗Ω
1
N ⊗Φ∗ON

T Φ
M .

Proof of Proposition 2.15. The proof follows immediately upon interpreting the usual proof in the classical case of
ungraded manifolds sheaf-theoretically. �

Remark. The diagram in Proposition/Definition 2.15 can be equivalently replaced by the following diagram:

Φ−1TM
Φ−1Ω1

M ⊗Φ−1OM
Φ−1TM

T Φ
N Ω1

N ⊗ON T Φ
N

//∇

��

Φ∗

��

Φ∗

//
∇

We can now define the covariant derivative along a supercurve Φ : R1|1
→ M. Let (M, g) be a Riemannian supermanifold

and ∇ its Levi-Civita connection. Consider Φ∗
∇ , the pullback connection of ∇ under Φ .
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Definition 2.16. The even covariant derivative along Φ : R1|1
→ M is defined as

∇

dt
:= (Φ∗

∇)∂t : T Φ
M −→ T Φ

M ,

induced by the duality pairing of ∂t with elements of Ω1
R1|1 where (t, θ) are the canonical coordinates on R1|1 ∼= R × R0|1.

Note that if (qi) are local coordinates on U ⊂ M , we have for all vector fields X ∈ T Φ
M (U)

∇

dt
(X) =


k


∂tX(qk) +


i,j

X(qi)∂tΦ∗(qj)Φ∗(Γ k
ji )


⊗ ∂k.

Analogously, we can define the covariant derivative along a curve with respect to the odd coordinate θ on R1|1:
∇

dθ
:= (Φ∗

∇)∂θ
: T Φ

M −→ T Φ
M ,

induced by the duality pairing of ∂θ with elements of Ω1
R1|1 .

In local coordinates, we have a similar formula with an additional sign:

∇

dθ
(X) =


k


∂θX(qk) +


i,j

(−1)|X |+|qi|X(qi)∂θΦ
∗(qj)Φ∗(Γ k

ji )


⊗ ∂k.

We can now give a natural definition of supergeodesics.

Definition 2.17. A supergeodesic on (M, ∇), a supermanifoldwith a connection∇ , is a supercurveΦ : R1|1 ∼= R×R0|1
→ M

such that
∇

dt


TΦ∗(∂t)


= 0.

The preceding condition is locally equivalent to

∂2
t Φ∗(qk) +


i,j

∂tΦ
∗(qi)∂tΦ∗(qj)Φ∗(Γ k

ji ) = 0 ∀k, (2.2)

where (qk) are local coordinates on M. Note that the Eq. (2.2) restricted to those k corresponding to even coordinates are
the usual geodesic equations of the underlying classical manifold equipped with the reduced connection ∇ onM .

Remarks. (1) Of course, in general a supergeodesic is only defined on an open subsupermanifold of R1|1 with body an open
interval in R. Slightly abusing, we will often write R1|1 meaning such an open subsupermanifold of it.

(2) One can easily generalize Definitions 2.16 and 2.17 to the case R × S, S an arbitrary supermanifolds replacing R0|1.

A different definitionwas given by Goertsches [5]: a supergeodesic in the sense of Goertsches is a supercurveΦ : R1|1
→ M

such that
∇

dt
TΦ∗(∂t)

num

=


∇

dt
TΦ∗(∂θ )

num

= 0. (2.3)

Remark that such a curve automatically satisfies the following equations:
∇

dθ
TΦ∗(∂t)

num

=


∇

dθ
TΦ∗(∂θ )

num

= 0.

Locally, (2.3) is equivalent to

f ′′

k +


i even,
j even

f ′

i · f ′

j · Φ∗(Γ k
ji ) = 0 ∀k even,

and

f ′

δ +


i even,
β odd

fβ · f ′

i · Φ∗(Γ δ
iβ) = 0 ∀δ odd,

where fi, fδ ∈ C∞
R (Φ−1(U)) are functions defined as follows:

Φ∗(qi) = fi ∀i even and Φ∗(qβ) = fβ · θ ∀β odd.

We call here and in the sequel an index (i, δ, k, β, . . .) ‘‘even’’ resp. ‘‘odd’’ if the corresponding coordinate has the property.
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In particular, if M = R1|2 is equipped with a flat metric (i.e., Γ k
ij = 0), (2.3) is equivalent to

f ′′

k = 0 ∀k even, and f ′

δ = 0 ∀δ odd.
On the other hand, the geodesic equation (2.2) is equivalent to

f ′′

k = 0 ∀k even, and f ′′

δ = 0 ∀δ odd.
The Eqs. (2.2) and (2.3) are thus obviously non-equivalent, moreover initial conditions for these two notions of geodesics
are not the same.

Let us explain in some detail what an initial condition is in the super context. For this we need to recall supervector
bundles and the tangent map (in the category of supervector bundles) coming from a morphism of supermanifolds.

If X = (X, OX) is a supermanifold and V an open subset of X , we denote by X|V the open subsupermanifold given by
(V , OX|V ).

Definition 2.18. Let V and M be supermanifolds and let π : V → M be a surjective submersion.
V is called a supervector bundlewith base M and typical fiber Rp|q if

(i) for all x ∈ M , there exists a local trivialization (U, ϕ), i.e. there is an open neighborhood U of x and an isomorphism
ϕ : Vvertπ−1(U) → Rp|q

× M|U such that the following diagram commutes

V|π−1(U) Rp|q
× M|U

M|U

//
ϕ

��

π

zztttttttttt

proj2

(ii) and there exists a covering of M by local trivializations {(Uα, ϕα)} as in (i) such that for all α, β with Uαβ := Uα ∩ Uβ

nonempty set, the transition function ϕαβ := ϕβ ◦ (ϕα)−1
: Rp|q

× M|Uαβ
→ Rp|q

× M|Uαβ
is determined by an element

φαβ ∈ GL(p,q)(OM(Uαβ)), that is

(ϕαβ)∗(f ) = f ∀f ∈ OM(Uαβ),

(ϕαβ)∗(vi) =


j

vj · (φαβ)ji ∀i,

where (vi) are the canonical coordinates on Rp|q.

Theorem 2.19 ([10]). Let M be a supermanifold. The category of locally free sheaves of OM-modules of finite rank is equivalent
to the category of supervector bundles over M.

Remark. Let now TM = (TM, OTM) and T ∗M = (T ∗M, OT∗M) be the supervector bundles associated by the preceding
construction to the locally free sheaves TM and Ω1

M respectively. If M is of dimension n|m, then the total spaces of these
bundles both have dimension 2n|2m, which fits with the naïve idea of position and velocity resp. position and momentum
variables. Of course, this point of view is also crucial for the existence of a canonical even symplectic form on T ∗M (see
below in Section 3; compare also [7]). Denoting the projection from TM to M by π , one observes that Γ (M, TM) := {Φ ∈

Mor(M, TM) | π ◦ Φ = idM} is the space of even vector fields or derivations on M. Instead of going to a ‘‘bigger tangent
bundle’’ of dimension 2m + n|2n + m (compare, e.g., [11]), we prefer to stick to the above tangent bundle and note that
Γ (M, TM)⊕Γ (M, ΠTM), withΠTM the vector bundle associated to themodule sheafΠTM obtained by applying parity
change to TM , is the space of all vector fields onM (compare, e.g., the Sections 7 and 8 of [10]). Inmoremodern language, we
can formulate this via relative morphisms (see [12] for a recent and detailed account of this point of view). Let p : V → M
be a fiber bundle in the category Sman of supermanifolds, then we have a functor to the category Set of sets:

Sman → Set, S → MorM(M × S, V) := {Φ ∈ Mor(M × S, V) | p ◦ Φ = proj1},

and vector fields on M are given by taking V = TM and S = R0|1. This formalizes, in fact, the classical point of view
of physicists saying that given an odd vector field X , multiplication by an ‘‘odd constant’’ (realized by the canonical odd
coordinate τ on R0|1) yields an even ‘‘vector field’’ τ · X .

Proposition 2.20. Each morphism of supermanifolds Φ : N → M induces a morphism of supermanifolds TΦ : TN → TM
called the tangent map of Φ .

Sketch of the proof. Let (qN
i ) and (qM

j ) be coordinates on N and M. They induce natural coordinates (qN
i , vN

i ) and
(qM

j , vM
j ) which trivialize TN and TM, respectively. In these coordinates, the tangent map of Φ is given as follows

(TΦ)∗(qM
j ) = Φ∗(qM

j ) ∀j,

(TΦ)∗(vM
j ) =


i

vN
i · ∂qN

i
Φ∗(qM

j ) ∀j. �
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Let S be a supermanifold andΦ : R×S → M amorphism of supermanifolds. Using the tangentmap TΦ : TR×TS → TM,
the section s1 : t → (1, t) of TR and the canonical zero section s0 : S → TS of TS, we define ∂tΦ : R × S → TM, the
partial derivative of Φ in the direction of R, as follows:

∂tΦ := TΦ ◦ (s1 × s0) : R × S → TM.

In local coordinates, this amounts to

(∂tΦ)∗(qM
i ) = Φ∗(qM

i )

(∂tΦ)∗(vM
i ) = ∂tΦ

∗(qM
i ).

Wedefine forX, Y supermanifolds and x0 ∈ X , injx=x0 : Y → X×Y by injx=x0(y) = (x0, y) and (injx=x0)
∗(f ⊗g) =f (x0) ·g

for f ∈ OX and g ∈ OY . The pullback operation (injx=x0)
∗ is often denoted by evx=x0 .

Theorem 2.21. Let J ∈ Mor(R0|1, TM). Then there exists a unique geodesic Φ : R1|1 ∼= R × R0|1
→ M such that

∂tΦ ◦ injt=0 = J.

Proof. The ‘‘initial condition’’ J renders the solution of the system of ODEs (2.2) unique, since ∂tΦ ◦ injt=0 = J reads in the
local coordinates discussed before the theorem as follows:

inj∗t=0 ◦ Φ∗(qi) = Φ∗(qi)|t=0 = J∗(qi) and ∂tΦ
∗(qi)|t=0 = J∗(vi). �

Remarks. (1) Of course, themorphismΦ is, in general, only defined on an open, connected subsupermanifold ofR1|1, whose
body contains the point 0.

(2) The preceding theorem can easily be generalized to cover the situation discussed in the remark after Definition 2.17:
given a supermanifold S and a morphism J ∈ Mor(S, TM), there exists a unique geodesic Φ : R × S → M such that
∂tΦ ◦ injt=0 = J.

3. The geodesic flow

In this sectionwe first clarify the construction of superfunctions on supervector bundles coming from a locally free sheaf,
as well as of the canonical two-form on the cotangent bundle of a supermanifolds (both already sketched in [7]). We get a
natural ‘‘energy function’’ H on the (co-)tangent bundle of a supermanifold and an associated Hamiltonian vector field XH .
The flow and integral curves of the latter even vector field exist by results ofMonterde andMontesinos resp. Dumitrescu.We
then prove that integral curves of XH on T ∗M are in natural bijection with geodesics on M, as asked for in the introduction.

Proposition 3.1. Let M = (M, OM) be a supermanifold andF be a locally free sheaf of OM-modules and let V = (V , OV)
π

−→

M be the supervector bundle associated toF . Then there exists a natural sheaf morphismπ−1F ∗
−→ OV over V or equivalently

a sheaf morphism F ∗
−→ π∗OV over M.

Proof. The proof follows directly from the construction of the supervector bundle V associated to F . �

Remark. Section ofπ−1F ∗ over on open subset in V are of course local superfunctions ofOV(V ) that are ‘‘linear in the fiber
directions’’.

Corollary 3.2. Let π : V → M be the canonical projection. Then we have a natural morphism of sheaves

π−1 SymOM


F ∗


OV

V

//
χ

''OOOOOOOO

wwoooooooooo

Proof. By the preceding propositionwe have amorphism ofπ−1OM-module sheavesπ−1F ∗
−→ OV . SinceOV is a sheaf of

unital supercommutative superalgebras, we have a canonical extension toπ−1

SymOM

(F ∗)


∼= Symπ−1OM
(π−1F ∗) −→

OV , denoted by χ . �

In the case that F = Ω1
M , we have, after identifying (Ω1

M)∗ with TM , notably the following morphism of OM(M)-
modules:

Sym2
OM

(TM)

(M) OT∗M(T ∗M).//

χ(T∗M)

If M is equipped with a graded Riemannian metric g : TM ⊗OM TM → OM , we have the isomorphisms g♮
: TM

∼=
−→ Ω1

M

and g♭
: Ω1

M

∼=
−→ TM induced by the metric, where

g♮(X)(Y ) := g(X, Y ) ∀X, Y ∈ TM(U).
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Using the above identification and the metric we have

Ω1
M(M) ⊗ Ω1

M(M) TM(M) ⊗ TM(M) OM(M),//
g♭

⊗g♭

∼=

//
g

which determines an element h of

Ω1

M(M) ⊗ Ω1
M(M)

∗. The standard theory of linear superalgebra gives the following
canonical isomorphisms

Ω1
M(M) ⊗ Ω1

M(M)
∗ ∼=


Ω1

M(M)
∗

⊗

Ω1

M(M)
∗ ∼= TM(M) ⊗ TM(M).

Let us now define H :=
1
2χ(T ∗M)(h) ∈ OT∗M(T ∗M), where h is viewed as a symmetric element of TM(M)⊗TM(M). In local

coordinates, we obtain

H =
1
2


i,j

pi · g ij
· pj,

where (qi, pi) are coordinates on T ∗M induced by coordinates (qi) on M.
Recall that in the super context we have a natural notion of graded differential k-form Ωk

M defined, e.g., in [7]. Moreover,
we have a canonical exterior differentiation d of bidegree (1, 0) of the (Z × Z2)-graded commutative algebra ΩM of graded
differential forms.

Definition 3.3. A symplectic supermanifold is a supermanifold M = (M, OM) together with a closed non-degenerate two-
form ω ∈ Ω2

M(M). We call the symplectic form and the corresponding symplectic manifold even (resp. odd) if ω ∈ Ω2
M(M)0

resp. ω ∈ Ω2
M(M)1.

Proposition 3.4. Let M be a supermanifold. Then the cotangent bundle T ∗M of M is equippedwith a canonical (even) symplectic
form ω ∈ Ω2

T∗M(T ∗M)0. As in the classical case of ungraded manifold, ω = −dα with a canonical potential α ∈ Ω1
T∗M(T ∗M)0.

Proof. Using the notations of Proposition 2.14 and the remark after this proposition, we can define the canonical even one-
form α on T ∗M as follows:

DerR(OT∗M(T ∗M)) DerR(OM(M), OT∗M(T ∗M)) OT∗M(T ∗M) ⊗OM(M) TM(M)

OT∗M(T ∗M).

//
T (πT∗M)∗

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

α

//L
∼=

��

1⊗χ

Here T ∗M
πT∗M

−→ M is the canonical projection, L is the map defined in the Proposition 2.14 and χ is the morphism given
by the Proposition 3.1. The projection π T∗M will simply be denoted by π in the rest of this proof. We obtain an element
α ∈ Ω1

T∗M(T ∗M)0 described as follows in the local coordinates (qi, pi):

α(X) = (1 ⊗ χ) ◦ L ◦ Tπ∗(X)

= (1 ⊗ χ) ◦ L(X ◦ π∗)

= (1 ⊗ χ)


i

X ◦ π∗(qi) ⊗ ∂qi


=


i

X(qi) · χ(∂qi), by identifying π∗(qi) with qi,

=


i

X(qi) · pi

=


i

(−1)|pi|(|qi|+|X |)pi · X(qi)

=


i

(−1)|pi|pi · d(qi)(X) ∀X ∈ TT∗M(T ∗M).

We thus locally have α =


qi
(−1)|qi|pi · d(qi).

Now we set ω := −dα ∈ Ω2
T∗M(T ∗M)0. To see that ω is non-degenerate, consider its local expression:

ω = −dα = −


i

(−1)|qi|d(pi) ∧ d(qi) +


i

(−1)|qi|+0·1+|pi|·0pi · d2(qi)


= −


i

(−1)|qi|+1·1+|qi| |pi|d(qi) ∧ d(pi)

=


i

d(qi) ∧ d(pi). �
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The non-degeneracy of ω allows us to give the following definition:

Definition 3.5. Let (M, ω) be a symplectic supermanifold. For any f ∈ OM(M) let Xf ∈ TM(M) be the Hamiltonian vector
field defined by the relation:

i(Xf )ω = df ,

where (i(X)ω)(Y ) := (−1)|X | |ω|ω(X, Y ).

Note that Xf has necessarily the same parity as f if ω is even. Direct calculation now shows:

Proposition 3.6. Let M be a supermanifold and (T ∗M, ω) be its cotangent bundle equipped with the canonical symplectic form.
The Hamiltonian vector field Xf ∈ TT∗M(T ∗M) associated to an even function f ∈ OT∗M(T ∗M)0 is an even vector field and it is
locally given by the following equations:

Xf (qi) = (−1)|qi|∂pi f
Xf (pi) = −∂qi f .

Corollary 3.7. In the situation of the preceding proposition, we have for H, the energy function, the following equations:

XH(qi) =


j

pjg ji

XH(pi) = −
1
2


k,j

(−1)|qi| |qk|pk∂qi(g
kj)pj.

Definition 3.8. Let M be a supermanifold and X be an even vector field on M. A flow of X is a morphism F : R × M → M
of supermanifolds such that:∂t ◦ F∗

= F∗
◦ X and F ◦ injt=0 = idM, (3.1)

where t is the canonical coordinate on R,∂t the lift of the derivation ∂t on R to a derivation on R×M acting just on the first

factor, and injt=0 : M ∼= {0} × M
0×idM
−→ R × M is the injection map at t = 0.

Remark. Of course, the domain of the flow map F is in general only an open subsupermanifold V of R × M, containing
{0} × M. Abusively, we will often write R × M instead of V .

The following result is due to Monterde and Montesinos [13]:

Theorem 3.9. Let X be an even vector field on a supermanifold M,X the reduced vector field on M, and VX ⊂ R × M the flow
domain of X. Then there exists a unique map F : VX → M, where VX is the subsupermanifold of R × M having as body VX ,
satisfying (3.1).

Given the flow F of an even vector field X , we want to use an appropriate notion of initial condition to get ‘‘integral
supercurves’’. If we choose a point q0 in M , we get a curve as follows:

R ∼= R × {q0} R × M

M

//
injq=q0

''OOOOOOOOOOO

Ψ ��

F

This type of initial condition leads to a poor notion of ‘‘integral supercurves’’, since Ψ factorizes over M , the body of the
supermanifold M = (M, OM). Thus we need a notion of initial condition that is more elaborated than simply choosing a
point in the body of M.

Following Dumitrescu [14] we give

Definition 3.10. LetM, S be supermanifolds, X an even vector field onM and I ∈ Mor(S, M). AmorphismΨ : R×S → M
such that∂t ◦ Ψ ∗

= Ψ ∗
◦ X and Ψ ◦ injt=0 = I, (3.2)

where t is the canonical even coordinate on R and injt=0 : S −→ R × S the evaluation map at t = 0, is called an ‘‘integral
curve for X , parametrized by S and satisfying the initial condition I’’.

The case we are mostly concerned with will be S = R0|1 but we need this more general ‘‘family notion’’ for integral curves
notably in the proof of Theorem 4.6. We note that one can give the following geometrical description of the set of initial
conditions (for S = R0|1):
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Proposition 3.11. Let M = (M, OM) be a supermanifold and E be a real vector bundle over M such that M ∼= (M, Γ ∞

∧E∗). Then
there is a 1 : 1 correspondence between E and Mor(R0|1, M).

Idea of the proof. The local coordinates given by local trivializations of the vector bundle E yield immediately a bijection
between E and Mor(R0|1, M). �

Similarly to the standard ungraded case, integral curves are given by factorization over the flow map:

Proposition 3.12 ([14]). Let X be an even vector field on M and F be the flow of X. Let I ∈ Mor(S, M) be an initial condition.
There exists an unique integral curve Φ : R × S → M of X with initial condition I. Precisely, it is given by Φ = F ◦ (idR × I).

We can now give the first fundamental results of this article, relating the integral curves of the geodesic flow on T ∗M to the
geodesics of a Riemannian supermanifold M.

Theorem 3.13. Let M be a supermanifoldwith an even Riemannianmetric g, and let (T ∗M, ω,H) be theHamiltonian dynamical
system associated to (M, g), and let S be a supermanifold. Furthermore, let XH be the Hamiltonian vector field associated to H, I
an initial condition in Mor(S, T ∗M) and Ψ the associated integral curve of XH (Ψ = F ◦ (idR × I)). Then the supercurve
Φ := π T∗M

◦ Ψ : R × S → M satisfies the geodesic equation:

∇

dt


TΦ∗(∂t)


= 0,

subject to the initial condition ∂tΦ ◦ injt=0 = g♭
◦ I ∈ Mor(S, TM), where g♭

: T ∗M
∼=

−→ TM is the isomorphism induced by
the metric g.

Proof. LetΨ be an integral curve of XH . ThenΨ is given byΨ = F ◦ (idR ×I) using Proposition 3.12 where F : R×T ∗M →

T ∗M is the flow of XH and I ∈ Mor(S, T ∗M) is the initial condition.
Recall that F is the unique morphism such that∂t ◦ F∗

= F∗
◦ XH and F ◦ injt=0 = idT∗M.

In local coordinates F is uniquely determined by the following system of equations (compare Corollary 3.7):∂t F∗(qi)


=


j

F∗(pjg ji)

∂t F∗(pi)


= −
1
2


k,j

(−1)|i| |k|F∗

pk∂qi(g

kj)pj


(injt=0)
∗
◦ F∗(qi) = qi

(injt=0)
∗
◦ F∗(pi) = pi.

We note here and in the sequel the parity |pi| = |qi| often by |i|.
Applying (idR × I)∗ to the two first equations of the above system and I∗ to the remaining equations, we get

∂t

Ψ ∗(qi)


=


j

Ψ ∗(pjg ji) (3.3)

∂t

Ψ ∗(pi)


= −

1
2


k,j

(−1)|i| |k|Ψ ∗

pk∂qi(g

kj)pj


(3.4)

(injt=0)
∗
◦ Ψ ∗(qi) = I∗(qi) (3.5)

(injt=0)
∗
◦ Ψ ∗(pi) = I∗(pi). (3.6)

Eq. (3.3) gives now
i

∂tΨ
∗(qi) · Ψ ∗(gij) = Ψ ∗(pj). (3.7)

Derivation along the ‘‘even time direction’’ t yields:

∂tΨ
∗(pj) =


i


∂2
t Ψ ∗(qi) · Ψ ∗(gij) + ∂tΨ

∗(qi) · ∂tΨ
∗(gij)


=


i

∂2
t Ψ ∗(qi) · Ψ ∗(gij) +


k,i

∂tΨ
∗(qi) · ∂tΨ

∗(qk) · Ψ ∗(∂qkgij).

Let us first consider the last summand of the last RHS:
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k,i

∂tΨ
∗(qi) · ∂tΨ

∗(qk) · Ψ ∗(∂qkgij)

=
1
2


k,i

∂tΨ
∗(qi) · ∂tΨ

∗(qk) · Ψ ∗(∂qkgij) +


i,k

∂tΨ
∗(qk) · ∂tΨ

∗(qi) · Ψ ∗(∂qigkj)



=
1
2


k,i

∂tΨ
∗(qi) · ∂tΨ

∗(qk)

Ψ ∗(∂qkgij) + (−1)|i| |k|Ψ ∗(∂qigkj)


.

After relabeling indices we arrive at

∂tΨ
∗(pl) =


j

∂2
t Ψ ∗(qj) · Ψ ∗(gjl) +

1
2


i,j

∂tΨ
∗(qj) · ∂tΨ

∗(qi) ·

Ψ ∗(∂qigjl) + (−1)|j| |i|Ψ ∗(∂qjgil)


. (3.8)

Using Eq. (3.7), Eq. (3.4) yields:

∂t

Ψ ∗(pi)


= −

1
2


k,j

(−1)|i| |k|Ψ ∗(pk) · Ψ ∗(∂qig
kj) · Ψ ∗(pj)

= −
1
2


k,j
l,s

(−1)|i| |k|∂tΨ ∗(ql) · Ψ ∗(glk) · Ψ ∗(∂qig
kj) · ∂tΨ

∗(qs) · Ψ ∗(gsj).

Summing the following equality over k

∂qi(glk · gkj) = ∂qiglk · gkj
+ (−1)|i|(|l|+|k|)glk · ∂qig

kj

gives 
k

(−1)|i| |l|∂qiglk · gkj
+


k

(−1)|i| |k|glk · ∂qig
kj

= 0.

Then

∂t

Ψ ∗(pi)


=

1
2


k,j
l,s

(−1)|i| |l|∂tΨ ∗(ql) · Ψ ∗(∂qiglk) · Ψ ∗(gkj) · ∂tΨ
∗(qs) · Ψ ∗(gsj)

=
1
2


k,j
l,s

(−1)|i| |l|+|s|∂tΨ
∗(ql) · Ψ ∗(∂qiglk) · Ψ ∗(gkj) · Ψ ∗(gjs) · ∂tΨ

∗(qs)

=
1
2


k,l

(−1)|i| |l|+|k|∂tΨ
∗(ql) · Ψ ∗(∂qiglk) · ∂tΨ

∗(qk)

=
1
2


k,l

(−1)|k|(|i|+|l|)+|i| |l|∂tΨ
∗(ql) · ∂tΨ

∗(qk) · Ψ ∗(∂qiglk).

After again relabeling indices, we have

∂tΨ
∗(pl) =

1
2


j,i

(−1)|j|(|l|+|i|)+|l| |i|∂tΨ
∗(qi) · ∂tΨ

∗(qj) · Ψ ∗(∂qlgij)

=
1
2


j,i

(−1)|l|(|i|+|j|)∂tΨ
∗(qj) · ∂tΨ

∗(qi) · Ψ ∗(∂qlgij). (3.9)

Multiplying (3.8) with Ψ ∗(g lk) and summing over l gives:
l

∂tΨ
∗(pl) · Ψ ∗(g lk) = ∂2

t Ψ ∗(qk) +
1
2


i,j,l

∂tΨ
∗(qj) · ∂tΨ

∗(qi) · Ψ ∗

∂qigjl + (−1)|j| |i|∂qjgil


· Ψ ∗(g lk). (3.10)

Applying the same operations to (3.9) yields
l

∂tΨ
∗(pl) · Ψ ∗(g lk) =

1
2


j,i,l

(−1)|l|(|i|+|j|)∂tΨ
∗(qj) · ∂tΨ

∗(qi) · Ψ ∗(∂qlgij) · Ψ ∗(g lk). (3.11)

Now, using the equality Φ∗(qi) = Ψ ∗
◦ (π T∗M)∗(qi) = Ψ ∗(qi) and equating the RHS of the equalities (3.10) and (3.11),

we get exactly (2.2) since the Christoffel symbols are given by (2.1).
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Let us check that ∂tΦ ◦ injt=0 = g♭
◦ I.

Recall the canonical sections s0, s1 defined before Theorem 2.21. Since Φ = π T∗M
◦ F ◦ (idR × I), we can, in fact, show

that ∂tΦ = g♭
◦ F ◦ (idR × I).

Firstly, we have

∂tΦ = TΦ ◦ (s1 × s0)

= Tπ T∗M
◦ TF ◦ (idTR × TI) ◦ (s1 × s0)

= Tπ T∗M
◦ TF ◦ (s1 × (TI ◦ s0)) : R × S → TM.

If (qi, pi, vi, ri) are the usual local coordinates on T (T ∗M) and (qi, vi) local coordinates on TM, identify with the image of
the tangent map associated to the zero section of T ∗M → M. Let further denote (vt , t) the point vt

d
dt |t of TR. We then have

(∂tΦ)∗(qi) = (s∗1 × (s∗0 ◦ (TI)∗)) ◦ (TF)∗ ◦ (Tπ T∗M)∗(qi)
= (s∗1 × (s∗0 ◦ (TI)∗)) ◦ (TF)∗(qi)
= (s∗1 × (s∗0 ◦ (TI)∗))(F∗(qi))
= (id∗

R × I∗)(F∗(qi))

= (id∗

R × I∗) ◦ F∗
◦ (g♭)∗(qi)

=

g♭

◦ F ◦ (idR × I)
∗

(qi),

and

(∂tΦ)∗(vi) = (s∗1 × (s∗0 ◦ (TI)∗)) ◦ (TF)∗ ◦ (Tπ T∗M)∗(vi)

= (s∗1 × (s∗0 ◦ (TI)∗)) ◦ (TF)∗(vi)

= (s∗1 × (s∗0 ◦ (TI)∗))


j


vj · ∂qjF

∗(qi) + rj · ∂pjF
∗(qi)


+ vt · ∂tF∗(qi)


= (id∗

R × I∗)

∂tF∗(qi)


= (id∗

R × I∗)

(F∗

◦ XH)(qi)

, since F is the flow of XH ,

= (id∗

R × I∗)


F∗


j

pjg ji


= (id∗

R × I∗)

F∗

◦ (g♭)∗(vi)


=

g♭

◦ F ◦ (idR × I)
∗

(vi).

Since we now have ∂tΦ = g♭
◦ F ◦ (idR × I), we can easily conclude the proof of the theorem:

∂tΦ ◦ injt=0 = g♭
◦ F ◦ (idR × I) ◦ injt=0 = g♭

◦ I. �

Reciprocally, we have the following:

Theorem 3.14. Let Φ : R × S → M be a supergeodesic with initial condition ∂tΦ ◦ injt=0 = J in Mor(S, TM). Then

g♯
◦ ∂tΦ : R × S → T ∗M is an integral curve of XH with initial condition g♯

◦ J ∈ Mor(S, T ∗M), where g♯
: TM

∼=
−→ T ∗M is

the isomorphism induced by the metric g.
Proof. Let Φ : R × S → M be a supercurve such that ∇

dt


TΦ∗(∂t)


= 0 and ∂tΦ ◦ injt=0 = J in Mor(S, TM). We define

I := g♯
◦J andΨ := F ◦(idR ×I). By the previous theorem, we know thatπ T∗M

◦Ψ is a geodesic ofM with initial condition
g♭

◦ I = J. By unicity, we have Φ = π T∗M
◦ Ψ . Now, using a calculation made in the proof of the preceding theorem, we

have ∂tΦ = g♭
◦ F ◦ (idR × I). Then g♯

◦ ∂tΦ = F ◦ (idR × I), i.e., g♯
◦ ∂tΦ is the integral curve of XH with initial condition

I = g♯
◦ J. �

We briefly comment on the case of odd Riemannian metrics.

Definition 3.15. An odd graded Riemannian metric on a supermanifold M is a graded symmetric odd non-degenerate OM-
linear morphism of sheaves

g : TM ⊗OM TM → OM,

where non-degeneracy means that the mapping X → g(X, .) is an (odd) isomorphism from TM to Ω1
M .

Such a metric will simply be called an ‘‘odd Riemannian metric’’ in the sequel. It follows from the non-degeneracy that the
even and the odd dimension of a supermanifold equipped with an odd Riemannian metric must be the same. Since g is odd
the condition of metricity for a connection on M reads as follows
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(−1)|X |X(g(Y ⊗ Z)) = g(∇XY ⊗ Z) + (−1)|X | |Y |g(Y ⊗ ∇XZ) ∀X, Y , Z ∈ TM(U).

Using the following six-term-formula

2g(∇XY ⊗ Z) = (−1)|X |Xg(Y ⊗ Z) − (−1)|Z |(|X |+|Y |)+|Z |Zg(X ⊗ Y ) + (−1)|X |(|Y |+|Z |)+|Y |Yg(Z ⊗ X)

+ g([X, Y ] ⊗ Z) − (−1)|X |(|Y |+|Z |)g([Y , Z] ⊗ X) + (−1)|Z |(|X |+|Y |)g([Z, X] ⊗ Y )

one obtains

Proposition 3.16. Let M be a supermanifold with an odd Riemannian metric g. Then there exists a unique linear connection ∇

on M that is metric and torsion free. This connection is automatically even as a map TM → Ω1
M ⊗ TM .

Remark. We call the connection ∇ of the preceding proposition the ‘‘Levi-Civita connection of (M, g)’’.

As in the even case we have the following definition (compare Definition 2.17):

Definition 3.17. An (odd) Riemannian supergeodesic on a supermanifoldM with an odd Riemannianmetric g is a supercurve
Φ : R × S → M such that

∇

dt


TΦ∗(∂t)


= 0, (3.12)

where S is an arbitrary supermanifold and t is the natural coordinate of R.

In order to have a local expression for the differential equation defining a supergeodesic we set as usual ∇∂i∂j =


Γ k
ij ∂k

(compare the text after Definition 2.10). Using the above six-term-formula for odd metrics a tedious but straight forward
calculation yields:

(−1)|i|+|j|+|k|Γ k
ij =

1
2


l


(−1)|i|∂igjl + (−1)|i| |j|+|j|∂jgil − (−1)|l|(1+|i|+|j|)∂lgij


g lk,

where gij := g(∂i, ∂j) ∈ OM(U) and g lk
∈ OM(U) are defined by


k g

ikgkj = δi,j.
As in the case of even metrics one has an existence and uniqueness result for geodesics.

Proposition 3.18. Let M be a supermanifold with an odd Riemannian metric g, and let S = (S, OS) be an arbitrary
supermanifold and J ∈ Mor(S, TM). Then there exists a unique supergeodesic Φ : R × S → M such that the initial condition
J = ∂tΦ ◦ injt=0 is fulfilled.

Remark. Of course, the supergeodesic is in general only defined on a (maximal) open subsupermanifold of R×S containing
{0} × S in its body. Abusively, we will often not explicitly mention this maximal domain of definition.

In order to construct the corresponding ‘‘geodesic flow’’ one first has to observe that an odd metric canonically induces
an isomorphism of super vector bundles g♮

: TM → ΠT ∗M, whereΠT ∗M is the super vector bundle associated to theOM-
module sheaf ΠΩ1

M . We observe furthermore that the supermanifold ΠT ∗M has a canonical odd one-form αΠT∗M whose
exterior derivative ωΠT∗M

:= −d(αΠT∗M) is an odd symplectic form on ΠT ∗M. The construction of αΠT∗M closely parallels
the construction of the one-form α = αT∗M (compare the proof of Proposition 3.4). If (q1, . . . , qm+n) are local coordinates
on M and (p1, . . . , pm+n) are the associated fiber coordinates on T ∗M with |qi| = |pi| = 0 resp. 1 for 1 ≤ i ≤ m resp.
m < i ≤ m + n, then ΠT ∗M has local coordinates (qi, pΠ

i ), where pΠ
i is odd resp. even for 1 ≤ i ≤ m resp.m < i ≤ m + n.

In these coordinates we have

ωΠT∗M
=

n+m
i=1

(−1)|i|d(qi) ∧ d(pΠ
i ).

We define the energy function H as in the even case (compare the text after Corollary 3.2) but it should be immediately
stressed that H is an odd global superfunction on ΠT ∗M. In the above local coordinates one gets

H = −
1
2


i,j

pΠ
i g ijpΠ

j .

Observe that the reductionH is the zero function on the body of ΠT ∗M. Since ωΠT∗M and H both are odd, the Hamiltonian
vector field XH on ΠT ∗M fulfilling d(H) = ωΠT∗M(XH , ·) is even. Using Theorem 3.9 and Proposition 3.12 we immediately
get following

Proposition 3.19. Let (M, g) be an odd Riemannian supermanifold and XH the Hamiltonian vector field associated to the energy
function H on the (odd) symplectic supermanifold (ΠT ∗M, ωΠT∗M). Then
(i) there exists a unique flow for XH , F : R × ΠT ∗M → ΠT ∗M,
(ii) given a supermanifold S and an element I ∈ Mor(S, ΠT ∗M), there is a unique integral curve Ψ : R × S → ΠT ∗M of XH

such that the initial condition Ψ ◦ injt=0 = I is satisfied.
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As in the case of evenmetrics we finally obtain a bijection between integral curves of the geodesic flow and geodesics. Since
the proof is very similar to the proof of Theorem 3.13 we only announce the result without giving the proof.

Theorem 3.20. Let (M, g) be an odd Riemannian supermanifold and XH the Hamiltonian vector field associated to the energy
function H on ΠT ∗M. Let furthermore S be an arbitrary supermanifold. Then

(i) given I ∈ Mor(S, ΠT ∗M), the integral curve Ψ of XH with initial condition I projects to a geodesic Φ := πΠT∗M
◦ Ψ with

initial condition g♭
◦ I, and

(ii) given J ∈ Mor(S, TM), the supergeodesic Φ with initial condition J yields an integral curve Ψ := g♮
◦ ∂tΦ of XH with

initial condition g♮
◦ J.

4. The exponential map of a Riemannian supermanifold

In this sectionwe study, for q in the body of a supermanifoldM, the fiber TqM of the tangent bundle over q, the restriction
of the tangentmap of amorphism to this fiber, and its relation to the ‘‘numerical tangentmap’’ (Lemma 4.2). Themain result
of this section is that a Riemannian supermanifold possesses a (Riemannian) exponential map and that expq : TqM → M
is a diffeomorphism near 0 (Theorem 4.4). As an example of an application we show that linearization in a fixed point of an
isometry of a Riemannian supermanifold is faithful (Corollary 4.7).

Let (M, g) be an (even) Riemannian supermanifold, and XH be the even Hamiltonian vector field on T ∗M associated to
the energy function H . Let furthermore F : R × T ∗M → T ∗M be the flow of XH and g♯

: TM → T ∗M be the isomorphism
of supermanifolds induced by the metric g .

Consider the following composition of applications:

R × TM R × T ∗M T ∗M M.//
idR×g♯

//F //πT∗M

We want to take the fiber of TM above q ∈ M:

TM

{q} M
��

πTM

//
q

Let us recall themorphism of rings of global sections (π TM)∗(TM) : OM(M) → OTM(TM), associated to the sheaf morphism
(π TM)∗ : (π TM)−1(OM) → OTM over TM .

Let Jq be the ideal of OM(M) defined by

Jq := {f ∈ OM(M) | q∗(f ) = 0},

where q∗(f ) =f (q). We denote the ideal in OTM(TM) generated by (π TM)∗(Jq) by

JπTM

q := ⟨(π TM)∗(Jq)⟩OTM(TM).

Then (compare [8] for this construction in general), there exists a subsupermanifold S
iq

↩→ TM of TM such that

JS := {f ∈ OTM(TM) | i∗q(f ) = 0} = JπTM

q .

The supermanifold S will be denoted by TqM.
Note that if M = Rm|n and q is an element of Rm, we have TM = Rm|n

× Rm|n and TqM = Rm|n
× {q} ∼= Rm|n. (Compare

the Remark after Theorem 2.19.) In general, given a finite dimensional Z2-graded R-vector space V = V0 ⊕ V1, we have of
course an associated ‘‘linear supermanifold’’. Then TqM is the supermanifold associated to T num

q M.
We now define the map expq : TqM → M via the following diagram:

R × TM R × T ∗M T ∗M M

R × TqM

{1} × TqM ∼= TqM

//
idR×g♯

//F //πT∗M

OO

idR×iq

OO

1×idTqM

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

expq
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Recall that the flow F is only defined on an open subsupermanifold of R × T ∗M containing {0} × T ∗M. Then expq is in
general only defined on an open subsupermanifold of TqM containing in its body (0, q). We can now show that expq is a
locally diffeomorphism near 0 ∈ TqM .

Lemma 4.1. Let Φ : M → N be a morphism of supermanifolds. Let q ∈ M, then we have a unique morphism of supermanifolds
TqΦ : TqM → TΦ(q)N such that iΦ(q) ◦ TqΦ = TΦ ◦ iq.

Proof. We have the following commutative diagram:

TqM TM TN TpN

{q} M N {p},

//
iq

��

//TΦ

��

πTM

��

πTN

oo
ip

��
// //Φ oo

where p := Φ(q) ∈ N . We will show that the morphism TΦ ◦ iq factorizes over the morphism ip.
Recall that a morphism of real smooth supermanifolds is completely determined by the superalgebra morphism given

by the pulling-back global sections.
Let us define the morphism TqΦ : TqM → TpN by setting its body map equal to TqΦ := TqΦ and on the level of global

sections by

(TqΦ)∗ : OTpN (TpN) −→ OTqM(TqM)

f −→ i∗q ◦ (TΦ)∗(f̂ ),

where f̂ is an element of OTN (TN) such that i∗p(f̂ ) = f .

For all f̂ ∈ OTN (TN) such that i∗p(f̂ ) = 0, we have f̂ ∈ JTpN = JπTN

p by the very construction of TpN and then by

definition of JπTN

p :

f̂ ∈ ⟨(π TN )∗(Jp)⟩OTN (TN).

Thus it is enough to show that iq ◦ (TΦ)∗(f̂ ) = 0 whenever f̂ = (π TN )∗(g) with g ∈ Jp in order to assure that (TqΦ)∗ is
well-defined.

For g ∈ Jp ▹ ON (N) we have

(TΦ)∗

(π TN )∗(g)


= (π TM)∗(Φ∗(g)) ∈ ⟨(π TM)∗(Jq)⟩OTM(TM),

since the identity Φ∗(h)(q) =h(p) for h ∈ ON (N) shows that g ∈ Jp implies that Φ∗(g) ∈ Jq.
Moreover, since JTqM = ⟨(π TM)∗(Jq)⟩OTM(TM) we have i∗q


(π TM)∗(Φ∗(g))


= 0, i.e. i∗q ◦ (TΦ)∗(f̂ ) = 0. �

Let us recall that for a morphism of supermanifolds Φ : M → N , and a point q ∈ M , we have a numerical analogue of
the tangent map, i.e. a linear map T num

q Φ : T num
q M → T numΦ(q)N defined by

T num
q Φ(X)


[f ]Φ(q)


:= X


[Φ∗(f )]q


, ∀X ∈ T num

q M, ∀[f ]Φ(q) ∈ ON ,Φ(q).

It turns out that this map encodes exactly the same information as the morphism TqΦ .

Lemma 4.2. Let Φ : M → N be a morphism of supermanifolds and q ∈ M. Then the following holds:

(i) TqΦ : TqM → TΦ(q)N is the morphism of (linear) supermanifolds associated to the even R-linear map T num
q Φ : T num

q M →

T numΦ(q)N , and
(ii) the numerical tangent map T num

q Φ is uniquely determined by the morphism of supermanifolds TqΦ .

Proof. A calculation in the local coordinates on TM and TN , that are induced from local coordinates on M and N , directly
shows that both maps TqΦ and T num

q Φ are uniquely determined by the evaluation of the super Jacobi matrix of Φ in the
point q of the body of M. �

It is well-known that a morphism Φ : M → N is a local diffeomorphism near q if and only if T num
q Φ is an isomorphism

of Z2-graded vector space (see, e.g., [15, Theorem 4.4.1]).
Using the preceding lemma, we thus immediately get:

Proposition 4.3. The morphism Φ : M → N is locally a diffeomorphism near q ∈ M if and only if TqΦ : TqM → TΦ(q)N is
an isomorphism of supermanifolds.

Theorem 4.4. The map expq : TqM → M is a local diffeomorphism near 0.
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Proof. Wewill show that themap T0(expq) : T0(TqM) → TqM is an isomorphism.More precisely, after identifying T0(TqM)
with TqM as in the classical case, we will see that T0(expq) = idTqM .

Let us focus on the map:

T num
0 (expq) : T num

0 (TqM) = Der

(OTqM,0), R


−→ Der


(OM,q), R


= T num

q M
X −→ X ◦ exp∗

q .

If (qi) is a system of local coordinates on M around q, we denote (qi, vi) the induced local coordinates on TM. Let us denote
the natural coordinates on TqM by (vi) as well. Then T num

0 (TqM) is the Z2-graded R-vector space spanned by (∂vi) where
|∂vi | = |vi|.

The classical theory of exponential maps on ungraded Riemannian manifolds gives the following equality

T num
0 (expq)(∂vi) = ∂qi ∀i such that |∂vi | = 0.

Let us now deal with the odd case. If X = ∂vi with |vi| = 1, the ‘‘integral curve’’ γ : R0|1
→ TqM of X is defined by

γ ∗(vj) = δi,j · θ , where θ is the canonical coordinate of R0|1.
Since

X(f ) =
d
dθ

γ ∗(f ) ∀f ∈ OTqM,

we have

T num
0 (expq)(X) =

d
dθ

γ ∗
◦ exp∗

q,

where γ ∗
◦ exp∗

q = γ ∗
◦

inj∗t=1 ×


i∗q ◦ g♯∗


◦ F∗

◦

π T∗M

∗
=

inj∗t=1 ×


γ ∗

◦ i∗q ◦ g♯∗


◦ F∗
◦

π T∗M

∗
.

Let us consider the map Γ : R1|1
→ M defined by:

Γ ∗
:=

id∗

R ×

γ ∗

◦ i∗q ◦ g♯∗


◦ F∗
◦


π T∗M

∗

.

Then, using Theorem 3.13, Γ is the unique geodesic of M with initial condition η = iq ◦ γ ∈ Mor

R0|1, TM


, i.e. Γ is the

supercurve such that
∂2
t Γ ∗(qk) +


|u|=|l|=0

∂tΓ
∗(qu)∂tΓ ∗(ql)Γ ∗(Γ k

lu) = 0 if |qk| = 0,

∂2
t Γ ∗(qk) +


|u|=0
|l|=0

∂tΓ
∗(qu)∂tΓ ∗(ql)Γ ∗(Γ k

lu) + 2

|u|=0
|l|=1

∂tΓ
∗(qu)∂tΓ ∗(ql)Γ ∗(Γ k

lu) = 0 if |qk| = 1,

satisfying the initial condition
Γ ∗(qk)|t=0 = qk(q) if |qk| = 0,
Γ ∗(qk)|t=0 = 0 if |qk| = 1,


∂tΓ

∗(qk)|t=0 = η∗(vk) = 0 if |qk| = 0,
∂tΓ

∗(qk)|t=0 = η∗(vk) = δk,i · θ if |qk| = 1.

Then the unique solution Γ : R1|1
→ M of this system is

Γ ∗(qk) = qk(q) if |qk| = 0
Γ ∗(qk) = t · θ · δk,i if |qk| = 1.

Now, we have

T num
0 (expq)(X) =

d
dθ

inj∗t=1 ◦ Γ ∗
∈ Der


OM,q, R


,

and then

T num
0 (expq)(X)(qk) =

d
dθ

Γ ∗(qk)|t=1 =


0 if |qk| = 0
δk,i if |qk| = 1,

that is

T num
0 (expq)(X) = ∂qi .

This finishes the proof that T0(expq) is the identity map. Therefore expq is a local diffeomorphism near 0. �
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Remark. Already calculations with explicit Riemannian metrics on M = R1|2 show that the most direct extension of the
ungraded Gauss lemma cannot hold true, i.e., given a Riemannian supermanifold M, then, in general, for q ∈ M, v =

v0 + v1 ∈ T num
q M, and w ∈ T num

v0
(TqM) ∼= T num

q M,

gexpq(v0) (T num
v0

expq)(v), (T num
v0

expq)(w)


≠ gq (v, w) .

We can now apply the properties of the above constructed super exponential map to generalize a fundamental
linearization result on Riemannian isometries to the category of supermanifolds.

Let (M, gM) and (N , gN ) be Riemannian supermanifolds and Φ : M → N a morphism.
Recall that gN can be viewed as an element of Ω1

N ⊗ON Ω1
N , moreover Φ∗

: Φ−1ON → OM induces a morphism of
sheavesΦ−1Ω1

N Ω1
M

M
��

??
??

??
?

//Φ∗

����
��

��
�

Thus the expression Φ∗(Φ−1gN ) makes sense as an element of Ω1
M ⊗OM Ω1

M .

Definition 4.5. Let (M, gM) and (N , gN ) be Riemannian supermanifolds. An isometry is an isomorphism of supermanifolds
Φ : M → N such that the following equality is satisfied

Φ∗(Φ−1gN ) = gM.

If (qM
i ) and (qN

j ) are local coordinates on M and N respectively, the above condition means that

gM
ij =


k,l

(−1)|q
N
k |(|qM

j |+|qN
l |)

∂M
i (Φ∗(qN

k )) · ∂M
j (Φ∗(qN

l )) · Φ∗

gN
kl


,

where ∂M
i and ∂N

j denote ∂qM
i

and ∂qN
j

respectively.

Theorem 4.6. Let Φ : M → N be an isometry and q ∈ M, then we have

Φ ◦ expM
q = expNΦ(q) ◦TqΦ.

Proof. Let us define the following supercurves

Λ := π T∗M
◦ FM

◦ (idR × (gM♯
◦ iq)) : R × TqM → M

and

Γ := Φ ◦ Λ : R × TqM → N , (4.1)

where FM is the geodesic flow of the Hamiltonian dynamical system (T ∗M, ω,H).
We want to show that Γ is a geodesic of N with initial condition η = iΦ(q) ◦ TqΦ ∈ Mor(TqM, TN ). By the unicity of

geodesics, it will then follow

Γ = π T∗N
◦ FN

◦ (idR × (gN ♯
◦ iΦ(q) ◦ TqΦ)). (4.2)

The statement of the theorem will then be obtained by evaluating both expressions (4.1) and (4.2) for Γ at t = 1.
Since Φ is an isometry and the Levi-Civita connection is unique

Φ∗
∇

N

(TΦ∗) = TΦ∗(∇M)

and thus
∇

N

dt


TΓ ∗(∂t)


= TΦ∗


∇

M

dt


TΛ∗(∂t)


= 0

because Λ is a geodesic of M. It follows that Γ is a geodesic.
Furthermore

∂tΓ ◦ injt=0 = ∂t(Φ ◦ Λ) ◦ injt=0

= TΦ ◦ ∂tΛ ◦ injt=0

= TΦ ◦ iq
= iΦ(q) ◦ TqΦ = η.

We thus have shown that (4.2) holds and the claim of the theorem follows by evaluating both sides in t = 1. �
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Now, we can give the announced linearization result.

Corollary 4.7. Let M be a connected Riemannian supermanifold and let Φ : M → M be an isometry such that there exists a
point q0 ∈ M withΦ(q0) = q0 and Tq0Φ = idTq0M.

Then Φ is the identity morphism of M.

Proof. Let U be the subset ofM defined by

U := {q ∈ M | Φ(q) = q and TqΦ = idTqM}.

Remark that if Φ(q) = q the equality TqΦ = idTqM is equivalent to the numerical version T num
q Φ = idTnumq M . Thus U is a

closed subset ofM .
Obviously, the set U is nonempty since q0 ∈ U . Let q be an element of U . By the preceding theorem we have

Φ ◦ expq = expΦ(q) ◦TqΦ = expq .

By Theorem 4.4, the exponential map is a local diffeomorphism and we thus have an open V in M containing q such that
Φ|V = idM|V , implying that U is open. By the connectedness of M , it follows that U equals the whole body M of the
supermanifold M. Nowwe know that Φ(q) = q and TqΦ = idTqM for all q ∈ M and consequently we have Φ ◦ expq = expq
for all q ∈ M . The morphism Φ is then the identity near each q ∈ M . This prove that Φ is the identity morphism of M. �
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