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a b s t r a c t

Left invariant flat metrics on Lie groups are revisited in terms of left-symmetric algebras
which correspond to affine structures. There is a left-symmetric algebraic approach with
an explicit formula to the classification theorem given by Milnor. When the positive
definiteness of the metric is replaced by nondegeneracy, there are manymore examples of
left invariant flat pseudo-metrics, which play important roles in several fields in geometry
andmathematical physics. We give certain explicit constructions of these structures. Their
classification in low dimensions and some interesting examples in higher dimensions are
also given.
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1. Introduction

It is important and natural to study plenty of geometric structures on a Lie group G with a Riemannian metric invariant
under left translation. In [1], Milnor studied the curvatures of left invariant metrics on Lie groups which outline ‘‘what is
the Riemannian geometry of such a Lie group’’. In particular, as an extreme case, he gave a detailed structure theory on flat
metrics, that is, the curvature is zero (Theorem 1.5 in [1]). Basically the study is pure Lie-algebraic and from ‘‘metrics’’ to
‘‘connections’’. Explicitly, in order to give the structure of the Lie algebra g consisting of all smooth left invariant vector fields
on a Lie group Gwith a left invariant flat Riemannian metric g , Milnor considered the left invariant Riemannian connection
∇ associated to g , that is, ∇ satisfies the ‘‘symmetry’’ condition (torsion free)

∇xy − ∇yx = [x, y], ∀ x, y ∈ g, (1.1)

and the compatibility condition (the parallel translation preserves the metric g [2])

g(∇xy, z) + g(y, ∇xz) = 0, ∀x, y ∈ g, (1.2)

and in addition, the flatness of the connection ∇ or the metric g corresponds to

Rxyz = ∇[x,y]z − ∇x∇yz + ∇y∇xz = 0, ∀x, y, z ∈ g, (1.3)

that is, the Riemannian curvature tensor R is zero.
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Conversely, one may consider another approach from ‘‘connections’’ to ‘‘metrics’’ in the above study. That is, one can try
to find a left invariant Riemannianmetric g associated to a left invariant connection∇ satisfying Eqs. (1.1) and (1.3) such that
the compatibility (1.2) holds. In fact, manifolds (not necessarily Riemannian) or Lie groups with a connection ∇ satisfying
Eqs. (1.1) and (1.3) have already been studied independently. Such structures are called affine manifolds or affine structures
on Lie groups ([3–6], etc.). They are natural generalizations of Euclidean structures. Like most of geometric structures on Lie
groups, the study of left invariant affine structures on a Lie group can be given through corresponding structures on its Lie
algebra. Left invariant affine structures on a Lie group G bijectively correspond to left-symmetric algebra structures on the
Lie algebra g of G and the correspondence is given by

∇xy = xy, ∀x, y ∈ g. (1.4)

Left-symmetric algebras also appear in many other fields in mathematics and mathematical physics (see [7] and the
references therein).

So it is natural to study left invariant Riemannian metrics on a Lie group G by considering left invariant affine structures
on G with a compatible Riemannian metric in terms of their corresponding left-symmetric algebras, which is one main
motivation of this paper. We would like to point out that such an approach has already been appeared before. For example,
there is also a proof ofMilnor’s classification theorem in terms of left-symmetric algebras in [8]. On the other hand, although
the notion of left-symmetric algebra was not mentioned in [1], some essential results in the study of Milnor (see the proof
of Theorem 1.5 in [1]) were in fact related to left-symmetric algebras. For example, in [1], Milnor proved that the linear map
x → ∇x gives a homomorphism of Lie algebras which is exactly an essential property of the left-symmetric algebra given
by Eq. (1.4). Furthermore, comparing with the study in [1,8], our left-symmetric algebraic approach cannot provide more
newer results (in fact, the left-symmetric algebras appearing here are quite special since their products can be expressed
through their sub-adjacent Lie algebras which explains why only the theory of Lie algebras is enough in [1]), but it can give
a more practicable and explicit structure theory to Milnor’s classification theorem, which leads to the classification in low
dimensions easily.

Moreover, it is not all what we want to do in this paper so far. In fact, it is easy to know from Milnor’s classification
theorem or the left-symmetric algebraic approach that there are quite few Lie groups with a left invariant flat metric since
the constraint condition of the positive definiteness of the metric seems a little strong. So it is natural to generalize the
positive definiteness to be nondegenerate, that is, a left invariant flat pseudo-Riemannian metric.

Both left invariant flat metrics and pseudo-metrics on Lie groups are studied extensively due to their close relationships
with many structures in geometry and mathematical physics. For example, left invariant flat metrics were applied to
study Kähler structures on Lie groups [9–12] and then closely related to a theory of double extensions [13]. Left invariant
flat pseudo-metrics are related to a special class of symplectic Lie groups ([14,12,15–17], etc.), namely, parakähler Lie
groups [18–22], which are (non-abelian) phase spaces introduced by Kupershmidt in mathematical physics [23,24,20]
when the base field is extended to the complex number field. Explicitly, a parakähler structure on a Lie algebra which is
a symplectic Lie algebra with a decomposition into a direct sum of underlying vector spaces of two Lagrangian subalgebras,
is equivalent to a bialgebra structure, namely, left-symmetric bialgebra. On the other hand, a left invariant flat pseudo-
metric on a left-symmetric algebra is an invertible symmetric solution of an algebraic equation (namely, S-equation) in
this left-symmetric algebra whose every symmetric solution induces a (coboundary) left-symmetric bialgebra and hence a
parakähler structure [21].

Many examples are also given ([25,8], etc.). However, most results and examples are scattered in different presentations
(mainly in terms of Lie algebras) under different backgrounds. In this paper, we give a systematic study in terms of left-
symmetric algebras. Many examples are also given in a unified presentation (in terms of left-symmetric algebras) which
can be a guide for further development, although some of them overlap with certain known results. We would also like to
point out that there is a double construction of a Lie group with a left invariant flat pseudo-metric in terms of L-dendriform
algebras, whose certain commutators are left-symmetric algebras [26].

The paper is organized as follows. In Section 2, we briefly recall some basic facts on left-symmetric algebras. In Section 3,
we give a left-symmetric algebraic approach toMilnor’s classification theorem. In Section 4, we give an explicit construction
of left invariant flat metrics and their classification in low dimensions based on the study in Section 3. In Section 5, we give
some properties of a left-symmetric algebra with a nondegenerate symmetric left invariant bilinear form and a construction
from linear functions. In Section 6, the classification of complex left-symmetric algebras with nondegenerate symmetric left
invariant bilinear forms in low dimensions and some interesting examples in higher dimensions are given.

Throughout this paper, all algebras are finite-dimensional over the real number field R or the complex number field C.

2. Preliminaries on left-symmetric algebras

In order to be self-contained, we recall some basic facts on left-symmetric algebras (cf. [5,6], etc.)

Definition 2.1. Let A be a vector space over a field F with a bilinear product (x, y) → xy. A is called a left-symmetric algebra
if for any x, y, z ∈ A, the associator

(x, y, z) = (xy)z − x(yz) (2.1)



1602 Z. Chen et al. / Journal of Geometry and Physics 62 (2012) 1600–1610

is symmetric in x, y, that is,

(x, y, z) = (y, x, z), or equivalently (xy)z − x(yz) = (yx)z − y(xz). (2.2)

Let A be a left-symmetric algebra. For any x, y ∈ A, let L(x) and R(x) denote left and right multiplication operators
respectively, that is, L(x)(y) = xy, R(x)(y) = yx.

Proposition 2.2. Let A be a left-symmetric algebra.

(1) The commutator

[x, y] = xy − yx, ∀x, y ∈ A, (2.3)

defines a Lie algebra g(A), which is called the sub-adjacent Lie algebra of A and A is also called a compatible left-symmetric
algebraic structure on the Lie algebra g(A).

(2) Let L : A → gl(A) be a linear map defined by x → L(x) (for every x ∈ A). Then L gives a representation of the Lie algebra
g(A), that is,

[L(x), L(y)] = L([x, y]), ∀x, y ∈ A. (2.4)

Proposition 2.3 ([27]). If a real or complex Lie algebra g has a compatible left-symmetric algebraic structure, then [g, g] ≠ g.

Definition 2.4. Let A be a left-symmetric algebra. A bilinear form f : A × A → F is called left invariant if f satisfies

f (xy, z) + f (y, xz) = 0, ∀x, y, z ∈ A. (2.5)

A bilinear form f : A × A → F is called a 2-cocycle of A if

f (xy, z) − f (x, yz) = f (yx, z) − f (y, xz), ∀x, y, z ∈ A. (2.6)

In addition, a real left-symmetric algebra A is called Hessian if there exists a positive definite symmetric 2-cocycle f of A.

In geometry, a Hessian manifold M is a flat affine manifold provided with a Hessian metric g , that is, g is a Riemannian
metric such that for each point p ∈ M there exists a C∞-function ϕ defined on a neighborhood of p such that gij =

∂2ϕ
∂xi∂xj

.
A Hessian left-symmetric algebra corresponds to an affine Lie group G with a G-invariant Hessian metric [11].

Obviously, any left invariant bilinear form on a left-symmetric algebra is a 2-cocycle and hence a real left-symmetric
algebra with a positive definite symmetric left invariant bilinear form is Hessian.

Proposition 2.5. Let A be a left-symmetric algebra. Then there exists a nondegenerate left invariant bilinear form if and only if
the representation L of the sub-adjacent Lie algebra g(A) is isomorphic to its dual representation L∗, where L∗

: A → gl(A∗) is
given by

⟨L∗(x)a∗, y⟩ = −⟨a∗, L(x)y⟩ = −⟨a∗, xy⟩, ∀ x, y ∈ A, a∗
∈ A∗. (2.7)

Here ⟨, ⟩ is the ordinary pair between A and A∗.

3. A left-symmetric algebraic approach to left invariant flat metrics on Lie groups

Aswe have indicated in the Introduction, the study of left invariant flat metrics on Lie groups can be reduced to the study
of real left-symmetric algebras with positive definite symmetric left invariant bilinear forms.

In this section, we always let A be a real left-symmetric algebra and f be a positive definitive symmetric left invariant
bilinear form on A. For any subspace V in A, set

V⊥
= {x ∈ A | f (x, y) = 0, ∀ y ∈ V }. (3.1)

Recall that the adjoint F∗ of a linear transformation F on A with f is defined by the formula

f (F(x), y) = f (x, F∗(y)), ∀ x, y ∈ A. (3.2)

The transformation F is self-adjoint if F∗
= F and skew-adjoint if F∗

= −F . So Eq. (2.5) is equivalent to the fact that L(x) is
skew-adjoint for any x ∈ A. For any Lie algebra g, adx is the linear transformation given by adx(y) = [x, y] for any x, y ∈ g.

Lemma 3.1. [A, A]
⊥

= {x ∈ A | R(x) = R(x)∗}.

Proof. For any x, y, z ∈ A, x ∈ [A, A]
⊥ if and only if f (x, [y, z]) = 0, if and only if f (x, yz) − f (x, zy) = 0, if and only if

f (R(x)y, z) = f (R(x)z, y), if and only if R(x) = R(x)∗. �

Lemma 3.2. [A, A]
⊥

= {x ∈ A | R(x) = 0}.



Z. Chen et al. / Journal of Geometry and Physics 62 (2012) 1600–1610 1603

Proof. For any x ∈ [A, A]
⊥ and y ∈ A, by Lemma 3.1, we show that

f (xx, y) = f (R(x)x, y) = f (x, R(x)y) = f (x, yx) = 0.

Hence xx = 0 due to the positive definiteness of f . For any x ∈ [A, A]
⊥, R(x) is diagonalizable over the real number field

R since it is self-adjoint. Let λ ∈ R be an arbitrary eigenvalue of R(x) and y ∈ A be a non-zero eigenvector associated to λ.
Since (xy)x − x(yx) = (yx)x − y(xx), we show that (xy)x − λxy = λ2y. Hence

λ2f (y, y) = f ((xy)x − λxy, y) = f ((xy)x, y) = f (xy, yx) = λf (xy, y) = 0.

Therefore λ = 0 and then R(x) = 0. �

Lemma 3.3. AA = [A, A].

Proof. In fact, x ∈ (AA)⊥ if and only if f (x, yz) = 0, ∀y, z ∈ A, if and only if f (yx, z) = 0, ∀y, z ∈ A, if and only if
R(x)y = 0, ∀y ∈ A, if and only if R(x) = 0. Then by Lemma 3.2, we show that AA = [A, A]. �

For any subalgebra V in A, we let CR(V ) = {x ∈ V | R(x)|V = 0}. In particular, CR(A) = [A, A]
⊥ due to Lemma 3.2.

Proposition 3.4. As left-symmetric algebras, [A, A] is a proper ideal of A with zero products.

Proof. Obviously, AA is an ideal of the left-symmetric algebra A. Then [A, A] is an ideal of A by Lemma 3.3. Moreover, A splits
as an orthogonal direct sum

A = [A, A]
⊥

⊕ [A, A] = CR(A) ⊕ [A, A].

By Proposition 2.3, we show that [A, A] ≠ A. Hence CR(A) ≠ 0. As a special case in Corollary 5.8 in [22], A is solvable as a Lie
algebra. Then there exists a positive integerm such that

A % A(1) % · · · % A(m−1) % A(m)
= 0,

where A = A(0) and A(i)
= [A(i−1), A(i−1)

]. Assume thatm ≥ 3. Then we have

A(m−2)
= CR(A(m−2)) ⊕ A(m−1). (3.3)

Here A(m−2) is nilpotent as a Lie algebra since A is solvable and m ≥ 3. Let C(A(m−2)) be the center of the Lie algebra A(m−2).
By a known result (for example, the lemma in page 13 of [28]), C(A(m−2)) ∩ A(m−1)

≠ 0. Let x be a non-zero element in
C(A(m−2)) ∩ A(m−1). Since x ∈ Am−1, by Lemma 3.3 and Eq. (3.3), xy = 0 for any y ∈ A(m−2). Hence x ∈ CR(A(m−2)) since
x ∈ C(A(m−2)). So x = 0, which is a contradiction. Then we havem ≤ 2. Hence the conclusion holds. �

A key role for the structure theory of left-symmetric algebras is played by the notion of transitive algebra. A left-
symmetric algebra A is called transitive if R(x) is nilpotent for any x ∈ A. By Proposition 3.4, we have

Corollary 3.5. Any left-symmetric algebra with a positive definite symmetric left invariant bilinear form is transitive.

Lemma 3.6. Let H be a subalgebra of A with zero products and V be a subspace of A such that L(x)V ⊆ V for any x ∈ H. Then
{L(x)|V }x∈H is a family of commutative linear transformations on V .

Proof. For any x, y ∈ H, z ∈ V ,

L(x)(L(y)z) = x(yz) = x(yz) − (xy)z = y(xz) − (yx)z = y(xz) = L(y)(L(x)z)

since xy = yx = 0. Therefore L(x)|V L(y)|V = L(y)|V L(x)|V . �

Proposition 3.7. The dimension of [A, A] is even. As a consequence, AA = 0 if A is a 2-dimensional real left-symmetric algebra
with a positive definitive symmetric left invariant bilinear form.

Proof. By Lemma 3.6, {L(x)|[A,A]}x∈CR(A) is a family of commutative linear transformations on [A, A]. Then we get that
dim [A, A] is even by the skew-adjoint property of L(x)|[A,A] for any x ∈ CR(A). Obviously, AA = 0 if and only if
dim[A, A] = dim AA = 0. So if products of A are non-zero, then dim A > dim[A, A] ≥ 2. �

From the above discussion, we have the following structure theory.

Theorem 3.8. A positive definite bilinear form is left invariant with respect to a left-symmetric algebra A if and only if A splits as
an orthogonal direct sum A = [A, A] ⊕ CR(A), where CR(A) is a non-zero subalgebra with zero products, [A, A] is an ideal with
even dimension and zero products, and where the linear transformation R(x) = 0 and L(x) is skew-adjoint for any x ∈ CR(A).

Let Ann(A) = {x ∈ A|xy = yx = 0, ∀y ∈ A}be the annihilator ofA. Obviously, Ann(A) is an ideal ofA andAnn(A) ⊆ CR(A).
Set b = {x ∈ CR(A)|f (x, y) = 0, ∀y ∈ Ann(A)}. Therefore CR(A) splits as an orthogonal direct sum CR(A) = b ⊕ Ann(A).
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Lemma 3.9. dim b ≤ dim [A, A]/2.

Proof. By Lemma 3.6 and the definition of b, {L(x)|[A,A]}x∈b is a family of non-zero commutative skew-adjoint linear
transformations on [A, A]. Then dim b is not greater than the rank of the semisimple Lie algebra so(dim[A, A]). So dim b ≤

dim[A, A]/2. �

Theorem 3.8 can be rewritten as the following conclusion.

Theorem 3.10. A positive definite bilinear form is left invariant with respect to a left-symmetric algebra A if and only if A splits
as an orthogonal direct sum b ⊕ Ann(A) ⊕ [A, A], where b is a subalgebra with zero products, [A, A] = AA is an ideal with even
dimension and zero products, dim b ≤ dim [A, A]/2, and where the linear transformation R(x) = 0 and L(x) ≠ 0 is skew-adjoint
for any non-zero x ∈ b.

The following conclusion involving the corresponding structure of the sub-adjacent Lie algebra is obvious.

Theorem 3.11. A Lie group G with a left invariant metric is flat if and only if the associated Lie algebra g splits as an orthogonal
direct sum b ⊕ C(g) ⊕ [g, g], where b is a commutative subalgebra, C(g) = {x ∈ g|[x, y] = 0, ∀y ∈ g} is the center of g, [g, g]

is a commutative ideal (with even dimension), dim b ≤ dim [g, g]/2, and where the linear transformation adb is skew-adjoint
for any b ∈ b. Furthermore, the compatible connection is given by

∇u = 0, ∇b = ad(b) ≠ 0, ∀ u ∈ C(g) ⊕ [g, g], 0 ≠ b ∈ b. (3.4)

Set u = C(g) ⊕ [g, g]. Then the Milnor’s classification is obtained immediately.

Theorem 3.12 ([1, Theorem 1.5]). A Lie group G with a left invariant metric is flat if and only if the associated Lie algebra g

splits as an orthogonal direct sum b ⊕ u, where b is a commutative subalgebra, u is a commutative ideal, and where the linear
transformation adb is skew-adjoint for any b ∈ b. Furthermore, if these conditions are satisfied, then

∇u = 0, ∇b = ad(b), ∀u ∈ u, b ∈ b. (3.5)

4. An explicit construction of left invariant flat metrics and their classification in low dimensions

From the study in the previous section, it is not difficult to give an explicit construction in any dimension of the Lie
algebras in Theorem 3.12 or the left-symmetric algebras in Theorem 3.10 by a more convenient and direct way.

Theorem 4.1. Let A be a real left-symmetric algebra with a positive definitive symmetric left invariant bilinear form f . Then there
exist a basis {e1, . . . , em} of b and a basis {x1, . . . , x2n} of [A, A] and integers 1 = k1 < k2 < · · · < km ≤ n such that

ejx2i−1 = −αi(ej)x2i, ejx2i = αi(ej)x2i−1, j = 1, . . . ,m; i = 1, . . . , n,

where αi(ej) = 0 when 1 ≤ i < kj, αkj(ej) = 1 and 1 = α1(e1) ≥ α2(e1) ≥ · · · ≥ αn(e1) > 0.

Proof. Let dim [A, A] = 2n and dim b = m. By Lemma 3.6, {L(x)|[A,A]}x∈CR(A) is a family of commutative linear
transformations on [A, A]. By the skew-adjoint property of L(x)|[A,A] for any x ∈ CR(A), there exists a basis {x1, . . . , x2k}
of [A, A] such that f (xi, xj) = δij and for any y ∈ b,

yx2i−1 = −αi(y)x2i, yx2i = αi(y)x2i−1, i = 1, . . . , n,

and for any i (1 ≤ i ≤ n), there exists an element y ∈ b such that αi(y) ≠ 0.
Let Vi = {x ∈ b|αi(x) = 0}. Then for any i, Vi is a proper subspace of b. Hence

n
i=1 Vi ≠ b. So there exists an element

y1 such that αi(y1) ≠ 0 for any i (1 ≤ i ≤ n). We can suppose that αi(y1) > 0 for any i since if there exists j such that
αj(y1) < 0, then after replacing x2j−1 by −x2j−1, αj(e1) is replaced by −αj(e1), that is,

y1(−x2j−1) = −(−αj(y1))x2j, y1x2j = (−αj(y1))(−x2j−1).

Furthermore, after re-arranging the order of x1, . . . , x2n which is still denoted by x1, . . . , xn, we can suppose that

α1(y1) ≥ α2(y1) ≥ · · · ≥ αn(y1) > 0.

Let e1 =
y1

α1(y1)
, then

1 = α1(e1) ≥ α2(e1) ≥ · · · ≥ αn(e1) > 0.

Choose y′

2, . . . , y
′
m such that {e1, y′

2, . . . , y
′
m} is a basis of b. Set yi = y′

i − α1(y′

i)e1 for i ≥ 2. Then {e1, y2, . . . , ym} is still a
basis of b and α1(yi) = 0 for any i ≥ 2. Let k2 be the minimal l such that αl(yi) ≠ 0 for some i. Without loss of generality,
assume that αk2(y2) ≠ 0. Let e2 =

y2
αk2 (y2)

. Then we have

e2x2i−1 = e2x2i = 0, i = 1, . . . , k2 − 1; e2x2k2−1 = −x2k2 , e2x2k2 = x2k2−1.



Z. Chen et al. / Journal of Geometry and Physics 62 (2012) 1600–1610 1605

Therefore, by induction, there exist e3, . . . , em and integers k3, . . . , km such that {e1, . . . , em} is a basis of b and k2 < k3 <
· · · < km ≤ n satisfying

ejx2i−1 = −αi(ej)x2i, ejx2i = αi(ej)x2i−1, j = 3, . . . ,m; i = 1, . . . , n,

where αi(ej) = 0 when 1 ≤ i < kj and αkj(ej) = 1 for j ≥ 3. Hence the conclusion follows. �

Remark 4.2. In fact, the converse of the above conclusion is still true. That is, if a left-symmetric algebra A has a basis
{f1, . . . , ft , e1, . . . , em, x1, . . . , x2n} such thatm ≤ n,

L(fi) = R(fi) = R(ej) = 0, xkxl = 0, ∀i = 1, . . . , t; j = 1, . . . ,m; k, l = 1, . . . , 2n,

and other products satisfy equations given in Theorem 4.1, then there exists a positive definitive symmetric left invariant
bilinear form on A.

Corollary 4.3. Let A be a real left-symmetric algebrawith a positive definitive symmetric left invariant bilinear form. If dim b = 1
and Ann(A) = 0, then there exists a basis {e1, e2, . . . , e2n+1} of A satisfying

e1e2k = −λke2k+1, e1e2k+1 = λke2k, k = 1, . . . , n, 1 = λ1 ≥ λ2 ≥ · · · ≥ λn > 0,

and the others are zero. Moreover, they are not mutually isomorphic for different {λ1, . . . , λn}.

Proof. The first half follows immediately from Theorem 4.1. The second half follows from the fact that ±λ1, . . . ,±λn are
all the eigenvalues of L(e1)|[A,A]. �

Corollary 4.4. Let A be a real left-symmetric algebra with a positive definitive symmetric left invariant bilinear form. Let
dim [A, A] = 2n ≤ 6 and Ann(A) = 0. Then A is isomorphic to one of the following (non-isomorphic mutually) left-symmetric
algebras (only non-zero products are given).

(1) n = 0 : AA = 0.
(2) n = 1 : e1e2 = −e3, e1e3 = e2.
(3) n = 2:

(a) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, 1 ≥ α > 0;
(b) e1e3 = −e4, e1e4 = e3, e2e5 = −e6, e2e6 = e5.

(4) n = 3:
(a) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, e1e6 = −βe7, e1e7 = βe6, 1 ≥ α ≥ β > 0;
(b) e1e3 = −e4, e1e4 = e3, e1e5 = −αe6, e1e6 = αe5, e2e7 = −e8, e2e8 = e7, 1 ≥ α > 0;
(c) e1e3 = −e4, e1e4 = e3, e1e5 = −αe6, e1e6 = αe5, e2e5 = −e6, e2e6 = e5, e2e7 = −βe8, e2e8 = βe7, 1 ≥ α >

0, β > 0;
(d) e1e4 = −e5, e1e5 = e4, e2e6 = −e7, e2e7 = e6, e3e8 = −e9, e3e9 = e8.

Proof. Cases (1) (n = 0) and (2) (n = 1). The results are obvious by Theorem 4.1.
Case (3) (n = 2). There are two subcases.

Case (3–1) dim b = 1. By Corollary 4.3, A is isomorphic to the type (a) of Case (3).
Case (3–2) dim b = 2. By Theorem 4.1, there exist a basis {e1, e2} of b and a basis {e3, e4, e5, e6} of [A, A] such that

e1e3 = −e4, e1e4 = e3, e1e5 = −αe6, e1e6 = αe5, e2e5 = −e6, e2e6 = e5, 1 ≥ α > 0.

Replacing e1 by e1 − αe2, we get the type (b) of Case (3).
Case (4) (n = 3). There are three subcases.

Case (4–1) dim b = 1. By Corollary 4.3, A is isomorphic to the type (a) of Case (4).
Case (4–2) dim b = 2. There are two additional subcases:

Case (4–2-i) k2 = 2. By Theorem 4.1, there exist a basis {e1, e2} of b and a basis {e3, e4, e5, e6, e7, e8} of [A, A] such that

e1e3 = −e4, e1e4 = e3, e1e5 = −αe6, e1e6 = αe5, e1e7 = −βe8, e1e8 = βe7,
e2e5 = −e6, e2e6 = e5, e2e7 = −γ e8, e2e8 = γ e7, 1 ≥ α ≥ β > 0.

If γ = 0 or β = αγ , then we get the type (b) of Case (4) by replacing e1 by e1 − αe2. If γ ≠ 0 and β ≠ αγ , then we get the
type (c) of Case (4) by replacing e1 by e1 −

β

γ
e2.

Case (4–2-ii) k2 = 3. By Theorem 4.1, there exist a basis {e1, e2} of b and a basis {e3, e4, e5, e6, e7, e8} of [A, A] such that

e1e3 = −e4, e1e4 = e3, e1e5 = −αe6, e1e6 = αe5, e1e7 = −βe8, e1e8 = βe7,
e2e7 = −e8, e2e8 = e7, 1 ≥ α ≥ β > 0.

Replacing e1 by e1 − βe2, we get the type (b) of Case (4).
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Case (4–3) dim b = 3. By Theorem 4.1, there exist a basis {e1, e2, e3} of b and a basis {e4, e5, e6, e7, e8, e9} of [A, A] such that

e1e4 = −e5, e1e5 = e4, e1e6 = −αe7, e1e7 = αe6, e1e8 = −βe9, e1e9 = βe8,
e2e6 = −e7, e2e7 = e6, e2e8 = −γ e9, e2e9 = γ e8,
e3e8 = −e9, e3e9 = e8, 1 ≥ α ≥ β > 0.

Replacing e2 by e2 − γ e3 and e1 by e1 − αe2 + (αγ − β)e3, we get the type (d) of Case (4).
Furthermore, it is not difficult to show that they are not isomorphic mutually. �

Although it is not difficult at all, it is a little complicated to give the explicit classification for the cases dim[A, A] ≥ 8 (or
dim b ≥ 2). Nevertheless, from above results, it is enough to give a complete classification of real left-symmetric algebras
with positive definitive symmetric left invariant bilinear forms in dimension ≤ 9 as follows.

Corollary 4.5. Let A be a real left-symmetric algebra in dimension≤ 9with a positive definitive symmetric left invariant bilinear
form. Then A is isomorphic to one of the following left-symmetric algebras (only non-zero products are given).

(1) 1 ≤ n ≤ 9, AA = 0.
(2) dim A = 3 : e1e2 = −e3, e1e3 = e2.
(3) dim A = 4 : e1e2 = −e3, e1e3 = e2.
(4) dim A = 5:

(a) e1e2 = −e3, e1e3 = e2.
(b) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, 1 ≥ α > 0.

(5) dim A = 6:
(a) e1e2 = −e3, e1e3 = e2.
(b) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, 1 ≥ α > 0.
(c) e1e3 = −e4, e1e4 = e3, e2e5 = −e6, e2e6 = e5.

(6) dim A = 7:
(a) e1e2 = −e3, e1e3 = e2.
(b) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, 1 ≥ α > 0.
(c) e1e3 = −e4, e1e4 = e3, e2e5 = −e6, e2e6 = e5.
(d) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, e1e6 = −βe7, e1e7 = βe6, 1 ≥ α ≥ β > 0.

(7) dim A = 8:
(a) e1e2 = −e3, e1e3 = e2.
(b) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, 1 ≥ α > 0.
(c) e1e3 = −e4, e1e4 = e3, e2e5 = −e6, e2e6 = e5.
(d) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, e1e6 = −βe7, e1e7 = βe6, 1 ≥ α ≥ β > 0.
(e) e1e3 = −e4, e1e4 = e3, e1e5 = −αe6, e1e6 = αe5, e2e7 = −e8, e2e8 = e7, 1 ≥ α > 0.
(f) e1e3 = −e4, e1e4 = e3, e1e5 = −αe6, e1e6 = αe5, e2e5 = −e6, e2e6 = e5, e2e7 = −βe8, e2e8 = βe7, 1 ≥ α >

0, β > 0.
(8) dim A = 9:

(a) e1e2 = −e3, e1e3 = e2.
(b) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, 1 ≥ α > 0.
(c) e1e3 = −e4, e1e4 = e3, e2e5 = −e6, e2e6 = e5.
(d) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, e1e6 = −βe7, e1e7 = βe6, 1 ≥ α ≥ β > 0.
(e) e1e3 = −e4, e1e4 = e3, e1e5 = −αe6, e1e6 = αe5, e2e7 = −e8, e2e8 = e7, 1 ≥ α > 0.
(f) e1e3 = −e4, e1e4 = e3, e1e5 = −αe6, e1e6 = αe5, e2e5 = −e6, e2e6 = e5, e2e7 = −βe8, e2e8 = βe7, 1 ≥ α >

0, β > 0.
(g) e1e4 = −e5, e1e5 = e4, e2e6 = −e7, e2e7 = e6, e3e8 = −e9, e3e9 = e8.
(h) e1e2 = −e3, e1e3 = e2, e1e4 = −αe5, e1e5 = αe4, e1e6 = −βe7, e1e7 = βe6, e1e8 = −γ e9, e1e9 = γ e8, 1 ≥ α ≥

β ≥ γ > 0.

5. Nondegenerate symmetric left invariant bilinear forms on left-symmetric algebras

Let A be a left-symmetric algebra and f be a symmetric left invariant bilinear form. When we extend the positive
definiteness of f to be nondegenerate, we find that Lemma 3.1 still holds, but Lemma 3.2 may not be obtained any more.
As a consequence, Lemma 3.3 may not hold. In fact, we have found that there exists a left-symmetric algebra with a
nondegenerate symmetric left invariant bilinear form such that AA = A (see Corollary 5.5 or more examples in the next
section). So it is far from giving a structure theory on such left-symmetric algebras like Theorem 3.10. Nevertheless, from
the proof of Lemma 3.3, we still have the following result.

Proposition 5.1. Let A be a left-symmetric algebra with a nondegenerate symmetric left invariant bilinear form. Then
dim CR(A) + dim AA = dim A.
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Proposition 5.2. Let A be a left-symmetric algebra with a nondegenerate symmetric left invariant bilinear form. If A is
commutative, i.e., xy = yx for any x, y ∈ A, then AA = 0.

Proof. For any x, y, z ∈ A,

f (xy, z) = −f (y, xz) = f (zy, x) = −f (z, yx) = −f (xy, z).

Hence xy = 0 by the nondegeneracy of f . �

A very useful criterion is given as follows (also see [29]).

Proposition 5.3. Let A be a left-symmetric algebra. If there exists an element x ∈ A such that dim Im(L(x)) = 1, where
Im(L(x)) = {y|L(x)(z) = y, for some z ∈ A}, then any symmetric left invariant bilinear form f is degenerate.

Proof. If dim Im(L(x)) = 1, then there exists a basis {e1, e2, . . . , en} of A such that

L(x)e1 = v ≠ 0, L(x)ei = 0, ∀ 2 ≤ i ≤ n.

Then by the left-invariance of f , we have:

f (v, e1) = f (xe1, e1) = 0, f (v, ei) = f (xe1, ei) = −f (e1, xei) = 0, ∀ 2 ≤ i ≤ n.

So f is degenerate. �

Furthermore, in [30], certain left-symmetric algebraswere constructed from linear functions. In particular, there is a class
of left-symmetric algebras involving left invariant bilinear forms.

Proposition 5.4 ([30]). Let A be a vector space over a field F and c ∈ A be a non-zero element. Let h : A × A → F be a bilinear
form on A such that h(c, c) = 0. Then the product

x ∗ y = −h(y, c)x + h(x, y)c, ∀x, y ∈ A, (5.1)

defines a left-symmetric algebra structure on A and h is left invariant on (A, ∗). Moreover, the classification of such left-symmetric
algebras with dimension n ≥ 2 is given by the following matrices (F = (h(ei, ej)), where {e1 = c, . . . , en} is a basis)

F (k)
=

0 1 0
1 0 0
0 0 M(k)

 , (5.2)

where M(k)
= diag(1, . . . , 1, 0, . . . , 0) is a (n− 2) × (n− 2) diagonal matrix with the first k elements are 1 and the others are

zero on the diagonal, k = 0, 1 . . . , n − 2. The corresponding left-symmetric algebras are labeled as A(k) (k = 0, 1 . . . , n − 2)
whose non-zero products are given by

e2e1 = −e1, e2e2 = e2, eje2 = ej, elel = e1, 3 ≤ j ≤ n, 3 ≤ l ≤ k + 2. (5.3)

Corollary 5.5. With notations as above. For any n ≥ 2, A(n−2) is a left-symmetric algebra with a nondegenerate symmetric left
invariant bilinear form h given by F (n−2). In this case, A(n−2)A(n−2)

= A(n−2).

6. Classification of complex left-symmetric algebras with nondegenerate symmetric left invariant bilinear forms in
low dimensions and some examples in higher dimensions

In this section, we consider the base field to be the complex number field C since most of classification results on the
left-symmetric algebras are over C.

Let A be a left-symmetric algebra with a basis {e1, e2, . . . , en} over C. Set eiej =
n

k=1 c
k
ijek. Then the structure of A is

determined by its (form) characteristic matrix

n
k=1

ck11ek · · ·

n
k=1

ck1nek

...
. . .

...
n

k=1

ckn1ek · · ·

n
k=1

cknnek


. (6.1)

Any bilinear form f on A is completely decided by the matrix F = (fij), where fij = f (ei, ej). f is nondegenerate if and only if
det F ≠ 0.

Obviously, products of any 1-dimensional left-symmetric algebrawith a nondegenerate symmetric left invariant bilinear
form are zero since any 1-dimensional left-symmetric algebra is commutative.
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Proposition 6.1. Let A be a 2-dimensional complex left-symmetric algebra with a nondegenerate symmetric left invariant
bilinear form. Then AA = 0 or A is isomorphic to A(0) given in Corollary 5.5 with n = 2.

Proof. According to the classification of 2-dimensional complex left-symmetric algebras given in [31] or [32], if A is a 2-
dimensional non-commutative left-symmetric algebra and there does not exist an element x ∈ A such that dim Im(L(x)) =

1, then A is isomorphic to one of the following algebras given by their characteristic matrices
0 0

−e1 λe2


, λ ∈ C;


0 0

−e1 λe1 − e2


.

By a direct checking, one can find only the left-symmetric algebra given by A =


0 0

−e1 e2


has a nondegenerate symmetric

left invariant bilinear form, which is decided uniquely up to a scalar multiple by

0 1
1 0


. In this case, it is just A(0) given in

Corollary 5.5 with the bilinear form given by F (0) with n = 2. �

It is a little more complicated in the 3-dimensional cases. In fact, the complete classification of complex left-symmetric
algebras in dimension 3 are given in [33] (there are more than 100 classes). By a similar discussion as in the above proof
(using Propositions 5.1–5.3 and then by a direct computation for the rest classes), we give the following classification.

Proposition 6.2. Let A be a complex left-symmetric algebra in dimension3with a nondegenerate symmetric left invariant bilinear
form f . Then A must be isomorphic to one of the following left-symmetric algebras given by their characteristic matrices (we also
list their corresponding nondegenerate symmetric left invariant bilinear forms).

(1) A =


0 0 0
0 0 0
0 0 0


and f is defined by


f11 f12 f13
f12 f22 f23
f13 f23 f33


for det(fij) ≠ 0.

(2) A =


0 0 0

−e3 e1 0
0 0 0


and f is defined by


f11 0 0
0 f22 f11
0 f11 0


for f11 ≠ 0.

(3) A =


0 0 0
0 0 0
0 e2 −e3


and f is defined by


f11 0 0
0 0 f11
0 f11 0


for f11 ≠ 0.

(4) A =


0 0 0
0 e1 −e2
e1 0 −e3


and f is defined by


0 0 f22
0 f22 0
f22 0 0


for f22 ≠ 0.

(5) A =


0 0 0
0 0 0
e1 −e2 0


and f is defined by


0 f12 0
f12 0 0
0 0 f33


for f12f33 ≠ 0.

(6) A =


0 0 0
0 e1 −e1 − e2
e1 0 −e2 − e3


and f is defined by


0 0 f22
0 f22 −f22
f22 −f22 f22


for f22 ≠ 0.

Remark 6.3. In fact, the above type (4) is isomorphic to A(1) given in Corollary 5.5 with n = 3. Moreover, there are exactly
two types ((4) and (6)) in Proposition 6.2 satisfyingAA = A. On the other hand, comparing the above classification results and
Corollary 4.5, we show that the left-symmetric algebra in Case (2) in Corollary 4.5 (considered as a complex left-symmetric
algebra) is isomorphic to the type (5) in Proposition 6.2 by a linear transformation given by

e1 → ie3, e2 → i(e1 − e2), e3 → e1 + e2.

Remark 6.4. There is a classification of the left invariant pseudo-metrics over the real number field R in dimension 2 or 3
in terms of Lie algebras in [8]. Note that we use a different (left-symmetric algebraic) approach here.

Since there is not a complete classification of complex left-symmetric algebras in dimension≥4, it is far away from giving
the classification of left-symmetric algebras with nondegenerate symmetric left invariant bilinear forms in dimension ≥4.
But we can give some examples in higher dimensions. We would like to point out that for Lorentzian signature, there is a
complete structure theory, at least for transitive cases in [25].

Example 6.5. In [6], Kimgave the classification of 4-dimensional transitive left-symmetric algebras on nilpotent Lie algebras
over the real number field R. Due to it and with a similar discussion as in the proof of Proposition 6.1, we show that a 4-
dimensional real transitive left-symmetric algebra on a nilpotent Lie algebra with a nondegenerate symmetric left invariant
bilinear formmust be isomorphic to one of the following left-symmetric algebras given by their characteristic matrices (we
also list their corresponding nondegenerate symmetric left invariant bilinear forms).

(1) A =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and f is defined by

f11 f12 f13 f14
f12 f22 f23 f24
f13 f23 f33 f34
f14 f24 f34 f44


for det(fij) ≠ 0.



Z. Chen et al. / Journal of Geometry and Physics 62 (2012) 1600–1610 1609

(2) A =

0 0 0 0
0 0 0 0
0 e1 0 e2
0 0 e1 e3


and f is defined by

 0 0 0 f14
0 −f14 0 0
0 0 −f14 0
f14 0 0 f44


for f14 ≠ 0.

(3) A =

0 0 0 0
0 0 0 0
0 e1 0 e2
0 0 −e1 e3


and f is defined by

 0 0 0 f14
0 f14 0 0
0 0 f14 0
f14 0 0 f44


for f14 ≠ 0.

(4) A =

0 0 0 0
0 0 0 0
0 0 e1 e2
0 e1 0 e3


and f is defined by

 0 0 0 f14
0 0 −f14 0
0 −f14 0 0
f14 0 0 f44


for f14 ≠ 0.

(5) A =

0 0 0 0
0 0 0 0
0 0 e1 e2
0 0 0 0


and f is defined by

 0 0 0 f14
0 0 −f14 0
0 −f14 f33 f34
f14 0 f34 f44


for f14 ≠ 0.

(6) A =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 e1 e3


and f is defined by

 0 0 0 f14
0 f22 0 f24
0 0 −f14 0
f14 f24 0 f44


for f14f22 ≠ 0.

Note that over the complex number field C, the type (3) is isomorphic to the type (2) by a linear transformation given by

e1 → ie1, e2 → −ie2, e3 → −e3, e4 → ie4.

Example 6.6. We can extend types (4) and (6) in Proposition 6.2 to be in any dimension n ≥ 4. For the former, the
generalization is given by Corollary 5.5 and for the latter, we give following constructions. Let A be an algebra in dimension
nwith a basis {e1, e2, . . . , en} whose characteristic matrix is given by

0 0 · · · 0 0 0
0 0 · · · 0 e1 −e1 − e2
0 0 · · · e1 0 −e3
...

...
. . .

...
...

...
0 e1 · · · 0 0 −en−1
e1 0 · · · 0 0 −en−1 − en

 .

Then A is a left-symmetric algebra satisfying AA = A. Moreover, there exists a unique (up to scalar multiple) nondegenerate
symmetric left invariant bilinear form on A defined by

0 0 · · · 0 1
0 0 · · · 1 −1
...

...
. . .

...
...

0 1 · · · 0 0
1 −1 · · · 0 0

 .

Example 6.7. Let A be left-symmetric algebra in dimension nwith a basis {e1, . . . , en} whose products are given by

e1e1 = 0, e1ei = λiei, eiej = 0, i = 2, . . . , n, j = 1, . . . , n

where λi ≠ 0 and λi ≠ λj if i ≠ j. Recall that a left-symmetric algebra A is called a derivation algebra if L(x) is a derivation of
its sub-adjacent Lie algebra g(A) for any x ∈ A. Such structures correspond to flat left invariant connections adapted to the
automorphism structure of a Lie group. The above left-symmetric algebra A is the unique compatible derivation algebra on
its sub-adjacent Lie algebra [5]. Moreover there is a nondegenerate symmetric left invariant bilinear form on A if and only
if for any i ≥ 2 there is exactly one j ≥ 2 such that λi + λj = 0. As a consequence, n is odd and f (ei, ej) ≠ 0 if and only if
λi +λj = 0 for any i, j ≥ 2. In fact, assume that there is a nondegenerate symmetric left invariant bilinear form f on A. Then

λif (e1, ei) = f (e1, e1ei) = −f (e1e1, ei) = 0, i = 2, . . . , n.

Thus f (e1, ei) = 0 for any i ≥ 2 and f (e1, e1) ≠ 0 since f is nondegenerate. Moreover, f (ei, ei) = 0 for any i ≥ 2 since

λif (ei, ei) = f (e1ei, ei) = −f (ei, e1ei), i = 2, . . . , n.

Furthermore, since for any i, j ≥ 2,

λif (ei, ej) = f (e1ei, ej) = −f (ei, e1ej) = −λjf (ei, ej),

we show that for any i ≥ 2, there exists exactly one j ≥ 2 such that f (ei, ej) ≠ 0. Therefore f (ei, ej) ≠ 0 if and only if
λi + λj = 0 and n is odd. Note that the above left-symmetric algebra is a generalization of the type (5) in Proposition 6.2
(also see Corollary 4.3).
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