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a b s t r a c t

In this paper, we study a coupled system of equations on oriented compact 4-manifolds
which we call the Bach–Merkulov equations. These equations can be thought of as the
conformally invariant version of the classical Einstein–Maxwell equations. Inspired by the
work of C. LeBrun on Einstein–Maxwell equations on compact Kähler surfaces, we give
a variational characterization of solutions to Bach–Merkulov equations as critical points
of the Weyl functional. We also show that extremal Kähler metrics are solutions to these
equations, although, contrary to the Einstein–Maxwell analogue, they are not necessarily
minimizers of the Weyl functional. We illustrate this phenomenon by studying the Calabi
action on Hirzebruch surfaces.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

LetM be a smooth oriented n-manifold. A Riemannian metric g onM is said to satisfy the Einstein–Maxwell equations if

[r + F ◦ F ]◦ = 0
dF = 0, d ∗ F = 0

(1)

for some2-form F onM . Here, r is the Ricci tensor of g; (F◦F)ij = FisFsj is the composition of F with itself as an endomorphism
of the tangent bundle TM; [·]◦ denotes the trace-free part of a (2, 0)-tensor, and ∗ is the Hodge operator with respect to the
metric g . When M is compact, the second line of (1), which is called Maxwell equations, is equivalent to saying that F is
harmonic with respect to g , i.e.1F = 0.

ByHodge theorywe know that any harmonic form F minimizes the L2 norm F →

M |F |

2
gdµg among the forms cohomolo-

gous to F , namely on [F ] ∈ H2
dR(M,R). If, in addition,M has dimension 4, the integral


M |F |

2
gdµg is unchanged if g is replaced

by any conformally relatedmetric g̃ := ug , for a positive smooth function u onM . Therefore, if F is harmonic with respect to
g , it will be harmonic with respect to g̃ . By contrast, the first line of (1) is certainly not conformally invariant in any dimen-
sion. There is, however, an interesting conformally invariant counterpart of these equations introduced by Merkulov in [1]:

B + [F ◦ F ]◦ = 0
dF = 0, d ∗ F = 0

(2)

where Bij = (∇s
∇

t
+

1
2 r

st)Wisjt is the Bach tensor [2]. WhenM is compact, this tensor arises from the Euler–Lagrange equa-
tions for the Weyl energy functional g →


M |W |

2dµg over the space of all metrics. That is, if we vary the metric gt = go
+ th + o(t2), then [3]

d
dt


t=0

W(gt) =


M
⟨h, B⟩dµ =


M
g isg tjhstBijdµ. (3)
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Note that in 4 dimensions, W is indeed conformally invariant since the conformal change g̃ = ug of the metric implies

dµ̃ = u2dµ and W̃ l
ijk = Wijk

l.

Bach tensor, too, behaves well under conformal change: B̃ij =
1
uBij. To see this note that for the rescaled variation g̃t = ug0 +

tuh + o(t2)we have

d
dt


t=0

W(g̃t) =


M
⟨uh, B̃⟩dµ̃ =


M
g̃ isg̃ tjuhst B̃ijdµ̃

and comparing it to (3) we deduce that B̃ij =
1
uBij. Also, B is symmetric, trace-free and divergence-free. Note also that [F ◦F ]◦,

the other term in (2), rescales similarly to Bij under conformal rescaling. Clearing out the 1
u factors, we see that, when M is

a compact manifold of dimension 4, the coupled system of Eqs. (2) is conformally invariant in the sense that if (g, F) is a
solution, so is (ug, F) for any positive smooth function u.

Both Einstein–Maxwell and Bach–Merkulov equations stem from a variational origin. For any given de Rham class
Ω ∈ H2

dR(M,R), solutions (g, F) of Einstein–Maxwell equations with [F ] = Ω are in fact the critical points of the coupled
action

G1 ×Ω −→ R

(g, F) −→


M
sg + |F |

2
gdµg

where G1 stands for the space of unit volume metrics [4]. Similarly [2,1], Bach–Merkulov solutions are the critical point of
the action

G1 ×Ω −→ R

(g, F) −→


M

|W |
2
g + |F |

2
gdµg .

In [4], C. LeBrun studied Einstein–Maxwell equations (1) on compact smooth 4-manifolds, and discovered some fasci-
nating properties of these equations in relation to Kähler geometry. He showed that constant scalar curvature Kähler metrics
satisfy (1); all solutions to (1) are critical points of L2-norm of scalar curvature on GΩ , the space of metrics for which a fixed
cohomology class Ω is represented by a self-dual harmonic form Ωg ; and on complex surfaces constant scalar curvature
Kähler metrics are global minimizers of that action if c1 ·Ω ≤ 0. These results are summarized in Section 2. The aim of this
paper is to state and prove the relevant properties of the Bach–Merkulov equations. The first main results is:

Theorem 1. Let M be a compact complex surface, and let g be a metric conformal to an extremal Kähler metric on M. Then g
satisfies the Bach–Merkulov equations with some F . As a consequence, on any compact complex surface of Kähler type we can
solve (2).

In other words, extremal Kähler metrics are standard solutions of Bach–Merkulov equations on a compact complex sur-
face. On amore general compact oriented 4-manifold the Bach–Merkulov solutions are in a natural bijective correspondence
with the critical points of the Weyl energy functional g →


M |W |

2dµ:

Theorem 2. Let M be a smooth compact oriented 4-manifold, andΩ ∈ H2
dR(M,R) be any de Rham class. A metric g ∈ GΩ is a

critical point of the restriction of theWeyl functional toGΩ if and only if g is a solution of Bach–Merkulov equations in conjunction
with a unique harmonic form F whose self-dual part is F+

= Ωg .

On a compact Kähler surface, one could therefore ask analogously if extremal Kähler metrics are absolute minimizers of
the Weyl functional on GΩ whereΩ is the Kähler class represented by the extremal Kähler metric. It turns out that this is
not the case:

Theorem 3. For any given Ω ∈ H2
dR(M,R) on Kähler-type smooth 4-manifolds CP2♯CP2 or CP1 × CP1 the extremal Kähler

metrics in GΩ (with respect to some complex structure) are not necessarily minimizers of the Weyl functional restricted to GΩ .

Theorems 1 and 2 follow from Propositions 3–5, proved in Section 3. Theorem 3 is a consequence of the discussion in
Section 4.

Recall that, given a compact complex manifold (M, J) with a Kähler classΩ (i.e.Ω is represented by a Kähler form), an
extremal Kähler metric is, by definition, a critical point of the action

Ω+
−→ R (4)

ω −→


M
s2ωdµω
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whereΩ+ stands for the space of Kähler forms in the de Rham classΩ . This notion of extremal metrics was introduced by
Calabi [5] in an attempt to show the existence of constant scalar curvature Kähler metrics on compact complex manifolds.
The Euler–Lagrange equations of this action are given by ∂2s

∂ z̄i∂ z̄j
= 0. In particular, every constant scalar curvature Kähler

metric is extremal. The converse, however, is not true: For any givenKähler class onHirzebruch surfacesFk = P(O(−k)⊕O),
Calabi constructed explicit extremal Kähler metrics in that class. However, the first Hirzebruch surface F1 ≈ CP2♯CP2
cannot admit constant scalar curvature Kähler metric by the Matsushima–Lichnerowicz theorem because the maximal
compact subgroup Lie group of automorphisms is not reductive [5].

By computing the second variation of this action at a critical metric, Calabi was able to show that extremal Kählermetrics
are local minimizers [5]. Indeed, they turn out to be global minimizers as proven recently by Donaldson and Chen [6,7]. As
wewill discuss in Section 2, on compact complex surfaces, LeBrun showed that the constant scalar curvature Kähler metrics
remain global minimizers of the action (4), even if we extend the domain fromΩ+ to GΩ , provided c1 ·Ω ≤ 0. However, we
will show in Section 4 that the extremal Kähler metrics are not necessarily global minimizers of theWeyl energy functional.

2. Einstein–Maxwell equations

This section summarizes some of the results in [4].
Recall that the Euler–Lagrange equations of the action g →


M sgdµg , where g is allowed to vary over all unit volume

metrics are precisely r̊ = 0 (characterizing Einstein metrics). Also, from Hodge theory, the Euler–Lagrange equations of the
action F →


M |F |

2
gdµg , where g is fixed but F varies over all closed 2-forms in a fixed de Rham class [F ] ∈ H2

dR(M,R) are
the Laplace equation1F = 0. Therefore, the Einstein–Maxwell equations are precisely the Euler–Lagrange equations of the
joint action (g, F) →


M sg + |F |

2
gdµg where g varies over unit volume Riemannian metrics and F caries over a fixed de

Rham class.
If we restrict the first action to the conformal class of a critical metric, we get the Einstein–Hilbert action whose critical

points are well known to have constant scalar curvature [8]. Thus, any Einstein–Maxwell metric is of constant scalar
curvature. Conversely, C. LeBrun observed the following remarkable fact:

Proposition 1 (LeBrun). Suppose that (M4, g, J) is a Kähler surface with Kähler form ω = g(J·, ·) and Ricci form ρ = r(J·, ·). If
g has constant scalar curvature, then g satisfies Einstein–Maxwell equations with F = ω+

1
2 ρ̊ , where ρ̊ = r̊(J·, ·) is the primitive

part of the Ricci form ρ of g.

Recall that constant scalar curvature Kähler metrics are in particular extremal Kähler metrics, that is, critical points of
the L2-norm of scalar curvature g →


M s2gdµg , where g varies over Kähler metrics in a fixed Kähler classΩ ∈ H2

dR(M,R).
C. LeBrun generalized the notion of a Kähler class and Calabi problem for a Kähler surface to the Riemannian setting, where,
a priori, there may not be a complex structure at all. The generalization is as follows:

Let M be a smooth 4-manifold; and letΩ be a de Rham class as above. By Hodge theory, we know that any Riemannian
metric g gives a unique harmonic representative Ωg of Ω . If Ωg is self-dual, g is called an Ω-adapted metric. The space of
allΩ-adapted metrics is denoted by GΩ ; i.e. GΩ = {g : ∗Ωg = Ωg}.

Observe that if M is a complex surface and Ω is a Kähler class, then GΩ contains all Kähler metrics in Ω , because any
Kähler form is self-dual. In this sense, GΩ is a Riemannian generalization of a Kähler class. Also note that if g ∈ GΩ , so is
g̃ = ug ∈ GΩ since Hodge ∗-operator is unchanged under conformal changes of the metric.

Now, as in the Calabi problem, C. LeBrun considers the action

g →


M
s2gdµg (∗)

on GΩ , and sees which metrics are critical points of this action:

Proposition 2 (LeBrun). Critical points of (∗) are either

(1) scalar-flat metrics (i.e. s ≡ 0), or
(2) Einstein–Maxwell metrics g with F+

= Ωg .

Thus, in particular, constant scalar curvature Kähler metrics are critical points of (∗). Moreover, they are actually mini-
mizers if c1 ·Ω ≤ 0.

Theorem 4 (LeBrun). Let (M4, J) be a compact complex surface andΩ a Kähler class with c1 ·Ω ≤ 0. Then any metric g in GΩ

satisfies

M s2dµ ≥ 32π2 (c1·Ω)2

Ω·Ω
, and equality holds if and only if g is a constant scalar curvature Kähler metric.

Another observation of C. LeBrun is that any compact smooth 4-manifold of Kähler type admits a solution of (1). This
follows from Shu’s result [9], which says that such 4-manifolds admit a constant scalar curvature Kähler metrics unless they
are diffeomorphic to CP2♯CP2 or CP2♯2CP2. However, both of these manifolds admit Einstein metrics (Page metric [10] and
Chen–LeBrun–Weber metric [11]) which are automatically Einstein–Maxwell with F = 0.
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3. Bach–Merkulov equations

In this section we will state and prove analogues of LeBrun’s results stated in Section 2 for Bach–Merkulov equations.
First we start by observing the following proposition which shows that Bach–Merkulov equations possess an interesting

family of solutions.

Proposition 3. Let g be an extremal Kähler metric on a compact complex surface (M, J). Then (g, F) satisfies the Bach–Merkulov
equations with F = ω +

1
2ψ where ψ = B(J·, ·). Hence any metric conformal to an extremal Kähler metric is a solution of (2).

Proof. The proof is similar to the one of Proposition 1. First, observe that [F ◦ F ]◦ = 2F+
◦ F− where F+ and F− are

the self-dual and anti-self-dual parts of F . Since g is Kähler, ω is a self-dual harmonic 2-form. Moreover, since g is extremal,
ψ = B(J·, ·) is an anti-self-dual harmonic 2-form (see [11]). Thus, setting F+

= ω and F−
=

ψ

2 , we see that 2F+
◦F−

= ωi
sψsj

= ψ(J·, ·) = −B. Thus we get B + [F ◦ F ]◦ = 0. Moreover, F is harmonic since both F+ and F− are so. Therefore, (g, F) is a
solution of Bach–Merkulov equations. �

More explicitly, if g is an extremal Kähler metric, then the Bach tensor can be re-written in the form

B =
1
12
(sr̊ + 2Hess◦(s))

and therefore ψ =
1
12 [sρ + i∂∂̄s]◦ where [ · ]◦ stands for the primitive part of a (1, 1)-form (see [11]). In particular, if

the extremal Kähler metric turns out to have non-zero constant scalar curvature, then ψ simplifies to s
12 ρ̊. So we see that

the solution of Proposition 3 becomes (g, F = ω +
s
24 ρ̊) which is quite similar to LeBrun’s solution to Einstein–Maxwell

equations (g, F = ω +
ρ̊

2 ).
Proposition 3 together with Shu’s result [9] implies the following:

Proposition 4. Let M be the underlying 4-manifold of any compact complex surface of Kähler type. Then M admits a solution
(g, F) of Bach–Merkulov equations.

Next, we will prove the analogue of Proposition 2 for Bach–Merkulov equations:

Proposition 5. An Ω-adapted metric g is a critical point of the restriction of Weyl functional to GΩ iff g is a solution of
Bach–Merkulov equations in conjunction with a unique harmonic form F with F+

= Ωg .

Proof. The proof is similar to the one of Proposition 2. Let gt = g + th+O(t2) be a variation of a metric g in GΩ . Donaldson
showed [12] that the tangent space TgGΩ is precisely the L2-orthogonal complement of {Ωg ◦ ϕ : ϕ ∈ H−

g } in Γ (
2 T ∗M).

Thus, in our case, h can be taken such that

M⟨h,Ωg ◦ ϕ⟩dµg = 0 for all ϕ ∈ Hg .

The first variation of the Weyl functional is given by [2,3]

d
dt


M

∥W∥
2dµgt


t=0

=


M
hijBijdµg =


M
⟨h, B⟩dµg .

Thus, g is a critical point if and only if h is L2-orthogonal to B. By Donaldson’s result [12], this implies that B = Ωg ◦ ϕ for
some ϕ ∈ H−

g . So, taking F+
= Ωg and F−

= −
ϕ

2 , we see that g satisfies (2).
Conversely, if g is anΩ-adapted solution of (2) with F+

= Ωg , then

⟨h, B⟩dµ = 2


⟨h, F+

◦F−
⟩dµ = 0 for any variation

h as above. Thus, again by Donaldson’s result [12], g is a critical point. �

In particular, extremal Kähler metrics are also critical points of this functional. The natural question to ask is whether
they are globalminimizers inGΩ . In the next section, wewill show that the answer to this question is negative: the analogue
of Theorem 4 does not hold for Bach–Merkulov equations.

4. Example: Hirzebruch surfaces

In this section we will show that extremal Kähler metrics adapted to a fixed cohomology classΩ do not necessarily have
the same Weyl energy. We will illustrate this fact on Hirzebruch surfaces, by showing the existence of two closed forms in
Ω which are extremal Kähler with respect to different complex structures. In view of the formula in [13] it will turn out that
the Weyl energy of the corresponding extremal Kähler metrics are different.

Recall that the k-th Hirzebruch surface Fk is defined as the projectivization of the rank-2 complex vector bundle O(−k)
⊕ O over CP1 (see [14,15] for details). Fk is diffeomorphic to S2 × S2 if k is even, and to CP2♯CP2 if k is odd [16]. They are,
however, all biholomorphically distinct as complex surfaces (see [16]). They are simply connected; they have the second
Betti number b2(Fk) = 2 and Euler characteristic χ(Fk) = 4.
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For the generators of the homology of Fk we will take the fiber F and the image of the section {z → [0 : z]} : CP1 →

P(O(−k)⊕ O) = Fk, which we will denote by Ck. Note that F · F = 0, F · Ck = 1 and Ck · Ck = −k so that in this basis the
intersection pairing becomes

0 1
1 −k


.

Let the Poincaré dual of Ck and F be ck and f respectively. Then any de Rham classΩ ∈ H2
dR(Fk,R) can be written asΩ =

pck + qf for some p, q ∈ R. If k and n are two positive integers of the same parity, then Fk and Fn are diffeomorphic; so we
can representΩ as a combination of the basis {cn, f}. The following lemma gives the change of basis formula:

Lemma 1. We have

ck = cn +
n − k
2

f.

Therefore,

Ω = pck + qf = pcn + q̃f

where q̃ = p n−k
2 + q.

Proof. Let

Ck = sCn + tF (5)

for some constants s, t . Take the intersection of both sides with F :

Ck · F = sCn · F + tF · F .

Since Ck · F = Cn · F = 1 and F · F = 0, we have s = 1. On the other hand, take the self intersection of both sides:

Ck · Ck = (Cn + tF) · (Cn + tF)
−k = −n + 2t.

Therefore t =
n−k
2 . Taking the Poincaré dual of (5) proves the first equality. The second equality follows immediately from

this. �

Note also thatΩ = pck + qf ∈ H2
dR(Fk,R) is a Kähler class iffΩ · Ck > 0 andΩ · F > 0, that is, iff p > 0 and q > kp. Now

we can deduce when the same de Rham classΩ is a Kähler class in Fn, where n and k have the same parity. Let Jk denote the
complex structure of the complex surface Fk.

Lemma 2. A Kähler class Ω = pck + qf in Fk is a Kähler class in Fn if and only if n < 2 q
p − k. In particular, Ω is Kähler with

respect to only finitelymany Jn’s.

Proof. Ω = pck + qf is Kähler with respect to Jk iff p > 0 and q > kp. By Lemma 1, Ω = pcn +

p n−k

2 + q

. Now, by the

previous paragraph, this class is Kähler with respect to Jn iff p > 0 and p n−k
2 + q > np. The second inequality is the same as

n < 2 q
p − k. Notice that 2 q

p − k is positive sinceΩ = pck + qf is assumed to be Kähler since q > pk. Hence there are only
finitely many possibilities for n so thatΩ remains Kähler with respect to Jn. �

So there are de Rham classes on smooth 4-manifolds S2 × S2 or CP2♯CP2 which are Kähler with respect to different
complex structures. However, Calabi [5] showed that everyKähler class on aHirzebruch surface is represented by an extremal
Kähler metric.

So, with our previous notation all Riemannian metrics g whose Kähler form ω = g(Jk·, ·) with respect to any of the
complex structures Jk are in GΩ . Thus, we have essentially distinct extremal Kähler metrics in GΩ . Each of those metrics are
critical points of the restriction of the Weyl functional to GΩ .

Next, we will show that this the Weyl energy levels of those metrics are different. First note that [17] for Kähler metrics
we have |W+

|
2

=
s2
24 . By signature formula,


|W+

|
2dµ =

1
2


|W |

2dµ + 6π2τ . Since the signature τ of the Hirzebruch
surfaces is 0, we see that the Weyl energy of a Kähler metric is equal to its Calabi energy up to an overall multiplicative
constant. Hwang and Simanca [13] gave the following formula for the Calabi energy of an extremal metric in a Kähler class
on the Hirzebruch surface Fk.

Proposition 6 (Hwang and Simanca). The Calabi energy of the extremal Kähler metric in the classΩ = 4πck + 2π(a + k)f in
Fk is given as:

C̃(a, k) := 12π
a3 + 4a2 + (4 + k2)a − 4k2

3a2 − k2
. (6)
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Note that the Calabi energy and theWeyl energy are scale-invariant in dimension four. Therefore by appropriate scaling we
see that the Calabi energy of the extremal Kähler metric inΩ = pck + qf is given by

C(p, q, Fk) := C̃


2
q
p

− k, k


= 12π


2 q

p − k
3

+ 4

2 q

p − k
2

+ (4 + k2)

2 q

p − k


− 4k2

3

2 q

p − k
2

− k2
. (7)

We therefore see that the extremal Kähler metrics with respect to different complex structures in Ω have different
energy, i.e. C(p, q, Fk) ≠ C(p, p n−k

2 + q, Fn) in general. Thus, they also have different Weyl energy.
This shows that the analogue of Theorem 4 cannot hold for the Bach–Merkulov equations.
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