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1. Introduction

The study of almost paracontact geometry was introduced by Kaneyuki and Williams in [1] and then it was continued by
many other authors. A systematic study of almost paracontact metric manifolds was carried out in paper of Zamkovoy, [2].
However such manifolds were studied earlier, [3-6]. These authors called such structures almost para-coHermitian. The
curvature identities for different classes of almost paracontact metric manifolds were obtained e.g. in [7,8,2].

Considering the recent stage of the developments in the theory, there is an impression that the geometers are focused
on problems in almost paracontact metric geometry which are created ad hoc. Recently, a long awaited survey article, [9],
concerning almost cosymplectic manifolds as Blair's monograph [10] about contact metric manifolds appeared.

Almost (para)contact metric structure is given by a pair (1, @), where 7 is a 1-form, @ is a 2-form and n A @" is a volume
element. It is well known that then there exists a unique vector field &, called the characteristic (Reeb) vector field, such that
ien = 1iz® = 0. The Riemannian or pseudo-Riemannian geometry appears if we try to introduce a compatible structure
which is a metric or pseudo-metric g and an affinor ¢ ((1, 1)-tensor field), such that

DX, Y) =g(¢X,Y), P =e(ld—nQE). (1.1)

We have almost paracontact metric structure for € = +1 and almost contact metric for ¢ = —1. Then, the triple (¢, &, n) is
called almost paracontact structure or almost contact structure, resp.
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Combining the assumption concerning the forms n and @, we obtain many different types of almost (para)contact mani-
folds, e.g. (para)contact if n is contact form and dn = &, almost (para)cosymplecticifdn = 0d® = 0, almost (para)Kenmotsu
ifdp =0d® =2n A ®.

Recently geometers discovered many similarities between almost contact metric and almost paracontact metric man-
ifolds. Simply, we could transliterate some properties from the Riemannian geometry to pseudo-Riemannian geometry.
However, the situation is more delicate: there are examples of almost paracontact metric manifolds without Riemannian
counterparts e.g. [11-13].

In the geometry of almost (para)contact metric manifold it is often convenient to define tensor fields

1
A = —VE, h= chggb. (1.2)
The meaning of these tensors depends on particular class of manifolds. In general almost (para)contact metric manifold is

called («, i, v)-space if
RX,Y)E = nX)lY — n(Y)IX, IX = R(X, )& = k¢* + wh + voh, (1.3)

for some functions « . Classifications are obtained for contact metric, almost cosymplectic, almost ¢-Kenmotsu and almost
«-cosymplectic manifolds, e.g. in [ 14-20]. Note that manifolds with constant sectional curvature c are (c, 0, 0)-spaces.
The paper is organized in the following way.
Section 2 is preliminary section, where we recall the definition of almost paracontact metric manifold.
In Section 3 we introduce the class of almost paracontact metric manifolds which is defined by

dn =0, dd =2an A D, (1.4)

where « is a function. These manifolds are called almost a-paracosymplectic. They contain properly almost paracosymplec-
tic, ¢ = 0, and almost «-para-Kenmotsu, &« = const. # 0 manifolds. In this section, we study basic properties of such
manifolds.

In the short auxiliary Section 4 we recall the notion of para-Kaehler manifold.

There is natural foliation of almost a-paracosymplectic manifold where each leaf carries a structure of almost para-
Kaehler manifold. In Section 5 we prove the following characterization: almost «-paracosymplectic manifold has para-
Kaehler leaves if and only if

(Vx®)Y = ag(¢X, Y)§ + g(hX, Y)§ — an(Y)pX — n(Y)hX. (1.5)
In Section 6 we prove the following fundamental identity

(Vox @)Y — (Vx@)Y = n(Y)APX + 2a(g(X, ¢Y)§ + n(Y)pX).

We derive a formula for the curvature R(X, Y)&, which is a cornerstone for the further study of («, u, v)-spaces.
In Section 7 we study almost «-para-Kenmotsu manifolds. We obtain curvature identities for such manifolds. We get a
formula for the Ricci operator Q, cf. Theorem 5.

[Q.¢]=1[ o] —4a(1 —mh—n® (¥QE) + (N0 QP) ®E, [=R(,§)E, (1.6)

under assumption that leaves are para-Kaehler. We prove that if h vanishes everywhere then almost «-para-Kenmotsu
manifold is a locally warped product R x; M, of real line and almost para-Kaehler manifold.

In Section 8 we study almost «-para-Kenmotsu manifolds with harmonic Reeb vector field. The main result here is that
characteristic vector field & is harmonic if and only if it is an eigenvector of the Ricci operator.

In Sections 9, 10 we study conformal and D-homothetic deformations of almost paracontact metric manifolds. We prove
that almost a-paracosymplectic manifold M 1) is locally conformal to almost paracosymplectic manifold if dimM > 52) is
locally D; ,-homothetic to almost para-Kenmotsu manifold near the points where o # 0. We obtain that almost «-para-
Kenmotsu («, , v)-space has para-Kaehler leaves which being combined with (1.6) gives following identity

[Q. @] =2ph¢ —2(v +2(1 — ma)h. (1.7)

In the last section, we classify locally 3-dimensional almost o-para-Kenmotsu manifolds. We obtain possible forms of the
Ricci operator and subsequently, on the base of the result of Section 8, we show that almost o-para-Kenmotsu 3-manifold
is (k, u, v)-space on an every open and dense subset of manifold if and only if £ is harmonic.

2. Preliminaries

Let M be a (2n+ 1)-dimensional differentiable manifold and ¢ is a (1, 1) tensor field, £ is a vector field and n is a one-form
on M. Then (¢, &, n) is called an almost paracontact structure on M if
(i) o> =1d—n®&, nE) =1,
(ii) the tensor field ¢ induces an almost paracomplex structure on the distribution D = ker 7, that is the eigendistributions
D¥, corresponding to the eigenvalues 1, have equal dimensions, dimD* = dimD~ = n.
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The manifold M is said to be an almost paracontact manifold if it is endowed with an almost paracontact structure [2].
Let M be an almost paracontact manifold. M will be called an almost paracontact metric manifold if it is additionally
endowed with a pseudo-Riemannian metric g of a signature (n + 1, n), i.e.

g2(@X, ¢Y) = =g (X, Y) + nX)n(Y). (2.1)
For such manifold, we have
nX) =gX., &), ¢¢)=0,no¢=0. (2.2)
Moreover, we can define a skew-symmetric tensor field (a 2-form) @ by
PX,Y) =g(9X,Y), (2.3)
usually called fundamental form. For an almost «-paracosymplectic manifold, there exists an orthogonal basis {X, ...,
Xn, Y1,...Yn, &} such that g(X;, X;) = 6;. 8(Y;, Y)) = —d;and Y; = ¢X;, foranyi,j € {1,...,n}. Such basis is called a
¢-basis.

On an almost paracontact manifold, one defines the (1, 2)-tensor field NV by
NYX,Y) = [¢, ] (X, Y) — 2dn(X, V)&,
where [¢, ¢] is the Nijenhuis torsion of ¢
(¢, 91 (X, Y) = ¢* [X, Y] + [9X, ¢Y] — ¢ [¢X. Y] = $ [X, $Y].

If N vanishes identically, then the almost paracontact manifold (structure) is said to be normal [2]. The normality
condition says that the almost paracomplex structure | defined on M x R

(XA£>—<X A Xi

is integrable.

3. Almost a-paracosymplectic manifolds
An almost paracontact metric manifold M?"+1, with a structure (¢, £, 1, g) is said to be an almost «-paracosymplectic
manifold, if
dn =0, dd =2an A P, (3.1)

where o may be a constant or function on M. Although « is arbitrary, we will prove that if dimension 2n + 1 > 5, then
do = fn, for a (smooth) function f.
For a particular choices of the function @ we have the following subclasses,

e almost «-para-Kenmotsu manifolds, « = const. # 0,
e almost paracosymplectic manifolds, « = 0.

If additionally normality condition is fulfilled, then manifolds are called «-para-Kenmotsu or paracosymplectic, resp.

Definition 1. For an almost «-paracosymplectic manifold, define the (1, 1)-tensor field 4 by
AX = —VyE. (3.2)

Lemma 1. Let w be a 2-form on a manifold !\_/ldim M)=n3>4and w has maximal rank at every point, equivalently w2 s
non-zero at every point. If for a 1-form g on MB A @ = 0 at a point p € M, then § = 0 at p. Particularly B vanishes everywhere
on M, if B A w is everywhere zero.

Proof. Let BAw = Oatpand B, # 0.Then thereisavector v atp,suchthat 8,(v) = 1andi,(BAw)p = wp—BpAVpYp = lywp.

n
Hence @, = f8, A yp and w,* = 0.In consequence as [5] > 2w§ 2} — 0 which contradicts our assumption that  is of

maximal rank. O

Proposition 1. For an almost a-paracosymplectic manifold M?™!, we have
(i) Lgn =0, (i) g(AX, Y) = g(X, AY), (iif) A& =0,
(iv) L£® =209, (V) (L£&)(X, Y) = —28(AX, Y),
(vi) n(AX) =0, (vi)dae =fn ifn>2 (3.3)

where £ indicates the operator of the Lie differentiation, XY are arbitrary vector fields on M*"t1 and f = igdor.
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Proof. To prove (i) and (iv) we use the coboundary formula

Len=doiz +izod,
then we obtain

L =d(ign) =0,

Le® =i:dD =i Qon A P) =20(ien AP —n Nig @) = 209.
To prove (ii) we note that 7 is closed, then

0 =2dnX,Y) = (Vxm(Y) = (Vym)(X) = —g(AX, Y) + g(X, AY). (3.6)
Now

(Leg)(X,Y) = £g(X, Y) — g (6, X],Y) — g(X, [£. Y]

= —8(AX,Y) — g(X, AY) = =28 (AX,Y), (3.7)

and (3.7) implies (v). For & is unit vector field, we have

0=2Xg(§,8) =28(Vx§, §) = —2n(AX) = —2g8(A§, X), (3.8)
for arbitrary vector field X, which yields (iii) and (vi). Finally to proof (vii), we use Lemma 1.

We put B = 2an.So d® = B A @, applying exterior differential to this equation and taking interior product with i;
in the result, we obtain 0 = y A @(ie® = 0) everywhere, y = izdf. If dim(M?"*1) > 5 (n > 2) by the above lemma,
y vanishes identically on M?"*!. Notice y = isdB = 2is(de A n) asdn = 0and 0 = (izda)n — do, (irn = 1). Hence
doa = fnf =igda. O
Proposition 2. For an almost a-paracosymplectic manifold, we have

AP + A = 200, (3.9)

Vg = 0. (3.10)
Proof. From (£L:®)(X,Y) = &(@(X,Y)) — @([§,X],Y) — @(X, [£, Y]) and definition of @, we get

(LeP)X,Y) =g((Vep)X — pAX — APX, Y). (3.11)
In virtue of (iv), Proposition 1, and (3.11), we obtain

200X = (Ved)X — pAX — APX. (3.12)
As Vg1 and V£ vanish identically, ng)z = Ve(ld — n ® §) = 0. Hence we obtain

0= (Ve¢)X = ¢(Vep)X + (Ve)$X. (3.13)
If X is a field of +1-eigenvectors of ¢, then by (3.12) and (3.13), we have

20X = (Ve)X — pAX — AX,
20X = 2a¢X = —(Ve)X — AX — pAX.

From the last identities, we get (Ve¢)X = 0. Using the same arguments, one can prove (Ve¢)X = 0, if X = —X. By
Ve& = 0, we have (Ve¢)é = 0.Therefore V¢ = 0identically, as near each point there is a frame of vector fields, consisting
only from & and eigenvector fields of ¢. O

Let define h = %ctg ¢. In the following proposition we establish some properties of the tensor field h.

Proposition 3. For an almost a-paracosymplectic manifold, we have the following relations

g(hX,Y) =gX, hY), (3.14)
ho¢p+¢poh=0, (3.15)
hé =0, (3.16)
VE=adp’>+¢oh=—an. (3.17)

Proof. Similarly as in Proposition 2, we have

(L)X = P(LeP)X + (Lep)PX = 2¢hX + 2hepX. (3.18)
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and

Led® = —(Len) ®E =0. (3.19)
From (3.18) and (3.19), we get (3.15). By using the formula

(Lsp)X =&, 9X] — ¢ [§, X] = VepX — Vyx§ — ¢(VeX — Vx§),

we obtain
1
h = E(Aqs — pA). (3.20)

Properties of ¢, 4 and (3.20) follow, that h is symmetric tensor field, g(hX, Y) = g(X, hY). Moreover, h¢ = 0andnoh = 0.
Using (3.5), (3.7) and the following identity

(L)X, Y) = (L£8)(PX, Y) +8((L:P)X, Y),
we obtain

ap = —AP +h. (3.21)
From (3.15) and (3.21), we obtain

ap’ +poh=—h=VE. O

Corollary 1. All the above propositions imply the following formulas for the traces

tr(Ap) = tr(¢pA) =0, tr(hg) = tr(¢h) = 0,
tr(A) = —2un, tr(h) =0. (3.22)

4. Para-Kaehler manifolds

This is an auxiliary section. The general reference for the notions which appear here is [21]. We recall basic concepts of
a para-Hermitian geometry. An almost para-Hermitian manifold is a manifold M endowed with an almost para-complex
structure J and a semi-Riemannian metric g such that

=1 g(X.JY)=—gX.,Y), (4.1)

forX, Y tangent to M, where I is the identity map. The dimension of M is even. The almost para-Hermitian manifold M is para-
Kaehler if the almost para-complex structure J is a covariant constant V] = 0, with respect to the Levi-Civita connection.
An almost para-complex structure is integrable if and only if the Nijenhuis torsion of ] vanishes identically

N(X,Y) =] X, Y]+ X, JY] = JUX. Y] —J[X.JY] = 0.

An almost para-complex structure of a para-Kaehler manifold is always integrable. In the terms of the local coordinates maps,
integrability is equivalent to the existence of a set of maps, covering the manifold, the para-complex structure has constant
coefficients in the local map coordinates. If p € M is a point, then near p, there are coordinates (x', ..., x", y',...,y"), the
local components J¥ = const. are constants.

5. Almost o-paracosymplectic manifolds with para-Kaehler leaves

The idea is to restrict further our consideration to the particular class of manifolds. However this class of manifolds
is wide enough to provide interesting results and examples. In fact each 3-dimensional manifold belongs to this class.
Let M?"1 = (M, ¢, £, , g) be an almost a-paracosymplectic manifold. By the definition, the form 7 is closed, therefore
distribution O : n = 0 is completely integrable. Each leaf of the foliation, determined by D, carries an almost para-Kaehler
structure (J, <, >)

JX=¢X, (X, ¥)=gX. V),
X, Y are vector fields tangent to the leaf. If this structure is para-Kaehler, leaf is called a para-Kaehler leaf.
Lemma 2. An almost a-paracosymplectic manifold M?"+1 has para-Kaehler leaves if and only if

(Vx@)Y = g(AX, ¢Y)E + n(Y)pAX, A= —-VE.

Proof. Let F, be a leaf passing through a point a € M. The characteristic vector, restricted to %, is normal of #; and the
restriction 4 | = —V§& |- is the Weingarten operator (the shape tensor) of #;. Let Il denote the second fundamental form
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of #,. The Gauss equation yields
(Vi)Y = Vgo¥ — ¢pViY = V. JY + 11X, $Y)E — (VY + 11X, V)§) (5.1)
= (VDY + X, pY)E = II(X, $Y)E, (5.2)

where, we have used V] = 0. The above identity implies (Vx¢)Y = g(4X, ¢Y)&, for vector fields X, Y on M, such that
n(X) = n(Y) = 0. For arbitrary vector fields X, Y, we have a decomposition X = (X — n(X)&) + n(X)&. To finish the proof,
we recall that Vegp = 0 and (Vx¢)é = ¢pAX. O

Proposition 4. Let M>"t! = (M, ¢, £, 1, g) be an almost a-paracosymplectic manifold. Then, for o = 0 (resp. o # 0), foliation
F is totally geodesic (resp. totally umbilical) if and only if h = 0.

Proof. Using the Gauss equation and (3.17), we obtain
HX,Y) = —g(¥Y, a¢’X + ¢hX) = —ag(X,Y) — g(X, ¢hY), (53)
forall X, Y € I'(D). This completes the proof. O

Proposition 5. An almost a-paracosymplectic manifold M has para-Kaehler leaves if and only if

(Vx®)Y = ag(¢X, V)& +g(hX, V)& — an(Y)¢X — n(Y)hX, (5.4)
for a = 0Qitis a formula known for almost paracosymplectic manifolds, [7].
Proof. If we use Lemma 2 and the identity (3.17), we have

(Vx@)Y = —g(ad’X + phX, V)& — n(Y)p(a’X + phX)
= —ag(’X, pY)E — g(PhX, pY)E — an(Y)$pX — n(Y)hX.

By means of (2.1), we get the requested equation. O

As a direct consequence, we have the following result.

Theorem 1. Let M?"t! be an almost «a-para-Kenmotsu manifold with para-Kaehler leaves. Then M*"*! is para-Kenmotsu
(¢ = 1) ifand only A = —¢?.

Remark 1. For a similar notion in contact metric geometry see e.g. [22,17,18]. There are many other papers, where this
notion appears explicitly or implicitly. Compare the references in [9]. We also note that in almost contact metric geometry
there is more general idea of manifold carrying CR-structure. All almost contact metric manifolds with Kaehler leaves are
Levi-flat CR-manifolds.

6. Basic structure and curvature identities

Lemma 3. For an almost «-paracosymplectic manifold (M, ¢, &, n, g) with its fundamental 2-form @, the following equations
hold

(Vx@)(Z, ¢Y) + (Vx @)Y, ¢Z) = —n(Y)g(AX, Z) — n(Z)g(AX,Y), (6.1)
(Vx@)(@Y, ¢Z) — (VxP)(Y,Z) = n(Y)g(AX, pZ) — n(2)g(AX, PY). (6.2)

Proof. Differentiating the identity ¢ = I — n ® & covariantly, we obtain

(Vx@)@Y + d(Vx@)Y = g(Y, AX)E 4 n(Y)AX. (6.3)

If we take the inner product with Z, we obtain (6.1). Replacing Z by ¢Z in (6.1), using the anti-symmetry of @, we get
(6.2). O

Proposition 6. For any almost a-paracosymplectic manifold, we have

(Vox @)Y — (Vx@)Y — n(Y) APX — 2a(g(X, ¢Y)§ + n(Y)pX) = 0. (6.4)

Proof. Let us define (0, 3)-tensor field B as follows

BX.Y,Z) =g(Vox)pY, Z) — g(Vx@)Y.Z) — n(Y)g(APX, Z) — 2a(g(X, ¢Y)n(Z) + n(Y)g(¢X, 2)).



36 I. Kiipeli Erken et al. / Journal of Geometry and Physics 88 (2015) 30-51

Anti-symmetrizing 8 with respect to X, Y we have
BX,Y,2)—BY,X,Z) = (Vpx@)(@Y,Z) — (Vv @) ($X, Z) — (VxP)(Y,Z) + (VyD)(X, Z)
—n(Y)g(APX, Z) + n(X)g(APY, Z) — 2a((g(X, ¢Y) — g (Y, $X))n(Z)
+n(Y)g(@X, Z) — n(X)g(pY, Z)). (6.5)

Recalling the well known formula

3do(X,Y,Z) = (Vx®)(Y,2) + (VzP)(X,Y) + (VyP)(Z, X)
= 2a(X)P(Y,2) + 1)@ X, Y) +n(Y)P(Z, X)).

and applying this in (6.5), we obtain
BX,Y,2) - B(Y,X,Z) = —(VzP)(@X, ¢Y) + (Vz2)(X, Y) — n(Y)g(APX, Z) + n(X)g(APY, Z).

By (6.2), the right hand side of this equality vanishes identically, so $B is symmetric with respect to X, Y.
Symmetrizing 8 with respect to Y, Z, we find

BX,Y,Z)+BX,Z,Y) = (VexP)(@Y, Z) + (Vyx PY)PZ,Y) — n(Y)g(APX, Z) — n(Z)g(APX, Y).

By means of (6.1), we obtain 8(X, Y, Z) + B8(X,Z,Y) = 0, i.e. B is antisymmetric with respect to Y, Z. The tensor 8 having
such symmetries must vanish identically, which implies (6.4). O

Lemma 4. For an almost «a-paracosymplectic manifold, we also have

(Vox@)Y — (Vx@)pY + n(Y)AX — 2a(g(X, Y)§ — n(Y)X) =0, (6.6)

(Vex@)Y + ¢(Vxd)Y — g(AX, V)§ — 2a(g(X, V)& — n(Y)X) = 0. (6.7)
Proof. Putting ¢Y instead of Y in (6.4), we obtain

(Vox@)Y = n(Y)(Vyxd)§ — (Vx@)pY — 2a(g(X., Y) — n(Y)n(X)§) = 0. (6.8)
Using (3.17) and (Vgx¢)é = —AX — 20¢%X, in (6.8), we get (6.6). Eq. (6.7) comes from (6.3) and (6.6). O

With the help of (6.7), one can easily get the following proposition.

Proposition 7. For an almost a-paracosymplectic manifold, we have
d(Vox®)Y + (Vx@)Y = —2an(Y)9X + g(adX + hX, Y)§. (6.9)

Theorem 2. Let (M?"*1, ¢, &, n, g) be an almost a-paracosymplectic manifold. Then, forany X, Y € x (M?"+1),
R(X, V)¢ = da(X)(Y — n(Y)é) — da(Y)(X — n(X)§)

+anX)(aY + ¢phY) —an(Y)(aX + ¢hX) + (Vxph)Y — (Vyoh)X. (6.10)

Proof. We notice that Vx y§ = —(Vx#A)Y. Now, if we substitute +4, according to (3.17) and apply the covariant derivative
to the all summands in the result, we obtain

Vxy§ = da(X)(Y —n(Y)&) + an(X)(aY + ¢hY) + (Vxph)Y. (6.11)

Eq. (6.10) follows from (6.11) and Ricci identity. O

The formula for the curvature R(X, Y)&, simplifies if 2n 4+ 1 > 5, according to Proposition 1,(vii).

Corollary 2. For an almost «-paracosymplectic manifold M*"*1n > 2
RX, )& = (f + ®)((X)Y — n(Y)X) + a(nX)phY — n(Y)¢hX) + (Vxph)Y — (Vyph)X, (6.12)
where f = iz da.
7. Almost «-para-Kenmotsu manifolds
In this section, we study curvature properties of an almost «-para-Kenmotsu manifold.

Theorem 3. Let (M>"*1, ¢, £, n, g) be an almost a-para-Kenmotsu manifold. Then, forany X, Y € x (M?"1),
RX,Y)¢ = anX)(axY + ¢hY) — an(Y)(aX 4+ ¢hX) 4+ (Vxph)Y — (Vyoh)X. (7.1)
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Proof. It is direct consequence of Theorem 2 for constant «. O

Theorem 4. Let (M>"T!, ¢, &, n, g) be an almost «-para-Kenmotsu manifold. Then, for any X € x (M?"+1) we have

R(&,X)E = &*P°X + 2aphX — h*X + ¢(V:h)X, (7.2)
(Veh)X = —a®¢pX — 2ahX + ¢ph*X — ¢R(X, £)E, (7.3)
1

S (RE X)E + $RE, ¢X)§) = o’ ¢’X — X, (7.4)
S(X, &) = —2na’n(X) + g(div(oh), X), (7.5)
S(&, &) = —2na® + trh?. (7.6)

Proof. If we replace X by £ and Y by X in (7.1) and use (3.17) we obtain (7.2). For the proof of (7.3), we apply the tensor field
¢ both sides of (7.2) and recall V¢¢ = 0. Hence we have

—@R(X, £)E = X + 2ahX — ph*X + (V)X — g((Veh)X, £)E.
Replacing X by ¢X in (7.2) we get

R(E, pX)E = X + 2aphpX — h*pX + ¢(V:h)pX.
If we apply ¢ to the last equation we have

PR(E, X)E = a’P*X + 2ah¢pX — h®X + (Veh)pX. (7.7)
One can easily show that ¢(V¢h)X = —(Veh)¢X. Combining (7.2) with (7.7) we get (7.4).

Taking into account ¢-basis and (7.1), Ricci curvature S(X, &) can be given by

SKX. &)

Y 12(Rei, X)E, &) — g(R(ei, X)E, pey)]
i=1

—2na’n(X) — Z(g((qubh)ei, ei) — g((Vxph)pei, de;))
i=1

n
+ ) @(Ved)X. &) — g(Vgeph)X, pei)). (7.8)
i=1
After some calculations we have

D (g(Vxphyei, ) — g((Vxph)pei, pei)) =0,
i=1

Z(g((Ve,-qﬁh)X, ei)) — 8((Voe, @)X, gei)) = g(div(gh), X).
i=1

Using the last two equations in (7.8), we obtain
S(X, §) = —2na’n(X) + g(div(¢h), X).
By direct calculation, we find

S, &) = —2na® +trh®. O

Proposition 8. Let (M?>"*! ¢, £, 1, g) be an almost «-para-Kenmotsu manifold. Then, forany X, Y, Z € x (M?"*1) we have
gRE,X)Y,Z) +g(R(E, X)PY, ¢Z) — g(R(E, pX)pY,Z) — g(R(E, dpX)Y, ¢Z)
=2(Vix®@)(Y,2) + 2a’n(V)g(X, Z) — 20°n(2)g(X, Y) — 2an(2)g(¢hX., Y) + 2an(Y)g(¢hX, 2). (7.9)
Proof. The symmetries of the curvature tensor give g(R(&,X)Y,Z) = g(X, R(Y, Z)&) and then, using (7.1), the left hand

side can be written as

20°n(Y)g(X,Z) — 22*n(Z)g (X, Y) + F(X,Y,Z) — F(X,Z,Y), (7.10)
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where

FX,Y,Z)=gX, (Vydh)Z + ¢(Vydph)@Z) + g (X, (Voyp)9Z) — g(¢X, (VyyPph)Z).
By direct computations

& (Vyoh)¢Z + (Vyph)Z = (Vyp)hZ — h(Vy¢)Z, (7.11)
and

gX, (Voyo¢Z) — g(@X, (Voydh)Z) = —g(@X, ¢((Vyyph)9Z))
+nX)n((VoypdZ) — g(@X, (Veyph)Z). (7.12)

With the help of (7.11), (7.12),(6.9) and n((Vgydph)pZ) = g(hZ, adpY — hY), we compute a formula for # (X, Y, Z) and after
using it we obtain

FX,Y,2)—FX,Z,Y) = 2(Vix®)(Y,Z) —6dD(Y,Z, hX) 4+ 2an(Z)g(¢phX,Y) — 2an(Y)g(¢hX, Z)
= 2(Vix®)(Y,Z) — 2an(Z2)g(¢hX, Y) 4+ 2an(Y)g(¢phX, Z). (7.13)

where the last equality holds by d® = 2an A @. From (7.10) and (7.13), we get the required formula. O

Theorem 5. Let (M*™*!, ¢, &, n,g) be an almost a-para-Kenmotsu manifold with para-Kaehler leaves. Then the following
identity holds

Qo — ¢Q = I¢p — ¢l — 4a(1 — Mh — n ® Q& + (70 Q) ® &, (7.14)
where | denotes the Jacobi operator, defined by | = R(-, £)&.
Proof. We recall the formula (7.1)

RX, V)¢ = anX)(aY + ¢phY) —an(Y)(aX + ¢hX) + (Vxph)Y — (Vydph)X.

On the other hand the following formula is valid

(Vxph)Y = (Vxp)hY + ¢ ((Vxh)Y). (7.15)
Using (5.4) and (7.15), we obtain
R(X,Y)E = anX)(aY + ¢hY) — an(Y)(aX + ¢hX) + ¢((Vxh)Y — (Vyh)X) + (Vx¢p)hY — (Vyp)hX. (7.16)

By assumption M2"*! has para-Kaehler leaves thus by (5.4) (Vx¢)hY = ag(¢X, hY)E + g(hX, hY)E in consequence, as hg
is symmetric, (Vx¢)hY — (Vy¢)hX vanishes identically. Since h is a symmetric operator, we easily get

g((Vxh)Y — (Vyh)X, §) = g((Vx)§, Y) — g((Vyh)§, X). (7.17)
Using the formulas (3.17), h¢ = 0 and ¢h + h¢p = 0in (7.17), we find

g((VxY — (Vyh)X, §) = 2g(ph°X. Y). (7.18)
By applying ¢ to (7.16) and using ¢> = I — n ® £ and (7.18) we obtain

(Vx)Y — (Wyh)X = ¢R(X, Y)§ + 2g(@h°X, V)& — &’ (n(X)pY — n(Y)$X) — a(n(X)hY — n(Y)hX). (7.19)

Now we suppose that P is a fixed point of M and X, Y, Z are vector fields such that (VX)p = (VY)p = (VZ)p = 0. The Ricci
identity for ¢

RX, Y)PZ — ¢R(X, Y)Z = (VxVy@)Z — (Vy Vx@)Z — (Vix,v1$)Z,
at the point P, reduces to the form
RX,Y)PZ — ¢R(X, Y)Z = Vx(Vy@)Z — Vy(VxP)Z.
Due to our assumption that M?"*! has para-Kaehler leaves from (5.4), we obtain at P
R(X, Y)$Z — ¢R(X, Y)Z = Vx(Vy$)Z — Vy(Vx$)Z
= a @((Vx@)Y — (Vv@)X, 2)§ — n(Z)((Vx9)Y — (Vy$)X))
+g((Vx)Y — (VyX, 2)§ — n(Z)((Vxh)Y — (Vyh)X)
+g(agY + hY, Z)(ag?X + ¢phX) — g(adX + hX, Z)(ad®Y + ¢phY)
—2(Z, ad®X + ¢phX) (Y + hY) + g(Z, ap*Y + phY)(agX + hX). (7.20)
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Using (5.4) and (7.19) in (7.20), we find
RX, Y)pZ — ¢R(X, Y)Z = g(¢R(X, Y)§,2)§ — n(Z)pR(X, Y)&
+g(@gY +hY, 2)(a¢p?X + phX) — g(@dX + hX, Z)(@¢’Y + ¢hY)
—g(Z, ap®X + ¢phX) (@Y + hY) + g(Z, ag®Y + phY)(apX + hX).
Using (2.1) and the curvature tensor properties, we get
Z(PR(PX, 9Y)Z, pW) = —g(R(Z, W)X, ¢Y) + n(R(PX, ¢Y)Z)n(W).
Then by (7.21) and (7.22), we obtain
Z(PR(@X, 9Y)Z, 9W) = —g(PR(Z, W)X, ¢Y) + n(R(@X, ¢Y)Z)n(W) + n(X)g(PR(Z, W)E, ¢Y)
—g(agW +hW, X)(g(a¢’Z, §Y) + g(PhZ, ¢Y))
+8(@dZ +hZ, X)(g(@p* W, §Y) + g(hW, ¢Y))
+&X, a?Z + ¢hZ)(g(apW, ¢Y) + g(hW, $Y))
—g(X, ag®W + ohW) (g (@¢Z, ¢Y) +g(hZ, $Y)).
Replacing in (7.21) X, Y by ¢X, ¢Y respectively, and taking the inner product with ¢W, we get
ER(@X, PY)PZ, W) — g(PR($X. $Y)Z, pW)

= —n(2)g(PR(PX, Y&, pW) + g(ad’Y + hpY, Z)g (X + phoX, pW)
—g(ad’X + heX, 2)g (Y + phoY, ¢W) — g(Z, adp>X + phdpX)g(ap?Y + hoY, pW)

+8(Z, ag®Y + phpY)g(ap’X + heX, pW).
Comparing (7.23) to (7.24), we get by direct computation

ER(PX, pY)PZ, pW) = g(R(Z, W)X, Y) — n(R(Z, W)X)n(Y)
—n(X)gR(Z, W)E,Y) + n(R(PX, ¢Y)Z)n(W)
—n(2)g(@R(PX, PY)E, pW) — 20g(X, Z)g(Y, phW) + 2an(X)n(Z)g(phW, Y)
+20g(Y, 2)g(X, phW) — 2an(Y)n(Z)g(¢hW, X)
+20g(X, W)g(Y, ohZ) — 2anX)n(W)g(¢hZ, Y)
+2an(Y)n(W)g (X, phZ) — 2ag(Y, W)g(phZ, X).

Let {e;, pe;, £} ,ie {1,..., n}, be a local ¢-basis. Setting Y = Z = e; in (7.25), we have

Y 2R@X, pedei, pW) = Y (g(R(ei, W)X, &) — n(X)g(R(ei, W)E, &) + n(R($X., pes)en(W)
i=1

i=1

- ZOlg(X, ei)g(eia ¢hW) + ZOlg(ei, el)g((PhW» X)

+ 2ag (X, W)g(ei, phei) — 2an(X)n(W)g(ohei, e;) — 2ag(ei, W)g(dhe;, X)).

On the other hand, putting Y = Z = ¢e; in (7.25), we get

D 2R@X, eei gW) = > (g(R(pei, W)X, dper) — n(X)g(R(ger, W)E, der) + n(R($X, er)pe)n(W)
i=1 i=1

—2ag(X, pe)g(ge;, phW) + 2ag(de;, pe))g(phW, X)
+2ag (X, W)g(de;, phoe;) — 2an(X)n(W)g(phoe;, pe;)
—2ag(¢e;, W)g(dhee;, X)).

Using the definition of the Ricci operator, (7.26) and (7.27), one can easily get
— $QPX + ¢lpX + QX — IX = n(X)Q& + 4 (1 — n)¢phX

+ Z(g(R(qﬁX, epei, §) — g(R(@X, peie;, §))§.
i=1

Finally, applying ¢ to (7.28) and using ¢> = I — 1 ® &, we obtain the requested equation. O
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(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

Theorem 6. Let M1 be an almost «-para-Kenmotsu manifold of constant sectional curvature c. Then ¢ = —a® and h*> = 0.
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Proof. By assumptions

R, X)§ = c(n(X)§ —X) = ¢R(E, ¢X)E, (7.29)
forany X € I'(M). Using the last relation in (7.4), we obtain

X = (a® + c)p*X (7.30)
By (3.10), (7.30), we find Vgh2 = 0. In virtue of (7.3), (7.29) and (7.30), we have

0 = Veh? = h(Veh) + (Veh)h = —4ah* = —4a(a?® + ¢)¢*.
Hencec = —@?andh? =0. O

The proof of the following theorem is exactly same with almost Kenmotsu manifolds [23], therefore we omit the proof.

Theorem 7. Let M?"*! be an almost «-para-Kenmotsu manifold with h = 0. Then M*"* 1 is a locally warped product M, X2 My,
where M, is an almost para-Kaehler manifold, M is an open interval with coordinate t, and f> = we?*! for some positive constant.

Remark 2. Almost Kenmotsu manifolds in almost contact metric geometry appeared in [23-25]. These manifolds were
extensively studied e.g. [23,17,19,20]. Arbitrary almost Kenmotsu manifold can be locally deformed conformally to almost
cosymplectic manifold. Almost Kenmotsu manifolds were generalized to almost «-Kenmotsu, & = const., and subsequently
to almost a-cosymplectic manifolds.

8. Harmonic vector fields

Let (M, g) be a smooth, oriented, connected pseudo-Riemannian manifold and (TM, g°) its tangent bundle endowed
with the Sasaki metric g° (also referred to as Kaluza-Klein metric in Mathematical Physics). By definition, the energy of a
smooth vector field V on M is the energy of the corresponding V : (M, g) — (TM, g°). When M is compact, the energy of V
is determined by

1 * .S n 1 2
E(V)= - [ (trgV*g)dv = -vol(M, g) + = IVV]©dv.

The non-compact case, one can take into account over relatively compact domains. It can be shown that V : (M, g) —
(TM, g°) is harmonic map if and only if

tr[R(V.V,V).] =0, V*VV =0, (8.1)
where
VIV = =) (Ve VeV = Vi V) (8.2)
i
is the rough Laplacian with respect to a pseudo-orthonormal local frame {eq, .. ., e,} on (M, g) with g(e;, e;) = ¢; = £1 for
all indicesi=1,...,n.

If (M, g) is a compact Riemannian manifold, only parallel vector fields define harmonic maps.

Next, for any real constant p # 0, let x*(M) = {W e x(M): [W|? = p}. We consider vector fields V € x*(M)
which are critical points for the energy functional E |, » o), restricted to vector fields of the same length. The Euler-Lagrange
equations of this variational condition yield that V is a harmonic vector field if and only if

V*VV is collinear to V. (8.3)

This characterization is well known in the Riemannian case [10,1,12]. Using same arguments in pseudo-Riemannian case,
G. Calvaruso [26] proved that same result is still valid for vector fields of constant length, if it is not lightlike.

Let T;M denote the unit tangent sphere bundle over M, and again by g5 the metric induced on T;M by the Sasaki metric
of TM. Then, it is shown that in [27], the mapon V : (M, g) — (T{M, g°) is harmonic if V is a harmonic vector field and the
additional condition

tr[R(V.V,V).]=0 (84)

is satisfied. G. Calvaruso [26] also investigated harmonicity properties for left-invariant vector fields on three-dimensional
Lorentzian Lie groups, obtaining several classification results and new examples of critical points of energy functionals.

In the non-compact case, conditions (8.1) and (8.3) are respectively taken as definitions of harmonic vector fields and of
vector fields defining harmonic maps.

Recently, D. Perrone proved that the characteristic vector field of an almost cosymplectic three-manifold is minimal if
and only if it is an eigenvector of the Ricci operator.
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Theorem 8. Let (M?"*1, ¢, &, 1, g) be an almost «-para-Kenmotsu manifold. Then

AS = —-V*V¢ = (2na2 — U‘(hz))s - Qé\kerrr

Proof. Now, let (e;, ¢e;, £),i =1, ..., n, be alocal orthogonal ¢-basis. Then we obtain

A§

n
=Y (Ve VeE = Vv,ef = Voo Vool + Vv, e)
i=1

= =) (Ve VEe — (Vyo VE)pei)
i=1

(317) Z((VeiA)ei — (Vge,A)pe))
i=1

= —divph + 2not.
By (7.5) and (7.6), we get
Af = (2na® — tr(h*))§ — Qéjiery-
This ends the proof. O
As an immediate consequence of Theorem 8 we obtain following theorem.

Theorem 9. Let (M?>"+1, ¢, £, 1, g) be an almost «-para-Kenmotsu manifold. Characteristic vector field & is harmonic if and
only if it is an eigenvector of the Ricci operator.

9. Conformal and D-homothetic deformations

Let M?"*1 be an almost a-paracosymplectic manifold and (¢, £, 1, g) be an almost «-paracosymplectic structure. Let
JQ,,(M”“) be the set of the locally defined smooth functions f on M?"*1 such that df A n = 0, whenever df is defined.

Let M?"*1 be an almost paracontact metric manifold. Let f be a function on M?"*!f > 0 everywhere. Consider a
deformation of the structure

1
¢'_)¢/=¢7 §H§/=f€7 77'_>77,=f77a gHg,:fg’ (91)

we call (¢, &', 7n',g’) the conformal deformation of (¢, &, 1, g). Respectively we say that almost paracontact metric
manifold (M>™1, @', &, 1') is conformal to (M?"*1, ¢, &, 5, g). Almost paracontact metric manifolds (M>"*', ¢, £, 1, g)
and (M?"*1, ¢, &', n', g') are called locally conformal if there is an open covering (U)ictM?**! = [ U;, such that almost
paracontact metric manifolds (Uj, ¢|u;, & |u;» 1lu;» 8lu,) and (Ui, @[y, &'lu;» 0'lu;» &'lu;) are conformal.

Theorem 10. Arbitrary almost «-paracosymplectic manifold (M?™*1, ¢, &, 1, g)n > 2 is locally conformal to an almost para-
cosymplectic manifold. In the other words, near each point p € M?'*\, there is defined function u, such that structure

(¢',¢&',n'.g")
¢'=0. E=e =y gl=eg (9:2)
is almost paracosymplectic. The function u is unique up to additive constant and an = du.

Proof. From Proposition 1(vii), form 8 = a is closed, dB = 0. Hence there is an open covering (U,) of M?"*!, and functions
u, : U, — R, such that du, = B|y,. We define an almost paracontact metric structure on U, as in (9.2), with f = u,. Then

do’ = 2e 2 (—du+an) A ® =0,
dn’ 2 dunn =—2e2anAn=0. O

Consider a D,, ,-homothetic deformation of (¢, £, 1, £) into an almost paracontact metric structure (&, §, 7, &), defined
as

=up, Z=yg+W—-ymen, (9.3)

=t

- - 1
¢ = ¢7 é = 7%‘5
u
where y is a positive constantand u € 52,,(M2n+1), u # 0 at any point of M?"*!, We have & = y ®. Because of du A n = 0,

dij =duAn+udy=0 and dé:z(g)ﬁ/\@. (9.4)
u
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Thus, D, ,-homothety of almost «-paracosymplectic structure (¢, &, n, g) gives almost (%)-paracosymplectic structure

((Z), § 7, &) on the same manifold.
Following the definition of locally conformal almost paracontact metric manifolds we define the notion of locally
D, g-homothetic almost «-paracosymplectic manifolds.

Theorem 11. An almost a-paracosymplectic manifold (M?>"*1, ¢, £, n, g)n > 2 is locally Dy ,-homothetic to an almost para-
Kenmotsu manifold on the set U : o #£ 0.

Proof. We remark that according to Proposition 1(vii), @ € R,(M). We setu = o in(9.3), then (9.4) follows that (55, §, n,8)
is almost para-Kenmotsu on a connected component of U. O

Proposition 9. Let (J), §, 1, 8) be an almost «-paracosymplectic structure obtained from (¢, &, 1, g) by a D, g-homothetic
deformation. Then we have the following relation between the Levi-Civita connections V and V.

2_ d
P = y)g(Ax, V)E + %‘f)nwmms. (95)

VyY :VXY—(

Proof. By the Koszul formula we have
for any vector fields X, Y, Z. Using § = yg + (82 — y)n ® n in the last equation, we obtain

28(VxY, Z) = 2yg(VxY, Z) + 2BdBEnX)n(Y)n@) + 2(8% — y) [n(VxY)n(@) + g(Y, Vx&)n(@)]. (9.6)
Moreover, g(ﬁxn Z) is equal to
ye(VxY,2) + (B> — y)In(VxY)n(2) (9.7)
and
- 1. -
n(VxY) = Eg(VxY,é). (9.8)

Substituting §(VyY, Z) and n(VxY) in (9.6) by (9.7), (9.8), we obtain

2 —_ ~
ye(VxY,2) + (ﬁﬂiﬂ)gwxv, @) = ye(VxY.,2) + BABENXON(Y)1(2)

+ (B —y) [n(VxY)n(Z) + g(Y. Vxé)n(@)]. (9.9)
For Z = &, (9.6) gives

g(VxY, &) = yg(VxY, &) + BdBENX)n(Y) + (B — ) [n(VxY) + g(Y, VxE)]. (9.10)
Using (9.9), (9.10), by direct computations we obtain (9.5). O

Proposition 10. Let (M>"t!, ¢, £, 1, g) and (M1 6, § n,8) are locally D, g-homothetic almost o-paracosymplectic
manifolds. Then following identities hold:

AX = le, (9.11)
B

- 1

hX = —hX, 9.12
5 (9.12)

N .1 1

RX,Y)é = BR(X’ Y)§ + @dﬂ@) [nGOAY — n(Y)AX], (9.13)

for any vector fields X, Y, Z.

Proof. From (3.17),(9.3) and (9.5), we obtain (9.11). Formula (9.12) follows from (9.3), if we use the properties of h.
From (9.3) and (9.5), we have

o _ooz B -y =z 1 sz

VxVy§ = VxVyé — Tg(AX, Vyé)§ + Edﬂ(é)n(x)n(vyé)é‘, (9.14)
~ o~ 1

W= vk (9.15)
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By (9.14), (9.15) and properties of 4, we get

I ¢ 1 z_
Ty Wy = (’f) AY + =V VyE + Mg(y\)x, AY)E. (9.16)
p p p
We compute (9.13) from the curvature formula
RX,Y)Z = [Vx, WY]Z — Vix v1Z, (9.17)

using (9.15) and (9.16). O

10. Almost «-para-Kenmeotsu («, ., v)-spaces
In this section we study almost «-para-Kenmotsu manifolds under assumption that the curvature satisfies («, u, v)-
nullity condition
RX,Y)§ = n(Y)BX — n(X)BY, (10.1)
where B is Jacobi operator of £, BX = R(X, £)&, and

BX = k¢*X + phX + vohX, (10.2)

fork, u, v € R, (M?"*1). Particularly B§ = 0.

If an almost «-paracosymplectic manifold satisfies (10.1), then the manifold is said to be almost a-paracosymplectic
(x, u, v)-space.

Using (9.13) and after some calculations one can prove the following proposition.

Proposition 11. Let M be an almost «-paracosymplectic manifold. If M satisfies nullity conditions, then manifold M obtained
by D,, g-homothety of M also satisfies nullity conditions. In other words if M is a («, u, v)-space, then M is (k, ji, V)-space and

.k« . - v dBé)
K=7+7dﬂ(s)a n=—, V= —+ .
g* B’ B p B?

For an almost a-paracosymplectic (k, i, v)-space we may consider scalar invariant with respect to the D, g-
homotheties, that is function I(e, «, , v) with the property that I(«, k, u, v) = I(a’, ", u', V') for arbitrary D, g-
homothety. In the case u # 0 by direct computations we find that

K —ov
IO(O[, Ky W, V) = 2 (103)
"

is an invariant. An almost «-paracosymplectic space will be called of constant Ip-type if u %% 0 and Iy = const. We may ask
the question about number of functionally independent invariants. The answer at this moment is unknown. Also we do not
know the geometric interpretation of I,.

Proposition 12. Let (M*"t1, ¢, &, 1, g) be an almost «-para-Kenmotsu (k, w, v)-space. Then the following identities hold:

| = k¢? + uh + voh, (10.4)
l¢p — ¢l = 2uhep — 2vh, (10.5)
h? = (k + o®)¢?, (10.6)
Veh = —Qoa +v)h + phe, (10.7)
Vih? = —2Q2a + v)(k + a?)¢?, (10.8)
E(k) = —2Qa +v)(k + a?), (10.9)
R, X)Y = k(@(X, Y)§E — n(Y)X) + pn(gX, hY)§ — n(Y)hX) + v(g(X, phY)E — n(Y)¢hX), (10.10)
Q& = 2nké, (10.11)
(Vx9)Y = g(Y, hX + a¢pX)é — n(Y)(hX + a¢X), (10.12)
(Vxph)Y — (Vy¢ph)X = (k +a®)(n(Y)X — n(X)Y) 4+ u(n(Y)hX — n(X)hY)
+ (v + ) ((Y)phX — n(X)phY), (10.13)
(Vx)Y — (W)X = (k + o> )(n(Y)$X — n(X)@Y + 2g(Y, ¢X)E) + u(n(Y)phX — n(X)phY)
+ (v + @) ((Y)hX — n(X)hY), (10.14)

for all vector fields X, Y on M?"+1,
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Proof. From (10.1) we get
X =R(X, §)§ = k(X —n(X)§) + nhX + vohX, (10.15)
which gives (10.4). By replacing X by ¢X in (10.15) and next applying ¢ to the result, we obtain

lpX = kX + uhpX — vhX,
¢IX = kpX — uh¢X + vhX,

and (10.5) comes from the last two equations. From (10.15), we easily get

PlpX = kp?X — hX — vphX. (10.16)
Then by (10.15) and (10.16), we obtain

—IX — plpX = 2(c*p*X — h*X).

Comparing this equation with (7.4), we have (10.6). (10.7) can be easily get from (7.3) and (10.6). From (10.6), (10.7) and
Ve h? = (Veh)h + h(Veh), we obtain (10.8). One can easily get (10.9) by differentiating (10.6) along &.
In virtue of (10.1), we have

ER(Y,2)§,.X) = k(nDgX,Y) —n(Y)gX,2))
+ u(n@)gX, hY) —n(Y)gX, hZ)) + v(n(2)g X, phY) — n(Y)g(X, phZ)). (10.17)

The last equation completes the proofs of (10.10) and (10.11).
Taking into account (10.17), the left hand side of (7.9) can be rewritten as

2k(n(2)gX,Y) —n(Y)g(X, 2)).
So, (7.9) simplifies to
(Vix®)(Y,2) = (k + a*) (n(D)g (X, Y) — n(V)g(X, 2)) + a(n(Z)g($phX, Y) — n(Y)g($hX, Z)).
Replacing X by hX in the last equation and next using (10.6) in the result, we get
g((Vx9)Y,Z) = (n(2)g(hX,Y) — n(Y)g(hX, Z)) + a(m(Z)g(¢X. Y) — n(Y)g(¢X, Z)). (10.18)
Then (10.12) follows from (10.18). On the other hand (10.12) can be written as
(Vx@)Y = —g(¢pAX, Y)§ + n(Y)PpAX.
From (7.1), (10.1) we obtain (10.13). One can easily show that

(Vxoph)Y — (Vyph)X = (Vxp)hY — (Vy@)hX + ¢((Vxh)Y — (Vyh)X). (10.19)
By (10.12)
(Vx@)hY = g(hY, hX + apX)E. (10.20)

by applying ¢ to the obtained result, we have (10.14). O

Theorem 12. If (M>"*1, ¢, &, 1, g) is an almost «-para-Kenmotsu (k, i, v)-space and the set of points where o # 0 is dense
in M1 then M?"*1 has para-Kaehler leaves.

Proof. We only need to prove this if n > 2, for arbitrary 3-dimensional «-para-Kenmotsu manifold has para-Kaehler
leaves. According to Theorem 11, a-paracosymplectic manifold (Ug, @luy, &luy, Mlug» &lu,) i D1,«-homothetic to almost
para-Kenmotsu manifold (Uy, ¢', &', 1', g'), (cf. (9.3)), on a connected component Uy, C U. In virtue of Proposition 5,
Eq. (10.12) tells us that Uy, viewed as almost para-Kenmotsu manifold, has para-Kaehler leaves. Moreover, we notice that
arbitrary D, g-homothety preserves this property, thus we may conclude, that the original structure (¢, £, n, g), restricted
to Uy, also satisfies the para-Kaehler structure. Therefore (Vx¢)Y satisfies (10.12) on U. As U is dense, (10.12) has to be
satisfied everywhere on M?**1. Now, from Proposition 5, follows that M?"*! has para-Kaehler leaves. O

In our terminology, manifolds of constant sectional curvature c, are almost paracosymplectic (c, 0, 0)-spaces.
Corollary 3. An almost «-para-Kenmotsu manifold of constant sectional curvature has para-Kaehler leaves.

Corollary 4. Let (M?"*1, ¢, &, 1, g) be an almost a-para-Kenmotsu («, j¢, v)-space. Then
Q¢ — $Q = 2uhd —2(v + 2a(1 — n))h. (10.21)
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Proof. Using (10.1) and ¢h = —h¢p, we obtain lpp — ¢l = 2uh¢p — 2vh. On the other hand, from (10.11) and Theorem 9 one
can easily prove that both 7 ® ¢Q and (n o Q¢) ® & vanish. So (10.21) follows from (7.14). O

Remark 3. Manifolds which are conformal or locally conformal to cosymplectic manifolds were studied by many authors,
e.g.[28-31,25,32].

Remark 4. D, g-homotheties as they appear in almost contact metric geometry are particular class of deformations con-
sidered by S. Tanno [33]. The general deformation of a metric (Riemannian) hasaformg’' = ag + 0w ®0 +0 Qw + Bw @ w
where w, 8 are one-forms and «, 8 are functions, « > Ox + > 0. The work of Tanno seems to be nowadays completely
forgotten within the framework of almost contact metric geometry.

11. Classification of the 3-dimensional almost «¢-para-Kenmotsu (x, ., v)-spaces

In this section, different possibilities for the tensor field h are investigated. Thus we can comprehend the differences
between the almost a-para-Kenmotsu and almost «-Kenmotsu cases by looking at the possible Jordan forms of the tensor
field h.

It is well known that a self-adjoint linear operator ¥ of a Euclidean space is always diagonalizable, but this is not the
case for a self-adjoint linear operator ¥ for a Lorentzian inner product. It is known [34, pp. 50-55] that self-adjoint linear
operator of a vector space with a Lorentzian inner product can be put into four possible canonical forms. In particular, the
matrix representation g of the induced metric on Mf is of Lorentz type, so the self-adjoint linear ¥ of M13 can be put into
one of the following four forms with respect to frames {eq, e,, e3} at Tpr where Tpr is a tangent space to M at p [35,36].

M 0 0 -1 0 0
(hi-type)w =0 A, 0), g=({0 1 0],
0 0 A 0 0 1

A 0 0 010
(h-type)¥ =1 2 0], g=(1 0 O},
0 0 s 0 0 1

y —A 0 -1 0 0
(hs-type)¥ =2 y 0], g=(0 1 0), A#0,
0 0 0 0 1

A 0 0 010
hatyp)w =(0 & 1), g=(1 0 o).
10 A 00 1

The matrices g for types (h;) and (h3) are with respect to an orthonormal basis of TpM3, whereas for types (h,) and
(h4) are with respect to a pseudo-orthonormal basis. This is a basis {e1, e, e3} of Tpr satisfying g(eq, e1) = g(ez, €3) =

g(er, e3) = g(ex, e3) = 0and g(er, ex) = gles, e3) = 1.
Let (M, ¢, &, 1n,g) be a 3-dimensional almost a-paracosymplectic manifold. Then operator h has following types.

(h1-type)
Uy={peM|h(p)#0} CM
U, = {p € M | h(p) = 0, in a neighborhood of p} C M
That h is a smooth function on M implies U; U U, is an open and dense subset of M, so any property satisfied in U; U U, is also

satisfied in M. For any point p € U; U U, there exists a local orthonormal ¢-basis {e, ¢e, £} of smooth eigenvectors of h in a
neighborhood of p, where —g(e, e) = g(¢e, ¢e) = g(&, &) = 1.0n U; we put he = Le, where A is a non-vanishing smooth

function. Since trh = 0, we have h¢pe = —Age. The eigenvalue function A is continuous on M and smooth on U; U Uj. So,
h has following form
A 0 O
0 -1 0 (11.1)
0O 0 O

respect to local orthonormal ¢-basis {e, ¢e, £}.

(h2-type) Using same methods in [12], one can construct a local pseudo-orthonormal basis {eq, e,, e3} in a neighborhood
of p where g(eq, e1) = g(ez, e3) = g(ey,e3) = g(ez,e3) = 0and g(eq, e;) = g(es, e3) = 1. Let U be the open subset
of M where h # 0. For every p € U there exists an open neighborhood of p such that he; = e,, he, = 0, hes = 0 and
¢e, = teijpe; = Fey, pes = 0and also & = es. Thus the tensor h has the form

0 00
100 (11.2)
000

relative a pseudo-orthonormal basis {e1, e;, €3}.
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(h3-type) We can find a local orthonormal ¢-basis {e, ¢e, £} in a neighborhood of p where —g(e, e) = g(¢e, pe) =
g(&,&) = 1. Now, let U, be the open subset of M where h # 0 and let U, be the open subset of points p € M such that
h = 0in a neighborhood of p. Uy U U, is an open subset of M. For every p € U, there exists an open neighborhood of p

such that he = A¢e, hpe = —Ae and hé = 0 where X is a non-vanishing smooth function. Since trh = 0, the matrix form
of h is given by
0 —A 0
A 0 0 (11.3)
0o 0 O

with respect to local orthonormal basis {e, ¢e, &}.

(h4-type) A local pseudo-orthonormal basis {eq, e,, e3} is constructed in a neighborhood of p where g(eq, e1) = g(ez, €2)
= g(eq,e3) = g(ez,e3) = 0and g(ey,e;) = g(es, e3) = 1. Since the tensor h is (h4-type) (with respect to a pseudo-
orthonormal basis {e1, e,, es}) then he; = Ae; +e3, he; = Ae; and hes = e, + Aes. Since 0 = trh = g(heq, e;) +g(hey, e1) +
g(hes, e3) = 3A,then A = 0. We write £ = g(&, e;)e; + g(&, e1)e; + g(&, e3)es respect to the pseudo-orthonormal basis
{e1, e, e3}. Since hE = 0, we have 0 = g(&, e;)es + g (&, e3)e,. Hence we get £ = g(&, e1)e, which leads to a contradiction
with g(&, &) = 1. Thus, this case does not occur.

Since the proof of the following lemma is similar to [12], we omit the proof.

Lemma 5. Let (M, ¢, &, n, g) be a 3-dimensional almost «-para-Kenmotsu manifold. Then a canonical form of h stays constant
in an open neighborhood of any point for h.

In a 3-dimensional pseudo-Riemannian manifold case, the curvature tensor can be written by
r
RX,Y)Z =g(Y,2)QX — g(X, Z)QY +g(QY, 2)X — g(QX, Z)Y — E(g(Y, )X —gX,2)Y), (11.4)

forany X, Y,Z € I'(TM).
Using same procedure with [37], we have

Lemma 6. Let (M, ¢, &, n, g) be a 3-dimensional almost «-para-Kenmotsu manifold with h of b, type. Then for the covariant
derivative on U, the following equations are valid

1
(i) Vee = 5[0(6) — (pe)(M)] pe + aé, (11.5)
1
(il) Vepe = Ty [o(e) — (pe)(M)]e — A&
(iii) Ve& = ae + A¢e,
1
(iv) Vgee = BTy [o(ge) +e(h)] pe — AE,
1
(V) Vygetpe = o [o(pe) +e(h)] pe — aé,
(Vi) Vet = age — Ae,
(vii) Vee = a ¢e, (viii) Vege = aye,

(ix) [e, ] = ae + (A — ay) e,
) [¢e, E] = —(A + a1)e + age,

- _ 1 _ 1
(xi) [e, pe] = 2 [o(e) — (pe)(M)] e+ T [o(pe) +e(M)] pe,
.. 2 242 1 2
(xii) Veh = &(A)s — 2a,hg, (xiii) h* — a“¢” = ES(S’ &)o
where

a = g(vse’ ¢e)7 o= 5(%‘7 ')kern-

Lemma 7. Let (M, ¢, &, n, g) be a 3-dimensional almost «-para-Kenmotsu manifold with h of b, type. Then the Ricci operator
Q is given by

0= (% o _)LZ)1+ (—% 1302 —az))n®§ — 20ph — ¢(Veh)

+0(*) @& —o(e)n®e+o(pe)n ® de. (11.6)
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Lemma 8. Let (M, ¢, &, n, g) be a 3-dimensional almost «-para-Kenmotsu manifold with h of b, type. Then for the covariant
derivative on U the following equations are valid

(i) Ve,eq1 = —bye; + &, (ii) Ve, 62 = b1e; — aé, (iil) Ve, & = aey — ey,
(iv) Ve,e1 = —bye; — aé, (V) Ve,e2 = baes, (Vi) Ve, & = ae,
(vii) Vee; = azeq, (viii) Vee, = —azey,
(ix) [e1, §] = (¢ — az)er — ez, (X) [e2, §] = (a + a)ey, (11.7)
(xi) [e1, €2] = byeq + biey,
(xii) Veh = —2a,h¢, (xiii) h* = 0.

where ay = g(Vgeq, e2)by = g(Ve,€2, €1) and b, = g(Ve,e2, €1) = —10 (ey).

Proof. By V& = —a?¢ + ¢h, we obtain (iii), (vi).

Using pseudo-orthonormal basis {eq, e;, e3 = £} with ¢pe; = ey, pe; = —e,, pe; = 0 we have
Vee2 = g(Ve €2, e2)e1 +g(Ve €2, e1)ex + g(Ve, €2, 6)é
= g(Ve, e, e1)e; — gley, Ve, )
@ g(Ve ez, e1)e; —
= b1€2 — O[%‘.

The proofs of other covariant derivative equalities are similar to (ii).
Putting X = e1,Y = e; and Z = £ in Eq. (11.4), we have

R(e1, e2)§ = —o(en)e; +o(ez)er. (11.8)
On the other hand, by using (7.1), we get
R(eq, €2)§ = (Ve,ph)ey — (Ve,dh)eq

= 2b2€2. (119)
Comparing (11.9) with (11.8), we obtain
o(er) = —2b,, o(ez) =0=S5(,ez). (11.10)

Hence, the function b, is obtained from the last equation. O

Lemma 9. Let (M, ¢, &, n, g) be a 3-dimensional almost «-para-Kenmotsu manifold with h of b, type. Then the Ricci operator
Q is given by

Q= (g +a?)1- (g +307) 1 @ § — 200h — B(Veh) + 0 (¢1) B + o (e @ e, (11.11)

Proof. From (11.4), we obtain
R(X,§) =S(§,5)X —S(X, §)§ + QX — n(X)Q& — g(X —nX)§),

for any vector field X. By (7.2) and (7.6) the last equation reduces to

QX = %s(é‘, E)P°X — 2aphX — p(V:h)X — S(&, &)X + S(X, £)E + n(X)QE + %(x —n(X)E). (11.12)
By setting S(X, &) = S(¢X, &) + n(X)S(&, ) in (11.12), we have
X = S(iﬁqﬂx — 2aphX — ¢(Veh)X — S(&, €)X
SO £)E +N0OS(E )& +n(0QE + S¢X. (11.13)
On the other hand, the Ricci tensor S can be written with respect to the orthonormal basis {e;, e;, £} as follows
Q& =o(e)ey +S(§,6)8. (11.14)

Using (11.14) in (11.13), we get

& = % (T + 2a2)X - %(GQZ +nX)§ — 2a¢ph — ¢(Veh)X + O'((f)ZX)S +nX)o(e1)e; (11.15)

for arbitrary vector field X. This ends the proof. O
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Lemma 10. Let (M, ¢, &, n, g) be a 3-dimensional almost «-para-Kenmotsu manifold with h of b5 type. Then for the covariant
derivative on U the following equations are valid

(i) Vee = bsge + (o + A)E, (ii) Vege = bse, (iii) Ve&§ = (a + A)e,
(iv) Vgee = bae, (V) Vgepe = bae + (h — )€, (Vi) Vgek = —(h — a)e.
(vii) Vee = aszge, (viii) Ve e = aze,

(ix) [e, €] = (a + L)e — azge, (x) [¢e, §] = —aze — (A — a) e, (11.16)
(xi) [e, pe] = bse — bade,

B 1
(xii) Veh = £(\)s — 2a3hp,  (xiii) h* — &’¢* = SSE, £)¢,
where a; = g(Vge, pe), bs = — - [0 (de) + (pe) (M) ] and by = - [o(e) — e(M)].

Proof. By V& = a¢? + ¢h, we have (iii), (vi).
Using ¢-basis, we have

Vipe = —g(Vege, e)e + g(V:pe, pe)pe + g(V:ge, §)§
= g(¢e, Vee)e = aze,

So we prove (viii). The proofs of other covariant derivative equalities are similar to (viii).
Setting X =e,Y = ¢pe, Z = £ in Eq. (11.4), we have

R(e, pe)§ = —g(Qe, §)pe +g(Qge, §)e.
Since o (X) = g(Q&, X), we have

R(e, pe)§ = —a (e)pe + o (pe)e. (11.17)
On the other hand, by using (7.1), we have

R(e, pe)s = (Veph)pe — (Vgeph)e
= (=2bsh — (pe)(M))e + (—2bsh — e(A))ge. (11.18)

Comparing (11.18) with (11.17), we get
o(e) =e(r) + 2bsr, o(pe) = —(¢e)(rA) — 2bsA.

Hence, the functions b3 and b, are obtained from the last equation. O

Lemma 11. Let (M, ¢, &, n, g) be a 3-dimensional almost «-para-Kenmotsu manifold with h of b3 type. Then the Ricci operator
Q is given by

Q=al+by®& —2a¢h — ¢(Veh) + 0 (¢*) @& — o (e)n ® e + o (pe)n ® ge, (11.19)
where a and b are smooth functions defined by a = a*> + A* + 5 and b = —3(A* + a?) — %, respectively.
Proof. Using (11.4), we get

RX, )& =S(&, 6)X —S(X, §)& + QX — n(X)Q§ — %(X — X)),
for any vector field X. By (7.2), the last equation reduces to

QX = —a?$*X + h’X — 209hX — ¢(V:h)X — S(&, &)X + S(X, £)E + n(X)QE + g(x — n(X)&). (11.20)
By writing S(X, £) = S(¢?X, &) + n(X)S(&, &) in (11.20), we obtain

_S(,8)
T2

(0 $*X — 20phX — G(VmX — S(E, )X + S(9°X, §)&

+n(OS(E, E)E + n(X)QE + gqszx. (1121)
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On the other hand S can be written with respect to the orthonormal basis {e, ¢e, £} as

Q& = —o(e)e+o(pe)pe +5(, 8)5. (11.22)
Using (11.22) in (11.21), we have

X = <oe2 FA 4 g)x n (—3(,\2 ta)— g) NOOE — 2aphX

—p(Veh)X + 0 (¢°X)E — n(X)a (e)e + n(X)o (pe) e, (11.23)

for arbitrary vector field X. This completes the proof. O

Theorem 13. Let (M, ¢, &, n, g) be a 3-dimensional almost «-para-Kenmotsu manifold. If the characteristic vector field & is a
harmonic map then almost a-paracosymplectic («k, i, v)-manifold always exist on every open and dense subset of M. Conversely,
if M is an almost a-paracosymplectic (k, u, v)-manifold with constant « then the characteristic vector field & is a harmonic map.

Proof. We will prove theorem for three cases respect to chosen (pseudo) orthonormal basis.

Case 1:We assume that h is b type.
Since & is a harmonic vector field, £ is an eigenvector of Q. Hence we deduce that ¢ = 0. Putting s = %h in (11.5)(xii),
we find

(T 242 _r 2 2 _ _ §)

Q—(2+a x)1+( S +30. a))n®s 2a;h <2a+ ) oh. (11.24)

Setting Z = £ in (11.4) and using (11.24), we obtain
£

R(X, V)& = (—a® + A7) (V)X — n(X)Y) — 2a1(n(Y)hX — n(X)hY) — (th t = (n(Y)phX — n(X)¢hY),
where the functions «, u and v defined by x = @ =X —a?), u=—-2a;,v=—Qax+ é&ﬁ), respectively. Moreover,
using (11.24), we have Q¢ — ¢Q = 2ph¢ — 2vh.
Case 2:Secondly, let h be b, type.

Putting 0 = 0in (11.11) and using (11.7) (xii), we get
r r

Q= (5 +a2)1— (5+3a2)n®§ — 2a,h — 2aphX. (11.25)

When £ = Z in (11.4) we obtain
r
RX,Y)§ = =S(X, &) +5(Y,§) —nX)QY + n(Y)QX + E(n(X)Y —n(¥)X), (11.26)

for any vector fields X, Y. By applying (11.25) in (11.26), we have
RX,Y)E = —a>((Y)X — n(X)Y) — 2a(n(Y)hX — n(X)hY) — 2a((Y)phX — n(X)phY)

SEE _
2

where the functions «, i and v defined by x = —a?, @ = —2a,, v = —2a, respectively. Furthermore, by (11.25),

we have Q¢ — ¢Q = 2uh¢ — 2vh.

Case 3: Finally, we suppose that h is b3 type.
Since & is a harmonic map, we have ¢ = 0. Putting s = %h in(11.19) we get

Q=al+byn®& —2a¢ph — ¢(V:h), (11.27)
Setting £ = Z in (11.4) we again obtain
RX,Y)§ = —=S(X, &) +S(Y, &) — nX)QY + n(Y)QX + %(T}(X)Y = n(Y)X), (11.28)

for any vector fields X, Y. Using (11.27) in (11.28), we get

A
RX,Y)E = —(o® + A*)(n(Y)X — n(X)Y) — 2a3(n(Y)hX — n(X)hY) — (2a + ?) (n(Y)phX — n(X)¢hY),

where the functions «, v and v are defined by k = —(a® + A?), u = —2a3, v = —Qa + E(%), respectively. With the help
of (11.27), we get Q¢p — ¢Q = 2uh¢ — 2vh.
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Conversely, let M be an almost a-para-Kenmotsu («, u, v)-manifold. Using Theorem 9 and (10.11), we conclude that &
is harmonic.
This completes the proof. O

12. Examples

Example 1. We consider the 3-dimensional manifold

M={(xy,2) eR|x#0,y#0}
and the vector fields

e—8 e—qﬁe—a e—$—><a—|—(y+2x)8+8
T oax 2TV T Gy 2T T gy | 8z’
The 1-form n = dz and the fundamental 2-form @ = —dxAdy+ (y+2x)dx Adz —xdy A dz defines an almost para-Kenmotsu
manifold.
Let g, ¢ be the pseudo-Riemannian metric and the (1, 1)-tensor field given by

—X
1 0 —
P
g=|o0 -1 = ,
—X y+2x 5 5
— 1—3x" —4xy —
3 5 y =Yy
0 1 —(y+2x) 1 0 O
¢=11 0 —X , h=|0 -1 0].
0 0 0 0o 0 O
We easily get
[e1,e2] =0,

[e1, e3] = e1 + 2ey,
[e2, e3] = ey.

Moreover, the above example is an almost para-Kenmotsu (k, u, v) = (1, 1, —2)-space.

Example 2. We consider the 3-dimensional manifold

M={(xy.2)eR|x#0, y#0,z+#0}
and the vector fields
0 0 0 0 0
e =—, e=_—, es=&=x(1-2)—+(—x+y(1+2)—+ —,
ay dax Jdy 0z
g(er, er) = gler, e3) = g(ez, e2) = g(ez, €3) =0, gler, ex) =g(es, e3) = 1.

0 0 O
h=(1 0 O0].
0 0 O

The 1-form 1 = dz and the fundamental 2-form @ = dx Ady + (x —y(1+42))dx Adz + (x (1 —z))dy A dz defines an almost
a-para-Kenmotsu manifold.
Let g, ¢ be the pseudo-Riemannian metric and the (1, 1)-tensor field given by

1 1( 1
5 x—y(1+2)

5 1
g= 0 5(—x(1 —2)) )

N|l— O

%(x —y(14+2)) %(—x 1-2) 1-2x(1—-2)x—y)(1+2)

1 0 —x(1-2)
¢:<O -1 —x+y(l+z)>.
0 0 0
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We easily get

per = ey, ey = —ey, $§ =0,
[e1,e2] =0,

[er,e3] = (1 —2)e; — ey,

[e2, e3] = (1 + 2)ey.

Moreover, the above example is an almost a-para-Kenmotsu («, u, v) = (=1, —2z, —2)-space.

Remark 5. To our knowledge, the above example is the first numerical example of almost «-para-Kenmotsu satisfying
k =—1andh # 0inR>.

References

[1] S.Kaneyuki, F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. ] 99 (1985) 173-187.
[2] S.Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom. 36 (2009) 37-60.
[3] R.Rosca, L. Vanhecke, Str une variété presque paracokahlérienne munie d’'une connexion self-orthogonale involutive, Ann. Sti. Univ. “Al. I. Cuza” la
si22(1976) 49-58.
[4] K. Buchner, R. Rosca, Variétes para-coKahlerian & champ concirculaire horizontale, C. R. Acad. Sci. Paris, Ser. A 285 (1977) 723-726.
[5] K. Buchner, R. Rosca, Co-isotropic submanifolds of a para-coKahlerian manifold with concicular vector field, J. Geom. 25 (1985) 164-177.
[6] C.-L.Bejan, Almost parahermitian structures on the tangent bundle of an almost para-coHermitian manifold, in: The Proceedings of the Fifth National
Seminar of Finsler and Lagrange Spaces, (Brasov, 1988), Soc. Stiinte Mat. R. S. Romania, Bucharest, 1989, pp. 105-109.
[7] P.Dacko, On almost para-cosymplectic manifolds, Tsukuba J. Math. 28 (2004) 193-213.
[8] J. Welyczko, On basic curvature identities for almost (para)contact metric manifolds. Available in arxiv:1209.4731 [math. DG].
[9] B. Cappelletti-Montano, A.D. Nicola, I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys. 25 (3) (2013).
[10] D.E.Blair, Riemannian Geometry of Contact and Symplectic Manifolds, in: Progress Math., vol. 203, Birkhduser, Boston, MA, 2010.
[11] P. Dacko, Almost para-cosymplectic manifolds with contact Ricci potential. Available in Arxiv: arxiv:1308.6429 [math. DG].
[12] L. Kupeli Erken, C. Murathan, A complete study of three-dimensional paracontact («, i, v)-spaces (submitted for publication). Available in
arxiv:1305.1511 [math. DG].
[13] V. Martifi-Molina, Paracontact metric manifolds without a contact metric counterpart, Available in arxiv:1312.6518 [math. DG].
[14] E. Boeckx, A full classification of contact metric («, )-spaces, Illinois J. Math. 44 (1) (2000) 212-219.
[15] A. Carriazo, V. Martin-Molina, Almost cosymplectic and almost Kenmotsu («, i, v)-spaces, Mediterr. ]. Math. 10 (3) (2013) 1551-1571.
[16] P.Dacko, Z. Olszak, On almost cosymplectic (k, i, v)-spaces, in: PDEs, Submanifolds and Affine Differential Geometry, in: Banach Center Publ,, vol. 69,
Polish Acad. Sci., Warsaw, 2005, pp. 211-220.
[17] G. Dileo, A.M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93 (2009) 46-61.
[18] H. Oztiirk, N. Aktan, C. Murathan, Almost a-cosymplectic («, j, v)-spaces (submitted for publication). Available in arxiv:1007.0527 [math. DG].
[19] A.M. Pastore, V. Saltarelli, Generalized nullity distributions on almost Kenmotsu manifolds, Int. Electron. ]. Geom. 4 (2) (2011) 168-183.
[20] V. Saltarelli, Three dimensional almost Kenmotsu manifolds satisfying certain nullity conditions, Available in arxiv:1007.1443 [math. DG].
[21] V. Cruceanu, P. Fortuny, P.M. Gadea, A survey on paracomplex geometry, Rocky Mountain J. Math. 26 (1996) 83-115.
[22] Z. Olszak, Almost cosymplectic leaves with Kdhlerian leaves, Tensor N.S. 46 (1987) 117-124.
[23] G. Dileo, A.M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14 (2007) 343-354.
[24] T.W. Kim, H.K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.) 21 (4) (2005) 841-846.
[25] Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989) 73-87.
[26] G. Calvaruso, Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups, J. Geom. Phys. 61 (2011) 498-515.
[27] M.T.K. Abbasi, G. Calvaruso, D. Perrone, Harmonicity of unit vector fields with respect to Riemannian g-natural metrics, Differential Geom. Appl. 27
(2009) 157-169.
[28] M. Capursi, S. Dragomir, On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, Boothby
-Wang fiberings and homology type, Colloq. Math. 64 (1993) 29-40.
[29] D. Chinea, J.C. Marrero, Conformal changes of almost cosymplectic manifolds, Rend. Mat. Appl. 12 (1992) 849-867.
[30] M. Falcitelli, A class of almost contact metric manifolds with pointwise constant ¢-sectional curvature, Math. Balkanica (N.S.) 22 (2008) 133-153.
[31] M. Falcitelli, Curvature of locally conformal cosymplectic manifolds, Publ. Math. Debrecen 72 (3-4) (2008) 385-406.
[32] J.C. Marrero, Locally conformal cosymplectic manifolds foliated by generalized Hopf manifolds, Rend. di Mat. Serie VII 12 (1992) 305-327.
[33] S. Tanno, Partially conformal transformations with respect to (m — 1)-dimensional distributions of m-dimensional Riemannian manifolds, Tohoku
Math. J. (2) 17 (4) (1965) 358-409.
[34] A.Z.Petrov, Einstein Spaces, Pergamon Press, Oxford, 1969, MR 0244912.
[35] M. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985) 165-198. MR 0783023.
[36] B. O’Neill, Semi-Riemann Geometry, Academic Press, New York, 1983.
[37] D. Perrone, Minimal reeb vector fields on almost cosymplectic manifolds, Kodai Math. J. 36 (2013) 258-274.


http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref1
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref2
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref3
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref4
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref5
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref6
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref7
http://arxiv.org/1209.4731
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref9
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref10
http://arxiv.org/1308.6429
http://arxiv.org/1305.1511
http://arxiv.org/1312.6518
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref14
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref15
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref16
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref17
http://arxiv.org/1007.0527
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref19
http://arxiv.org/1007.1443
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref21
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref22
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref23
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref24
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref25
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref26
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref27
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref28
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref29
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref30
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref31
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref32
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref33
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref34
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref35
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref36
http://refhub.elsevier.com/S0393-0440(14)00214-9/sbref37

	Almost  α -paracosymplectic manifolds
	Introduction
	Preliminaries
	Almost  α -paracosymplectic manifolds
	Para-Kaehler manifolds
	Almost  α -paracosymplectic manifolds with para-Kaehler leaves
	Basic structure and curvature identities
	Almost  α -para-Kenmotsu manifolds
	Harmonic vector fields
	Conformal and  D -homothetic deformations
	Almost  α -para-Kenmotsu  (κ, μ, ν) -spaces
	Classification of the 3-dimensional almost  α -para-Kenmotsu  (κ, μ, ν) -spaces
	Examples
	References


