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1. Introduction

It is important and natural to study plenty of geometric structures on a Lie group G with a Riemannian metric invariant
under left translation. In [1], Milnor studied the curvatures of left invariant metrics on Lie groups which outline “what is
the Riemannian geometry of such a Lie group”. In particular, as an extreme case, he gave a detailed structure theory on flat
metrics, that is, the curvature is zero (Theorem 1.5 in [1]). Basically the study is pure Lie-algebraic and from “metrics” to
“connections”. Explicitly, in order to give the structure of the Lie algebra g consisting of all smooth left invariant vector fields
on a Lie group G with a left invariant flat Riemannian metric g, Milnor considered the left invariant Riemannian connection
V associated to g, that is, V satisfies the “symmetry” condition (torsion free)

Vi —-Vix=1[xyl, Vx,yeg, (1.1)
and the compatibility condition (the parallel translation preserves the metric g [2])

g(Viy,2) +8(y,Vaz) =0, Vx,yeg, (1.2)
and in addition, the flatness of the connection V or the metric g corresponds to

Ryz =Vixyz —ViV,z+V,V,z =0, Vx,y,z€g, (1.3)

that is, the Riemannian curvature tensor R is zero.
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Conversely, one may consider another approach from “connections” to “metrics” in the above study. That is, one can try
to find a left invariant Riemannian metric g associated to a left invariant connection V satisfying Eqgs. (1.1) and (1.3) such that
the compatibility (1.2) holds. In fact, manifolds (not necessarily Riemannian) or Lie groups with a connection V satisfying
Eqgs. (1.1) and (1.3) have already been studied independently. Such structures are called affine manifolds or affine structures
on Lie groups (|3-6], etc.). They are natural generalizations of Euclidean structures. Like most of geometric structures on Lie
groups, the study of left invariant affine structures on a Lie group can be given through corresponding structures on its Lie
algebra. Left invariant affine structures on a Lie group G bijectively correspond to left-symmetric algebra structures on the
Lie algebra g of G and the correspondence is given by

Viy =xy, Vx,ye€ag. (1.4)

Left-symmetric algebras also appear in many other fields in mathematics and mathematical physics (see [7] and the
references therein).

So it is natural to study left invariant Riemannian metrics on a Lie group G by considering left invariant affine structures
on G with a compatible Riemannian metric in terms of their corresponding left-symmetric algebras, which is one main
motivation of this paper. We would like to point out that such an approach has already been appeared before. For example,
there is also a proof of Milnor’s classification theorem in terms of left-symmetric algebras in [8]. On the other hand, although
the notion of left-symmetric algebra was not mentioned in [1], some essential results in the study of Milnor (see the proof
of Theorem 1.5 in [1]) were in fact related to left-symmetric algebras. For example, in [ 1], Milnor proved that the linear map
x — V, gives a homomorphism of Lie algebras which is exactly an essential property of the left-symmetric algebra given
by Eq. (1.4). Furthermore, comparing with the study in [1,8], our left-symmetric algebraic approach cannot provide more
newer results (in fact, the left-symmetric algebras appearing here are quite special since their products can be expressed
through their sub-adjacent Lie algebras which explains why only the theory of Lie algebras is enough in [1]), but it can give
a more practicable and explicit structure theory to Milnor’s classification theorem, which leads to the classification in low
dimensions easily.

Moreover, it is not all what we want to do in this paper so far. In fact, it is easy to know from Milnor’s classification
theorem or the left-symmetric algebraic approach that there are quite few Lie groups with a left invariant flat metric since
the constraint condition of the positive definiteness of the metric seems a little strong. So it is natural to generalize the
positive definiteness to be nondegenerate, that is, a left invariant flat pseudo-Riemannian metric.

Both left invariant flat metrics and pseudo-metrics on Lie groups are studied extensively due to their close relationships
with many structures in geometry and mathematical physics. For example, left invariant flat metrics were applied to
study Kahler structures on Lie groups [9-12] and then closely related to a theory of double extensions [13]. Left invariant
flat pseudo-metrics are related to a special class of symplectic Lie groups ([14,12,15-17], etc.), namely, parakdhler Lie
groups [18-22], which are (non-abelian) phase spaces introduced by Kupershmidt in mathematical physics [23,24,20]
when the base field is extended to the complex number field. Explicitly, a parakdhler structure on a Lie algebra which is
a symplectic Lie algebra with a decomposition into a direct sum of underlying vector spaces of two Lagrangian subalgebras,
is equivalent to a bialgebra structure, namely, left-symmetric bialgebra. On the other hand, a left invariant flat pseudo-
metric on a left-symmetric algebra is an invertible symmetric solution of an algebraic equation (namely, S-equation) in
this left-symmetric algebra whose every symmetric solution induces a (coboundary) left-symmetric bialgebra and hence a
parakdahler structure [21].

Many examples are also given ([25,8], etc.). However, most results and examples are scattered in different presentations
(mainly in terms of Lie algebras) under different backgrounds. In this paper, we give a systematic study in terms of left-
symmetric algebras. Many examples are also given in a unified presentation (in terms of left-symmetric algebras) which
can be a guide for further development, although some of them overlap with certain known results. We would also like to
point out that there is a double construction of a Lie group with a left invariant flat pseudo-metric in terms of L-dendriform
algebras, whose certain commutators are left-symmetric algebras [26].

The paper is organized as follows. In Section 2, we briefly recall some basic facts on left-symmetric algebras. In Section 3,
we give a left-symmetric algebraic approach to Milnor’s classification theorem. In Section 4, we give an explicit construction
of left invariant flat metrics and their classification in low dimensions based on the study in Section 3. In Section 5, we give
some properties of a left-symmetric algebra with a nondegenerate symmetric left invariant bilinear form and a construction
from linear functions. In Section 6, the classification of complex left-symmetric algebras with nondegenerate symmetric left
invariant bilinear forms in low dimensions and some interesting examples in higher dimensions are given.

Throughout this paper, all algebras are finite-dimensional over the real number field R or the complex number field C.

2. Preliminaries on left-symmetric algebras
In order to be self-contained, we recall some basic facts on left-symmetric algebras (cf. [5,6], etc.)

Definition 2.1. Let A be a vector space over a field F with a bilinear product (x, y) — xy. A is called a left-symmetric algebra
if forany x, y, z € A, the associator

(*,y,2) = (xy)z — x(yz) (2.1)
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is symmetric in x, y, that is,
x,y,z) = (y,x,z), orequivalently (xy)z —x(yz) = (yx)z — y(xz). (2.2)
Let A be a left-symmetric algebra. For any x,y € A, let L(x) and R(x) denote left and right multiplication operators
respectively, that is, L(x)(y) = xy, R(x)(y) = yx.
Proposition 2.2. Let A be a left-symmetric algebra.
(1) The commutator
[x,y] =xy —yx, Vx,y €A, (2.3)

defines a Lie algebra g(A), which is called the sub-adjacent Lie algebra of A and A is also called a compatible left-symmetric
algebraic structure on the Lie algebra g(A).

(2) Let L : A — gl(A) be a linear map defined by x + L(x) (for every x € A). Then L gives a representation of the Lie algebra
g(A), that is,

[LCO, L] = L([x,¥D),  Vx,y € A. (2.4)

Proposition 2.3 ([27]). If a real or complex Lie algebra g has a compatible left-symmetric algebraic structure, then [g, g] # g.

Definition 2.4. Let A be a left-symmetric algebra. A bilinear form f : A x A — T is called left invariant if f satisfies

fxy,2) +f(y,xz2) =0, Vx,y,z€A. (2.5)
Abilinear form f : A x A — Fis called a 2-cocycle of A if
fxy,2) = fx,y2) =fyx,2) — f(y,x2), Vx,y,z €A (2.6)

In addition, a real left-symmetric algebra A is called Hessian if there exists a positive definite symmetric 2-cocycle f of A.

In geometry, a Hessian manifold M is a flat affine manifold provided with a Hessian metric g, that is, g is a Riemannian

metric such that for each point p € M there exists a C*°-function ¢ defined on a neighborhood of p such that g; = %
A Hessian left-symmetric algebra corresponds to an affine Lie group G with a G-invariant Hessian metric [11].

Obviously, any left invariant bilinear form on a left-symmetric algebra is a 2-cocycle and hence a real left-symmetric
algebra with a positive definite symmetric left invariant bilinear form is Hessian.

Proposition 2.5. Let A be a left-symmetric algebra. Then there exists a nondegenerate left invariant bilinear form if and only if
the representation L of the sub-adjacent Lie algebra g(A) is isomorphic to its dual representation L*, where L* : A — gl(A*) is
given by

(L*(0a*,y) = —(a", Lx)y) = —(a*,xy), VX,y€A, a" €A (2.7)
Here (, ) is the ordinary pair between A and A*.

3. Aleft-symmetric algebraic approach to left invariant flat metrics on Lie groups

As we have indicated in the Introduction, the study of left invariant flat metrics on Lie groups can be reduced to the study
of real left-symmetric algebras with positive definite symmetric left invariant bilinear forms.

In this section, we always let A be a real left-symmetric algebra and f be a positive definitive symmetric left invariant
bilinear form on A. For any subspace V in A, set

Vi={xeA|f(x,y) =0, Vye V). (3.1)
Recall that the adjoint F* of a linear transformation F on A with f is defined by the formula
fE®,y) =fx F'¥), YxyeA (3.2)

The transformation F is self-adjoint if F* = F and skew-adjoint if F* = —F. So Eq. (2.5) is equivalent to the fact that L(x) is
skew-adjoint for any x € A. For any Lie algebra g, adx is the linear transformation given by adx(y) = [x, y] forany x,y € g.

Lemma 3.1. [A, A]* = {x € A | R(x) = R(x)*}.

Proof. For any x,y,z € A,x € [A, Al* if and only if f(x, [y, z]) = O, if and only if f(x, yz) — f(x, zy) = 0, if and only if
f(R(x)y, z) = f(R(x)z,y), if and only if R(x) = R(x)*. O

Lemma 3.2. [A, Al = {x € A| R(x) = 0.
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Proof. Forany x € [A, A]* andy € A, by Lemma 3.1, we show that

Fxx,y) = f(R@x,y) = f(x, RX)y) = f(x,yx) = 0.

Hence xx = 0 due to the positive definiteness of f. For any x € [A, A]*, R(x) is diagonalizable over the real number field
R since it is self-adjoint. Let A € R be an arbitrary eigenvalue of R(x) and y € A be a non-zero eigenvector associated to A.
Since (xy)x — x(yx) = (yx)x — y(xx), we show that (xy)x — Axy = Ay. Hence

MF@.y) =f(x)x = Axy, y) = F(xy)x,y) = f(xy,yx) = Af(xy,y) = 0.
Therefore A = O and thenR(x) = 0. O
Lemma 3.3. AA = [A, Al

Proof. In fact, x € (AA)* if and only if f(x,yz) = 0, Vy,z € A, ifand only if f(yx,z) = 0, Vy,z € A, if and only if
R(x)y = 0, Vy € A, if and only if R(x) = 0. Then by Lemma 3.2, we show that AA = [A,A]. O

For any subalgebra V in A, we let Cg(V) = {x € V | R(x)|y = 0}. In particular, Cz(A) = [A, A]* due to Lemma 3.2.

Proposition 3.4. As left-symmetric algebras, [A, A] is a proper ideal of A with zero products.

Proof. Obviously, AA is an ideal of the left-symmetric algebra A. Then [A, A] is an ideal of A by Lemma 3.3. Moreover, A splits
as an orthogonal direct sum

A=[A A" @A Al = G(A) ® [A, Al

By Proposition 2.3, we show that [A, A] ## A. Hence Cg(A) # 0. As a special case in Corollary 5.8 in [22], A is solvable as a Lie
algebra. Then there exists a positive integer m such that

(1 (m—1) (m) _
A2AD 2. 2 AMD S AM —
where A = A® and A® = [A¢=D AG-D] Assume that m > 3. Then we have
A2 Z CyAMD) @ A (3.3)

Here A™~2 is nilpotent as a Lie algebra since A is solvable and m > 3. Let C(A™~?) be the center of the Lie algebra A2,
By a known result (for example, the lemma in page 13 of [28]), C(A™~?) N A™M~=D £ 0, Let x be a non-zero element in
C(A™=2) N A™=D _Since x € A" !, by Lemma 3.3 and Eq. (3.3), xy = Oforanyy € A™ 2, Hence x € Cx(A™?) since
x € C(A™=2).So x = 0, which is a contradiction. Then we have m < 2. Hence the conclusion holds. O

A key role for the structure theory of left-symmetric algebras is played by the notion of transitive algebra. A left-
symmetric algebra A is called transitive if R(x) is nilpotent for any x € A. By Proposition 3.4, we have
Corollary 3.5. Any left-symmetric algebra with a positive definite symmetric left invariant bilinear form is transitive.
Lemma 3.6. Let H be a subalgebra of A with zero products and V be a subspace of A such that L(x)V C V for any x € H. Then
{L(X)|v }xen is a family of commutative linear transformations on V.
Proof. Foranyx,y € H,z € V,

LX) (L(y)z) = x(yz) = x(yz) — (xy)z = y(xz) — (yx)z = y(xz) = L(y)(L(X)2)

since xy = yx = 0. Therefore L(X)|yL(y)|y = Ly)|vLX)|y. O
Proposition 3.7. The dimension of [A, A] is even. As a consequence, AA = 0 if A is a 2-dimensional real left-symmetric algebra
with a positive definitive symmetric left invariant bilinear form.

Proof. By Lemma 3.6, {L(X)|(aa]}xecza) is @ family of commutative linear transformations on [A, A]. Then we get that
dim [A, A] is even by the skew-adjoint property of L(x)|ja4) for any x € Cr(A). Obviously, AA = 0 if and only if
dim[A, A] = dim AA = 0. So if products of A are non-zero, then dim A > dim[A,A] > 2. O

From the above discussion, we have the following structure theory.
Theorem 3.8. A positive definite bilinear form is left invariant with respect to a left-symmetric algebra A if and only if A splits as

an orthogonal direct sum A = [A, A] & Cr(A), where Cg(A) is a non-zero subalgebra with zero products, [A, A] is an ideal with
even dimension and zero products, and where the linear transformation R(x) = 0 and L(x) is skew-adjoint for any x € Cg(A).

LetAnn(A) = {x € A|xy = yx = 0, Vy € A}be the annihilator of A. Obviously, Ann(A) is anideal of Aand Ann(A) C Cgr(A).
Setb = {x € CRA)I|f (x,y) =0, Vy € Ann(A)}. Therefore Cz(A) splits as an orthogonal direct sum Cz(A) = b & Ann(A).
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Lemma 3.9. dim b < dim [A, A]/2.

Proof. By Lemma 3.6 and the definition of b, {L(X)|{a aj}xer 1S @ family of non-zero commutative skew-adjoint linear
transformations on [A, A]. Then dim b is not greater than the rank of the semisimple Lie algebra so(dim[A, A]). So dimb <
dim[A, A]/2. O

Theorem 3.8 can be rewritten as the following conclusion.
Theorem 3.10. A positive definite bilinear form is left invariant with respect to a left-symmetric algebra A if and only if A splits
as an orthogonal direct sum b & Ann(A) & [A, A, where b is a subalgebra with zero products, [A, A] = AA is an ideal with even

dimension and zero products, dim b < dim [A, A]/2, and where the linear transformation R(x) = 0 and L(x) # 0 is skew-adjoint
for any non-zero x € b.

The following conclusion involving the corresponding structure of the sub-adjacent Lie algebra is obvious.
Theorem 3.11. A Lie group G with a left invariant metric is flat if and only if the associated Lie algebra g splits as an orthogonal
direct sum b @ C(g) @ [g, g], where b is a commutative subalgebra, C(g) = {x € g|[x,y] = 0, Vy € g} is the center of g, [g, gl

is a commutative ideal (with even dimension), dim b < dim [g, g]/2, and where the linear transformation adb is skew-adjoint
forany b € b. Furthermore, the compatible connection is given by

V., =0, Vpy=ad(b) #0, YueC(g)®lg,g]l, 0#beb. (34)
Setu = C(g) & [g, g]. Then the Milnor’s classification is obtained immediately.

Theorem 3.12 ([1, Theorem 1.5]). A Lie group G with a left invariant metric is flat if and only if the associated Lie algebra g
splits as an orthogonal direct sum b @ u, where b is a commutative subalgebra, u is a commutative ideal, and where the linear
transformation adb is skew-adjoint for any b € b. Furthermore, if these conditions are satisfied, then

Vu=0, Vy=ad(b), Vueu beb. (3.5)

4. An explicit construction of left invariant flat metrics and their classification in low dimensions

From the study in the previous section, it is not difficult to give an explicit construction in any dimension of the Lie
algebras in Theorem 3.12 or the left-symmetric algebras in Theorem 3.10 by a more convenient and direct way.

Theorem 4.1. Let A be a real left-symmetric algebra with a positive definitive symmetric left invariant bilinear form f. Then there
exist a basis {eq, . .., en} of b and a basis {x1, ..., Xon} of [A, A] and integers 1 = ky < ky < --- < ki, < nsuch that

eXai1 = —a;(€)Xai, exy = ai(exaim1, j=1,....,m;yi=1,...,n,
where a;j(ej) = 0when 1 <i < k;, akj(ej) =1land 1 =aqi(e1) = ax(ey) > --- > ay(ey) > 0.

Proof. Let dim [A,A] = 2n and dim b = m. By Lemma 3.6, {L(X)|{a4]}xecra) is a family of commutative linear
transformations on [A, A]. By the skew-adjoint property of L(x)|(a.4) for any x € Cgr(A), there exists a basis {x1, ..., X2}
of [A, A] such that f (x;, ;) = §; and forany y € b,

YXoi1 = —a;i(¥)Xai, VXoi = ai(V)Xaim1, i=1,...,n,

and for any i (1 < i < n), there exists an element y € b such that ¢;(y) # 0.

Let V; = {x € b|aj(x) = 0}. Then for any i, V; is a proper subspace of b. Hence U?:] Vi # b. So there exists an element
y7 such that «;(y1) # Oforanyi (1 < i < n). We can suppose that «;(y;) > O for any i since if there exists j such that
a;(y1) < 0, then after replacing x,j_1 by —x,j_1, @j(e1) is replaced by —«;(e;), that is,

Y1(=xi-1) = —(—0j(y1))X;, YiXgj = (—aj(y1))(—Xzj-1).

Furthermore, after re-arranging the order of x4, ..., Xo, which is still denoted by x4, ..., x,, we can suppose that
a1(y1) = ax(y1) = --- = ap(y1) > 0.
— N

Lete; = al(yl),then

1=uai(e)) > az(e)) = -+ > ay(ey) > 0.

Choose ¥, ..., y,, such that {e1, ¥}, ..., y,,} is a basis of b. Set y; = y; — o1 (¥;)e; fori > 2. Then {e1,y>, ..., ynm} is still a
basis of b and o1 (y;) = 0 for any i > 2. Let k, be the minimal [ such that «;(y;) # O for some i. Without loss of generality,

assume that ay, (y2) # 0. Lete, = akyfyz) . Then we have
2

X1 =eX; =0, i=1,...,k—1; €2X2ky—1 = —X2ky, €2X2k, = Xoky—1-
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Therefore, by induction, there exist es, . .., e, and integers ks, ..., ky, such that {eq, ..., e} isabasisof b and k, < k3 <
- < ki < nsatisfying

ejXzi—1 = —aj(e)xai, eixy = ai(e)xzi—1, j=3,....,m;i=1,...,n,
where o;(ej) = 0when 1 <i < k; and o, (ej) = 1forj > 3. Hence the conclusion follows. [
Remark 4.2. In fact, the converse of the above conclusion is still true. That is, if a left-symmetric algebra A has a basis
{fi,....feoe1, ..., €m, X1, ..., Xon} such that m < n,

L(f) =R(f;) =R(e) =0, xx =0, Vi=1,...,t;j=1,...,m; k,1=1,...,2n,

and other products satisfy equations given in Theorem 4.1, then there exists a positive definitive symmetric left invariant
bilinear form on A.

Corollary 4.3. Let A be areal left-symmetric algebra with a positive definitive symmetric left invariant bilinear form.If dim b = 1

and Ann(A) = 0, then there exists a basis {e1, €3, . . ., ean11} Of A satisfying
162k = —Ak€a+1,  €1€2k+1 = Ak, k=1,....m, I=AM2>222>-22 >0,
and the others are zero. Moreover, they are not mutually isomorphic for different {A1, ..., An}.
Proof. The first half follows immediately from Theorem 4.1. The second half follows from the fact that £A, ..., £A, are

all the eigenvalues of L(e1)|ja 4. O

Corollary 4.4. Let A be a real left-symmetric algebra with a positive definitive symmetric left invariant bilinear form. Let
dim [A, A] = 2n < 6 and Ann(A) = 0. Then A is isomorphic to one of the following (non-isomorphic mutually) left-symmetric
algebras (only non-zero products are given).

(1) n=0:AA=0.

2)n=1:e1e; = —e3, e1e3 = e5.
3)n=2:
(a) eje; = —e3, e1e3 = €3, €164 = —wes, €185 = aes, 1 > ¢ > 0;
(b) e1e3 = —ey, €184 = €3, €265 = —€, €265 = 5.
(4) n=3:
(a) eje; = —e3, e1e3 = €3, €184 = —es, €185 = ey, €165 = —fey, e1e; = fes, 1 > a > B > 0;
(b) e1e3 = —ey4, €184 = €3, €165 = —Q€g, €165 = QAC5, €267 = —€g, €283 = €7, 1 > ¢ > 0;
(C) e1e3 = —e4, €184 = €3,€165 = —UC, €185 = U5, €265 = —€6, €285 = €5, €267 = —feg, 2653 = fe;, 1> o >
0,8 >0;
(d) eje4 = —es, e1e5 = ey, 265 = —€7, €287 = €, €363 = —€g, €369 = €3.

Proof. Cases (1) (n = 0)and (2) (n = 1). The results are obvious by Theorem 4.1.
Case (3) (n = 2). There are two subcases.

Case (3-1) dim b = 1. By Corollary 4.3, A is isomorphic to the type (a) of Case (3).
Case (3-2) dim b = 2. By Theorem 4.1, there exist a basis {eq, e;} of b and a basis {es, e4, es, eg} of [A, A] such that
e1e3 = —ey, ejey = ez, e1es = —eg, €18 = es, e85 = —eg, eeg=¢es, 1>a>0.
Replacing e; by e; — ae,, we get the type (b) of Case (3).
Case (4) (n = 3). There are three subcases.
Case (4-1) dim b = 1. By Corollary 4.3, A is isomorphic to the type (a) of Case (4).
Case (4-2) dim b = 2. There are two additional subcases:
Case (4-2-i) k, = 2. By Theorem 4.1, there exist a basis {e1, e;} of b and a basis {es, e4, es, eg, e7, eg} of [A, A] such that
€163 = —éy4, €164 = €3, €165 = —Ueg, €16 = es, eje; = —fes, ejeg = fey,
ees = —eg, €6 = es, ee; = —yes, eeg =ye;, 1>a>p>0.
Ify = 0or 8 = ay, then we get the type (b) of Case (4) by replacing e; by e; — «e,. If y 7 0 and 8 # ay, then we get the
type (c) of Case (4) by replacing e; by e; — gez.
Case (4-2-ii) k; = 3. By Theorem 4.1, there exist a basis {e1, e;} of b and a basis {es, e4, es, eg, €7, eg} of [A, A] such that
€183 = —éy, €164 = €3, €165 = —Qeg, €166 = «es, eje; = —fes, eieg = fes,
ee; = —eg, eeg = ey, 1 > o > ,B > 0.

Replacing e; by e; — Be,, we get the type (b) of Case (4).
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Case (4-3)dim b = 3. By Theorem 4.1, there exist a basis {e1, e, e3} of b and a basis {e4, es, eg, €7, eg, €9} of [A, A] such that

€184 = —és, €165 = ey, e1eg = —wey, eje; = aeg, eieg = —feg, e1eg = feg,
€266 = —€7, €267 = €, €263 = —Yeéq, €269 = yés,
eseg = —ey, eseg=e, 1>a>pB>0.

Replacing e; by e, — ye3 and eq by e; — ae; + (ay — B)es, we get the type (d) of Case (4).
Furthermore, it is not difficult to show that they are not isomorphic mutually. O

Although it is not difficult at all, it is a little complicated to give the explicit classification for the cases dim[A, A] > 8 (or
dim b > 2). Nevertheless, from above results, it is enough to give a complete classification of real left-symmetric algebras
with positive definitive symmetric left invariant bilinear forms in dimension < 9 as follows.

Corollary 4.5. Let A be a real left-symmetric algebra in dimension < 9 with a positive definitive symmetric left invariant bilinear
form. Then A is isomorphic to one of the following left-symmetric algebras (only non-zero products are given).

(1) 1<n<9,AA=0.

(2) dim A =3:ee, = —e3, €163 = €.
(3) dim A=4:ee, = —e3, 6163 = €.
(4) dim A =5:
(a) e1e; = —e3, e1e3 = e5.
(b) ey = —e3, 163 = €3, 6164 = —es, €165 = ey, 1 > a > 0
(5) dim A =6:
(a) e1e; = —e3, e1e3 = es.
(b) €16 = —e3, 6163 = €y, €164 = —WUes5, €165 = (€4, 1>a>0.
(c) eje3 = —ey4, €184 = €3, €285 = —€g, €265 = €5.
(6) dim A=7:
(a) e1e; = —e3, e1e3 = es.
(b) €16y = —e3, €163 = €y, €164 = —WUes5, €165 = (€4, 1>a>0.
(c) eje3 = —ey4, €184 = €3, €285 = —€g, €265 = €5.
(d) €16y — —e3, 6163 = €y, €164 = —(€e5, €165 = (€4, €165 — —,36'7, eie; = ,36’5, 1>a> ﬂ > 0.
(7) dim A =38:
(a) e1e; = —e3, e1e3 = e5.
(b) e1e; = —e3, e1e3 = e;, €164 = —es, €165 = ey, 1 > o > 0.
(c) eje3 = —ey4, €164 = €3, €265 = —€g, €265 = €5.
(d) eje; = —e3, eje3 = e, €184 = —€s5, €165 = €4, €165 = —Pe7,e16; = Beg, 1 > a > B > 0.
(e) eje3 = —ey, €164 = €3, €165 = —eG, €165 = (€5, €287 — —€g, €263 = €7, 1 > > 0.
(f) €163 = —€4, €164 = €3,€165 = —NEg, €16 = (€5, €265 = —€g, €26 = €5, €287 = —ﬁ€3,€2€8 = ﬂ€7,1 > o >
0,8>0.
(8) dim A=09:
(a) e1e; = —e3, e1e3 = es.
(b) €16 = —e3, e1e3 = e, e164 = —WUes5, €165 = (€4, 1>a>0.
(c) ejes = —eq, €164 = €3, €265 = —€g, €265 = €5.
(d) €16y = —e3, €163 = €y, €164 = —(€e5, €165 = (€4, €165 = —,367, eie; = ﬂeg, 1 > o > /3 > 0.
(e) eje3 = —ey, €164 = €3, €165 = —€G, €165 = (€5, €267 = —€g, €263 = €7, 1 > a > 0.
(f) eje3 = —es, e1€4 = €3,€165 = —0€s, 165 = €5, €285 = —€, €285 = €5, €287 = —feg, €3 = Pe;, 1 > o >
0,8 >0.
(g) e1e4 = —e5, €165 = €4, €265 = —€7, €287 = €p, €363 = —€g, €389 = €g.
(h) €16y = —e3, 6163 = 63,6164 = —Ues5, 6165 = (€4, €16 = —,387, eie; = ﬁee, €16y = —Yyeg, €169 = Yeg, 1 > o >
B>y >0

5. Nondegenerate symmetric left invariant bilinear forms on left-symmetric algebras

Let A be a left-symmetric algebra and f be a symmetric left invariant bilinear form. When we extend the positive
definiteness of f to be nondegenerate, we find that Lemma 3.1 still holds, but Lemma 3.2 may not be obtained any more.
As a consequence, Lemma 3.3 may not hold. In fact, we have found that there exists a left-symmetric algebra with a
nondegenerate symmetric left invariant bilinear form such that AA = A (see Corollary 5.5 or more examples in the next
section). So it is far from giving a structure theory on such left-symmetric algebras like Theorem 3.10. Nevertheless, from
the proof of Lemma 3.3, we still have the following result.

Proposition 5.1. Let A be a left-symmetric algebra with a nondegenerate symmetric left invariant bilinear form. Then
dim Cg(A) + dim AA = dim A.
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Proposition 5.2. Let A be a left-symmetric algebra with a nondegenerate symmetric left invariant bilinear form. If A is
commutative, i.e., xy = yx for any x, y € A, then AA = 0.

Proof. Foranyx,y,z € A,
f&xy.2) = —f(y.x2) =f(2y. %) = =f (2, y0) = =f(xy. 2).
Hence xy = 0 by the nondegeneracy of f. O
A very useful criterion is given as follows (also see [29]).
Proposition 5.3. Let A be a left-symmetric algebra. If there exists an element x € A such that dim Im(L(x)) = 1, where
Im(L(x)) = {y|L(x)(z) =y, for some z € A}, then any symmetric left invariant bilinear form f is degenerate.
Proof. If dim Im(L(x)) = 1, then there exists a basis {e1, e, . .., e,} of A such that
L(x)e; =v #0, Lx)e,=0, V2<i<n.
Then by the left-invariance of f, we have:
fv,er) =f(xe;,e1) =0,  f(v,e) =f(xer, e)) = —f(e;,xe) =0, V2<i<n.
So f is degenerate. O
Furthermore, in [30], certain left-symmetric algebras were constructed from linear functions. In particular, there is a class

of left-symmetric algebras involving left invariant bilinear forms.

Proposition 5.4 ([30]). Let A be a vector space over a field F and ¢ € A be a non-zero element. Let h : A x A — T be a bilinear
form on A such that h(c, c) = 0. Then the product

X*ky= _h(yv C)X—i—h(X, y)C, VX,.V EA? (5])
defines a left-symmetric algebra structure on A and h is left invariant on (A, x). Moreover, the classification of such left-symmetric
algebras with dimension n > 2 is given by the following matrices (F = (h(e;, ¢;)), where {e1 =c, ..., e,} is a basis)

0 1 0
FO—-f1 0 o0 ], (5.2)
0 0 M®
where M® = diag(1,...,1,0,...,0)isa (n—2) x (n— 2) diagonal matrix with the first k elements are 1 and the others are
zero on the diagonal, k = 0, 1...,n — 2. The corresponding left-symmetric algebras are labeled as AX) (k = 0,1...,n —2)

whose non-zero products are given by

e,e; = —eq, e,e; = ey, eje; =ej,eep=e;, 3<j<n 3=<I<k+2 (5.3)

Corollary 5.5. With notations as above. For any n > 2, A2 is q left-symmetric algebra with a nondegenerate symmetric left
invariant bilinear form h given by F®™=2._ In this case, A" A2 = A("=2),

6. Classification of complex left-symmetric algebras with nondegenerate symmetric left invariant bilinear forms in
low dimensions and some examples in higher dimensions

In this section, we consider the base field to be the complex number field C since most of classification results on the
left-symmetric algebras are over C.

Let A be a left-symmetric algebra with a basis {eq, e,, ..., e;} over C. Set e;e; = Zzzl c}]‘-ek. Then the structure of A is
determined by its (form) characteristic matrix

n n
k k
E Ci1ek - E C1nCk
k=1 k=1

n n
k k
E :Crﬂek T 2 :Cnnek
k=1 k=1

Any bilinear form f on A is completely decided by the matrix F = (f;j), where f; = f(e;, ¢;). f is nondegenerate if and only if
detF # 0.

Obviously, products of any 1-dimensional left-symmetric algebra with a nondegenerate symmetric left invariant bilinear
form are zero since any 1-dimensional left-symmetric algebra is commutative.
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Proposition 6.1. Let A be a 2-dimensional complex left-symmetric algebra with a nondegenerate symmetric left invariant
bilinear form. Then AA = 0 or A is isomorphic to A’ given in Corollary 5.5 withn = 2.

Proof. According to the classification of 2-dimensional complex left-symmetric algebras given in [31] or [32], if A is a 2-
dimensional non-commutative left-symmetric algebra and there does not exist an element x € A such that dim Im(L(x)) =
1, then A is isomorphic to one of the following algebras given by their characteristic matrices

0 0 0 0
(—61 )\,62) » AeG (—6‘1 req — 52> )

By a direct checking, one can find only the left-symmetric algebra given by A = ( 0o 0

—e1 ey
left invariant bilinear form, which is decided uniquely up to a scalar multiple by (? é) In this case, it is just A© given in

) has a nondegenerate symmetric

Corollary 5.5 with the bilinear form given by F® withn =2. O

It is a little more complicated in the 3-dimensional cases. In fact, the complete classification of complex left-symmetric
algebras in dimension 3 are given in [33] (there are more than 100 classes). By a similar discussion as in the above proof
(using Propositions 5.1-5.3 and then by a direct computation for the rest classes), we give the following classification.

Proposition 6.2. Let A be acomplex left-symmetric algebra in dimension 3 with a nondegenerate symmetric left invariant bilinear

form f. Then A must be isomorphic to one of the following left-symmetric algebras given by their characteristic matrices (we also
list their corresponding nondegenerate symmetric left invariant bilinear forms).

0 0 0 ] fi1 fiz fi3
(1) A= <o 0 0) and f is defined by (;12 f22 f23> for det(f;) # 0.
0 0

0 13 fz  f33
0 0 0 fu 0 0
(2) A = <7e3 e 0) and f is defined by (0 F2 fn)forfn # 0.
0 0 o0 0 fin O
0 0 0 fin 0 0
(3) A = (0 o o > and f is defined by (0 0 f11>f0rf11 # 0.
0 ey —e3 0 i 0
0 0 0 0 0 fa
(4) A = (o e1 —82) and f is defined by QO 2 O)forfzz #0.
eq 0 —e3 22 0 0
0 0 0 0 fiz O
(5) A= <o 0 0) and f is defined by <f12 0 0>f0rf12f33 # 0.
e1 —e 0 0 0 f33
0 0 0 0 0 fa2
(6) A = <o er —e fe2> and f is defined by </0 f2 *f22> for fo # 0.
e1 0 —ey—e3 2 —fn [

Remark 6.3. In fact, the above type (4) is isomorphic to A" given in Corollary 5.5 with n = 3. Moreover, there are exactly
two types ((4) and (6)) in Proposition 6.2 satisfying AA = A. On the other hand, comparing the above classification results and
Corollary 4.5, we show that the left-symmetric algebra in Case (2) in Corollary 4.5 (considered as a complex left-symmetric
algebra) is isomorphic to the type (5) in Proposition 6.2 by a linear transformation given by

e, — ies, e, — i(e; —ey), es — e; + e;.

Remark 6.4. There is a classification of the left invariant pseudo-metrics over the real number field R in dimension 2 or 3
in terms of Lie algebras in [8]. Note that we use a different (left-symmetric algebraic) approach here.

Since there is not a complete classification of complex left-symmetric algebras in dimension >4, it is far away from giving
the classification of left-symmetric algebras with nondegenerate symmetric left invariant bilinear forms in dimension >4.
But we can give some examples in higher dimensions. We would like to point out that for Lorentzian signature, there is a
complete structure theory, at least for transitive cases in [25].

Example 6.5. In[6], Kim gave the classification of 4-dimensional transitive left-symmetric algebras on nilpotent Lie algebras
over the real number field R. Due to it and with a similar discussion as in the proof of Proposition 6.1, we show that a 4-
dimensional real transitive left-symmetric algebra on a nilpotent Lie algebra with a nondegenerate symmetric left invariant
bilinear form must be isomorphic to one of the following left-symmetric algebras given by their characteristic matrices (we
also list their corresponding nondegenerate symmetric left invariant bilinear forms).

0 0 0 O fii fiz fi3s fia
(1) A = (8 8 8 8) and f is defined by ({;g gi g; g:) for det(f) # O.
0 0 o

0 14 fa fa faua



Z. Chen et al. / Journal of Geometry and Physics 62 (2012) 1600-1610 1609

00 0 0 0 o0 0 fia
00 0 0 . i 0 - 0o o

(2) A= (0 e 0 ez) and f is defined by (0 Q“ ey 0) for fi4 # 0.
0 0 e 3 14 0 0 faq
00 0 0 0 0 0 fig
00 o0 0 . ' 0 0 0

(3) A = (0 e 0 ez) and f is defined by (0 f})“ fa 0) for f14 # 0.
0 0 —e; e3 14 0 0 faq
0 0 0 0 0 o0 0 fia
00 0 0 . ' o o0 - 0

(4) A= (0 0 e eZ) and f is defined by (0 fia {)‘4 0) for f14 # 0.
0 e 0 3 14 0 0 fa4
00 0 O 0 o0 0 fia

_fo 0o o o . ' 0 0 —fig O

(5) A = (0 0 e ez) and f is defined by (0 fia f;‘ f34) for fi4 # 0.
0 0 0 O 4 0 f3a  fa4
00 0 O 0 0 0 fig

(6) A = (g 0 3) and f is defined by (8 o 9 ff;*) for fiafy, # 0.
0 0 e e3 14 fa 0 faa

Note that over the complex number field C, the type (3) is isomorphic to the type (2) by a linear transformation given by

e, — ieq, e, — —iey, e3 —> —es, ey — iey.

Example 6.6. We can extend types (4) and (6) in Proposition 6.2 to be in any dimension n > 4. For the former, the
generalization is given by Corollary 5.5 and for the latter, we give following constructions. Let A be an algebra in dimension

n with a basis {eq, e, ..., e,} whose characteristic matrix is given by
o 0 --- 0 O 0
0O 0 --- 0 e —e1 — ey
0 0 e € 0 —e3
0 ey - 0 0 —€n—1
ee 0 --- 0 0 —e,1—ey

Then A is a left-symmetric algebra satisfying AA = A. Moreover, there exists a unique (up to scalar multiple) nondegenerate
symmetric left invariant bilinear form on A defined by

o o --- 0 1
o o --- 1 -1
o 1 --- 0 O
1 -1 .- 0 O
Example 6.7. Let A be left-symmetric algebra in dimension n with a basis {ey, . .., e,} whose products are given by
eie; =0, e1e; = Aje;, eeg=0, i=2,...,n,j=1,...,n

where A; # 0and A; # 2; if i # j. Recall that a left-symmetric algebra A is called a derivation algebra if L(x) is a derivation of
its sub-adjacent Lie algebra g(A) for any x € A. Such structures correspond to flat left invariant connections adapted to the
automorphism structure of a Lie group. The above left-symmetric algebra A is the unique compatible derivation algebra on
its sub-adjacent Lie algebra [5]. Moreover there is a nondegenerate symmetric left invariant bilinear form on A if and only
if for any i > 2 there is exactly one j > 2 such that A; + A; = 0. As a consequence, n is odd and f (e;, e;) # 0 if and only if
Ai+Aj = 0foranyi,j > 2.In fact, assume that there is a nondegenerate symmetric left invariant bilinear form f on A. Then

Aif (e1, e)) = f(er, e1e)) = —f(ere1,€) =0, i=2,...,n.

Thus f(e1, e;) = 0 foranyi > 2 and f (e, e;) # O since f is nondegenerate. Moreover, f (e;, e;) = 0 for any i > 2 since
Aif (i, €1) = f(erei, €1) = —f(ei, ere), i=2,...,n

Furthermore, since for any i,j > 2,
Aif (e, €) = f(eie;, e) = —f(e;, e1e) = —A;f (ei, ),

we show that for any i > 2, there exists exactly one j > 2 such that f(e;, e;) # 0. Therefore f(e;, ¢;) # 0 if and only if
Ai + Aj = 0 and n is odd. Note that the above left-symmetric algebra is a generalization of the type (5) in Proposition 6.2
(also see Corollary 4.3).
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