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a b s t r a c t

This paper is a complete study of almost α-paracosymplectic manifolds. Basic properties
of such manifolds are obtained and general curvature identities are proved. The manifolds
with para-Kaehler leaves are characterized. It is proved that, for dimensions greater than
3, almost α-paracosymplectic manifolds are locally conformal to almost paracosymplectic
manifolds and locally D-homothetic to almost para-Kenmotsu manifolds. Furthermore, it
is proved that characteristic (Reeb) vector field ξ is harmonic on almost α-para-Kenmotsu
manifold if and only if it is an eigenvector of the Ricci operator. It is showed that almost
α-para-Kenmotsu (κ, µ, ν)-space has para-Kaehler leaves. 3-dimensional almost α-para-
Kenmotsu manifolds are classified. As an application, it is obtained that 3-dimensional
almost α-para-Kenmotsu manifold is (κ, µ, ν)-space on an every open and dense subset
of the manifold if and only if Reeb vector field is harmonic. Furthermore, examples are
constructed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The study of almost paracontact geometry was introduced by Kaneyuki andWilliams in [1] and then it was continued by
many other authors. A systematic study of almost paracontact metric manifolds was carried out in paper of Zamkovoy, [2].
However such manifolds were studied earlier, [3–6]. These authors called such structures almost para-coHermitian. The
curvature identities for different classes of almost paracontact metric manifolds were obtained e.g. in [7,8,2].

Considering the recent stage of the developments in the theory, there is an impression that the geometers are focused
on problems in almost paracontact metric geometry which are created ad hoc. Recently, a long awaited survey article, [9],
concerning almost cosymplectic manifolds as Blair’s monograph [10] about contact metric manifolds appeared.

Almost (para)contact metric structure is given by a pair (η, Φ), where η is a 1-form,Φ is a 2-form and η∧Φn is a volume
element. It is well known that then there exists a unique vector field ξ , called the characteristic (Reeb) vector field, such that
iξη = 1iξΦ = 0. The Riemannian or pseudo-Riemannian geometry appears if we try to introduce a compatible structure
which is a metric or pseudo-metric g and an affinor φ ((1, 1)-tensor field), such that

Φ(X, Y ) = g(φX, Y ), φ2
= ϵ(Id − η ⊗ ξ). (1.1)

We have almost paracontact metric structure for ϵ = +1 and almost contact metric for ϵ = −1. Then, the triple (φ, ξ, η) is
called almost paracontact structure or almost contact structure, resp.
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Combining the assumption concerning the forms η andΦ , we obtain many different types of almost (para)contact mani-
folds, e.g. (para)contact ifη is contact formand dη = Φ , almost (para)cosymplectic if dη = 0dΦ = 0, almost (para)Kenmotsu
if dη = 0dΦ = 2η ∧ Φ .

Recently geometers discovered many similarities between almost contact metric and almost paracontact metric man-
ifolds. Simply, we could transliterate some properties from the Riemannian geometry to pseudo-Riemannian geometry.
However, the situation is more delicate: there are examples of almost paracontact metric manifolds without Riemannian
counterparts e.g. [11–13].

In the geometry of almost (para)contact metric manifold it is often convenient to define tensor fields

A = −∇ξ, h =
1
2

Lξφ. (1.2)

The meaning of these tensors depends on particular class of manifolds. In general almost (para)contact metric manifold is
called (κ, µ, ν)-space if

R(X, Y )ξ = η(X)lY − η(Y )lX, lX = R(X, ξ)ξ = κφ2
+ µh + νφh, (1.3)

for some functions κµν. Classifications are obtained for contactmetric, almost cosymplectic, almostα-Kenmotsu and almost
α-cosymplectic manifolds, e.g. in [14–20]. Note that manifolds with constant sectional curvature c are (c, 0, 0)-spaces.

The paper is organized in the following way.
Section 2 is preliminary section, where we recall the definition of almost paracontact metric manifold.
In Section 3 we introduce the class of almost paracontact metric manifolds which is defined by

dη = 0, dΦ = 2αη ∧ Φ, (1.4)

where α is a function. Thesemanifolds are called almost α-paracosymplectic. They contain properly almost paracosymplec-
tic, α = 0, and almost α-para-Kenmotsu, α = const. ≠ 0 manifolds. In this section, we study basic properties of such
manifolds.

In the short auxiliary Section 4 we recall the notion of para-Kaehler manifold.
There is natural foliation of almost α-paracosymplectic manifold where each leaf carries a structure of almost para-

Kaehler manifold. In Section 5 we prove the following characterization: almost α-paracosymplectic manifold has para-
Kaehler leaves if and only if

(∇Xφ)Y = αg(φX, Y )ξ + g(hX, Y )ξ − αη(Y )φX − η(Y )hX . (1.5)

In Section 6 we prove the following fundamental identity

(∇φXφ)φY − (∇Xφ)Y = η(Y )AφX + 2α(g(X, φY )ξ + η(Y )φX).

We derive a formula for the curvature R(X, Y )ξ , which is a cornerstone for the further study of (κ, µ, ν)-spaces.
In Section 7 we study almost α-para-Kenmotsu manifolds. We obtain curvature identities for such manifolds. We get a

formula for the Ricci operator Q , cf. Theorem 5.

[Q , φ] = [l, φ] − 4α(1 − n)h − η ⊗ (φQ ξ) + (η ◦ Qφ) ⊗ ξ, l = R(·, ξ)ξ , (1.6)

under assumption that leaves are para-Kaehler. We prove that if h vanishes everywhere then almost α-para-Kenmotsu
manifold is a locally warped product R ×f M , of real line and almost para-Kaehler manifold.

In Section 8 we study almost α-para-Kenmotsu manifolds with harmonic Reeb vector field. The main result here is that
characteristic vector field ξ is harmonic if and only if it is an eigenvector of the Ricci operator.

In Sections 9, 10 we study conformal and D-homothetic deformations of almost paracontact metric manifolds. We prove
that almost α-paracosymplectic manifold M1) is locally conformal to almost paracosymplectic manifold if dimM > 52) is
locally D1,α-homothetic to almost para-Kenmotsu manifold near the points where α ≠ 0. We obtain that almost α-para-
Kenmotsu (κ, µ, ν)-space has para-Kaehler leaves which being combined with (1.6) gives following identity

[Q , φ] = 2µhφ − 2(ν + 2(1 − n)α)h. (1.7)

In the last section, we classify locally 3-dimensional almost α-para-Kenmotsumanifolds.We obtain possible forms of the
Ricci operator and subsequently, on the base of the result of Section 8, we show that almost α-para-Kenmotsu 3-manifold
is (κ, µ, ν)-space on an every open and dense subset of manifold if and only if ξ is harmonic.

2. Preliminaries

LetM be a (2n+1)-dimensional differentiablemanifold andφ is a (1, 1) tensor field, ξ is a vector field and η is a one-form
onM . Then (φ, ξ, η) is called an almost paracontact structure onM if

(i) φ2
= Id − η ⊗ ξ, η(ξ) = 1,

(ii) the tensor field φ induces an almost paracomplex structure on the distribution D = ker η, that is the eigendistributions
D±, corresponding to the eigenvalues ±1, have equal dimensions, dimD+

= dimD−
= n.
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The manifoldM is said to be an almost paracontact manifold if it is endowed with an almost paracontact structure [2].
Let M be an almost paracontact manifold. M will be called an almost paracontact metric manifold if it is additionally

endowed with a pseudo-Riemannian metric g of a signature (n + 1, n), i.e.

g(φX, φY ) = −g(X, Y ) + η(X)η(Y ). (2.1)

For such manifold, we have

η(X) = g(X, ξ), φ(ξ) = 0, η ◦ φ = 0. (2.2)

Moreover, we can define a skew-symmetric tensor field (a 2-form) Φ by

Φ(X, Y ) = g(φX, Y ), (2.3)

usually called fundamental form. For an almost α-paracosymplectic manifold, there exists an orthogonal basis {X1, . . . ,
Xn, Y1, . . . Yn, ξ} such that g(Xi, Xj) = δij, g(Yi, Yj) = −δij and Yi = φXi, for any i, j ∈ {1, . . . , n}. Such basis is called a
φ-basis.

On an almost paracontact manifold, one defines the (1, 2)-tensor field N (1) by

N (1)(X, Y ) = [φ, φ] (X, Y ) − 2dη(X, Y )ξ ,

where [φ, φ] is the Nijenhuis torsion of φ

[φ, φ] (X, Y ) = φ2 [X, Y ] + [φX, φY ] − φ [φX, Y ] − φ [X, φY ] .

If N (1) vanishes identically, then the almost paracontact manifold (structure) is said to be normal [2]. The normality
condition says that the almost paracomplex structure J defined onM × R

J

X, λ

d
dt


=


φX + λξ, η(X)

d
dt


,

is integrable.

3. Almost α-paracosymplectic manifolds

An almost paracontact metric manifold M2n+1, with a structure (φ, ξ, η, g) is said to be an almost α-paracosymplectic
manifold, if

dη = 0, dΦ = 2αη ∧ Φ, (3.1)

where α may be a constant or function on M . Although α is arbitrary, we will prove that if dimension 2n + 1 > 5, then
dα = f η, for a (smooth) function f .

For a particular choices of the function α we have the following subclasses,

• almost α-para-Kenmotsu manifolds, α = const. ≠ 0,
• almost paracosymplectic manifolds, α = 0.

If additionally normality condition is fulfilled, then manifolds are called α-para-Kenmotsu or paracosymplectic, resp.

Definition 1. For an almost α-paracosymplectic manifold, define the (1, 1)-tensor field A by

AX = −∇Xξ . (3.2)

Lemma 1. Let ω be a 2-form on a manifold M̄dim (M̄) = n > 4 and ω has maximal rank at every point, equivalently ω∧[
n
2 ] is

non-zero at every point. If for a 1-form β on M̄β ∧ ω = 0 at a point p ∈ M̄, then β = 0 at p. Particularly β vanishes everywhere
on M̄, if β ∧ ω is everywhere zero.

Proof. Letβ∧ω = 0 at p andβp ≠ 0. Then there is a vectorv at p, such thatβp(v) = 1 and iv(β∧ω)p = ωp−βp∧γpγp = ivωp.

Hence ωp = βp ∧ γp and ω∧2
p = 0. In consequence as [

n
2 ] > 2ω

∧[
n
2 ]

p = 0 which contradicts our assumption that ω is of
maximal rank. �

Proposition 1. For an almost α-paracosymplectic manifold M2n+1, we have

(i) Lξη = 0, (ii) g(AX, Y ) = g(X, AY ), (iii) Aξ = 0,
(iv) LξΦ = 2αΦ, (v) (Lξg)(X, Y ) = −2g(AX, Y ),

(vi) η(AX) = 0, (vii) dα = f η if n > 2 (3.3)

where L indicates the operator of the Lie differentiation, XY are arbitrary vector fields on M2n+1 and f = iξdα.
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Proof. To prove (i) and (iv) we use the coboundary formula

Lξη = d ◦ iξ + iξ ◦ d,

then we obtain

Lξ = d(iξη) = 0, (3.4)

LξΦ = iξdΦ = iξ (2αη ∧ Φ) = 2α(iξη ∧ Φ − η ∧ iξΦ) = 2αΦ. (3.5)

To prove (ii) we note that η is closed, then

0 = 2dη(X, Y ) = (∇Xη)(Y ) − (∇Yη)(X) = −g(AX, Y ) + g(X, AY ). (3.6)

Now

(Lξg)(X, Y ) = ξg(X, Y ) − g([ξ, X] , Y ) − g(X, [ξ, Y ])

= −g(AX, Y ) − g(X, AY ) = −2g(AX, Y ), (3.7)

and (3.7) implies (v). For ξ is unit vector field, we have

0 = Xg(ξ , ξ) = 2g(∇Xξ, ξ) = −2η(AX) = −2g(Aξ, X), (3.8)

for arbitrary vector field X , which yields (iii) and (vi). Finally to proof (vii), we use Lemma 1.
We put β = 2αη. So dΦ = β ∧ Φ , applying exterior differential to this equation and taking interior product with iξ

in the result, we obtain 0 = γ ∧ Φ(iξΦ = 0) everywhere, γ = iξdβ . If dim(M2n+1) > 5 (n > 2) by the above lemma,
γ vanishes identically on M2n+1. Notice γ = iξdβ = 2iξ (dα ∧ η) as dη = 0 and 0 = (iξdα)η − dα, (iξη = 1). Hence
dα = f ηf = iξdα. �

Proposition 2. For an almost α-paracosymplectic manifold, we have

Aφ + φA = −2αφ, (3.9)
∇ξφ = 0. (3.10)

Proof. From (LξΦ)(X, Y ) = ξ(Φ(X, Y )) − Φ([ξ, X] , Y ) − Φ(X, [ξ, Y ]) and definition of Φ , we get

(LξΦ)(X, Y ) = g((∇ξφ)X − φAX − AφX, Y ). (3.11)

In virtue of (iv), Proposition 1, and (3.11), we obtain

2αφX = (∇ξφ)X − φAX − AφX . (3.12)

As ∇ξη and ∇ξ ξ vanish identically, ∇ξφ
2

= ∇ξ (Id − η ⊗ ξ) = 0. Hence we obtain

0 = (∇ξφ
2)X = φ(∇ξφ)X + (∇ξφ)φX . (3.13)

If X is a field of +1-eigenvectors of φ, then by (3.12) and (3.13), we have

2αX = (∇ξφ)X − φAX − AX,

2αX = 2αφX = −(∇ξφ)X − AX − φAX .

From the last identities, we get (∇ξφ)X = 0. Using the same arguments, one can prove (∇ξφ)X = 0, if φX = −X . By
∇ξ ξ = 0, we have (∇ξφ)ξ = 0. Therefore∇ξφ = 0 identically, as near each point there is a frame of vector fields, consisting
only from ξ and eigenvector fields of φ. �

Let define h =
1
2Lξφ. In the following proposition we establish some properties of the tensor field h.

Proposition 3. For an almost α-paracosymplectic manifold, we have the following relations

g(hX, Y ) = g(X, hY ), (3.14)
h ◦ φ + φ ◦ h = 0, (3.15)
hξ = 0, (3.16)

∇ξ = αφ2
+ φ ◦ h = −A. (3.17)

Proof. Similarly as in Proposition 2, we have

(Lξφ
2)X = φ(Lξφ)X + (Lξφ)φX = 2φhX + 2hφX . (3.18)
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and

Lξφ
2

= −(Lξη) ⊗ ξ = 0. (3.19)

From (3.18) and (3.19), we get (3.15). By using the formula

(Lξφ)X = [ξ, φX] − φ [ξ, X] = ∇ξφX − ∇φXξ − φ(∇ξX − ∇Xξ),

we obtain

h =
1
2
(Aφ − φA). (3.20)

Properties of φ, A and (3.20) follow, that h is symmetric tensor field, g(hX, Y ) = g(X, hY ). Moreover, hξ = 0 and η ◦h = 0.
Using (3.5), (3.7) and the following identity

(LξΦ)(X, Y ) = (Lξg)(φX, Y ) + g((Lξφ)X, Y ),

we obtain

αφ = −Aφ + h. (3.21)

From (3.15) and (3.21), we obtain

αφ2
+ φ ◦ h = −A =∇ξ . �

Corollary 1. All the above propositions imply the following formulas for the traces

tr(Aφ) = tr(φA) = 0, tr(hφ) = tr(φh) = 0,
tr(A) = −2αn, tr(h) = 0. (3.22)

4. Para-Kaehler manifolds

This is an auxiliary section. The general reference for the notions which appear here is [21]. We recall basic concepts of
a para-Hermitian geometry. An almost para-Hermitian manifold is a manifold M endowed with an almost para-complex
structure J and a semi-Riemannian metric g such that

J2 = I, g(JX, JY ) = −g(X, Y ), (4.1)

forX, Y tangent toM , where I is the identitymap. Thedimension ofM is even. The almost para-HermitianmanifoldM is para-
Kaehler if the almost para-complex structure J is a covariant constant ∇J = 0, with respect to the Levi-Civita connection.
An almost para-complex structure is integrable if and only if the Nijenhuis torsion of J vanishes identically

NJ(X, Y ) = J2 [X, Y ] + [JX, JY ] − J [JX, Y ] − J [X, JY ] = 0.

Analmost para-complex structure of a para-Kaehlermanifold is always integrable. In the termsof the local coordinatesmaps,
integrability is equivalent to the existence of a set of maps, covering the manifold, the para-complex structure has constant
coefficients in the local map coordinates. If p ∈ M is a point, then near p, there are coordinates (x1, . . . , xn, y1, . . . , yn), the
local components Jki = const. are constants.

5. Almost α-paracosymplectic manifolds with para-Kaehler leaves

The idea is to restrict further our consideration to the particular class of manifolds. However this class of manifolds
is wide enough to provide interesting results and examples. In fact each 3-dimensional manifold belongs to this class.
Let M2n+1

= (M, φ, ξ, η, g) be an almost α-paracosymplectic manifold. By the definition, the form η is closed, therefore
distribution D : η = 0 is completely integrable. Each leaf of the foliation, determined by D , carries an almost para-Kaehler
structure (J, <,>)

J X̄ = φX̄,

X̄, Ȳ


= g(X̄, Ȳ ),

X̄, Ȳ are vector fields tangent to the leaf. If this structure is para-Kaehler, leaf is called a para-Kaehler leaf.

Lemma 2. An almost α-paracosymplectic manifold M2n+1 has para-Kaehler leaves if and only if

(∇Xφ)Y = g(AX, φY )ξ + η(Y )φAX, A = −∇ξ .

Proof. Let Fa be a leaf passing through a point a ∈ M . The characteristic vector, restricted to Fa, is normal of Fa and the
restriction A |F = −∇ξ |F is theWeingarten operator (the shape tensor) of Fa. Let II denote the second fundamental form
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of Fa. The Gauss equation yields

(∇X̄φ)Ȳ = ∇X̄φȲ − φ∇X̄ Ȳ = ∇̄
X̄
J Ȳ + II(X̄, φȲ )ξ − φ(∇̄X̄ Ȳ + II(X̄, Ȳ )ξ) (5.1)

= (∇̄
X̄
J)Ȳ + II(X̄, φȲ )ξ = II(X̄, φȲ )ξ , (5.2)

where, we have used ∇̄J = 0. The above identity implies (∇Xφ)Y = g(AX, φY )ξ , for vector fields X, Y on M , such that
η(X) = η(Y ) = 0. For arbitrary vector fields X, Y , we have a decomposition X = (X − η(X)ξ) + η(X)ξ . To finish the proof,
we recall that ∇ξφ = 0 and (∇Xφ)ξ = φAX . �

Proposition 4. Let M2n+1
= (M, φ, ξ, η, g) be an almost α-paracosymplectic manifold. Then, for α = 0 (resp.α ≠ 0), foliation

F is totally geodesic (resp. totally umbilical) if and only if h = 0.

Proof. Using the Gauss equation and (3.17), we obtain

II(X̄, Ȳ ) = −g(Ȳ , αφ2X̄ + φhX̄) = −αg(X̄, Ȳ ) − g(X̄, φhȲ ), (5.3)

for all X̄, Ȳ ∈ Γ (D). This completes the proof. �

Proposition 5. An almost α-paracosymplectic manifold M has para-Kaehler leaves if and only if

(∇Xφ)Y = αg(φX, Y )ξ + g(hX, Y )ξ − αη(Y )φX − η(Y )hX, (5.4)

for α = 0 it is a formula known for almost paracosymplectic manifolds, [7].

Proof. If we use Lemma 2 and the identity (3.17), we have

(∇Xφ)Y = −g(αφ2X + φhX, φY )ξ − η(Y )φ(αφ2X + φhX)

= −αg(φ2X, φY )ξ − g(φhX, φY )ξ − αη(Y )φX − η(Y )hX .

By means of (2.1), we get the requested equation. �

As a direct consequence, we have the following result.

Theorem 1. Let M2n+1 be an almost α-para-Kenmotsu manifold with para-Kaehler leaves. Then M2n+1 is para-Kenmotsu
(α = 1) if and only A = −φ2.

Remark 1. For a similar notion in contact metric geometry see e.g. [22,17,18]. There are many other papers, where this
notion appears explicitly or implicitly. Compare the references in [9]. We also note that in almost contact metric geometry
there is more general idea of manifold carrying CR-structure. All almost contact metric manifolds with Kaehler leaves are
Levi-flat CR-manifolds.

6. Basic structure and curvature identities

Lemma 3. For an almost α-paracosymplectic manifold (M, φ, ξ, η, g) with its fundamental 2-form Φ , the following equations
hold

(∇XΦ)(Z, φY ) + (∇XΦ)(Y , φZ) = −η(Y )g(AX, Z) − η(Z)g(AX, Y ), (6.1)
(∇XΦ)(φY , φZ) − (∇XΦ)(Y , Z) = η(Y )g(AX, φZ) − η(Z)g(AX, φY ). (6.2)

Proof. Differentiating the identity φ2
= I − η ⊗ ξ covariantly, we obtain

(∇Xφ)φY + φ(∇Xφ)Y = g(Y , AX)ξ + η(Y )AX . (6.3)

If we take the inner product with Z , we obtain (6.1). Replacing Z by φZ in (6.1), using the anti-symmetry of Φ , we get
(6.2). �

Proposition 6. For any almost α-paracosymplectic manifold, we have

(∇φXφ)φY − (∇Xφ)Y − η(Y )AφX − 2α(g(X, φY )ξ + η(Y )φX) = 0. (6.4)

Proof. Let us define (0, 3)-tensor field B as follows

B(X, Y , Z) = g((∇φXφ)φY , Z) − g((∇Xφ)Y , Z) − η(Y )g(AφX, Z) − 2α(g(X, φY )η(Z) + η(Y )g(φX, Z)).
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Anti-symmetrizing B with respect to X, Y we have

B(X, Y , Z) − B(Y , X, Z) = (∇φXΦ)(φY , Z) − (∇φYΦ)(φX, Z) − (∇XΦ)(Y , Z) + (∇YΦ)(X, Z)

− η(Y )g(AφX, Z) + η(X)g(AφY , Z) − 2α((g(X, φY ) − g(Y , φX))η(Z)

+ η(Y )g(φX, Z) − η(X)g(φY , Z)). (6.5)

Recalling the well known formula

3dΦ(X, Y , Z) = (∇XΦ)(Y , Z) + (∇ZΦ)(X, Y ) + (∇YΦ)(Z, X)

= 2α(η(X)Φ(Y , Z) + η(Z)Φ(X, Y ) + η(Y )Φ(Z, X)).

and applying this in (6.5), we obtain

B(X, Y , Z) − B(Y , X, Z) = −(∇ZΦ)(φX, φY ) + (∇ZΦ)(X, Y ) − η(Y )g(AφX, Z) + η(X)g(AφY , Z).

By (6.2), the right hand side of this equality vanishes identically, so B is symmetric with respect to X, Y .
Symmetrizing B with respect to Y , Z , we find

B(X, Y , Z) + B(X, Z, Y ) = (∇φXΦ)(φY , Z) + (∇φXΦ)(φZ, Y ) − η(Y )g(AφX, Z) − η(Z)g(AφX, Y ).

Bymeans of (6.1), we obtainB(X, Y , Z)+B(X, Z, Y ) = 0, i.e.B is antisymmetric with respect to Y , Z . The tensorB having
such symmetries must vanish identically, which implies (6.4). �

Lemma 4. For an almost α-paracosymplectic manifold, we also have

(∇φXφ)Y − (∇Xφ)φY + η(Y )AX − 2α(g(X, Y )ξ − η(Y )X) = 0, (6.6)

(∇φXφ)Y + φ(∇Xφ)Y − g(AX, Y )ξ − 2α(g(X, Y )ξ − η(Y )X) = 0. (6.7)

Proof. Putting φY instead of Y in (6.4), we obtain

(∇φXφ)Y − η(Y )(∇φXφ)ξ − (∇Xφ)φY − 2α(g(X, Y ) − η(Y )η(X)ξ) = 0. (6.8)

Using (3.17) and (∇φXφ)ξ = −AX − 2αφ2X , in (6.8), we get (6.6). Eq. (6.7) comes from (6.3) and (6.6). �

With the help of (6.7), one can easily get the following proposition.

Proposition 7. For an almost α-paracosymplectic manifold, we have

φ(∇φXφ)Y + (∇Xφ)Y = −2αη(Y )φX + g(αφX + hX, Y )ξ . (6.9)

Theorem 2. Let (M2n+1, φ, ξ, η, g) be an almost α-paracosymplectic manifold. Then, for any X, Y ∈ χ(M2n+1),

R(X, Y )ξ = dα(X)(Y − η(Y )ξ) − dα(Y )(X − η(X)ξ)

+ αη(X)(αY + φhY ) − αη(Y )(αX + φhX) + (∇Xφh)Y − (∇Yφh)X . (6.10)

Proof. We notice that ∇X,Y ξ = −(∇XA)Y . Now, if we substitute A, according to (3.17) and apply the covariant derivative
to the all summands in the result, we obtain

∇X,Y ξ = dα(X)(Y − η(Y )ξ) + αη(X)(αY + φhY ) + (∇Xφh)Y . (6.11)

Eq. (6.10) follows from (6.11) and Ricci identity. �

The formula for the curvature R(X, Y )ξ , simplifies if 2n + 1 > 5, according to Proposition 1,(vii).

Corollary 2. For an almost α-paracosymplectic manifold M2n+1n > 2

R(X, Y )ξ = (f + α2)(η(X)Y − η(Y )X) + α(η(X)φhY − η(Y )φhX) + (∇Xφh)Y − (∇Yφh)X, (6.12)

where f = iξdα.

7. Almost α-para-Kenmotsu manifolds

In this section, we study curvature properties of an almost α-para-Kenmotsu manifold.

Theorem 3. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold. Then, for any X, Y ∈ χ(M2n+1),

R(X, Y )ξ = αη(X)(αY + φhY ) − αη(Y )(αX + φhX) + (∇Xφh)Y − (∇Yφh)X . (7.1)
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Proof. It is direct consequence of Theorem 2 for constant α. �

Theorem 4. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold. Then, for any X ∈ χ(M2n+1) we have

R(ξ , X)ξ = α2φ2X + 2αφhX − h2X + φ(∇ξh)X, (7.2)

(∇ξh)X = −α2φX − 2αhX + φh2X − φR(X, ξ)ξ , (7.3)

1
2
(R(ξ , X)ξ + φR(ξ , φX)ξ) = α2φ2X − h2X, (7.4)

S(X, ξ) = −2nα2η(X) + g(div(φh), X), (7.5)

S(ξ , ξ) = −2nα2
+ trh2. (7.6)

Proof. If we replace X by ξ and Y by X in (7.1) and use (3.17) we obtain (7.2). For the proof of (7.3), we apply the tensor field
φ both sides of (7.2) and recall ∇ξφ = 0. Hence we have

−φR(X, ξ)ξ = α2φX + 2αhX − φh2X + (∇ξh)X − g((∇ξh)X, ξ)ξ .

Replacing X by φX in (7.2) we get

R(ξ , φX)ξ = α2φ3X + 2αφhφX − h2φX + φ(∇ξh)φX .

If we apply φ to the last equation we have

φR(ξ , φX)ξ = α2φ2X + 2αhφX − h2X + (∇ξh)φX . (7.7)

One can easily show that φ(∇ξh)X = −(∇ξh)φX . Combining (7.2) with (7.7) we get (7.4).
Taking into account φ-basis and (7.1), Ricci curvature S(X, ξ) can be given by

S(X, ξ) =

n
i=1

[g(R(ei, X)ξ , ei) − g(R(φei, X)ξ , φei)]

= −2nα2η(X) −

n
i=1

(g((∇Xφh)ei, ei) − g((∇Xφh)φei, φei))

+

n
i=1

(g((∇eiφh)X, ei) − g((∇φeφh)X, φei)). (7.8)

After some calculations we have
n

i=1

(g((∇Xφh)ei, ei) − g((∇Xφh)φei, φei)) = 0,

n
i=1

(g((∇eiφh)X, ei) − g((∇φeiφh)X, φei)) = g(div(φh), X).

Using the last two equations in (7.8), we obtain

S(X, ξ) = −2nα2η(X) + g(div(φh), X).

By direct calculation, we find

S(ξ , ξ) = −2nα2
+ trh2. �

Proposition 8. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold. Then, for any X, Y , Z ∈ χ(M2n+1) we have

g(R(ξ , X)Y , Z) + g(R(ξ , X)φY , φZ) − g(R(ξ , φX)φY , Z) − g(R(ξ , φX)Y , φZ)

= 2(∇hXΦ)(Y , Z) + 2α2η(Y )g(X, Z) − 2α2η(Z)g(X, Y ) − 2αη(Z)g(φhX, Y ) + 2αη(Y )g(φhX, Z). (7.9)

Proof. The symmetries of the curvature tensor give g(R(ξ , X)Y , Z) = g(X, R(Y , Z)ξ) and then, using (7.1), the left hand
side can be written as

2α2η(Y )g(X, Z) − 2α2η(Z)g(X, Y ) + F (X, Y , Z) − F (X, Z, Y ), (7.10)
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where

F (X, Y , Z) = g(X, (∇Yφh)Z + φ(∇Yφh)φZ) + g(X, (∇φYφh)φZ) − g(φX, (∇φYφh)Z).

By direct computations

φ(∇Yφh)φZ + (∇Yφh)Z = (∇Yφ)hZ − h(∇Yφ)Z, (7.11)

and

g(X, (∇φYφh)φZ) − g(φX, (∇φYφh)Z) = −g(φX, φ((∇φYφh)φZ))

+ η(X)η((∇φYφh)φZ) − g(φX, (∇φYφh)Z). (7.12)

With the help of (7.11), (7.12), (6.9) and η((∇φYφh)φZ) = g(hZ, αφY −hY ), we compute a formula forF (X, Y , Z) and after
using it we obtain

F (X, Y , Z) − F (X, Z, Y ) = 2(∇hXΦ)(Y , Z) − 6dΦ(Y , Z, hX) + 2αη(Z)g(φhX, Y ) − 2αη(Y )g(φhX, Z)

= 2(∇hXΦ)(Y , Z) − 2αη(Z)g(φhX, Y ) + 2αη(Y )g(φhX, Z). (7.13)

where the last equality holds by dΦ = 2αη ∧ Φ . From (7.10) and (7.13), we get the required formula. �

Theorem 5. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold with para-Kaehler leaves. Then the following
identity holds

Qφ − φQ = lφ − φl − 4α(1 − n)h − η ⊗ φQ ξ + (η ◦ Qφ) ⊗ ξ, (7.14)

where l denotes the Jacobi operator, defined by l = R(·, ξ)ξ .

Proof. We recall the formula (7.1)

R(X, Y )ξ = αη(X)(αY + φhY ) − αη(Y )(αX + φhX) + (∇Xφh)Y − (∇Yφh)X .

On the other hand the following formula is valid

(∇Xφh)Y = (∇Xφ)hY + φ((∇Xh)Y ). (7.15)

Using (5.4) and (7.15), we obtain

R(X, Y )ξ = αη(X)(αY + φhY ) − αη(Y )(αX + φhX) + φ((∇Xh)Y − (∇Yh)X) + (∇Xφ)hY − (∇Yφ)hX . (7.16)

By assumption M2n+1 has para-Kaehler leaves thus by (5.4) (∇Xφ)hY = αg(φX, hY )ξ + g(hX, hY )ξ in consequence, as hφ
is symmetric, (∇Xφ)hY − (∇Yφ)hX vanishes identically. Since h is a symmetric operator, we easily get

g((∇Xh)Y − (∇Yh)X, ξ) = g((∇Xh)ξ , Y ) − g((∇Yh)ξ , X). (7.17)

Using the formulas (3.17), hξ = 0 and φh + hφ = 0 in (7.17), we find

g((∇Xh)Y − (∇Yh)X, ξ) = 2g(φh2X, Y ). (7.18)

By applying φ to (7.16) and using φ2
= I − η ⊗ ξ and (7.18) we obtain

(∇Xh)Y − (∇Yh)X = φR(X, Y )ξ + 2g(φh2X, Y )ξ − α2(η(X)φY − η(Y )φX) − α(η(X)hY − η(Y )hX). (7.19)

Nowwe suppose that P is a fixed point ofM and X, Y , Z are vector fields such that (∇X)P = (∇Y )P = (∇Z)P = 0. The Ricci
identity for φ

R(X, Y )φZ − φR(X, Y )Z = (∇X∇Yφ)Z − (∇Y∇Xφ)Z − (∇[X,Y ]φ)Z,

at the point P , reduces to the form

R(X, Y )φZ − φR(X, Y )Z = ∇X (∇Yφ)Z − ∇Y (∇Xφ)Z .

Due to our assumption thatM2n+1 has para-Kaehler leaves from (5.4), we obtain at P

R(X, Y )φZ − φR(X, Y )Z = ∇X (∇Yφ)Z − ∇Y (∇Xφ)Z
= α (g((∇Xφ)Y − (∇Yφ)X, Z)ξ − η(Z)((∇Xφ)Y − (∇Yφ)X))

+ g((∇Xh)Y − (∇Yh)X, Z)ξ − η(Z)((∇Xh)Y − (∇Yh)X)

+ g(αφY + hY , Z)(αφ2X + φhX) − g(αφX + hX, Z)(αφ2Y + φhY )

− g(Z, αφ2X + φhX)(αφY + hY ) + g(Z, αφ2Y + φhY )(αφX + hX). (7.20)
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Using (5.4) and (7.19) in (7.20), we find

R(X, Y )φZ − φR(X, Y )Z = g(φR(X, Y )ξ , Z)ξ − η(Z)φR(X, Y )ξ

+ g(αφY + hY , Z)(αφ2X + φhX) − g(αφX + hX, Z)(αφ2Y + φhY )

− g(Z, αφ2X + φhX)(αφY + hY ) + g(Z, αφ2Y + φhY )(αφX + hX). (7.21)

Using (2.1) and the curvature tensor properties, we get

g(φR(φX, φY )Z, φW ) = −g(R(Z,W )φX, φY ) + η(R(φX, φY )Z)η(W ). (7.22)

Then by (7.21) and (7.22), we obtain

g(φR(φX, φY )Z, φW ) = −g(φR(Z,W )X, φY ) + η(R(φX, φY )Z)η(W ) + η(X)g(φR(Z,W )ξ , φY )

− g(αφW + hW , X)(g(αφ2Z, φY ) + g(φhZ, φY ))

+ g(αφZ + hZ, X)(g(αφ2W , φY ) + g(φhW , φY ))

+ g(X, αφ2Z + φhZ)(g(αφW , φY ) + g(hW , φY ))

− g(X, αφ2W + φhW )(g(αφZ, φY ) + g(hZ, φY )). (7.23)

Replacing in (7.21) X, Y by φX, φY respectively, and taking the inner product with φW , we get

g(R(φX, φY )φZ, φW ) − g(φR(φX, φY )Z, φW )

= −η(Z)g(φR(φX, φY )ξ , φW ) + g(αφ2Y + hφY , Z)g(αφ3X + φhφX, φW )

− g(αφ2X + hφX, Z)g(αφ3Y + φhφY , φW ) − g(Z, αφ3X + φhφX)g(αφ2Y + hφY , φW )

+ g(Z, αφ3Y + φhφY )g(αφ2X + hφX, φW ). (7.24)

Comparing (7.23) to (7.24), we get by direct computation

g(R(φX, φY )φZ, φW ) = g(R(Z,W )X, Y ) − η(R(Z,W )X)η(Y )

− η(X)g(R(Z,W )ξ , Y ) + η(R(φX, φY )Z)η(W )

− η(Z)g(φR(φX, φY )ξ , φW ) − 2αg(X, Z)g(Y , φhW ) + 2αη(X)η(Z)g(φhW , Y )

+ 2αg(Y , Z)g(X, φhW ) − 2αη(Y )η(Z)g(φhW , X)

+ 2αg(X,W )g(Y , φhZ) − 2αη(X)η(W )g(φhZ, Y )

+ 2αη(Y )η(W )g(X, φhZ) − 2αg(Y ,W )g(φhZ, X). (7.25)

Let {ei, φei, ξ} , i ∈ {1, . . . , n} , be a local φ-basis. Setting Y = Z = ei in (7.25), we have
n

i=1

g(R(φX, φei)φei, φW ) =

n
i=1

(g(R(ei,W )X, ei) − η(X)g(R(ei,W )ξ , ei) + η(R(φX, φei)ei)η(W )

− 2αg(X, ei)g(ei, φhW ) + 2αg(ei, ei)g(φhW , X)

+ 2αg(X,W )g(ei, φhei) − 2αη(X)η(W )g(φhei, ei) − 2αg(ei,W )g(φhei, X)). (7.26)

On the other hand, putting Y = Z = φei in (7.25), we get
n

i=1

g(R(φX, ei)ei, φW ) =

n
i=1

(g(R(φei,W )X, φei) − η(X)g(R(φei,W )ξ , φei) + η(R(φX, ei)φei)η(W )

− 2αg(X, φei)g(φei, φhW ) + 2αg(φei, φei)g(φhW , X)

+ 2αg(X,W )g(φei, φhφei) − 2αη(X)η(W )g(φhφei, φei)
− 2αg(φei,W )g(φhφei, X)). (7.27)

Using the definition of the Ricci operator, (7.26) and (7.27), one can easily get

− φQφX + φlφX + QX − lX = η(X)Q ξ + 4α(1 − n)φhX

+

n
i=1

(g(R(φX, ei)φei, ξ) − g(R(φX, φei)ei, ξ))ξ . (7.28)

Finally, applying φ to (7.28) and using φ2
= I − η ⊗ ξ , we obtain the requested equation. �

Theorem 6. Let M2n+1 be an almost α-para-Kenmotsu manifold of constant sectional curvature c. Then c = −α2 and h2
= 0.
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Proof. By assumptions

R(ξ , X)ξ = c(η(X)ξ − X) = φR(ξ , φX)ξ , (7.29)

for any X ∈ Γ (M). Using the last relation in (7.4), we obtain

h2X = (α2
+ c)φ2X (7.30)

By (3.10), (7.30), we find ∇ξh2
= 0. In virtue of (7.3), (7.29) and (7.30), we have

0 = ∇ξh2
= h(∇ξh) + (∇ξh)h = −4αh2

= −4α(α2
+ c)φ2.

Hence c = −α2 and h2
= 0. �

The proof of the following theorem is exactly same with almost Kenmotsu manifolds [23], therefore we omit the proof.

Theorem 7. Let M2n+1 be an almost α-para-Kenmotsumanifoldwith h = 0. ThenM2n+1 is a locally warped product M1 ×f 2 M2,
whereM2 is an almost para-Kaehlermanifold,M1 is an open interval with coordinate t, and f 2 = we2αt for some positive constant.

Remark 2. Almost Kenmotsu manifolds in almost contact metric geometry appeared in [23–25]. These manifolds were
extensively studied e.g. [23,17,19,20]. Arbitrary almost Kenmotsu manifold can be locally deformed conformally to almost
cosymplectic manifold. Almost Kenmotsumanifolds were generalized to almost α-Kenmotsu, α = const., and subsequently
to almost α-cosymplectic manifolds.

8. Harmonic vector fields

Let (M, g) be a smooth, oriented, connected pseudo-Riemannian manifold and (TM, gS) its tangent bundle endowed
with the Sasaki metric gS (also referred to as Kaluza–Klein metric in Mathematical Physics). By definition, the energy of a
smooth vector field V onM is the energy of the corresponding V : (M, g) → (TM, g s). WhenM is compact, the energy of V
is determined by

E(V ) =
1
2


M
(trgV ∗g s)dv =

n
2
vol(M, g) +

1
2


M

∥∇V∥
2 dv.

The non-compact case, one can take into account over relatively compact domains. It can be shown that V : (M, g) →

(TM, g s) is harmonic map if and only if

tr [R(∇.V , V ).] = 0, ∇
∗
∇V = 0, (8.1)

where

∇
∗
∇V = −


i

εi(∇ei∇eiV − ∇∇ei ei
V ) (8.2)

is the rough Laplacian with respect to a pseudo-orthonormal local frame {e1, . . . , en} on (M, g) with g(ei, ei) = εi = ±1 for
all indices i = 1, . . . , n.

If (M, g) is a compact Riemannian manifold, only parallel vector fields define harmonic maps.
Next, for any real constant ρ ≠ 0, let χρ(M) =


W ∈ χ(M) : ∥W∥

2
= ρ


. We consider vector fields V ∈ χρ(M)

which are critical points for the energy functional E |χρ (M), restricted to vector fields of the same length. The Euler–Lagrange
equations of this variational condition yield that V is a harmonic vector field if and only if

∇
∗
∇V is collinear to V . (8.3)

This characterization is well known in the Riemannian case [10,1,12]. Using same arguments in pseudo-Riemannian case,
G. Calvaruso [26] proved that same result is still valid for vector fields of constant length, if it is not lightlike.

Let T1M denote the unit tangent sphere bundle over M , and again by gS the metric induced on T1M by the Sasaki metric
of TM . Then, it is shown that in [27], the map on V : (M, g) → (T1M, g s) is harmonic if V is a harmonic vector field and the
additional condition

tr[R(∇.V , V )·] = 0 (8.4)

is satisfied. G. Calvaruso [26] also investigated harmonicity properties for left-invariant vector fields on three-dimensional
Lorentzian Lie groups, obtaining several classification results and new examples of critical points of energy functionals.

In the non-compact case, conditions (8.1) and (8.3) are respectively taken as definitions of harmonic vector fields and of
vector fields defining harmonic maps.

Recently, D. Perrone proved that the characteristic vector field of an almost cosymplectic three-manifold is minimal if
and only if it is an eigenvector of the Ricci operator.
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Theorem 8. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold. Then

∆̄ξ = −∇
∗
∇ξ = (2nα2

− tr(h2))ξ − Q ξ|ker η.

Proof. Now, let (ei, φei, ξ), i = 1, . . . , n, be a local orthogonal φ-basis. Then we obtain

∆̄ξ = −

n
i=1

(∇ei∇eiξ − ∇∇ei ei
ξ − ∇φei∇φeiξ + ∇∇φeiφeiξ)

= −

n
i=1

((∇ei∇ξ)ei − (∇φei∇ξ)φei)

(3.17)
=

n
i=1

((∇eiA)ei − (∇φeiA)φei)

= −divφh + 2nα2ξ .

By (7.5) and (7.6), we get

∆̄ξ = (2nα2
− tr(h2))ξ − Q ξ|ker η.

This ends the proof. �

As an immediate consequence of Theorem 8 we obtain following theorem.

Theorem 9. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold. Characteristic vector field ξ is harmonic if and
only if it is an eigenvector of the Ricci operator.

9. Conformal and D-homothetic deformations

Let M2n+1 be an almost α-paracosymplectic manifold and (φ, ξ, η, g) be an almost α-paracosymplectic structure. Let
Rη(M2n+1) be the set of the locally defined smooth functions f onM2n+1 such that df ∧ η = 0, whenever df is defined.

Let M2n+1 be an almost paracontact metric manifold. Let f be a function on M2n+1f > 0 everywhere. Consider a
deformation of the structure

φ → φ′
= φ, ξ → ξ ′

=
1
f
ξ, η → η′

= f η, g → g ′
= fg, (9.1)

we call (φ′, ξ ′, η′, g ′) the conformal deformation of (φ, ξ, η, g). Respectively we say that almost paracontact metric
manifold (M2n+1, φ′, ξ ′, η′) is conformal to (M2n+1, φ, ξ, η, g). Almost paracontact metric manifolds (M2n+1, φ, ξ, η, g)
and (M2n+1, φ′, ξ ′, η′, g ′) are called locally conformal if there is an open covering (Ui)i∈IM2n+1

=


Ui, such that almost
paracontact metric manifolds (Ui, φ|Ui , ξ |Ui , η|Ui , g|Ui) and (Ui, φ

′
|Ui , ξ

′
|Ui , η

′
|Ui , g

′
|Ui) are conformal.

Theorem 10. Arbitrary almost α-paracosymplectic manifold (M2n+1, φ, ξ, η, g)n > 2 is locally conformal to an almost para-
cosymplectic manifold. In the other words, near each point p ∈ M2n+1, there is defined function u, such that structure
(φ′, ξ ′, η′, g ′)

φ′
= φ, ξ ′

= e2uξ, η′
= e−2uη, g ′

= e−2ug, (9.2)

is almost paracosymplectic. The function u is unique up to additive constant and αη = du.

Proof. From Proposition 1(vii), form β = αη is closed, dβ = 0. Hence there is an open covering (Uι) ofM2n+1, and functions
uι : Uι → R, such that duι = β|Uι . We define an almost paracontact metric structure on Uι as in (9.2), with f = uι. Then

dΦ ′
= 2e−2u(−du + αη) ∧ Φ = 0,

dη′−2udu ∧ η = −2e−2uαη ∧ η = 0. �

Consider a Dγ ,u-homothetic deformation of (φ, ξ, η, g) into an almost paracontact metric structure (φ̃, ξ̃ , η̃, g̃), defined
as

φ̃ = φ, ξ̃ =
1
u
ξ, η̃ = uη, g̃ = γ g + (u2

− γ )η ⊗ η, (9.3)

where γ is a positive constant and u ∈ Rη(M2n+1), u ≠ 0 at any point ofM2n+1. We have Φ̃ = γΦ . Because of du ∧ η = 0,

dη̃ = du ∧ η + u dη = 0 and dΦ̃ = 2
α

u


η̃ ∧ Φ̃. (9.4)
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Thus, Dγ ,u-homothety of almost α-paracosymplectic structure (φ, ξ, η, g) gives almost ( α
u )-paracosymplectic structure

(φ̃, ξ̃ , η̃, g̃) on the same manifold.
Following the definition of locally conformal almost paracontact metric manifolds we define the notion of locally

Dγ ,β-homothetic almost α-paracosymplectic manifolds.

Theorem 11. An almost α-paracosymplectic manifold (M2n+1, φ, ξ, η, g)n > 2 is locally D1,α-homothetic to an almost para-
Kenmotsu manifold on the set U : α ≠ 0.

Proof. We remark that according to Proposition 1(vii), α ∈ Rη(M). We set u = α in (9.3), then (9.4) follows that (φ̃, ξ̃ , η̃, g̃)
is almost para-Kenmotsu on a connected component of U . �

Proposition 9. Let (φ̃, ξ̃ , η̃, g̃) be an almost α-paracosymplectic structure obtained from (φ, ξ, η, g) by a Dγ ,β-homothetic
deformation. Then we have the following relation between the Levi-Civita connections ∇̃ and ∇.

∇̃XY = ∇XY −


β2

− γ

β2


g(AX, Y )ξ +

dβ(ξ)

β
η(Y )η(X)ξ . (9.5)

Proof. By the Koszul formula we have

2g̃(∇̃XY , Z) = Xg̃(Y , Z) + Y g̃(X, Z) − Zg̃(X, Y ) + g̃([X, Y ] , Z) + g̃([Z, X] , Y ) + g̃([Z, Y ] , X),

for any vector fields X, Y , Z . Using g̃ = γ g + (β2
− γ )η ⊗ η in the last equation, we obtain

2g̃(∇̃XY , Z) = 2γ g(∇XY , Z) + 2βdβ(ξ)η(X)η(Y )η(Z) + 2(β2
− γ ) [η(∇XY )η(Z) + g(Y , ∇Xξ)η(Z)] . (9.6)

Moreover, g̃(∇̃XY , Z) is equal to

γ g(∇̃XY , Z) + (β2
− γ )η(∇̃XY )η(Z) (9.7)

and

η(∇̃XY ) =
1
β2

g̃(∇̃XY , ξ). (9.8)

Substituting g̃(∇̃XY , Z) and η(∇̃XY ) in (9.6) by (9.7), (9.8), we obtain

γ g(∇̃XY , Z) +
(β2

− γ )

β2
g̃(∇̃XY , ξ)η(Z) = γ g(∇XY , Z) + βdβ(ξ)η(X)η(Y )η(Z)

+ (β2
− γ ) [η(∇XY )η(Z) + g(Y , ∇Xξ)η(Z)] . (9.9)

For Z = ξ , (9.6) gives

g̃(∇̃XY , ξ) = γ g(∇XY , ξ) + βdβ(ξ)η(X)η(Y ) + (β2
− γ ) [η(∇XY ) + g(Y , ∇Xξ)] . (9.10)

Using (9.9), (9.10), by direct computations we obtain (9.5). �

Proposition 10. Let (M2n+1, φ, ξ, η, g) and (M̃2n+1, φ̃, ξ̃ , η̃, g̃) are locally Dγ ,β-homothetic almost α-paracosymplectic
manifolds. Then following identities hold:

ÃX =
1
β

AX, (9.11)

h̃X =
1
β
hX, (9.12)

R̃(X, Y )ξ̃ =
1
β
R(X, Y )ξ +

1
β2

dβ(ξ) [η(X)AY − η(Y )AX] , (9.13)

for any vector fields X, Y , Z .

Proof. From (3.17), (9.3) and (9.5), we obtain (9.11). Formula (9.12) follows from (9.3), if we use the properties of h.
From (9.3) and (9.5), we have

∇̃X ∇̃Y ξ̃ = ∇X ∇̃Y ξ̃ −
(β2

− γ )

β2
g(AX, ∇̃Y ξ̃ )ξ +

1
β
dβ(ξ)η(X)η(∇̃Y ξ̃ )ξ , (9.14)

∇̃Y ξ̃ =
1
β

∇Y ξ . (9.15)
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By (9.14), (9.15) and properties of A, we get

∇̃X ∇̃Y ξ̃ =
X(β)

β2
AY +

1
β

∇X∇Y ξ +
(β2

− γ )

β3
g(AX, AY )ξ . (9.16)

We compute (9.13) from the curvature formula

R(X, Y )Z = [∇X , ∇Y ]Z − ∇[X,Y ]Z, (9.17)

using (9.15) and (9.16). �

10. Almost α-para-Kenmotsu (κ, µ, ν)-spaces

In this section we study almost α-para-Kenmotsu manifolds under assumption that the curvature satisfies (κ, µ, ν)-
nullity condition

R(X, Y )ξ = η(Y )BX − η(X)BY , (10.1)

where B is Jacobi operator of ξ, BX = R(X, ξ)ξ , and

BX = κφ2X + µhX + νφhX, (10.2)

for κ, µ, ν ∈ Rη(M2n+1). Particularly Bξ = 0.
If an almost α-paracosymplectic manifold satisfies (10.1), then the manifold is said to be almost α-paracosymplectic

(κ, µ, ν)-space.
Using (9.13) and after some calculations one can prove the following proposition.

Proposition 11. Let M be an almost α-paracosymplectic manifold. If M satisfies nullity conditions, then manifold M̃ obtained
by Dγ ,β-homothety of M also satisfies nullity conditions. In other words if M is a (κ, µ, ν)-space, then M̃ is (κ̃, µ̃, ν̃)-space and

κ̃ =
κ

β2
+

α

β3
dβ(ξ), µ̃ =

µ

β
, ν̃ =

ν

β
+

dβ(ξ)

β2
.

For an almost α-paracosymplectic (κ, µ, ν)-space we may consider scalar invariant with respect to the Dγ ,β-
homotheties, that is function I(α, κ, µ, ν) with the property that I(α, κ, µ, ν) = I(α′, κ ′, µ′, ν ′) for arbitrary Dγ ,β-
homothety. In the case µ ≠ 0 by direct computations we find that

I0(α, κ, µ, ν) =
κ − αν

µ2
, (10.3)

is an invariant. An almost α-paracosymplectic space will be called of constant I0-type if µ ≠ 0 and I0 = const . We may ask
the question about number of functionally independent invariants. The answer at this moment is unknown. Also we do not
know the geometric interpretation of I0.

Proposition 12. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu (κ, µ, ν)-space. Then the following identities hold:

l = κφ2
+ µh + νφh, (10.4)

lφ − φl = 2µhφ − 2νh, (10.5)

h2
= (κ + α2)φ2, (10.6)

∇ξh = −(2α + ν)h + µhφ, (10.7)

∇ξh2
= −2(2α + ν)(κ + α2)φ2, (10.8)

ξ(κ) = −2(2α + ν)(κ + α2), (10.9)
R(ξ , X)Y = κ(g(X, Y )ξ − η(Y )X) + µ(g(X, hY )ξ − η(Y )hX) + ν(g(X, φhY )ξ − η(Y )φhX), (10.10)
Q ξ = 2nκξ, (10.11)
(∇Xφ)Y = g(Y , hX + αφX)ξ − η(Y )(hX + αφX), (10.12)

(∇Xφh)Y − (∇Yφh)X = (κ + α2)(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )
+ (ν + α)(η(Y )φhX − η(X)φhY ), (10.13)

(∇Xh)Y − (∇Yh)X = (κ + α2)(η(Y )φX − η(X)φY + 2g(Y , φX)ξ) + µ(η(Y )φhX − η(X)φhY )
+ (ν + α)(η(Y )hX − η(X)hY ), (10.14)

for all vector fields X, Y on M2n+1.
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Proof. From (10.1) we get

lX = R(X, ξ)ξ = κ(X − η(X)ξ) + µhX + νφhX, (10.15)

which gives (10.4). By replacing X by φX in (10.15) and next applying φ to the result, we obtain

lφX = κφX + µhφX − νhX,

φlX = κφX − µhφX + νhX,

and (10.5) comes from the last two equations. From (10.15), we easily get

φlφX = κφ2X − µhX − νφhX . (10.16)

Then by (10.15) and (10.16), we obtain

−lX − φlφX = 2(α2φ2X − h2X).

Comparing this equation with (7.4), we have (10.6). (10.7) can be easily get from (7.3) and (10.6). From (10.6), (10.7) and
∇ξh2

= (∇ξh)h + h(∇ξh), we obtain (10.8). One can easily get (10.9) by differentiating (10.6) along ξ .
In virtue of (10.1), we have

g(R(Y , Z)ξ , X) = κ(η(Z)g(X, Y ) − η(Y )g(X, Z))

+ µ(η(Z)g(X, hY ) − η(Y )g(X, hZ)) + ν(η(Z)g(X, φhY ) − η(Y )g(X, φhZ)). (10.17)

The last equation completes the proofs of (10.10) and (10.11).
Taking into account (10.17), the left hand side of (7.9) can be rewritten as

2κ(η(Z)g(X, Y ) − η(Y )g(X, Z)).

So, (7.9) simplifies to

(∇hXΦ)(Y , Z) = (κ + α2)(η(Z)g(X, Y ) − η(Y )g(X, Z)) + α(η(Z)g(φhX, Y ) − η(Y )g(φhX, Z)).

Replacing X by hX in the last equation and next using (10.6) in the result, we get

g((∇Xφ)Y , Z) = (η(Z)g(hX, Y ) − η(Y )g(hX, Z)) + α(η(Z)g(φX, Y ) − η(Y )g(φX, Z)). (10.18)

Then (10.12) follows from (10.18). On the other hand (10.12) can be written as

(∇Xφ)Y = −g(φAX, Y )ξ + η(Y )φAX .

From (7.1), (10.1) we obtain (10.13). One can easily show that

(∇Xφh)Y − (∇Yφh)X = (∇Xφ)hY − (∇Yφ)hX + φ((∇Xh)Y − (∇Yh)X). (10.19)

By (10.12)

(∇Xφ)hY = g(hY , hX + αφX)ξ . (10.20)

by applying φ to the obtained result, we have (10.14). �

Theorem 12. If (M2n+1, φ, ξ, η, g) is an almost α-para-Kenmotsu (κ, µ, ν)-space and the set of points where α ≠ 0 is dense
in M2n+1, then M2n+1 has para-Kaehler leaves.

Proof. We only need to prove this if n > 2, for arbitrary 3-dimensional α-para-Kenmotsu manifold has para-Kaehler
leaves. According to Theorem 11, α-paracosymplectic manifold (U0, φ|U0 , ξ |U0 , η|U0 , g|U0) is D1,α-homothetic to almost
para-Kenmotsu manifold (U0, φ

′, ξ ′, η′, g ′), (cf. (9.3)), on a connected component U0 ⊂ U . In virtue of Proposition 5,
Eq. (10.12) tells us that U0, viewed as almost para-Kenmotsu manifold, has para-Kaehler leaves. Moreover, we notice that
arbitrary Dγ ,β-homothety preserves this property, thus we may conclude, that the original structure (φ, ξ, η, g), restricted
to U0, also satisfies the para-Kaehler structure. Therefore (∇Xφ)Y satisfies (10.12) on U . As U is dense, (10.12) has to be
satisfied everywhere onM2n+1. Now, from Proposition 5, follows thatM2n+1 has para-Kaehler leaves. �

In our terminology, manifolds of constant sectional curvature c , are almost paracosymplectic (c, 0, 0)-spaces.

Corollary 3. An almost α-para-Kenmotsu manifold of constant sectional curvature has para-Kaehler leaves.

Corollary 4. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu (κ, µ, ν)-space. Then

Qφ − φQ = 2µhφ − 2(ν + 2α(1 − n))h. (10.21)
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Proof. Using (10.1) and φh = −hφ, we obtain lφ − φl = 2µhφ − 2νh. On the other hand, from (10.11) and Theorem 9 one
can easily prove that both η ⊗ φQ and (η ◦ Qφ) ⊗ ξ vanish. So (10.21) follows from (7.14). �

Remark 3. Manifolds which are conformal or locally conformal to cosymplectic manifolds were studied by many authors,
e.g. [28–31,25,32].

Remark 4. Dγ ,β-homotheties as they appear in almost contact metric geometry are particular class of deformations con-
sidered by S. Tanno [33]. The general deformation of a metric (Riemannian) has a form g ′

= αg + ω ⊗ θ + θ ⊗ ω + βω ⊗ ω
where ω, β are one-forms and α, β are functions, α > 0α + β > 0. The work of Tanno seems to be nowadays completely
forgotten within the framework of almost contact metric geometry.

11. Classification of the 3-dimensional almost α-para-Kenmotsu (κ, µ, ν)-spaces

In this section, different possibilities for the tensor field h are investigated. Thus we can comprehend the differences
between the almost α-para-Kenmotsu and almost α-Kenmotsu cases by looking at the possible Jordan forms of the tensor
field h.

It is well known that a self-adjoint linear operator Ψ of a Euclidean space is always diagonalizable, but this is not the
case for a self-adjoint linear operator Ψ for a Lorentzian inner product. It is known [34, pp. 50–55] that self-adjoint linear
operator of a vector space with a Lorentzian inner product can be put into four possible canonical forms. In particular, the
matrix representation g of the induced metric on M3

1 is of Lorentz type, so the self-adjoint linear Ψ of M3
1 can be put into

one of the following four forms with respect to frames {e1, e2, e3} at TpM3
1 where TpM3

1 is a tangent space toM at p [35,36].

(h1-type) Ψ =


λ1 0 0
0 λ2 0
0 0 λ3


, g =


−1 0 0
0 1 0
0 0 1


,

(h2-type) Ψ =


λ 0 0
1 λ 0
0 0 λ3


, g =

0 1 0
1 0 0
0 0 1


,

(h3-type) Ψ =


γ −λ 0
λ γ 0
0 0 λ3


, g =


−1 0 0
0 1 0
0 0 1


, λ ≠ 0,

(h4-type) Ψ =


λ 0 0
0 λ 1
1 0 λ


, g =

0 1 0
1 0 0
0 0 1


.

The matrices g for types (h1) and (h3) are with respect to an orthonormal basis of TpM3
1 , whereas for types (h2) and

(h4) are with respect to a pseudo-orthonormal basis. This is a basis {e1, e2, e3} of TpM3
1 satisfying g(e1, e1) = g(e2, e2) =

g(e1, e3) = g(e2, e3) = 0 and g(e1, e2) = g(e3, e3) = 1.
Let (M, φ, ξ, η, g) be a 3-dimensional almost α-paracosymplectic manifold. Then operator h has following types.

(h1-type)
U1 = {p ∈ M | h(p) ≠ 0} ⊂ M
U2 = {p ∈ M | h(p) = 0, in a neighborhood of p} ⊂ M

That h is a smooth function onM impliesU1∪U2 is an open and dense subset ofM , so any property satisfied in U1∪U2 is also
satisfied inM . For any point p ∈ U1 ∪ U2 there exists a local orthonormal φ-basis {e, φe, ξ} of smooth eigenvectors of h in a
neighborhood of p, where −g(e, e) = g(φe, φe) = g(ξ , ξ) = 1. On U1 we put he = λe, where λ is a non-vanishing smooth
function. Since trh = 0, we have hφe = −λφe. The eigenvalue function λ is continuous on M and smooth on U1 ∪ U2. So,
h has following form

λ 0 0
0 −λ 0
0 0 0


(11.1)

respect to local orthonormal φ-basis {e, φe, ξ}.
(h2-type) Using samemethods in [12], one can construct a local pseudo-orthonormal basis {e1, e2, e3} in a neighborhood

of p where g(e1, e1) = g(e2, e2) = g(e1, e3) = g(e2, e3) = 0 and g(e1, e2) = g(e3, e3) = 1. Let U be the open subset
of M where h ≠ 0. For every p ∈ U there exists an open neighborhood of p such that he1 = e2, he2 = 0, he3 = 0 and
φe1 = ±e1φe2 = ∓e2, φe3 = 0 and also ξ = e3. Thus the tensor h has the form0 0 0

1 0 0
0 0 0


(11.2)

relative a pseudo-orthonormal basis {e1, e2, e3}.
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(h3-type) We can find a local orthonormal φ-basis {e, φe, ξ} in a neighborhood of p where −g(e, e) = g(φe, φe) =

g(ξ , ξ) = 1. Now, let U1 be the open subset of M where h ≠ 0 and let U2 be the open subset of points p ∈ M such that
h = 0 in a neighborhood of p. U1 ∪ U2 is an open subset of M . For every p ∈ U1 there exists an open neighborhood of p
such that he = λφe, hφe = −λe and hξ = 0 where λ is a non-vanishing smooth function. Since trh = 0, the matrix form
of h is given by0 −λ 0

λ 0 0
0 0 0


(11.3)

with respect to local orthonormal basis {e, φe, ξ}.
(h4-type) A local pseudo-orthonormal basis {e1, e2, e3} is constructed in a neighborhood of pwhere g(e1, e1) = g(e2, e2)

= g(e1, e3) = g(e2, e3) = 0 and g(e1, e2) = g(e3, e3) = 1. Since the tensor h is (h4-type) (with respect to a pseudo-
orthonormal basis {e1, e2, e3}) then he1 = λe1+e3, he2 = λe2 and he3 = e2+λe3. Since 0 = trh = g(he1, e2)+g(he2, e1)+
g(he3, e3) = 3λ, then λ = 0. We write ξ = g(ξ , e2)e1 + g(ξ , e1)e2 + g(ξ , e3)e3 respect to the pseudo-orthonormal basis
{e1, e2, e3}. Since hξ = 0, we have 0 = g(ξ , e2)e3 + g(ξ , e3)e2. Hence we get ξ = g(ξ , e1)e2 which leads to a contradiction
with g(ξ , ξ) = 1. Thus, this case does not occur.

Since the proof of the following lemma is similar to [12], we omit the proof.

Lemma 5. Let (M, φ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold. Then a canonical form of h stays constant
in an open neighborhood of any point for h.

In a 3-dimensional pseudo-Riemannian manifold case, the curvature tensor can be written by

R(X, Y )Z = g(Y , Z)QX − g(X, Z)QY + g(QY , Z)X − g(QX, Z)Y −
r
2
(g(Y , Z)X − g(X, Z)Y ), (11.4)

for any X, Y , Z ∈ Γ (TM).
Using same procedure with [37], we have

Lemma 6. Let (M, φ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h1 type. Then for the covariant
derivative on U1 the following equations are valid

(i) ∇ee =
1
2λ

[σ(e) − (φe)(λ)]φe + αξ, (11.5)

(ii) ∇eφe =
1
2λ

[σ(e) − (φe)(λ)] e − λξ

(iii) ∇eξ = αe + λφe,

(iv) ∇φee = −
1
2λ

[σ(φe) + e(λ)]φe − λξ,

(v) ∇φeφe = −
1
2λ

[σ(φe) + e(λ)]φe − αξ,

(vi) ∇φeξ = αφe − λe,
(vii) ∇ξ e = a1φe, (viii) ∇ξφe = a1e,
(ix) [e, ξ ] = αe + (λ − a1)φe,
(x) [φe, ξ ] = −(λ + a1)e + αφe,

(xi) [e, φe] =
1
2λ

[σ(e) − (φe)(λ)] e +
1
2λ

[σ(φe) + e(λ)]φe,

(xii) ∇ξh = ξ(λ)s − 2a1hφ, (xiii) h2
− α2φ2

=
1
2
S(ξ , ξ)φ2

where

a1 = g(∇ξ e, φe), σ = S(ξ , ·)ker η.

Lemma 7. Let (M, φ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h1 type. Then the Ricci operator
Q is given by

Q =

 r
2

+ α2
− λ2


I +


−

r
2

+ 3(λ2
− α2)


η ⊗ ξ − 2αφh − φ(∇ξh)

+ σ(φ2) ⊗ ξ − σ(e)η ⊗ e + σ(φe)η ⊗ φe. (11.6)
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Lemma 8. Let (M, φ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h2 type. Then for the covariant
derivative on U the following equations are valid

(i) ∇e1e1 = −b1e1 + ξ, (ii) ∇e1e2 = b1e2 − αξ, (iii) ∇e1ξ = αe1 − e2,
(iv) ∇e2e1 = −b2e1 − αξ, (v) ∇e2e2 = b2e2, (vi) ∇e2ξ = αe2,
(vii) ∇ξ e1 = a2e1, (viii) ∇ξ e2 = −a2e2,

(ix) [e1, ξ ] = (α − a2)e1 − e2, (x) [e2, ξ ] = (α + a2)e2, (11.7)
(xi) [e1, e2] = b2e1 + b1e2,
(xii) ∇ξh = −2a2hφ, (xiii) h2

= 0.

where a2 = g(∇ξ e1, e2)b1 = g(∇e1e2, e1) and b2 = g(∇e2e2, e1) = −
1
2σ(e1).

Proof. By ∇ξ = −α2φ + φh, we obtain (iii), (vi).
Using pseudo-orthonormal basis {e1, e2, e3 = ξ} with φe1 = e1, φe2 = −e2, φe3 = 0 we have

∇e1e2 = g(∇e1e2, e2)e1 + g(∇e1e2, e1)e2 + g(∇e1e2, ξ)ξ

= g(∇e1e2, e1)e2 − g(e2, ∇e1ξ)ξ

(iii)
= g(∇e1e2, e1)e2 − αξ

= b1e2 − αξ.

The proofs of other covariant derivative equalities are similar to (ii).
Putting X = e1, Y = e2 and Z = ξ in Eq. (11.4), we have

R(e1, e2)ξ = −σ(e1)e2 + σ(e2)e1. (11.8)

On the other hand, by using (7.1), we get

R(e1, e2)ξ = (∇e1φh)e2 − (∇e2φh)e1
= 2b2e2. (11.9)

Comparing (11.9) with (11.8), we obtain

σ(e1) = −2b2, σ (e2) = 0 = S(ξ , e2). (11.10)

Hence, the function b2 is obtained from the last equation. �

Lemma 9. Let (M, φ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h2 type. Then the Ricci operator
Q is given by

Q =

 r
2

+ α2

I −

 r
2

+ 3α2


η ⊗ ξ − 2αφh − φ(∇ξh) + σ(φ2) ⊗ ξ + σ(e1)η ⊗ e2. (11.11)

Proof. From (11.4), we obtain

R(X, ξ)ξ = S(ξ , ξ)X − S(X, ξ)ξ + QX − η(X)Q ξ −
r
2
(X − η(X)ξ),

for any vector field X . By (7.2) and (7.6) the last equation reduces to

QX =
1
2
S(ξ , ξ)φ2X − 2αφhX − φ(∇ξh)X − S(ξ , ξ)X + S(X, ξ)ξ + η(X)Q ξ +

r
2
(X − η(X)ξ). (11.12)

By setting S(X, ξ) = S(φ2X, ξ) + η(X)S(ξ , ξ) in (11.12), we have

QX =
S(ξ , ξ)

2
φ2X − 2αφhX − φ(∇ξh)X − S(ξ , ξ)X

+ S(φ2X, ξ)ξ + η(X)S(ξ , ξ)ξ + η(X)Q ξ +
r
2
φ2X . (11.13)

On the other hand, the Ricci tensor S can be written with respect to the orthonormal basis {e1, e2, ξ} as follows

Q ξ = σ(e1)e2 + S(ξ , ξ)ξ . (11.14)

Using (11.14) in (11.13), we get

QX =
1
2


r + 2α2 X −

1
2
(6α2

+ r)η(X)ξ − 2αφh − φ(∇ξh)X + σ(φ2X)ξ + η(X)σ (e1)e2 (11.15)

for arbitrary vector field X . This ends the proof. �
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Lemma 10. Let (M, φ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h3 type. Then for the covariant
derivative on U1 the following equations are valid

(i) ∇ee = b3φe + (α + λ)ξ, (ii) ∇eφe = b3e, (iii) ∇eξ = (α + λ)e,
(iv) ∇φee = b4φe, (v) ∇φeφe = b4e + (λ − α)ξ, (vi) ∇φeξ = −(λ − α)φe,
(vii) ∇ξ e = a3φe, (viii) ∇ξφe = a3e,

(ix) [e, ξ ] = (α + λ)e − a3φe, (x) [φe, ξ ] = −a3e − (λ − α)φe, (11.16)
(xi) [e, φe] = b3e − b4φe,

(xii) ∇ξh = ξ(λ)s − 2a3hφ, (xiii) h2
− α2φ2

=
1
2
S(ξ , ξ)φ2,

where a3 = g(∇ξ e, φe), b3 = −
1
2λ [σ(φe) + (φe)(λ)] and b4 =

1
2λ [σ(e) − e(λ)] .

Proof. By ∇ξ = αφ2
+ φh, we have (iii), (vi).

Using φ-basis, we have

∇ξφe = −g(∇ξφe, e)e + g(∇ξφe, φe)φe + g(∇ξφe, ξ)ξ

= g(φe, ∇ξ e)e = a3e,

So we prove (viii). The proofs of other covariant derivative equalities are similar to (viii).
Setting X = e, Y = φe, Z = ξ in Eq. (11.4), we have

R(e, φe)ξ = −g(Qe, ξ)φe + g(Qφe, ξ)e.

Since σ(X) = g(Q ξ, X), we have

R(e, φe)ξ = −σ(e)φe + σ(φe)e. (11.17)

On the other hand, by using (7.1), we have

R(e, φe)ξ = (∇eφh)φe − (∇φeφh)e

= (−2b3λ − (φe)(λ))e + (−2b4λ − e(λ))φe. (11.18)

Comparing (11.18) with (11.17), we get

σ(e) = e(λ) + 2b4λ, σ (φe) = −(φe)(λ) − 2b3λ.

Hence, the functions b3 and b4 are obtained from the last equation. �

Lemma 11. Let (M, φ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h3 type. Then the Ricci operator
Q is given by

Q = a I + bη ⊗ ξ − 2αφh − φ(∇ξh) + σ(φ2) ⊗ ξ − σ(e)η ⊗ e + σ(φe)η ⊗ φe, (11.19)

where a and b are smooth functions defined by a = α2
+ λ2

+
r
2 and b = −3(λ2

+ α2) −
r
2 , respectively.

Proof. Using (11.4), we get

R(X, ξ)ξ = S(ξ , ξ)X − S(X, ξ)ξ + QX − η(X)Q ξ −
r
2
(X − η(X)ξ),

for any vector field X . By (7.2), the last equation reduces to

QX = −α2φ2X + h2X − 2αφhX − φ(∇ξh)X − S(ξ , ξ)X + S(X, ξ)ξ + η(X)Q ξ +
r
2
(X − η(X)ξ). (11.20)

By writing S(X, ξ) = S(φ2X, ξ) + η(X)S(ξ , ξ) in (11.20), we obtain

QX =
S(ξ , ξ)

2
φ2X − 2αφhX − φ(∇ξh)X − S(ξ , ξ)X + S(φ2X, ξ)ξ

+ η(X)S(ξ , ξ)ξ + η(X)Q ξ +
r
2
φ2X . (11.21)
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On the other hand S can be written with respect to the orthonormal basis {e, φe, ξ} as

Q ξ = −σ(e)e + σ(φe)φe + S(ξ , ξ)ξ . (11.22)

Using (11.22) in (11.21), we have

QX =


α2

+ λ2
+

r
2


X +


−3(λ2

+ α) −
r
2


η(X)ξ − 2αφhX

− φ(∇ξh)X + σ(φ2X)ξ − η(X)σ (e)e + η(X)σ (φe)φe, (11.23)

for arbitrary vector field X . This completes the proof. �

Theorem 13. Let (M, φ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold. If the characteristic vector field ξ is a
harmonicmap then almost α-paracosymplectic (κ, µ, ν)-manifold always exist on every open and dense subset of M. Conversely,
if M is an almost α-paracosymplectic (κ, µ, ν)-manifold with constant α then the characteristic vector field ξ is a harmonicmap.

Proof. We will prove theorem for three cases respect to chosen (pseudo) orthonormal basis.

Case 1:We assume that h is h1 type.
Since ξ is a harmonic vector field, ξ is an eigenvector of Q . Hence we deduce that σ = 0. Putting s =

1
λ
h in (11.5)(xii),

we find

Q =

 r
2

+ α2
− λ2


I +


−

r
2

+ 3(λ2
− α2)


η ⊗ ξ − 2a1h −


2α +

ξ(λ)

λ


φh. (11.24)

Setting Z = ξ in (11.4) and using (11.24), we obtain

R(X, Y )ξ = (−α2
+ λ2)(η(Y )X − η(X)Y ) − 2a1(η(Y )hX − η(X)hY ) −


2α +

ξ(λ)

λ


(η(Y )φhX − η(X)φhY ),

where the functions κ, µ and ν defined by κ =
S(ξ ,ξ)

2 = (λ2
− α2), µ = −2a1, ν = −(2α +

ξ(λ)

λ
), respectively. Moreover,

using (11.24), we have Qφ − φQ = 2µhφ − 2νh.

Case 2:Secondly, let h be h2 type.
Putting σ = 0 in (11.11) and using (11.7) (xii), we get

Q =

 r
2

+ α2

I −

 r
2

+ 3α2


η ⊗ ξ − 2a2h − 2αφhX . (11.25)

When ξ = Z in (11.4) we obtain

R(X, Y )ξ = −S(X, ξ) + S(Y , ξ) − η(X)QY + η(Y )QX +
r
2
(η(X)Y − η(Y )X), (11.26)

for any vector fields X, Y . By applying (11.25) in (11.26), we have

R(X, Y )ξ = −α2(η(Y )X − η(X)Y ) − 2a2(η(Y )hX − η(X)hY ) − 2α(η(Y )φhX − η(X)φhY )

where the functions κ, µ and ν defined by κ =
S(ξ ,ξ)

2 = −α2, µ = −2a2, ν = −2α, respectively. Furthermore, by (11.25),
we have Qφ − φQ = 2µhφ − 2νh.

Case 3: Finally, we suppose that h is h3 type.
Since ξ is a harmonic map, we have σ = 0. Putting s =

1
λ
h in (11.19) we get

Q = a I + bη ⊗ ξ − 2αφh − φ(∇ξh), (11.27)

Setting ξ = Z in (11.4) we again obtain

R(X, Y )ξ = −S(X, ξ) + S(Y , ξ) − η(X)QY + η(Y )QX +
r
2
(η(X)Y − η(Y )X), (11.28)

for any vector fields X, Y . Using (11.27) in (11.28), we get

R(X, Y )ξ = −(α2
+ λ2)(η(Y )X − η(X)Y ) − 2a3(η(Y )hX − η(X)hY ) −


2α +

ξ(λ)

λ


(η(Y )φhX − η(X)φhY ),

where the functions κ, µ and ν are defined by κ = −(α2
+ λ2), µ = −2a3, ν = −(2α +

ξ(λ)

λ
), respectively. With the help

of (11.27), we get Qφ − φQ = 2µhφ − 2νh.
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Conversely, let M be an almost α-para-Kenmotsu (κ, µ, ν)-manifold. Using Theorem 9 and (10.11), we conclude that ξ
is harmonic.

This completes the proof. �

12. Examples

Example 1. We consider the 3-dimensional manifold

M =

(x, y, z) ∈ R3

| x ≠ 0, y ≠ 0


and the vector fields

e1 =
∂

∂x
, e2 = φe1 =

∂

∂y
, e3 = ξ = x

∂

∂x
+ (y + 2x)

∂

∂y
+

∂

∂z
.

The 1-form η = dz and the fundamental 2-formΦ = −dx∧dy+(y+2x)dx∧dz−xdy∧dz defines an almost para-Kenmotsu
manifold.

Let g, φ be the pseudo-Riemannian metric and the (1, 1)-tensor field given by

g =


1 0

−x
2

0 −1
y + 2x

2
−x
2

y + 2x
2

1 − 3x2 − 4xy − y2

 ,

φ =

0 1 −(y + 2x)
1 0 −x
0 0 0


, h =

1 0 0
0 −1 0
0 0 0


.

We easily get

[e1, e2] = 0,
[e1, e3] = e1 + 2e2,
[e2, e3] = e2.

Moreover, the above example is an almost para-Kenmotsu (κ, µ, ν) = (1, 1, −2)-space.

Example 2. We consider the 3-dimensional manifold

M =

(x, y, z) ∈ R3

| x ≠ 0, y ≠ 0, z ≠ 0


and the vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = ξ = x (1 − z)

∂

∂x
+ (−x + y(1 + z))

∂

∂y
+

∂

∂z
,

g(e1, e1) = g(e1, e3) = g(e2, e2) = g(e2, e3) = 0, g(e1, e2) = g(e3, e3) = 1.

h =

0 0 0
1 0 0
0 0 0


.

The 1-form η = dz and the fundamental 2-form Φ = dx∧ dy+ (x− y(1+ z))dx∧ dz + (x (1− z))dy∧ dz defines an almost
α-para-Kenmotsu manifold.

Let g, φ be the pseudo-Riemannian metric and the (1, 1)-tensor field given by

g =


0

1
2

1
2
(x − y(1 + z))

1
2

0
1
2
(−x (1 − z))

1
2
(x − y(1 + z))

1
2
(−x (1 − z)) 1 − 2x(1 − z)(x − y)(1 + z)

 ,

φ =

1 0 −x (1 − z)
0 −1 −x + y(1 + z)
0 0 0


.
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We easily get

φe1 = e1, φe2 = −e2, φξ = 0,
[e1, e2] = 0,
[e1, e3] = (1 − z)e1 − e2,
[e2, e3] = (1 + z)e2.

Moreover, the above example is an almost α-para-Kenmotsu (κ, µ, ν) = (−1, −2z, −2)-space.

Remark 5. To our knowledge, the above example is the first numerical example of almost α-para-Kenmotsu satisfying
κ = −1 and h ≠ 0 in R3.
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