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Abstract

A one parameter set of noncommutative complex algebras is given. These may be considered
deformation quantisation algebras. The commutative limit of these algebras correspond to the
algebra of polynomial functions over a manifold or variety. The topology of the manifold or variety
depends on the parameter, varying from nothing, to a point, a sphere, a certain variety and finally
a torus. The irreducible adjoint preserving representations of the noncommutative algebras are
studied. As well as typical noncommutative sphere type representations and noncommutative torus
type representations, a new object is discovered and called a sphere—torus.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In noncommutative geometry we often wish to find analogues to topological properties
of a manifold such as compactness, connectedness and genus, which we will consider here.
For matrix geometriefl] the question of genus is tricky since both the sphere and torus
have matrix analogues.

In deformation quantisatioi2], one can simply take the commutative limit and ask what
the genus of the underlying manifold is. In the case of the sphere and torus, we can also
take the representation of the noncommutative algebra and compare its properties with the
representations of the noncommutative sphere and torus.
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In this paper we present, fection 2a one parameter set of deformation algeb4ér)
for R € R. The commutative limit of these algebras &g M (R)) the commutative algebra
of complex polynomials on the manifold (or variety){(R). This manifold has different
topologies depending on the valuemfVarying from nothing, to a point, a sphere, a variety
and finally a torus. This is described$ection 1.2

In Section 3we look at the finite dimensional representations4gR). These can be
classified as eithes2-type representations @r*-type representations by comparing them
to the representations for the noncommutative torus or the noncommutative sphere. De-
pending on the value ak one or other of these representations exists. What we show in
this paper is that there is a region®fvhere both types of representation exist. This region,
which we shall name thgphere—torusis a purely noncommutative region, it disappears in

the commutative limit.

We summarise the various representation in the concluSiectjon 4

1.1. Notation

Ry
M
C?(M), C*(R")

CoM), CG(R")

A B

Unbold symbols:

fig u,v,xi, Fs,w, x,y,z
Bold symbols:
f.guvxi, Fs,wx,y,2
e

H
LH,H)

M, (C)
1
16)

{t € R|t > 0}
manifold or variety
commutative algebra of complex analytic functions over
MorR’
commutative algebra of complex polynomials over
MorR”
noncommutative algebras ovEr

elements of the commutative algebras, i.e. analytic or
polynomial functions oveM or R

elements of the noncommutative algebras
AandB
element in the centre of the noncommutative algebras
A andB
finite or infinite dimensional Hilbert space
space of linear maps ovéf (bounded or unbounded
operators)
space ofi x n complex matrices
the identity inL(H, H) and the unit matrix inV,, (C)
bra-ket notation for vectors K

1.2. A one parameter set of immersions with a sphere, torus and variety

Consider the immersions given by

M(R) = {(x, y,2) € R} + (x* + y* — R)? = 1. 1)

It is obvious that forR < —1 there is no solution t¢l) while for R = —1, M(R) consists
of the single point at the origitx, y, z) = (0, 0, 0). To picture M(R) for R > —1, we
note that it is axisymmetric about theaxis. Therefore we can examine the shapatfr)
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Fig. 1. Shape of the slice 0¥1 settingy = 0. The shape oM is given by rotating slice about theaxis.

by settingy = 0 and rotating the subsequent one dimensional variety aboutaes.
FromFig. 1we can see that forl < R < 0, M(R) is a convex manifold topologically
equivalent to the sphere. For9® R < 1, M(R) is a nonconvex manifold topologically
equivalent to the sphere. FBr= 1, M(R) is not a manifold but instead a 2D variety, which
is smooth about all points except the origin y, z) = (0,0,0). ForR > 1, M(R) is a
torus.

There is a Poisson structure @4 is given by

{x, v} =z, {z,x} = 2(x* + y*> — R)y = 2wy,
{y,2} = 2(x*> + y? — R)x = 2uwx, )

wherew = x% 4+ y2 — R, which is consistent witi1).
We can give a Darboux coordinate systémg) such that

x = (R+ cos@p)?cos(q),  y=—(R+ cos(2p)*?sin(g),
= Sin(ZP)s (3)

where{p, g} = 1. Itis easy to see th#l) and (2)are satisfied. A necessary condition for
these to be valid i® + cos(2p) > 0. Thus for the toru® > 1 this is valid for allp. More
specifically we can patch coordinate systems with @ < 27 and O< p < n. For the
variety R = 1 we must exclude the poipt= (1/2)7 which correspond to the point at the
origin. For—1 < R < 1 we have—(1/2)(x — arccogR)) < p < (1/2)(w — arccoqR)),
and we must exclude the two points y, z) = (0, 0, +(1 — R?)1/2).

1.3. Brief introduction to deformation quantisation
We limit ourselves in this paper to a the deformation quantisation of algebraic manifolds

and varieties with algebraic Poisson structures. Métsmoothm dimensional Poisson
manifold or variety given by

M={(x1,....,xr) e R|Fs(x1,...,x)=0,s=1...,r —m}, (4)
whereF;(xy, . .., x,;) are polynomials. Letthe Poisson struct{wge} be givenby{x;, x;} =
Cij(x1, ..., xm), whereCjj (xy, . . ., x,,) arealso polynomials. Consistency impliges Fy} =

0. LetC”(M) be the algebra of complex analytic functions.efiand letCg (M) be the
subalgebra of polynomials ifx1, .. ., x,;), this is dense itC® (M).
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Let B be the free noncommutative algebra generatddby. . ., x,, €}, and define the lin-
earmaprs: B C§(R") whereCg (R") is the algebra of polynomials ixy, . . ., x,), via

a5(f + &) = np(f) + np(g), m5(fg) = m5(fHms(g), wa(A) = A,
np(e) =0, (X)) = x;. )

Choose the elemen®, € Bfors = 1,...,r —m andCj € Bfori,j =1,...,r such
thatzg(Fy) = Fy andmp(Cjj) = Cjj. We define the algebrd to be 3 quotiented by the
noncommutative polynomial relationships

[e,x]] =0, F, =0, [xi, x;] = eCj (6)

fori,j=1,...,rands = 1,...,r — m. The first equation ir{6) implies thate is in the
centre ofA. We demand thatl be an associative algebra. This imposes restrictions on the
possible choices oF; andCjj, which we will not investigate here.

We can define the map

7. A CgM), m(e) =0 @
which is surjective. It is easy to see that this gives the Poisson structure via

(r(f), w(g)} = (%[f, g]) . ®)

Thus the following diagram commutes

/{[m1,e] =0, Fs =0, [x;, z;] = eCy;}

B

B

T /{F: =0} J .
C(R7) g (M) (9)

We also demand that there is a conjugate structurd ¥+ A such that
Jot=gTsT.  T=itornec, ahH=np e=e (10

We are interested in representatigns. A — L(H, H) whereL(H, H) is the space of linear
maps on the Hilbert spadé. We demand tha? is irreducible, andl(e) = ¢l wherees €
Ry. IfdimH = nthenl(H, H) = M, (C). Onthe other hand if dirft{ = oo thenL(H, H)
may contain unbounded operators. We also demandtipagserve the conjugate structure
W(fT) = lI/(f)Jr where the dagger on the right is the Hermitian conjugate or adjoint.

We use the bra-ket notation so thatdf € H then¥(f)|0) the action off € A on |6)
is written f6). Since¥ preserves the conjugate we ha(()éfﬂ@) = (0] f10').

We sometimes want to recover the commutative structure from the matrix algebras. This
requires finding a sequence of representatigns. A — M, (C), ¥,(¢) — 0 asn — oc.
However in general there is no canonical mdp(C) — M, 1(C). One exception being
the noncommutative sphejg).
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As stated above, in this paper we give a shall give a one parameter family of such algebras,
whose representations can be compared to those for the sphere and torus. Here we give a
brief summary of these two noncommutative geometries.

Thenoncommutative spheig generated by, y, z, & with

[x, y] = iez, [y.z] =iex, [z, x] = iey, P4y +2=1,
xl=x yi—y, =z (11)

The representations are the finite dimensional irreducible representation$3)f 8@asis
for His |0y, ..., |n — 1) so that

e =2(mn?-1)71? ailry=¢e¢mn —r -2+ 1Y2r + 1),
zlr) = e(r — 3(n — 1)|r), a_|ry = e(n — nY%Y?)r — 1, (12)

wherea, = x+iyanda_ = x —iy are called the ladder elements. We note that the ladder
operators, which are the representations of the ladder elements, tergirate” = 0.
We also note that is unique for each, and that, () — 0 asn — oc.

In our language we theoncommutative torus generated byx1, x2, x3, x4, €} with

x% + x% =1, x% + xi =1, [x1,x2] =0, [x3,x4] =0,

[x1, x3] = —ie(x2x4 + x4x2), [x1, x4] = ie(x2x3 + x3%2),

[x2, x3] = ie(x1x4 + xax1), [x2, x4] = —ie(x1x3 + x3x1),

xI = X1, x-zIL = X2, x-3r = x3, xI = x4. (13)

If we setu = x1 + ix2, v = x3 + ixq, andg = (1 + ie) /(1 — ie) then we derive the usual
noncommutative torus.

t_,t T_

uu' =u'u=1 wl =vTo= 1, uv = quu. (14)
However as we have defined the algel#athe elemeny anqur are not members ofl.
To solve this problem we say thatis generated byx1, x, x3, x4, €, (1 + &)~ 1}.

There are both finite and infinite representations of the noncommutative torus. The finite

dimensional representatiods have a basif), ..., [n — 1)

W,(g) =qll, q=e€"K" ulr) = dFrERIm),
v|r) =|r+1), vjn — 1) = v|0), (15)

wheren,k € N and wherev € C, |v|] = 1 is a phase. We impose thatand k are
relatively prime, so that there are no multiple eigenvalueg@f). There also exist other
more complicated finite dimensional representations of the noncommutative torus where
¥(u) has multiple eigenvalues.

We note that the ladder elements of this representation are givearthUT and that the
ladder operators do not terminakg (v)" # O for alln, m € Z. To specifyy, completely
requires givingn, k, B, v). If k = 1 then¥,(¢) — 1 asn — oo.
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The infinite dimensional representations have a basis € Z, and are determined by
the parameters, 8 € R wherea/2r is irrational
Wg) =ql, g=6%  ury=€"Py),  wr)=|r+1). (16)

The eigenvalues of(u) are dense on unit circle.

2. A (R): the deformation algebra of polynomialson M (R)

In Section 1.2we define a one parameter set of immersidtgr) € R2. The commuta-
tive algebra of complex valued polynomials(iy y, z) on M(R) is writtenCg (M (R)) and
of course is dense i@“ (M (R)). Here we give a one parameter set of complex noncommu-
tative algebrasA(R) with R € R, which are the deformation quantisation@f (M (R)).
EachA(R) is generated byx, y, z, €, (14 &%) ~1} with € in the centre ofA(R). The reason
for including (1 + €2)~1 is similar as for the noncommutative torus. These are related via

[x,y] = iez, [y, z] = ie(wx + xw), [z, x] = ie(wy + yw) a7)
and

4w’ =1, (18)
where we define the elememwte A(R) via

w=x’>+y"—R. (19)
The adjoint operation is given by

X = X, yJr =y, zJr =z, wl = w. (20)
It is easy to see that, assumifiy)—(19)define an associative algebra, then A(R) +—
C3 (M(R)), wheren(x) = x, m(y) = y, 7(z) = z. It also gives with the correct Poisson
structure. We shall show that these relationships define an associative algetnania 2
But first we need to define some new elementd @®) and derive some relationships which
are valid if A(R) is associative.
We define the ladder elements, a_ € A(R) via

ap =x+iy, a_=x—1iy. (21)

In order to emphasise the circular naturewofndz we shall define the elemente A(R)
via

u=w+iz € ARR) (22)
and we show below that is unitary, i.ex’ = u—1.
We define the “pseudo element'via
&= tan(%a) (23)
and observe that is not a member ofA(R). However since € A(R) and(1+ &2)~1 ¢
A(R) then from the tan half angle formulae we have @n= 2e(1 + &)1 € A(R) and
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cos(e) = (1—&2)(1+€&2)~1 € A(R). Also e = (cos(a) £ isin (a))" S0 & € A(R)
foralln € Z.

Before showing that the algebrf( R) is associative we derive some direct consequences
of these definitions.

Lemma 1. From the above definitionsnd the assumption thad(R) is associativewe
have the following relationships

[z,w] =0, (24)

uu’ =ulu =1, (25)

aia_=w+R+ez, a.a;y=w+R—ez (26)

[w,ai] = —e(zay +ay2), [w,a_] = +e(za_- +a_z). (27)
Also

zay = a4 (cos(a)z + sin(a)w), way = ay(—Sin(a)z + cos(w)w),

za_ = a_(cos(a)z — Sin(o)w), wa_ = a_(Sin(a)z + cos(a)w) (28)

or alternatively

ua, =a u€®, ua_ =a_ue'®, uTa+ = a+uT e,
uTa+ —a_uld” (29)

The general elemenft € A(R) can be written uniquely in the form

f= Z Z au Ers(€)+2 Z a_uw'E_,(e) (30)

r=0s=— r=1s=—
for someN € N where for allr, s = —N, ..., N the functior, ;(¢) is a ration function in t
with denominator1 + r2)™ for somem € N.

Proof. Eq. (26)follows automatically fron{21), (19)and the first equation if17). Eq. (27)
follows from:

[w,ai] =[ara_ — R—ez,ar] =ai[a_,ai] —e[z,a1] = —e(2atz + [z, a4])
and likewise for , a_]. For (24) we have
[z,w]=[z,ara_ — R—ez] =[z,a+]a_ +ai[z,a_]

=¢e(wara_+a wa_ —arwa_ —ara_w) =e(wara_ —a a_w)

=—¢laja_,w] = —e[w+ R+ ez, w] = —&°[z, w]

hence(1 + e?)[z, w] = 0, s0 kg, w] = (14 €2)~1(1 + €[z, w] = 0. The unitarity ofu
(25) follow from the definition ofu and the commutativity of andw.
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From(17) and (27)we can have
Zay —a 7 = +eway + earw, —&zay —ea z=wa,L —a,w,

solving these as simultaneous equations and using the tan half angle identity give the first
of results of(28). The other identities if28) follow similarly. The identities in(29) are
then the complex version ¢28).
The generators alll(R) are all of the form(30). Given f of this form, thenfu, fe and
f(1— &~ Lare all of the form30). Also

fa+—z Z arJrl velwcgr (€)+Z Z a

r=0s=— r=1s=—N
1 . . i
X (E(l +ie)u + 5(1 — Its‘)u_1 + R) u’ e_lmf—r,s(E)-

So fa, is of the form(30), likewise for fa_.

For uniqueness, from linearity, itis enough to show thgtii of the form(30)andf = 0
theng, ; = 0 for all r, s. By multiplying f with (1 + ¢2) for sufficiently highM then we
can assume, ; are all polynomials Let: be the Iargest degree of these polynomials. Now

0=n(f) = Z Z (ay) m(w)® s”(0>+2 Z (a-) m(w)*s(0),

r=0s=—N r=1s=—N

so by looking at the coordinate system sm(R) this impliesé, ;(0) = 0 for all , s. Thus
&s(e) = eém(e) Whereém(e) are polynomials of degree m — 1. Continuing this gives
Sr,x = 0. O

Lemma 2. The relationship$19)—(29)define an associative algebra

Proof. Let S be set of all expressions of the for(80). We define a producton S using
the above definitions.

We wish to show thaf's - (f2- f3) = (f1- f2) - fafor f1, fa, f3 € S. Where the inner
bracket must be written in the for(80) first. It is sufficient to show thaf; - (f2 - f3) =
(f1-f2)- fawheref,, fo. fsarefromthe sefu, a,,a_, e, (1+&%)~1}. Thisis because
any expression can be constructed from these five elements. The elementw — u
with w given by(19). If f,, f, or f5 are eithek or (1+ &%)~ then the association relation
holds sinces commutes with all the generators.

The remaining 27 relationships must be proved in turn, the interesting ones are

(u-ay)-a_=a,ue®. a_ = (%(1 —ie)u + %(l—i— ie)u !+ Ru
=u(%(l —ie)u + %(14— i +R) =u- (ay -a-)
and
(@i-a)-ap=GA—-iou+il+ieut+R) -ay
—a; Gl -ioud* + A +ieute* + R)
=a+(%(l+ie)u+%(1—ie)u‘l+R) =ay-(a_-ay). O
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3. Finitedimensional representations of .4 (R)

As mentioned irsection 1we wish to find irreducible representations over a finite Hilbert
spaceH of A(R),i.e.¥: A(R) — L(H,H) = M, (C). Suchthatr(e) = ellwheres € R
and such tha¥ preserves the adjoint operator so tblay“T) = l1/(f)T where the dagger
on the right-hand side is the Hermitian conjugate. We note that sfrm}aTtI/(u) =T we
can diagonalis&(u) and the eigenspaces¥fu) are orthogonal. We shall further assume
thatw(u) has no multiple eigenvalues, so the eigenspacegwf are all one dimensional.
This significantly simplifies the types of representations.

Theorem 3. Let¥: A(R) — L(H,H) = M, (C) be an irreducible adjoint preserving
n dimensional representatiosuch that¥(e) = €1, ¢ € Ry and ¥(u) has no multiple
eigenvalues. Lat be given bytan((1/2)a) = ¢, 0 < o < /2. Then there existg € R,
such that we can label the orthonormal bases#bwhich are the eigenspac@gu)

1B), 1B+ a), B+ 2a),..., |8+ (n—Daj, (31)
where
ulf+ma) =P B+t ma), m=0,....,n—1 (32)

There also exists a set of complex constahis,, € Cform =0, ..., n satisfying
|Cpmal? = sedda) cos(B — 3o + ma) + R (33)
andCgyme # 0form =1,...,n — 1so that
a_|f+ma)=Cpimelf+(m—Da), m=1...,n-1,
ap|p+ma) = Cpiminelf+m+Da), m=0,....n—2. (34)

The action ofa_ and a on the first and last vectors ¢81), respectivelyare given by
either

a_|p) =0, ai|p+(n—Da)=0 (35)
or
a_|p) = Cglp+ (n — Da), a+|f+ (n — Da) = CplB). (36)

In the first caseCg = Cpine = O satisfies(33). In the second cas€p = Cgyne # 0
satisfieq33) and

na = 2nk, (37)
wherek € N, 1 < k < n/2and n and k are relatively prime
Proof. Let|d) be anormalised eigenvectordtu) with eigenvalue. then||? = (9|uTu|9)

= 1 hence we can set= &’. From(22) we havew|6) = cos(6)|6) andz|6) = sin(6)|6).
Let N: R — R be given byN(@®) = sed(1/2)x)cos@® — (1/2)a) + R. From (26)
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we have

lla—16)II” = (Blara|6) = (6](w + tan(ze)z + R)|6)
=cos(9) + tan(3a) sin(6) + R = N(9),

la+16)11 = (Bla—a.|6) = (6](w — tan(3e)z + R)|6)
=cos()) — tan(3a) sin(®) + R = N0 + ).

Thus if |9) is a eigenvector theW(9) > 0 andN(6 + «) > 0. FurthermoreV(6) = 0 <
a_|0) =0andN@® + o) =0« ay|0) =0.
From(29) we have

ua_|0) = a_ue 0y =a_e*e%9) = d0"Yq_jp).

Hence ifN(0) # 0then there must exist another normalised eigenvé#tarith eigenvalue
e0- |f we leta_|0) = Cy|0') then|Cy|2 = N(0). ThusCy is determined fronV(6) up
to a phase.

Similarly ua, |6y = €@ *®qa, |0y = d%a, |0'). Since the eigenspaces fu) are all
one dimensional thea, |0') is parallel to|6). Thus settingi. |0') = Dy|0) then

Dy = (0/|at16) = (fla_10') = Cy

hencea|0') = Cy16).

Claim. We now make the following claim. Let< n and there exists a set of independent
normalised eigenvectorgg + ma)lm = O,...,r — 1} such thatN(8 + ma) > 0O for
m=1,...,r—1. Ifeither

N(B) > 0 anda_|B) = Cgl|B+ (r — D) for some choice ofCg
or
N(PB) =0, and N(B+ra) =0

thenr = n.

Proof of claim. Let V, = spar{|8 + ma)jm = 0, ...,r — 1}. SinceN(B + ma) > 0O for
m=1,...,n—1thenwe candefin€g ,, # Oform =1,..., n—1sothat_|f+ma) =
CpmalB+ (m—Da)form =1,...,r—1anday|B+ma) = Cpymtel B+ (m+ Da)
form=0,...,n—2.

For the first optiom_ |8) = Cg|B+ (r — D) for soCy # 0, so from the argument above
ai|B+ (r — Da) = Cplp).

For the second optiom_|8) = 0 anda |8 + (r — D)) = 0.

Hence, for both cases, the actionigfa, a_ on V, remains inV,. Thus ifr < n then
it is obvious that¥ can be reduced t®,. This contradicts the irreducibility o¥ or the
dimensiorn{ is n. Hencer = n. O

Continuation of proof. SinceN(9) > 0 for all eigenvector$) we have two possibilities.
Either N(0) > O for eigenvector®) or there exists §3) such thatv(g) = 0.
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Taking the first case, tha¥(9)| > 0 all eigenvector$d). Choosegs so that|8) is any
normalised eigenvector @f(u). We choose the phases@f..«, and definds + ma) =
Cﬁ+ma71a+|ﬂ +m—Da)form=1,...,n—1.

From the claim above thg8+ma)|m = 0, ..., n — 1} are independent. Siné&8) > 0
thena_|B) must be parallel to one of the this set. But from the claim the only possibility is
a_|B) = Cg|B + (n — 1)«) for some choice of phase 6f, i.e. (36).

Given condition(36) then

&PCp1B) = uCplp) = war|p + (n — Da) = €%aiulf+ (n — Da)
— e P D0 |84 (n — Do) = FHITy|B).

Hence & = 1 sona = 2rk for some integek. Clearlyk < 1 andk < n/2 so that
0 < a < 7. Also k andn must be relatively prime so that(u) has distinct eigenvalues,
i.e.(37).

Now consider the second possibility. That there exig)auch thatv(8) = 0 and hence
a_|B) = 0. Again we choose the phases®bf, ., and defingp + ma) = C,3+ma_1a+|ﬁ+
(m —Dea)form =1,...,n— 1. These are all independent and none of@he,,, = 0 by
the claim above.

If |8+ (n — Do) # 0 then by the claim abowe, |8+ (n — Do) = CginelB). Hence

|Cﬁ+mx|2 =B+ (n—Deala_ai|B+ (n — Da) = Cptna(f+ (n — Dala—|B) =0
henceCg ., = 0 which contradicta |8 + (n — Da) # 0. Hence(35).

By analogy with the representations of the noncommutative sphere these we shall call rep-
resentations which satis{@5) S2-type representatiorsnd we say 82-type representation
is minimalif
na < 2. (38)

By analogy to the representations of the noncommutative torus we shall call representa-
tions which satisfy(36) T2-type representationand we say &2-type representation is
minimalif

na = 2. (39)

We now wish to find what values OR, n, «, ) give rise to finite dimensional irreducible re-
presentations ofl(R), with no multiple eigenvalues @ (u). Asummary is giveniffable 1

3.1. S2-type representations

Before we look at the different types 6-type representation and when they exist we
shall give some basic facts abdifttype representation.

Lemmad. If ¥ is an S2 representation witl{R, n, «, 8) given inTheorem 3Xhen we can

find a basig31) such thatCg, .« € R. Also there exist an equivalent representatibn

with that same values 6R, n, ) and with replaced by where—27 < g — (1/2)a < 0.
If w1 and ¥, are S2 representation with the sami&, n, «, 8) then they are equivalent
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Table 1
Summary of possible representations for differBr@nde
Null Paint Sphere Variety Sphere—Torus Sphere—Torus bdd Torus
RrangerR, = R<-1 R=-1 -1<R<1 R=1 1<R<R, R=R, R > R,
(14212
Topology of Null2  Point  $2top® 2D variety -9 - T2
manifold
M(R)
e 2 N ™ o
Minimal S _ X X ) (\;9' (\9\ X X
representations
.. 2 ':\ ':\‘
Nonminimal S © X X X X (\j (er' X
representations
H H 2 N N f /0N
Finite dim7? 4 X X X ©° @/. ©
representations
Semico-dim T2  x X X X X 1@) X
representations - )
oo-dim T2 X X X X X C;; (\@t
representations

2No solution to equation.

b M(R) is convex ifR < 0.

¢The point(x, y, z) = (0, 0, 0) not smooth.
dSince(1 + £2)1/2 = 1 so no sphere—torus exists.
€ g range is limited.

f B range excludes one point.

Proof. We can see that givanandg the basig31)is only defined up to a phase, likewise
Cp+ma is also only defined up to a phase. Thus given the\isgte Clv, v, = 1, m =
0,...,n — 1}, we can always make the following replacement:

|B+ ma) = |8+ ma) =v,|B+ ma), Ctma = C}’S+ma = Un—1Vm Cgtma
(40)

without changing=gs. (32) and (34)Thus if we set,, = v;—1Cg4ma/|Cprmal then all
theCy,,,, are real and positive.

Clearly replacingg with B — B + 27k for k € N does not change the representation.
Therefore we can placéin any 2r range. The one chosen makes the calculations below
simpler.

If Y1 andy, are representation with the sar(®, n, «, §) then, setting the g, t0
be real and positive, the basgl) are the same (up to an overall choice phase), and the
action (32), (34) on these basis elements are the same, therefore the representations are
equivalent. O

For the rest of this section we assume we are giResndn, and we wish to findx
and g so that¥(R, n, a, B) is S2-type irreducible representation. Giverand 8 we write
B = B — (1/2)a. For a generab? representatiofi33) and (35jmply

cos(p') = cos(p + na) = —R cos(3a). (41)
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The first equality is solved by settingj + na = 2xk £+ g’ for somek € N. This implies
either

o= @ (42)
n
or
B = nk — ina. (43)

We can now place some simple constraints(8nn, «, ) such thatV(R, n, «, B) is an
irreducibles? representation. Froif#1) we see that fow to be ans? representation then

R < seqla) = (1+&*)? (44)

sinces = tan((1/2)a). By looking at(3) we see that/(R, n, o, ) is an irreducibles?
representation if and only if

cos(f +ma) + R cos(3a) >0, m=1,....,n—1 (45)

3.1.1. MinimalS? representation
The first result is on the existence and uniqueness of miniifype representations.

Lemma5. Given R and n there exists minimgl-type representation if and only #1 <
R < sedm/n). This representation is unique and is given by

cos(3a) + R cos(3a) =0, O0<a <21/n, f =—3na. (46)

Proof. If ¥ is minimal we must excludé2). Since we choosg’ so that—27 < 8/ < 0
from (43)we have—2 < k — na/27 < 0. Applying O < na/27r < 1 we have

no no
2 < o <k§1+2n <1,
thereforek = 0 or —1.

We shall exclude the cage= —1. If k = —1 so that’ = —7 — (1/2)na, therefore
2t < B <—-a NowpB +a = -7 — (1/2)(n — 2)a < —x sincen > 2. Thus—2r <
B < B +a < —m. Since cos is strictly decreasing in the rapglr - - - — 7 we have-1 <
cos(f'+a) < cos(B) < 1.Thus cogpf +a)— cos(B) = cos(B' +a)+R cos((1/2)a) <
0 which contradict$45).

Thus if & is a minimalS? representation we hayé6).

Now consider the functioR(¢) = — cos((1/2)na)/ cos((1/2)x) fortherange O< o <
277/n. We observe thak(0) = —1 andR(27/n) = sedx/n) and

R (@) = (cos(3a)) " 2(3na cos(3a) sin(3na) — 3a cos(ine) sin(3a)
= (cos(3) 23a((n — 1) cos(3a) sin(3na) + sin(3(n — Da)) > 0.
ThusR: {¢]0 < o < 2n/n} — {R| — 1 < R < sedm/n)} is an invertible function so we
can uniquely solvg46). This also implies that1 < R < seqn/n).

We now wish to show that an 8’ satisfying(46)is a representation. This simply requires
showing(45) is satisfied. Consider separately the cases- 1,..., [(1/2)n] andm =
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L(1/2n] + 1,...,n — 1. In the first case we have(1/2n < m — (1/2n < 0 this
implies—n < —(1/2na < (m — (1/2)n)a < 0. Since cos is strictly increasing in this
range we have-1 < cos(—(1/2na) < cos(ma — (1/2)na) < 1 and hencd45) is
satisfied. Likewise ifn = |[(1/2n] +1,...,n —1then 0< m — (1/2)n < (1/2)n so

0 <ma— (1/2na < (1/2)na < 7. Since cos is strictly decreasing in this range we have
—1 < cos((1/2na) < cos(ma — (1/2)na) < 1 and hencég45)is satisfied. O

The minimal $2 representation may be said to be the closest to the representation of
the true noncommutative sphere, since they existfbr< R < 1 when the commutative
limit is a topologically the sphere, they are uniquely determined for gadly n, and
e =tan((1/2)a) — 0 asn — oc.
As Lemma 5shows there exists a minim&f representation of dimensionfor —1 <
R < sedn/n). The relationship betweeR, n anda is showninFig. 2a,n = 2, 3, ... Given
a permittedR andn we can draw a diagram to repres@ntThis an open polygon inside a

forbidden
sector

orbidden
sector

n=8,a=.7,

R=1.003, #=-28
(©)

Fig. 2. The minimalS? representation. Part (a) gives the relationship betwgenanda forn = 2, 3, ... Parts
(b) and (c) represent different representations.
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circle. The vertices are at the pointée™® . Eq. (45)implies that there is a sector (called
the “forbidden sector”) and all the vertices must lie to the right of this sector. The open
polygon begins and ends on the edge of this setgr.2b and c represents representations
for differentn and R. Note forFig. 2c, R > 1.

3.1.2. Nonminimab? representation
The situation for nonminima$? representation is more complicated. We have the fol-
lowing lemmas.

Lemma 6. If ¥ is a nonminimalS2-type representation theR > 1.

Proof. If |0) is a basis vector then fro@5) cos(6) > —R cos((1/2)«). Therefore if we
setd’ = (9) mod 2t so that 0< &' < 27, thend’ must lie either in the range & ¢’ <
7 —(1/2)8orm+(1/2)8 <0 < 27 where co%(1/2)8) = R cos((1/2)«) and O< §. The
range{d’'|r — (1/2)§ < ' < w + (1/2)8} is called the forbidden sector.

Sincey is nonminimal there exists am such that O< (8 +ma) mod 27 < 7 — (1/2)8
andx + (1/2)8§ < (B + (m + Da)mod 2t < 27. Thus 0< § < a < 7. Since cos is
decreasing we have 9 cos((1/2)x) < cos((1/2)8) < 1. Hence result. O

Lemma?7. If R < —1there exist n&2-type representations
Proof. Follows fromLemmas 5 and .8 O
Lemmas. If R > 1then there may exists many nonminirsialtype representation. Given

such a¥(R, n, a, f) thenl < R < sed(1/2)a) and—3/2r < ' < —(1/2)7 and also
(R, n, a, B) obey either

1 1 2
cos(ywz) = (=DF1R cos<§a> , L ca<l

n 2’
ok — L [
B =nk—sna, k= [271] 1 (47)
or
2k -1 k
o= —n, 1<k< (n 5 ), cos(f) = —R cos(n—> . (48)
n n

Proof. From(41) and|cos(8’)| < 1 we haveR < sed(1/2)x). Also sinceR > 0 and
cos((1/2)a) > 0 then cogpB’) < 0then—(3/2)w < B < —(1/2)x.

From (41) we have eithef42) or (43) is true. If (43) is true then from(41) the first
equation in(47)is true. Alsof’/m = k — na/2r so [B' /] = —1 = k — [na/2n].

If (42)is satisfied, then fron41) Eq. (48)is satisfied. O

We note that the converselofmma 8s not true. Thatis give(R, n, «, 8) which satisfies
either(47) or (48) there need not be a corresponding represent&ti@d n, «, B). This is
due to the requirement thé45) is satisfied. For example give(Rr, n, «, ) which is a
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31 31
o «
2+ R = sec(a) 2
14 1
R = sec(a)
@ o 2 4 6 8 R 1 OO0 15 R

Fig. 3. Nonminimals? representation, the relationship betweRanda for n = 11.

solution to(47) such that is even and is old, then form = n/2 we have

cos(f' + ma) + R cos(3a) = cos(k — $na + ma) — cos(p)
= cos(ik) — cos(f’) = —1— cos(B’) < 0,

hence(45)is not satisfied.

In general that exact set @R, n, o, 8) which have nonminimak? representation is
complicated. InFig. 3 we see the relationship betwe@anda for n = 11.Fig. 3 is
simply a smaller region oR. Fig. 4 gives four different representations with= 11, the
first two are acceptable sin€é5) is satisfied, whereas the second two are unacceptable
since(45) is not satisfiedFig. 4a and c corresponds {d7). Fig. 4b and d corresponds to
(48).

3.2. T?-type representations
Again before we look at the different types B-type representation and when they

exist, we shall give some basic facts abdéitype representation. Recall that fora-type
representationr = 27k /n.

/FS &% FS
N=1L,2=220, N=1l,a=2r(3/11), N=1L,a=240, N =11,a=2r(3/11),
R=1978=-267 R =1.50,8=-295 R=2223=-377 R=110,8=-237

(a) (b) (c) (d)

Fig. 4. Permissible and nonpermissible values ok, «, 8 (FS: forbidden sector).
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We note take we can still make the replacement givergd@y for m = 0,...,n — 1
with v_1 = v,_1. However in this case the constai{roq = ]_[Z[:lo Cp+ma is unchanged
under the replacemei0), i.e. Cprod — Cf;rod = Cprod- Thus there is a resulting phase
V= Cprod/|Cprod|-

Lemma9. If ¥; and ¥, are T2 representation with the sam, =, k, 8, v) then they are
equivalent

If ¥ is a T2 representation we can find an equivalent representadfowith the same
(R, n, k, v) and with replaced byg such thatr — 27/n < B — (1/2)« < 7.

Proof. Since(R, n, k, v) are the same fo¥; and¥, thena = 2rk/n is the same fow
andy,. By the same argument iremma 4we can choose basis eleme(®4) such that
Cpime € Ry form =1,...,n — 1 and thusCg = v|Cgl|. Doing this for both;, andy,
then the actiorf32), (34) on these basis elements are the same, therefore the representations
are equivalent.

In the proof ofTheorem 3n the case of &2 representation when all; # 0 we choose
B to be any value such that’ewas an eigenvalue af(u). Since the: roots are equally
spaced around the circle we can choose any arc of leagthtd places in. The one chosen
makes the calculations below simpler. O

For this section we assume we are givgt n, k, v), and we wish to findd so that
U(R, n, k, B, v) is T?-type irreducible representation. Again we defffie= g — (1/2)c.

Lemma 10. Given R n and k such thaR < cos(r/n) sedwk/n) there are nol'2 repre-
sentation/(R, n, k, B, v).
Given Rn and k such thatos(rr/n) sedrk/n) < R < sednk/n) then there exist a one
parameter set of 2 representation’(R, n, k, B, v) with 8 in the range
2 1 1 1 k
n——n+—3<ﬁ’<n——8, where cod =s) = Rcos( = ). (49)
n 2 2 2 n
Given R n and k such thaR > sedrk/n) there exist a parameter set of irreduciti®
representationV(R, n, k, B, v) with the full range of8, i.e.m — 2n/n < B < .

Proof. By looking at(33) we see that?(R, n, k, B, v) is an irreduciblel’? representation
if only if

27rmk k
cos(ﬂ’+—nm>+Rcos<—n>>O, m=20,...,n—1, (50)
n n

hence ifR > sedrk/n), Eq. (50)is satisfied for al’, hence?(R, n, k, B, v) is a represen-
tation for all 8.

For R < sedrk/n) then similar to_,emma 6if we setd’ = (8’ + 2rmk/n) mod 27 then
0" must lie either intherange & 8 < = — (/2§ or r + (1/2)§ < 6 < 2w whered
is given in(49). Since the setd #+2mMKn) |, — 0, ... n = 1} are equally spaced then
8 < 2n/n. Hence O< (1/2)8 < n/n < (1/2)a < (1/2)x and cos is strictly decreasing
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we have O< cos(wr/n) < c0s((1/2)8) < 1. Since cos$(1/2)8) = R cos(wk/n) we have
R > cos(rr/n) sedrnk/n).

Sincep’ < mthenp < m — (1/2)8. Now there exists ang: such that BF +2rmk/n) —
g +27/m hence(g + 2rmk/n) mod 2t = B + 27/n henceB’ + 27r/n must lie either in
the range O< B’ + 2n/n < m — (1/2)8 or the ranger + (1/2)8 < B’ + 2n/n < 27 but
sincep’ + 2/n > m we haves’ > 7+ (1/2)8 + 2r/n. Thus ford to beT? representation
we must haves’ given by(49).

If g’ is given by(49) then all the?’ lie in the permitted regions hengB0) so it is a
representation. O

We can see thak is a minimalT? representation it = 1. Thus we have the following
corollary.

Corollary 11. If R < 1 there are nol'? representation

3 R = sec(a) 3 R = sec(a

&7 ¥

2 // .z//

11 f/ 1
f
¢ 2 3 4 RSs 0t 2 4 6 8 R
Minimal 7% representation, Relationship between R, a
Relationship between R, n. a, for n=11.
(a) forn=2.3,... (b)
S

N=11,a =2x(3/11),
(©) R=110,=-29

Fig. 5. Permissible region fdf? representation and an example.
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Given R and n such thd < R < sedn/n) then there exist a one parameter set of
irreducible 72 minimal representatio®(R, n, k = 1, 8, v) with 8 given in(49).

Given R and n such tha& > sedxr/n) there exist a one parameter set of irreduciBie
representation’(R, n, k = 1, 8, v) with the full range o3, i.e.m — 27/n < 8/ < 7.

The range of possiblér, ) for minimal 72 representation is simplR > 1 anda =
2r/n. These are pictures Rig. 5a. Fig. 5o gives the range of possib{®, «) for n = 11.
Fig. 5c gives an example of & representation.

3.3. Infinite dimensional? representations
Like the noncommutative torud(R) also have infinite dimensional representations. We
shall consider here only the infinite dimensional representations of the form#w¥itiving

the basig|8 + ma)|m € Z})

ulp+ma) =PI g L ma),  a_|f+ma) = Cpimalp+ (m — D),

ai|p+ma) = Cpyrmitalp + (m+ Da), (51)
where
Cpima = (5€Q30) COS(B +ma) + B2, B =p— o (52)

and wherex # 2zn/k for anyn, k € 7Z. The eigenvalues of(u) are dense on the circle,
so there exist an infinite dimensional representations if onky/ 3 secw).

If R = sedw) there also exist semi-infinite dimensiori&d representation. These are
given by’ = —m. Thusa_|B) = 0 anda, |8 — o) = 0 so we can reduce the Hilbert space
to the subspaces span- 7 + ra), r > 0} and spafl — 7 + ra), r < —1}.

4. Conclusion and discussion

Table 1gives a list of all the possible representations. We can see that representations
reflect the topology, but not completely.

There are loosely speaking four regionsfofif R < —1 then there is either no manifold
M(R) or itis just a point. Consequently there are no representations either.

The next region—1 < R < 1 the algebraA(R) is closest to the nhoncommutative
sphere. The commutative limit is the sphere, and there exist only misfmapresentations
which are the closest to the representations of the noncommutative sphere, in that they are
parameterised by.

Inthe region 1< R < (1+&2)Y/2the algebrad(R) is a new object which we may call the
“sphere—torus”. Thisis a purely noncommutative object since settin@ gives1< R < 1
sothere is no commutative analogue. In this regd¢R) has the minima$? representations,
the nonminimals? representations and the finite dimensiofiakrepresentations.

Only whenR > (1+¢2)Y/2 can we say thatl(R) is a deformation of the torus. There are
no 2 representations and, as well as the finite dimensidAakpresentations, the infinite
T2 representations exist.
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If any definition of genus is applied to noncommutative geometry it would be interesting
to see what values it would attain for the sphere—torus.
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