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Abstract

A one parameter set of noncommutative complex algebras is given. These may be considered
deformation quantisation algebras. The commutative limit of these algebras correspond to the
algebra of polynomial functions over a manifold or variety. The topology of the manifold or variety
depends on the parameter, varying from nothing, to a point, a sphere, a certain variety and finally
a torus. The irreducible adjoint preserving representations of the noncommutative algebras are
studied. As well as typical noncommutative sphere type representations and noncommutative torus
type representations, a new object is discovered and called a sphere–torus.
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1. Introduction

In noncommutative geometry we often wish to find analogues to topological properties
of a manifold such as compactness, connectedness and genus, which we will consider here.
For matrix geometries[1] the question of genus is tricky since both the sphere and torus
have matrix analogues.

In deformation quantisation[2], one can simply take the commutative limit and ask what
the genus of the underlying manifold is. In the case of the sphere and torus, we can also
take the representation of the noncommutative algebra and compare its properties with the
representations of the noncommutative sphere and torus.
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In this paper we present, inSection 2, a one parameter set of deformation algebrasA(R)
forR ∈ R. The commutative limit of these algebras areCω0 (M(R)) the commutative algebra
of complex polynomials on the manifold (or variety)M(R). This manifold has different
topologies depending on the value ofR. Varying from nothing, to a point, a sphere, a variety
and finally a torus. This is described inSection 1.2.

In Section 3we look at the finite dimensional representations ofA(R). These can be
classified as eitherS2-type representations orT 2-type representations by comparing them
to the representations for the noncommutative torus or the noncommutative sphere. De-
pending on the value ofR one or other of these representations exists. What we show in
this paper is that there is a region ofRwhere both types of representation exist. This region,
which we shall name thesphere–torus, is a purely noncommutative region, it disappears in
the commutative limit.

We summarise the various representation in the conclusion,Section 4.

1.1. Notation

R+ {t ∈ R|t > 0}
M manifold or variety
Cω(M), Cω(Rr) commutative algebra of complex analytic functions over

M or R
r

Cω0 (M), C
ω
0 (R

r) commutative algebra of complex polynomials over
M or R

r

A, B noncommutative algebras overC

Unbold symbols: elements of the commutative algebras, i.e. analytic or
f, g, u, v, xi, Fs, w, x, y, z polynomial functions overM or R

Bold symbols: elements of the noncommutative algebras
f ,g,u, v, xi,F s,w, x, y, z A andB
ε element in the centre of the noncommutative algebras

A andB
H finite or infinite dimensional Hilbert space
L(H,H) space of linear maps overH (bounded or unbounded

operators)
Mn(C) space ofn× n complex matrices

the identity inL(H,H) and the unit matrix inMn(C)
|θ〉 bra-ket notation for vectors inH

1.2. A one parameter set of immersions with a sphere, torus and variety

Consider the immersions given by

M(R) = {(x, y, z) ∈ R
3|z2 + (x2 + y2 − R)2 = 1}. (1)

It is obvious that forR < −1 there is no solution to(1) while forR = −1,M(R) consists
of the single point at the origin(x, y, z) = (0,0,0). To pictureM(R) for R > −1, we
note that it is axisymmetric about thez-axis. Therefore we can examine the shape ofM(R)
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Fig. 1. Shape of the slice ofM settingy = 0. The shape ofM is given by rotating slice about thez-axis.

by settingy = 0 and rotating the subsequent one dimensional variety about thez-axis.
FromFig. 1 we can see that for−1 < R ≤ 0,M(R) is a convex manifold topologically
equivalent to the sphere. For 0< R < 1,M(R) is a nonconvex manifold topologically
equivalent to the sphere. ForR = 1,M(R) is not a manifold but instead a 2D variety, which
is smooth about all points except the origin(x, y, z) = (0,0,0). ForR > 1,M(R) is a
torus.

There is a Poisson structure onM is given by

{x, y} = z, {z, x} = 2(x2 + y2 − R)y = 2wy,

{y, z} = 2(x2 + y2 − R)x = 2wx, (2)

wherew = x2 + y2 − R, which is consistent with(1).
We can give a Darboux coordinate system(p, q) such that

x = (R+ cos(2p))1/2 cos(q), y = −(R+ cos(2p))1/2 sin(q),

z = sin(2p), (3)

where{p, q} = 1. It is easy to see that(1) and (2)are satisfied. A necessary condition for
these to be valid isR+ cos(2p) > 0. Thus for the torusR > 1 this is valid for allp. More
specifically we can patch coordinate systems with 0< q < 2π and 0< p < π. For the
varietyR = 1 we must exclude the pointp = (1/2)π which correspond to the point at the
origin. For−1< R < 1 we have−(1/2)(π − arccos(R)) < p < (1/2)(π − arccos(R)),
and we must exclude the two points(x, y, z) = (0,0,±(1 − R2)1/2).

1.3. Brief introduction to deformation quantisation

We limit ourselves in this paper to a the deformation quantisation of algebraic manifolds
and varieties with algebraic Poisson structures. LetM smoothm dimensional Poisson
manifold or variety given by

M = {(x1, . . . , xr) ∈ R
r|Fs(x1, . . . , xr) = 0, s = 1, . . . , r −m}, (4)

whereFs(x1, . . . , xm)are polynomials. Let the Poisson structure{•, •}be given by{xi, xj} =
Cij (x1, . . . , xm), whereCij (x1, . . . , xm)are also polynomials. Consistency implies{xi, Fs} =
0. LetCω(M) be the algebra of complex analytic functions onM and letCω0 (M) be the
subalgebra of polynomials in(x1, . . . , xm), this is dense inCω(M).
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LetBbe the free noncommutative algebra generated by{x1, . . . , xr, ε}, and define the lin-
ear mapπB : B �→ Cω0 (R

r)whereCω0 (R
r) is the algebra of polynomials in(x1, . . . , xn), via

πB(f + g) = πB(f )+ πB(g), πB(fg) = πB(f )πB(g), πB(λ) = λ,
πB(ε) = 0, πB(xi) = xi. (5)

Choose the elementsF s ∈ B for s = 1, . . . , r − m andCij ∈ B for i, j = 1, . . . , r such
thatπB(F s) = Fs andπB(Cij ) = Cij . We define the algebraA to beB quotiented by the
noncommutative polynomial relationships

[ε, xi] = 0, F s = 0, [xi, xj] = εCij (6)

for i, j = 1, . . . , r ands = 1, . . . , r − m. The first equation in(6) implies thatε is in the
centre ofA. We demand thatA be an associative algebra. This imposes restrictions on the
possible choices ofF s andCij , which we will not investigate here.

We can define the map

π : A �→ Cω0 (M), π(ε) = 0 (7)

which is surjective. It is easy to see that this gives the Poisson structure via

{π(f ), π(g)} = π
(

1

iε
[f ,g]

)
. (8)

Thus the following diagram commutes

(9)

We also demand that there is a conjugate structure †:A �→ A such that

(fg)† = g†f†, λ† = λ̄ for λ ∈ C, π(f†) = π(f ), ε† = ε. (10)

We are interested in representationsΨ : A �→ L(H,H)whereL(H,H) is the space of linear
maps on the Hilbert spaceH. We demand thatΨ is irreducible, andΨ(ε) = ε whereε ∈
R+. If dimH = n thenL(H,H) ∼= Mn(C). On the other hand if dimH = ∞ thenL(H,H)
may contain unbounded operators. We also demand thatΨ preserve the conjugate structure

Ψ(f†) = Ψ(f )† where the dagger on the right is the Hermitian conjugate or adjoint.
We use the bra-ket notation so that if|θ〉 ∈ H thenΨ(f )|θ〉 the action off ∈ A on |θ〉

is writtenf |θ〉. SinceΨ preserves the conjugate we have〈θ′|f†|θ〉 = 〈θ|f |θ′〉.
We sometimes want to recover the commutative structure from the matrix algebras. This

requires finding a sequence of representationsΨn : A �→ Mn(C), Ψn(ε) → 0 asn → ∞.
However in general there is no canonical mapMn(C) �→ Mn+1(C). One exception being
the noncommutative sphere[3].
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As stated above, in this paper we give a shall give a one parameter family of such algebras,
whose representations can be compared to those for the sphere and torus. Here we give a
brief summary of these two noncommutative geometries.

Thenoncommutative sphereis generated byx, y, z, ε with

[x, y] = iεz, [y, z] = iεx, [z, x] = iεy, x2 + y2 + z2 = 1,

x† = x, y† = y, z† = z. (11)

The representations are the finite dimensional irreducible representations of SO(3). A basis
forH is |0〉, . . . , |n− 1〉 so that

ε = 2(n2 − 1)−1/2, a+|r〉 = ε(n− r − 1)1/2(r + 1)1/2|r + 1〉,
z|r〉 = ε(r − 1

2(n− 1))|r〉, a−|r〉 = ε(n− r)1/2r1/2|r − 1〉, (12)

wherea+ = x+ iy anda− = x− iy are called the ladder elements. We note that the ladder
operators, which are the representations of the ladder elements, terminateΨn(a+)n = 0.
We also note thatΨ is unique for eachn, and thatΨn(ε)→ 0 asn→ ∞.

In our language we thenoncommutative torusis generated by{x1, x2, x3, x4, ε} with

x2
1 + x2

2 = 1, x2
3 + x2

4 = 1, [x1, x2] = 0, [x3, x4] = 0,

[x1, x3] = −iε(x2x4 + x4x2), [x1, x4] = iε(x2x3 + x3x2),

[x2, x3] = iε(x1x4 + x4x1), [x2, x4] = −iε(x1x3 + x3x1),

x
†
1 = x1, x

†
2 = x2, x

†
3 = x3, x

†
4 = x4. (13)

If we setu = x1 + ix2, v = x3 + ix4, andq = (1 + iε)/(1 − iε) then we derive the usual
noncommutative torus.

uu† = u†u = 1, vv† = v†v = 1, uv = qvu. (14)

However as we have defined the algebraA, the elementq andq† are not members ofA.
To solve this problem we say thatA is generated by{x1, x2, x3, x4, ε, (1 + ε2)−1}.

There are both finite and infinite representations of the noncommutative torus. The finite
dimensional representationsΨn have a basis|0〉, . . . , |n− 1〉

Ψn(q) = q , q = e2πik/n, u|r〉 = ei(β+2πrki/n)|r〉,
v|r〉 = |r + 1〉, v|n− 1〉 = ν|0〉, (15)

wheren, k ∈ N and whereν ∈ C, |ν| = 1 is a phase. We impose thatn and k are
relatively prime, so that there are no multiple eigenvalues ofΨ(u). There also exist other
more complicated finite dimensional representations of the noncommutative torus where
Ψ(u) has multiple eigenvalues.

We note that the ladder elements of this representation are given byv andv† and that the
ladder operators do not terminateΨn(v)m �= 0 for all n,m ∈ Z. To specifyΨn completely
requires giving(n, k, β, ν). If k = 1 thenΨn(q)→ 1 asn→ ∞.
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The infinite dimensional representations have a basis|r〉, r ∈ Z, and are determined by
the parametersα, β ∈ R whereα/2π is irrational

Ψ(q) = q , q = eiα, u|r〉 = ei(rα+β)|r〉, v|r〉 = |r + 1〉. (16)

The eigenvalues ofΨ(u) are dense on unit circle.

2. A (R): the deformation algebra of polynomials onM (R)

In Section 1.2, we define a one parameter set of immersionsM(R) ∈ R
3. The commuta-

tive algebra of complex valued polynomials in(x, y, z) onM(R) is writtenCω0 (M(R)) and
of course is dense inCω(M(R)). Here we give a one parameter set of complex noncommu-
tative algebrasA(R) with R ∈ R, which are the deformation quantisation ofCω0 (M(R)).
EachA(R) is generated by{x, y, z, ε, (1+ε2)−1} with ε in the centre ofA(R). The reason
for including(1 + ε2)−1 is similar as for the noncommutative torus. These are related via

[x, y] = iεz, [y, z] = iε(wx + xw), [z, x] = iε(wy + yw) (17)

and

z2 + w2 = 1, (18)

where we define the elementw ∈ A(R) via

w = x2 + y2 − R. (19)

The adjoint operation is given by

x† = x, y† = y, z† = z, w† = w. (20)

It is easy to see that, assuming(17)–(19)define an associative algebra, thenπ : A(R) �→
Cω0 (M(R)), whereπ(x) = x, π(y) = y, π(z) = z. It also gives with the correct Poisson
structure. We shall show that these relationships define an associative algebra inLemma 2.
But first we need to define some new elements ofA(R) and derive some relationships which
are valid ifA(R) is associative.

We define the ladder elementsa+, a− ∈ A(R) via

a+ = x + iy, a− = x − iy. (21)

In order to emphasise the circular nature ofw andz we shall define the elementu ∈ A(R)
via

u = w + iz ∈ A(R) (22)

and we show below thatu is unitary, i.e.u† = u−1.
We define the “pseudo element”α via

ε = tan(1
2α) (23)

and observe thatα is not a member ofA(R). However sinceε ∈ A(R) and(1 + ε2)−1 ∈
A(R) then from the tan half angle formulae we have sin(α) = 2ε(1 + ε2)−1 ∈ A(R) and
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cos(α) = (1− ε2)(1+ ε2)−1 ∈ A(R). Also e±inα = ( cos(α)± i sin (α))n so einα ∈ A(R)
for all n ∈ Z.

Before showing that the algebraA(R) is associative we derive some direct consequences
of these definitions.

Lemma 1. From the above definitions, and the assumption thatA(R) is associative, we
have the following relationships:

[z,w] = 0, (24)

uu† = u†u = 1, (25)

a+a− = w + R+ εz, a−a+ = w + R− εz, (26)

[w, a+] = −ε(za+ + a+z), [w, a−] = +ε(za− + a−z). (27)

Also

za+ = a+( cos(α)z + sin(α)w), wa+ = a+(− sin(α)z + cos(α)w),

za− = a−( cos(α)z − sin(α)w), wa− = a−( sin(α)z + cos(α)w) (28)

or alternatively

ua+ = a+u eiα, ua− = a−u e−iα, u†a+ = a+u† e−iα,

u†a+ = a−u† eiα. (29)

The general elementf ∈ A(R) can be written uniquely in the form

f =
N∑
r=0

N∑
s=−N

ar+usξr,s(ε)+
N∑
r=1

N∑
s=−N

ar−usξ−r,s(ε) (30)

for someN ∈ N where for allr, s = −N, . . . , N the functionξr,s(t) is a ration function in t
with denominator(1 + t2)m for somem ∈ N.

Proof. Eq. (26)follows automatically from(21), (19)and the first equation in(17). Eq. (27)
follows from:

[w, a+] = [a+a− − R− εz, a+] = a+[a−, a+] − ε[z, a+] = −ε(2a+z + [z, a+])

and likewise for [w, a−]. For (24)we have

[z,w] = [z, a+a− − R− εz] = [z, a+]a− + a+[z, a−]

= ε(wa+a− + a+wa− − a+wa− − a+a−w) = ε(wa+a− − a+a−w)

= −ε[a+a−,w] = −ε[w + R+ εz,w] = −ε2[z,w]

hence(1 + ε2)[z,w] = 0, so [z,w] = (1 + ε2)−1(1 + ε2)[z,w] = 0. The unitarity ofu
(25) follow from the definition ofu and the commutativity ofz andw.
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From(17) and (27)we can have

za+ − a+z = +εwa+ + εa+w, −εza+ − εa+z = wa+ − a+w,

solving these as simultaneous equations and using the tan half angle identity give the first
of results of(28). The other identities in(28) follow similarly. The identities in(29) are
then the complex version of(28).

The generators allA(R) are all of the form(30). Givenf of this form, thenfu, fε and
f (1 − ε2)−1 are all of the form(30). Also

fa+ =
N∑
r=0

N∑
s=−N

ar+1
+ us eisαξr,s(ε)+

N∑
r=1

N∑
s=−N

ar−1
−

×
(

1

2
(1 + iε)u + 1

2
(1 − iε)u−1 + R

)
us e−isαξ−r,s(ε).

Sofa+ is of the form(30), likewise forfa−.
For uniqueness, from linearity, it is enough to show that iff is of the form(30)andf = 0

thenξr,s = 0 for all r, s. By multiplying f with (1 + ε2)M for sufficiently highM then we
can assumeξr,s are all polynomials. Letm be the largest degree of these polynomials. Now

0 = π(f ) =
N∑
r=0

N∑
s=−N

π(a+)rπ(u)sξr,s(0)+
N∑
r=1

N∑
s=−N

π(a−)rπ(u)sξ−r,s(0),

so by looking at the coordinate system onM(R) this impliesξr,s(0) = 0 for all r, s. Thus
ξr,s(ε) = εξ̂r,s(ε) whereξ̂r,s(ε) are polynomials of degree≤ m − 1. Continuing this gives
ξr,s = 0. �

Lemma 2. The relationships(19)–(29)define an associative algebra.

Proof. Let S be set of all expressions of the form(30). We define a product· onS using
the above definitions.

We wish to show thatf 1 · (f 2 ·f 3) = (f 1 ·f 2) ·f 3 for f 1,f 2,f 3 ∈ S. Where the inner
bracket must be written in the form(30) first. It is sufficient to show thatf 1 · (f 2 · f 3) =
(f 1 ·f 2) ·f 3 wheref 1,f 2,f 3 are from the set{u, a+, a−, ε, (1+ε2)−1}. This is because
any expression can be constructed from these five elements. The elementu† = 2w − u

with w given by(19). If f 1,f 2 orf 3 are eitherε or (1+ε2)−1 then the association relation
holds sinceε commutes with all the generators.

The remaining 27 relationships must be proved in turn, the interesting ones are

(u · a+) · a− = a+u eiα · a− = (1
2(1 − iε)u + 1

2(1 + iε)u−1 + R)u
= u(1

2(1 − iε)u + 1
2(1 + iε)u−1 + R) = u · (a+ · a−)

and

(a+ · a−) · a+ = (1
2(1 − iε)u + 1

2(1 + iε)u−1 + R) · a+
= a+(1

2(1 − iε)u eiα + 1
2(1 + iε)u−1 eiα + R)

= a+(1
2(1 + iε)u + 1

2(1 − iε)u−1 + R) = a+ · (a− · a+). �
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3. Finite dimensional representations ofA (R)

As mentioned inSection 1, we wish to find irreducible representations over a finite Hilbert
spaceH ofA(R), i.e.Ψ : A(R) �→ L(H,H) ∼= Mn(C). Such thatΨ(ε) = ε whereε ∈ R+
and such thatΨ preserves the adjoint operator so thatΨ(f†) = Ψ(f )† where the dagger
on the right-hand side is the Hermitian conjugate. We note that sinceΨ(u)†Ψ(u) = we
can diagonaliseΨ(u) and the eigenspaces ofΨ(u) are orthogonal. We shall further assume
thatΨ(u) has no multiple eigenvalues, so the eigenspaces ofΨ(u) are all one dimensional.
This significantly simplifies the types of representations.

Theorem 3. Let Ψ : A(R) �→ L(H,H) ∼= Mn(C) be an irreducible adjoint preserving
n dimensional representation, such thatΨ(ε) = ε , ε ∈ R+ andΨ(u) has no multiple
eigenvalues. Letα be given bytan((1/2)α) = ε, 0 < α < π/2. Then there existsβ ∈ R,
such that we can label the orthonormal bases forH which are the eigenspacesΨ(u)

|β〉, |β + α〉, |β + 2α〉, . . . , |β + (n− 1)α〉, (31)

where

u|β +mα〉 = ei(β+mα)|β +mα〉, m = 0, . . . , n− 1. (32)

There also exists a set of complex constantsCβ+mα ∈ C for m = 0, . . . , n satisfying

|Cβ+mα|2 = sec(1
2α) cos(β − 1

2α+mα)+ R (33)

andCβ+mα �= 0 for m = 1, . . . , n− 1 so that

a−|β +mα〉 = Cβ+mα|β + (m− 1)α〉, m = 1, . . . , n− 1,

a+|β +mα〉 = Cβ+(m+1)α|β + (m+ 1)α〉, m = 0, . . . , n− 2. (34)

The action ofa− and a+ on the first and last vectors of(31), respectively, are given by
either

a−|β〉 = 0, a+|β + (n− 1)α〉 = 0 (35)

or

a−|β〉 = Cβ|β + (n− 1)α〉, a+|β + (n− 1)α〉 = Cβ|β〉. (36)

In the first caseCβ = Cβ+nα = 0 satisfies(33). In the second caseCβ = Cβ+nα �= 0
satisfies(33)and

nα = 2πk, (37)

wherek ∈ N, 1 ≤ k < n/2 and n and k are relatively prime.

Proof. Let |θ〉 be a normalised eigenvector ofΨ(u)with eigenvalueλ then|λ|2 = 〈θ|u†u|θ〉
= 1 hence we can setλ = eiθ. From(22) we havew|θ〉 = cos(θ)|θ〉 andz|θ〉 = sin(θ)|θ〉.
Let N : R �→ R be given byN(θ) = sec((1/2)α) cos(θ − (1/2)α) + R. From (26)
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we have

‖a−|θ〉‖2 = 〈θ|a+a−|θ〉 = 〈θ|(w + tan(1
2α)z + R)|θ〉

= cos(θ)+ tan(1
2α) sin(θ)+ R = N(θ),

‖a+|θ〉‖2 = 〈θ|a−a+|θ〉 = 〈θ|(w − tan(1
2α)z + R)|θ〉

= cos(θ)− tan(1
2α) sin(θ)+ R = N(θ + α).

Thus if |θ〉 is a eigenvector thenN(θ) ≥ 0 andN(θ + α) ≥ 0. FurthermoreN(θ) = 0 ⇔
a−|θ〉 = 0 andN(θ + α) = 0 ⇔ a+|θ〉 = 0.

From(29)we have

ua−|θ〉 = a−u e−iα|θ〉 = a− e−iα eiθ|θ〉 = ei(θ−α)a−|θ〉.
Hence ifN(θ) �= 0 then there must exist another normalised eigenvector|θ′〉 with eigenvalue
ei(θ−α). If we let a−|θ〉 = Cθ|θ′〉 then|Cθ|2 = N(θ). ThusCθ is determined fromN(θ) up
to a phase.

Similarly ua+|θ′〉 = ei(θ′+α)a+|θ′〉 = eiθa+|θ′〉. Since the eigenspaces ofΨ(u) are all
one dimensional thena+|θ′〉 is parallel to|θ〉. Thus settinga+|θ′〉 = Dθ|θ〉 then

Dθ = 〈θ′|a+|θ〉 = 〈θ|a−|θ′〉 = Cθ′
hencea+|θ′〉 = Cθ′ |θ〉.

Claim. We now make the following claim. Letr ≤ n and there exists a set of independent
normalised eigenvectors{|β + mα〉|m = 0, . . . , r − 1} such thatN(β + mα) > 0 for
m = 1, . . . , r − 1. If either

N(β) > 0 and a−|β〉 = Cβ|β + (r − 1)α〉 for some choice ofCβ

or

N(β) = 0, and N(β + rα) = 0

thenr = n.

Proof of claim. Let Vr = span{|β + mα〉|m = 0, . . . , r − 1}. SinceN(β + mα) > 0 for
m = 1, . . . , n−1 then we can defineCβ+mα �= 0 form = 1, . . . , n−1 so thata−|β+mα〉 =
Cβ+mα|β+ (m− 1)α〉 form = 1, . . . , r− 1 anda+|β+mα〉 = Cβ+(m+1)α|β+ (m+ 1)α〉
for m = 0, . . . , n− 2.

For the first optiona−|β〉 = Cβ|β+ (r−1)α〉 for soCβ �= 0, so from the argument above
a+|β + (r − 1)α〉 = Cβ|β〉.

For the second optiona−|β〉 = 0 anda+|β + (r − 1)α〉 = 0.
Hence, for both cases, the action ofu, a+, a− onVr remains inVr. Thus if r < n then

it is obvious thatΨ can be reduced toVr. This contradicts the irreducibility ofΨ or the
dimensionH is n. Hencer = n. �

Continuation of proof. SinceN(θ) ≥ 0 for all eigenvectors|θ〉 we have two possibilities.
EitherN(θ) > 0 for eigenvectors|θ〉 or there exists a|β〉 such thatN(β) = 0.
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Taking the first case, thatN(θ)| > 0 all eigenvectors|θ〉. Chooseβ so that|β〉 is any
normalised eigenvector ofΨ(u). We choose the phases ofCβ+mα, and define|β +mα〉 =
Cβ+mα

−1
a+|β + (m− 1)α〉 for m = 1, . . . , n− 1.

From the claim above the{|β+mα〉|m = 0, . . . , n−1} are independent. SinceN(β) > 0
thena−|β〉 must be parallel to one of the this set. But from the claim the only possibility is
a−|β〉 = Cβ|β + (n− 1)α〉 for some choice of phase ofCβ, i.e. (36).

Given condition(36) then

eiβCβ|β〉 = uCβ|β〉 = ua+|β + (n− 1)α〉 = eiαa+u|β + (n− 1)α〉
= eiα ei(β+(n−1)α)a+|β + (n− 1)α〉 = ei(β+nα)Cβ|β〉.

Hence einα = 1 sonα = 2πk for some integerk. Clearly k ≤ 1 andk < n/2 so that
0 < α < π. Also k andn must be relatively prime so thatΨ(u) has distinct eigenvalues,
i.e. (37).

Now consider the second possibility. That there exist a|β〉 such thatN(β) = 0 and hence

a−|β〉 = 0. Again we choose the phases ofCβ+mα and define|β+mα〉 = Cβ+mα−1
a+|β+

(m− 1)α〉 form = 1, . . . , n− 1. These are all independent and none of theCβ+mα = 0 by
the claim above.

If a+|β+ (n− 1)α〉 �= 0 then by the claim abovea+|β+ (n− 1)α〉 = Cβ+nα|β〉. Hence

|Cβ+nα|2 = 〈β + (n− 1)α|a−a+|β + (n− 1)α〉 = Cβ+nα〈β + (n− 1)α|a−|β〉 = 0

henceCβ+nα = 0 which contradictsa+|β + (n− 1)α〉 �= 0. Hence(35).

By analogy with the representations of the noncommutative sphere these we shall call rep-
resentations which satisfy(35)S2-type representationsand we say aS2-type representation
is minimal if

nα < 2π. (38)

By analogy to the representations of the noncommutative torus we shall call representa-
tions which satisfy(36) T 2-type representationsand we say aT 2-type representation is
minimal if

nα = 2π. (39)

We now wish to find what values of(R, n, α, β) give rise to finite dimensional irreducible re-
presentations ofA(R), with no multiple eigenvalues ofΨ(u). A summary is given inTable 1.

3.1. S2-type representations

Before we look at the different types ofS2-type representation and when they exist we
shall give some basic facts aboutS2-type representation.

Lemma 4. If Ψ is anS2 representation with(R, n, α, β) given inTheorem 3then we can
find a basis(31) such thatCβ+mα ∈ R+. Also there exist an equivalent representationΨ̃
with that same values of(R, n, α) and withβ replaced bỹβ where−2π < β̃− (1/2)α ≤ 0.

If Ψ1 andΨ2 areS2 representation with the same(R, n, α, β) then they are equivalent.
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Table 1
Summary of possible representations for differentR andε

Null Point Sphere Variety Sphere–Torus Sphere–Torus bdd Torus

R rangeRε =
(1 + ε2)1/2

R ≤ −1 R = −1 −1< R < 1 R = 1 1< R < Rε R = Rε R > Rε

Topology of
manifold
M(R)

Nulla Point S2 topb 2D varietyc –d –d T 2

Minimal S2

representations
χ χ χ χ

NonminimalS2

representations
χ χ χ χ χ

Finite dimT 2

representations
χ χ χ χ e f

Semi∞-dim T 2

representations
χ χ χ χ χ χ

∞-dim T 2

representations
χ χ χ χ χ

a No solution to equation.
bM(R) is convex ifR < 0.
c The point(x, y, z) = (0,0,0) not smooth.
d Since(1 + ε2)1/2 = 1 so no sphere–torus exists.
eβ range is limited.
f β range excludes one point.

Proof. We can see that givenα andβ the basis(31) is only defined up to a phase, likewise
Cβ+mα is also only defined up to a phase. Thus given the set{νm ∈ C|νmνm = 1,m =
0, . . . , n− 1}, we can always make the following replacement:

|β +mα〉 → |β +mα〉′ = νm|β +mα〉, Cβ+mα → C′
β+mα = νm−1νmCβ+mα

(40)

without changingEqs. (32) and (34). Thus if we setνm = νm−1Cβ+mα/|Cβ+mα| then all
theC′

β+mα are real and positive.

Clearly replacingβ with β̃ → β + 2πk for k ∈ N does not change the representation.
Therefore we can placẽβ in any 2π range. The one chosen makes the calculations below
simpler.

If Ψ1 andΨ2 are representation with the same(R, n, α, β) then, setting theCβ+mα to
be real and positive, the bases(31) are the same (up to an overall choice phase), and the
action(32), (34) on these basis elements are the same, therefore the representations are
equivalent. �

For the rest of this section we assume we are givenR andn, and we wish to findα
andβ so thatΨ(R, n, α, β) is S2-type irreducible representation. Givenα andβ we write
β′ = β − (1/2)α. For a generalS2 representation(33) and (35)imply

cos(β′) = cos(β′ + nα) = −R cos(1
2α). (41)
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The first equality is solved by settingβ′ + nα = 2πk ± β′ for somek ∈ N. This implies
either

α = 2πk

n
(42)

or

β′ = πk − 1
2nα. (43)

We can now place some simple constraints on(R, n, α, β) such thatΨ(R, n, α, β) is an
irreducibleS2 representation. From(41)we see that forΨ to be anS2 representation then

R ≤ sec(1
2α) = (1 + ε2)1/2 (44)

sinceε = tan((1/2)α). By looking at(3) we see thatΨ(R, n, α, β) is an irreducibleS2

representation if and only if

cos(β′ +mα)+ R cos(1
2α) > 0, m = 1, . . . , n− 1. (45)

3.1.1. MinimalS2 representation
The first result is on the existence and uniqueness of minimalS2-type representations.

Lemma 5. Given R and n there exists minimalS2-type representation if and only if−1<
R < sec(π/n). This representation is unique and is given by

cos(1
2α)+ R cos(1

2α) = 0, 0< α < 2π/n, β′ = −1
2nα. (46)

Proof. If Ψ is minimal we must exclude(42). Since we chooseβ′ so that−2π < β′ ≤ 0
from (43)we have−2< k − nα/2π ≤ 0. Applying 0< nα/2π < 1 we have

−2<
nα

2π
< k ≤ 1 + nα

2π
< 1,

thereforek = 0 or−1.
We shall exclude the casek = −1. If k = −1 so thatβ′ = −π − (1/2)nα, therefore

−2π < β′ < −π. Now β′ + α = −π − (1/2)(n − 2)α ≤ −π sincen ≥ 2. Thus−2π <
β′ < β′ +α ≤ −π. Since cos is strictly decreasing in the range−2π · · ·−π we have−1 ≤
cos(β′+α) < cos(β′) < 1. Thus cos(β′+α)− cos(β′) = cos(β′+α)+R cos((1/2)α) <
0 which contradicts(45).

Thus ifΨ is a minimalS2 representation we have(46).
Now consider the function̂R(α) = − cos((1/2)nα)/ cos((1/2)α) for the range 0< α <

2π/n. We observe that̂R(0) = −1 andR̂(2π/n) = sec(π/n) and

R̂′(α)= ( cos(1
2α))

−2(1
2nα cos(1

2α) sin(1
2nα)− 1

2α cos(1
2nα) sin(1

2α))

= ( cos(1
2α))

−2 1
2α((n− 1) cos(1

2α) sin(1
2nα)+ sin(1

2(n− 1)α)) > 0.

ThusR̂ : {α|0 < α < 2π/n} �→ {R| − 1 < R < sec(π/n)} is an invertible function so we
can uniquely solve(46). This also implies that−1< R < sec(π/n).

We now wish to show that anα, β′ satisfying(46)is a representation. This simply requires
showing(45) is satisfied. Consider separately the casesm = 1, . . . , �(1/2)n� andm =
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�(1/2)n� + 1, . . . , n − 1. In the first case we have−(1/2)n < m − (1/2)n ≤ 0 this
implies−π ≤ −(1/2)nα < (m − (1/2)n)α ≤ 0. Since cos is strictly increasing in this
range we have−1 ≤ cos(−(1/2)nα) < cos(mα − (1/2)nα) ≤ 1 and hence(45) is
satisfied. Likewise ifm = �(1/2)n� + 1, . . . , n − 1 then 0≤ m − (1/2)n < (1/2)n so
0 ≤ mα− (1/2)nα < (1/2)nα ≤ π. Since cos is strictly decreasing in this range we have
−1 ≤ cos((1/2)nα) < cos(mα− (1/2)nα) ≤ 1 and hence(45) is satisfied. �

The minimalS2 representation may be said to be the closest to the representation of
the true noncommutative sphere, since they exist for−1 < R < 1 when the commutative
limit is a topologically the sphere, they are uniquely determined for eachR by n, and
ε = tan((1/2)α)→ 0 asn→ ∞.

As Lemma 5shows there exists a minimalS2 representation of dimensionn for −1 <
R < sec(π/n). The relationship betweenR,nandα is shown inFig. 2a,n = 2,3, . . . . Given
a permittedR andn we can draw a diagram to representΨ . This an open polygon inside a

Fig. 2. The minimalS2 representation. Part (a) gives the relationship betweenR, n andα for n = 2,3, . . . . Parts
(b) and (c) represent different representations.
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circle. The vertices are at the points ei(β′+mα). Eq. (45)implies that there is a sector (called
the “forbidden sector”) and all the vertices must lie to the right of this sector. The open
polygon begins and ends on the edge of this sector.Fig. 2b and c represents representations
for differentn andR. Note forFig. 2c,R > 1.

3.1.2. NonminimalS2 representation
The situation for nonminimalS2 representation is more complicated. We have the fol-

lowing lemmas.

Lemma 6. If Ψ is a nonminimalS2-type representation thenR ≥ 1.

Proof. If |θ〉 is a basis vector then from(45) cos(θ) ≥ −R cos((1/2)α). Therefore if we
setθ′ = (θ)mod 2π so that 0≤ θ′ < 2π, thenθ′ must lie either in the range 0≤ θ′ ≤
π− (1/2)δ orπ+ (1/2)δ ≤ θ′ < 2π where cos((1/2)δ) = R cos((1/2)α) and 0< δ. The
range{θ′|π − (1/2)δ < θ′ < π + (1/2)δ} is called the forbidden sector.

SinceΨ is nonminimal there exists anm such that 0≤ (β′ +mα)mod 2π ≤ π− (1/2)δ
andπ + (1/2)δ ≤ (β′ + (m + 1)α)mod 2π < 2π. Thus 0< δ ≤ α < π. Since cos is
decreasing we have 0< cos((1/2)α) ≤ cos((1/2)δ) < 1. Hence result. �

Lemma 7. If R ≤ −1 there exist noS2-type representations.

Proof. Follows fromLemmas 5 and 8. �

Lemma 8. If R ≥ 1 then there may exists many nonminimalS2-type representation. Given
such aΨ(R, n, α, β) then1 ≤ R ≤ sec((1/2)α) and−3/2π < β′ < −(1/2)π and also
(R, n, α, β) obey either

cos

(
1

2
nα

)
= (−1)k+1R cos

(
1

2
α

)
,

2π

n
< α <

π

2
,

β′ = πk − 1
2nα, k =

[nα
2π

]
− 1 (47)

or

α = 2kπ

n
, 1 ≤ k ≤ (n− 1)

2
, cos(β′) = −R cos

(
πk

n

)
. (48)

Proof. From (41) and | cos(β′)| ≤ 1 we haveR ≤ sec((1/2)α). Also sinceR > 0 and
cos((1/2)α) > 0 then cos(β′) < 0 then−(3/2)π < β′ < −(1/2)π.

From (41) we have either(42) or (43) is true. If (43) is true then from(41) the first
equation in(47) is true. Alsoβ′/π = k − nα/2π so [β′/π] = −1 = k − [nα/2π].

If (42) is satisfied, then from(41) Eq. (48)is satisfied. �

We note that the converse ofLemma 8is not true. That is given(R, n, α, β)which satisfies
either(47) or (48) there need not be a corresponding representationΨ(R, n, α, β). This is
due to the requirement that(45) is satisfied. For example given(R, n, α, β) which is a
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Fig. 3. NonminimalS2 representation, the relationship betweenR andα for n = 11.

solution to(47)such thatn is even andk is old, then form = n/2 we have

cos(β′ +mα)+ R cos(1
2α)= cos(πk − 1

2nα+mα)− cos(β′)
= cos(πk)− cos(β′) = −1 − cos(β′) < 0,

hence(45) is not satisfied.
In general that exact set of(R, n, α, β) which have nonminimalS2 representation is

complicated. InFig. 3 we see the relationship betweenR andα for n = 11. Fig. 3b is
simply a smaller region ofR. Fig. 4 gives four different representations withn = 11, the
first two are acceptable since(45) is satisfied, whereas the second two are unacceptable
since(45) is not satisfied.Fig. 4a and c corresponds to(47). Fig. 4b and d corresponds to
(48).

3.2. T 2-type representations

Again before we look at the different types ofT 2-type representation and when they
exist, we shall give some basic facts aboutT 2-type representation. Recall that for aT 2-type
representationα = 2πk/n.

Fig. 4. Permissible and nonpermissible values ofn,R, α, β (FS: forbidden sector).
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We note take we can still make the replacement given by(40) for m = 0, . . . , n − 1
with ν−1 = νn−1. However in this case the constantCprod = ∏n−1

m=0Cβ+mα is unchanged
under the replacement(40), i.e.Cprod → C′

prod = Cprod. Thus there is a resulting phase
ν = Cprod/|Cprod|.

Lemma 9. If Ψ1 andΨ2 areT 2 representation with the same(R, n, k, β, ν) then they are
equivalent.

If Ψ is a T 2 representation we can find an equivalent representationΨ̃ with the same
(R, n, k, ν) and withβ replaced bỹβ such thatπ − 2π/n < β̃ − (1/2)α ≤ π.

Proof. Since(R, n, k, ν) are the same forΨ1 andΨ2 thenα = 2πk/n is the same forΨ1
andΨ2. By the same argument inLemma 4we can choose basis elements(31) such that
Cβ+mα ∈ R+ for m = 1, . . . , n − 1 and thusCβ = ν|Cβ|. Doing this for bothΨ1 andΨ2
then the action(32), (34)on these basis elements are the same, therefore the representations
are equivalent.

In the proof ofTheorem 3in the case of aT 2 representation when allCθ �= 0 we choose
β to be any value such that eiβ was an eigenvalue ofΨ(u). Since then roots are equally
spaced around the circle we can choose any arc of length 2π/n to placeβ in. The one chosen
makes the calculations below simpler. �

For this section we assume we are given(R, n, k, ν), and we wish to findβ so that
Ψ(R, n, k, β, ν) is T 2-type irreducible representation. Again we defineβ′ = β − (1/2)α.

Lemma 10. Given R, n and k such thatR < cos(π/n) sec(πk/n) there are noT 2 repre-
sentationΨ(R, n, k, β, ν).

Given R, n and k such thatcos(π/n) sec(πk/n) < R ≤ sec(πk/n) then there exist a one
parameter set ofT 2 representationΨ(R, n, k, β, ν) with β in the range

π − 2π

n
+ 1

2
δ < β′ < π − 1

2
δ, where cos

(
1

2
δ

)
= R cos

(
πk

n

)
. (49)

Given R, n and k such thatR > sec(πk/n) there exist a parameter set of irreducibleT 2

representationΨ(R, n, k, β, ν) with the full range ofβ, i.e.π − 2π/n < β′ ≤ π.

Proof. By looking at(33) we see thatΨ(R, n, k, β, ν) is an irreducibleT 2 representation
if only if

cos

(
β′ + 2πmk

n

)
+ R cos

(
πk

n

)
> 0, m = 0, . . . , n− 1, (50)

hence ifR > sec(πk/n), Eq. (50)is satisfied for allβ′, henceΨ(R, n, k, β, ν) is a represen-
tation for allβ.

ForR ≤ sec(πk/n) then similar toLemma 6if we setθ′ = (β′ + 2πmk/n)mod 2π then
θ′ must lie either in the range 0≤ θ′ < π − (1/2)δ or π + (1/2)δ < θ′ < 2π whereδ
is given in(49). Since the set{ei(β′+2πmk/n)|m = 0, . . . , n = 1} are equally spaced then
δ < 2π/n. Hence 0< (1/2)δ < π/n ≤ (1/2)α < (1/2)π and cos is strictly decreasing
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we have 0< cos(π/n) < cos((1/2)δ) < 1. Since cos((1/2)δ) = R cos(πk/n) we have
R > cos(π/n) sec(πk/n).

Sinceβ′ ≤ π thenβ′ ≤ π − (1/2)δ. Now there exists andm such that ei(β
′+2πmk/n) =

ei(β′+2π/n), hence(β′ + 2πmk/n)mod 2π = β′ + 2π/n henceβ′ + 2π/nmust lie either in
the range 0≤ β′ + 2π/n < π − (1/2)δ or the rangeπ + (1/2)δ < β′ + 2π/n < 2π but
sinceβ′ + 2π/n > π we haveβ′ > π+ (1/2)δ+ 2π/n. Thus forΨ to beT 2 representation
we must haveβ′ given by(49).

If β′ is given by(49) then all theθ′ lie in the permitted regions hence(50) so it is a
representation. �

We can see thatΨ is a minimalT 2 representation ifk = 1. Thus we have the following
corollary.

Corollary 11. If R ≤ 1 there are noT 2 representation.

Fig. 5. Permissible region forT 2 representation and an example.
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Given R and n such that1 < R ≤ sec(π/n) then there exist a one parameter set of
irreducibleT 2 minimal representationΨ(R, n, k = 1, β, ν) with β given in(49).

Given R and n such thatR > sec(π/n) there exist a one parameter set of irreducibleT 2

representationΨ(R, n, k = 1, β, ν) with the full range ofβ, i.e.π − 2π/n < β′ ≤ π.

The range of possible(R, α) for minimal T 2 representation is simplyR > 1 andα =
2π/n. These are pictures inFig. 5a.Fig. 5b gives the range of possible(R, α) for n = 11.
Fig. 5c gives an example of aT 2 representation.

3.3. Infinite dimensionalT 2 representations

Like the noncommutative torusA(R) also have infinite dimensional representations. We
shall consider here only the infinite dimensional representations of the form (withH having
the basis{|β +mα〉|m ∈ Z})

u|β +mα〉 = ei(β+mα)|β +mα〉, a−|β +mα〉 = Cβ+mα|β + (m− 1)α〉,
a+|β +mα〉 = Cβ+(m+1)α|β + (m+ 1)α〉, (51)

where

Cβ+mα = (sec(1
2α) cos(β′ +mα)+ R)1/2, β′ = β − 1

2α (52)

and whereα �= 2πn/k for anyn, k ∈ Z. The eigenvalues ofΨ(u) are dense on the circle,
so there exist an infinite dimensional representations if only ifR ≥ sec(α).

If R = sec(α) there also exist semi-infinite dimensionalT 2 representation. These are
given byβ′ = −π. Thusa−|β〉 = 0 anda+|β− α〉 = 0 so we can reduce the Hilbert space
to the subspaces span{| − π + rα〉, r ≥ 0} and span{| − π + rα〉, r ≤ −1}.

4. Conclusion and discussion

Table 1gives a list of all the possible representations. We can see that representations
reflect the topology, but not completely.

There are loosely speaking four regions ofR. If R ≤ −1 then there is either no manifold
M(R) or it is just a point. Consequently there are no representations either.

The next region−1 < R < 1 the algebraA(R) is closest to the noncommutative
sphere. The commutative limit is the sphere, and there exist only minimalS2 representations
which are the closest to the representations of the noncommutative sphere, in that they are
parameterised byn.

In the region 1< R < (1+ε2)1/2 the algebraA(R) is a new object which we may call the
“sphere–torus”. This is a purely noncommutative object since settingε = 0 gives 1< R < 1
so there is no commutative analogue. In this regionA(R)has the minimalS2 representations,
the nonminimalS2 representations and the finite dimensionalT 2 representations.

Only whenR > (1+ε2)1/2 can we say thatA(R) is a deformation of the torus. There are
noS2 representations and, as well as the finite dimensionalT 2 representations, the infinite
T 2 representations exist.
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If any definition of genus is applied to noncommutative geometry it would be interesting
to see what values it would attain for the sphere–torus.
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