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a b s t r a c t

A deformation theory of generalized holomorphic structures in the setting of (generalized)
principal fibre bundles is developed. It allows the underlying generalized complex
structure to vary together with the generalized holomorphic structure. We study the
related differential graded Lie algebra, which controls the deformation problem via
the Maurer–Cartan equation. As examples, we check the content of the Maurer–Cartan
equation in detail in the special cases where the underlying generalized complex structure
is symplectic or complex. A deformation theorem, together with some non-obstructed
examples, is also included.
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1. Introduction

In generalized complex geometry, the notion of generalized holomorphic structures is the analogue of holomorphic
structures in classical complex geometry, including flat bundles over symplectic manifolds, co-Higgs bundles and
holomorphic Poisson modules as extreme examples. These examples are also the most studied cases to date: the flat case
is the most trivial one; N. Hitchin has studied certain aspects of co-Higgs bundles and also provided some interesting
examples [1,2], while [3] contains a detailed investigation of stable co-Higgs bundles overP1 andP2; the case of holomorphic
Poisson modules is less touched, in particular in the setting of generalized complex geometry—[4,5] contain some topics
concerning this. The construction of more general generalized holomorphic structures often involves more effort; for some
progress in this direction see [5,6].

In [6,7] the author has explored some local features of generalized holomorphic structures. In the formalism of reduction
theory of Courant algebroids and Dirac structures developed in [8], the author has also extended the notion of generalized
holomorphic structures to the context of (generalized) principal bundles [6]. This paper is then a continuation of that work,
motivated by the attempt to find more examples of generalized holomorphic structures.

One possibleway to obtainmore examples of generalized holomorphic structures is by deforming a given one. Recall that
in classical theory of deformations of holomorphic structures [9], one fixes a compact complexmanifold (M, J) togetherwith
a holomorphic vector bundle V and tries to find nearby holomorphic structures, but all these holomorphic structures are w.r.t.
the same complex structure J . Then infinitesimal deformations are contained inH1(M,O(End(V )))while the obstructions for
an infinitesimal deformation to be integrable live in H2(M,O(End(V ))).

One can certainly routinely apply a similar method to the generalized case, where the underlying generalized complex
structure should be fixed, and in this sense we call the resulting theory traditional.. However, there are some drawbacks. First,
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when deforming a usual holomorphic structure (viewed as a generalized holomorphic structure), one cannot go too far and
at most gets co-Higgs bundles. Second, the relevant cohomology groups (e.g. those associated to a Poisson module) are, to
some extent, the starting point to find nearby generalized holomorphic structures, but generally there still lacks any effective
way to compute them. Thus, for practical purposes, e.g. to probemore general generalized holomorphic vector bundles, this
way of deformation is not that useful.

Therefore, in this paper, wewill develop amore general deformation theory, which,more or less, can overcome the above
drawbacks. Asmany existing examples of generalized complexmanifolds are obtained by deforming simple ones, our choice
is that, we no longer restrict ourselves to a fixed underlying generalized complex structure—the generalized holomorphic
structure varies more freely, because the underlying generalized complex structure is also allowed to vary. In this direction,
the formalism of [6] is rather suitable for our purpose, so we start in the context of principal bundles and then work out its
vector-bundle counterpart.

The paper is organized as follows. In Section 2,we collect the necessary basics of generalized complex geometry. Section 3
is devoted to finding the correct differential graded Lie algebra (DGLA for short) governing the deformation problem. We
show how to define the differential and bracket at the level of equivariant objects over the principal bundle P and then
descend to the base manifold M . It turns out that the resulting DGLA is an extension of the DGLA controlling deformations
of the underlying generalized complex structure by the DGLA controlling traditional deformations of the generalized
holomorphic structure. This results in the infinitesimal deformation theory being described by a long exact sequence of
cohomology groups (cf. Theorem 3.6). In Section 4 we present the Maurer–Cartan equation and investigate it in detail in the
cases where the underlying generalized complex structure is actually symplectic or complex. Some new possibilities occur,
which are missing in the existing literature. Section 5 is devoted to proving the deformation theorem (cf. Theorem 5.3). As
the procedure is rather standard, we only outline the proof. Examples are presented, in which the obstruction vanishes.

2. Some preliminaries

We collect the basic material concerning generalized complex structures and generalized holomorphic structures. The
most relevant references are [4,6,8,10]. In this paper,M will always be a connected orientable smooth 2m-manifold.

Generalized geometry is the geometry related to the generalized tangent bundle TM := TM ⊕ T ∗M , or more generally,
a so-called exact Courant algebroid E.

Definition 2.1. A Courant algebroid overM is a real vector bundle E → M with a bracket [·, ·]c (Courant bracket) on Γ (E),
a nondegenerate symmetric bilinear form ⟨·, ·⟩, and an anchor map π : E → TM , satisfying the following conditions for all
e1, e2, e3 ∈ Γ (E) and f ∈ C∞(M):
• π([e1, e2]c) = [π(e1), π(e2)],
• [e1, [e2, e3]c]c = [[e1, e2]c, e3]c + [e2, [e1, e3]c]c ,
• [e1, fe2]c = f [e1, e2]c + (π(e1)f )e2,
• π(e1)⟨e2, e3⟩ = ⟨[e1, e2]c, e3⟩ + ⟨e2, [e1, e3]c⟩,
• [e1, e1]c =

1
2D⟨e1, e1⟩,

where D = π∗
◦ d : C∞(M) → Γ (E) (E and E∗ are identified using ⟨·, ·⟩).

Definition 2.2. E is called exact if it is an extension of TM by T ∗M , i.e. the sequence

0 −→ T ∗M
π∗

−→ E
π
−→ TM −→ 0

is exact.

Courant algebroids encountered in this paper are all exact and called Courant algebroids for short. Given E, one can always
find an isotropic right splitting s : TM → E, which has a curvature form H ∈ Ω3

cl(M) defined by

H(X, Y , Z) = ⟨[s(X), s(Y )]c, s(Z)⟩, X, Y , Z ∈ Γ (TM).

By the bundle isomorphism s + π∗
: TM ⊕ T ∗M → E, the Courant algebroid structure can be transported onto TM . Then

the pairing ⟨·, ·⟩ is the natural one, i.e. ⟨X + ξ, Y + η⟩ = ξ(Y )+ η(X), and the Courant bracket is

[X + ξ, Y + η]H = [X, Y ] + LXη − ιYdξ + ιY ιXH,

called the H-twisted Courant bracket. Different splittings are related by B-field transforms, i.e. eB(X + ξ) = X + ξ + ιXB,
where B is a 2-form.

A Courant algebroid E has more symmetries than the tangent bundle; in particular, the left adjoint action by a section of
E gives rise to an infinitesimal inner automorphism of E.

An isotropic subbundle A ⊂ E is called a generalized distribution and called integrable if it is involutive w.r.t. the Courant
bracket. An integrable maximal generalized distribution L is called a Dirac structure. These notions can be complexified and
what interests us here is the following complex Dirac structure1:

1 We use VC to denote the complexification of a real vector space or bundle V .
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Definition 2.3. A generalized complex structure in E is an orthogonal complex structure J of E, such that the i-eigenbundle
L ⊂ EC of J is integrable. We call (M, J) a generalized complex manifold.

Two extreme generalized complex structures are symplectic and complex structures. Let E = TM with H = 0. If ω is a
symplectic structure, then L = {X − iω(X)|X ∈ TCM}; if J is a complex structure, then L = T0,1 ⊕ T ∗

1,0. A more complicated
example is a holomorphic Poisson manifold (M, J, β). In this case, L = {X + ξ + β(ξ)|X + ξ ∈ T0,1 ⊕ T ∗

1,0}.
We will use J and L interchangeably to label the generalized complex structure under consideration. By the pairing we

can identify L∗ with L, and a differential dL : Γ (∧k L) → Γ (∧k+1 L) can be defined: for σ ∈ Γ (∧k L), ai ∈ Γ (L),

dLσ(a0, . . . , ak) =


i

(−1)iπ(ai)σ (a0, . . . ,ai, . . . , ak)
+


i<j

(−1)i+jσ([ai, aj]c, a0, . . . ,ai, . . . ,aj, . . . , ak), (2.1)

whereai means ai is omitted. Since L is involutive, d2L = 0 and we get the following elliptic complex

0 −→ C∞(M)
dL
−→ Γ (L)

dL
−→ Γ (∧2 L)

dL
−→ · · ·

dL
−→ Γ (∧2m L) −→ 0. (C1)

This is just the deformation complex of the underlying generalized complex structure. The corresponding cohomology
groups are denoted by Hk(L, dL), but for our purpose, we decrease the degree of each term in the complex by 1 and denote
the cohomology groups by H̃k(L, dL), i.e.

H̃k(L, dL) = Hk+1(L, dL).

The analogue of holomorphic structures is defined as follows:

Definition 2.4 ([4]). Let L be a generalized complex structure in E and V a complex vector bundle over M . An L-connection
D in V is a differential operator D : Γ (V ) −→ Γ (L ⊗ V ) satisfying

D(fs) = dLf ⊗ s + fDs, s ∈ Γ (V ), f ∈ C∞(M).

If D is flat, i.e. D2
= 0, it is called a generalized holomorphic structure and (V ,D) is called a generalized holomorphic vector

bundle.

As was implied in Section 1, for a symplectic manifold, a generalized holomorphic vector bundle is a flat one, while
for a complex manifold, a generalized holomorphic vector bundle is a co-Higgs bundle, i.e. a holomorphic vector bundle V
together with a holomorphic section φ of T1,0 ⊗Hom(V ) such that [φ, φ] = 0. IfM is a holomorphic Poisson manifold, then
a generalized holomorphic vector bundle is precisely a holomorphic Poisson module [4].

For a generalized holomorphic vector bundle (V ,D), since D2
= 0, we have the following elliptic complex

0 −→ Γ (V )
D
−→ Γ (L ⊗ V )

D
−→ Γ (∧2 L ⊗ V )

D
−→ · · ·

D
−→ Γ (∧2m L ⊗ V ) −→ 0. (C2)

This complex controls the deformation of D in the traditional sense. We denote the corresponding cohomology groups by
Hk(V ) if the underlying D is clear.

We also recall a modest knowledge of extended group actions. A detailed account can be found in [8].
Let E be a Courant algebroid over M . Let G be a connected real Lie group and g its Lie algebra. Assume that G acts freely

and properly on M on the right, infinitesimally described by ψ̃ : g → Γ (TM). An isotropic trivially extended action of ψ̃ is
a linear map ψ : g → Γ (E) covering ψ̃ such that

[ψ(a), ψ(b)]c = −ψ([a, b]), a, b ∈ g

and the subbundle K ⊂ E generated by ψ(g) is isotropic. It is also required that ψ integrate to a G-action on E.
Let K⊥ be the orthogonal complement of K in E w.r.t. ⟨·, ·⟩. Then the Courant algebroid structure on E descends to M/G,

and the resulting Courant algebroid is K⊥

K /G. Under some mild conditions, a complex Dirac structure L ⊂ EC also descends

to a complex Dirac structure Lr ⊂
K⊥

C
KC
/G:

Lr :=
L ∩ K⊥

C + KC

KC
.

This procedure actually also applies to generalized distributionswhich are not necessarilymaximal, and this iswhat happens
in this paper.

Definition 2.5. A generalized principal G-bundle overM is a triple (P, E, ψ) such that

(i) p : P → M is a usual principal G-bundle,
(ii) E is a Courant algebroid over P and ψ is an isotropic trivially extended action on E of the natural G-action on P.
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As was mentioned, E descends to a Courant algebroid E over M . By π1 and π2 denote the anchor maps of E and E
respectively. To distinguish the two Courant brackets, we suppress the subscript c of the Courant bracket on Γ (E). If the
underlying E and ψ are clear, we shall just refer to P as a generalized principal G-bundle.

Example 2.6. Let p : P → M be a usual principal G-bundle over M and H ∈ Ω3
cl(M). Let E be TP equipped with the

p∗(H)-twisted Courant bracket. G acts on E in the ordinary manner, i.e. g · (X, ξ) = (g∗(X), g∗−1(ξ)). This way, P becomes a
generalized principal G-bundle. Note that the reduced Courant algebroid is just TM with the H-twisted Courant bracket. In
this paper, when viewing a usual principal G-bundle as a generalized one, for convenience, we always follow this procedure
with H = 0.

For a generalized principal G-bundle (P, E, ψ), a right splitting s is called admissible if ψ(g) ⊂ Γ (s(TP)). Use such a
splitting to identify E with TP. Then for a ∈ g, ψ(a) = Xa, i.e. the vector field generated by a. For later use, we give the
following lemma.

Lemma 2.7. For sufficiently small open set W ⊂ M, there are G-invariant admissible isotropic splittings for (P, E, ψ) restricted
on W. The B-field relating two such splittings is a basic 2-form.

Proof. Assume P|W to be of the formW ×G. It is not hard to find that admissible isotropic splittings do exist and the B-field
relating two such splittings is a horizontal 2-form. Let s be an admissible splitting and H be the curvature. Then ιXa ιXbH = 0
for a, b ∈ g.

Let {yi} be the coordinates of W . ∂yi can be viewed as a section of TP|W over the set W × {e} ⊂ P|W , and by G-action
it extends to the whole of P|W . The result Yi is of the form ∂yi + ξi, where ξi is a 1-form over P|W .2 By construction, Yi is
G-invariant and therefore

LXaξi + ι∂yi
ιXaH = 0, a ∈ g.

This equation, together with ιXa ιXbH = 0 and the fact that ξi|W×{0} = 0, implies that ξi is a horizontal 1-form.
Let {Zα} be a G-invariant frame of K . Then {∂yi; Zα} is a frame of TP|W and {Yi; Zα} gives rise to a G-invariant splitting. Let

{dyi; Z∗
α} be the dual frame of T ∗P|W . Then it is easy to see that the new splitting relates to the old by the B-field 1

2ξi(∂yj)dy
idyj,

which is horizontal. Therefore the new splitting is both admissible isotropic and G-invariant.
If s and s′ are both G-invariant admissible isotropic splittings, relating to each other by a B-field B, then the corresponding

curvatures satisfy H′
= H − dB. One must have ιyi ιXadB = 0 and ιXa ιXbdB = 0. As B is horizontal, these imply that LXaB = 0,

i.e. B is basic. �

Remark. The proof of the lemma implies that for a general generalized principalG-bundle, at least locally, it is safe to assume
that G acts on E in the manner described in Example 2.6: For a G-invariant admissible isotropic splitting, ∂yi as a section of
E is G-invariant. Then

0 = [Xa, ∂yi ]H = [Xa, ∂yi ] + ι∂yi
ιXaH = ι∂yi

ιXaH.

This, together with ιXa ιXbH = 0, implies ιXaH = 0. Since H is closed, then it is also basic, i.e. of the form p∗(H) for a 2-form
H onW . Then for a vector field X over P|W , [Xa, X]H = [Xa, X].

Now let G be a connected complex Lie group, and gC = gh ⊕ ga, i.e. the sum of holomorphic and anti-holomorphic
components. If (P, E, ψ) is a generalized principal G-bundle, then ψ(ga) and ψ(gh) generate Ka and Kh respectively, both
subbundles of KC.

Definition 2.8 ([6]). Let (P, E, ψ) be a generalized principal G-bundle over M and A ⊂ EC a G-invariant generalized
distribution such that

(i) Ka ⊂ A ⊂ K⊥
C ,

(ii) A ⊕ A = K⊥
C ,

(iii) A descends to a generalized complex structure L ⊂ EC.

Then A is called an almost generalized holomorphic structure w.r.t. L. If moreover A is integrable, it is called a generalized
holomorphic structure.

A is essentially a complex structure in K⊥, which restricted to K is minus the canonical complex structure induced from

the complex group G. Condition (iii) means L :=
A∩K⊥

C +KC
KC

/G is a generalized complex structure in E. It is worth mentioning
that there is a natural G-isomorphismΠ : A/Ka → (A ∩ K⊥

C + KC)/KC. (2.2)

2 Since the G-action preserves the bilinear form, one must have ξi(∂yj )+ ξj(∂yi ) = 0.
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For some examples of generalized holomorphic principal bundles, see [6]. A remarkable observation of [6] is that a G-
invariant generalized distribution A, satisfying conditions (i), (ii), always descends to a generalized distribution Ar such that
Ar ⊕ Ar = EC. If further A is integrable, so is Ar . Therefore if an integrable G-invariant generalized distribution A satisfies
(i) and (ii), then (iii) follows automatically. This suggests that, if we deform A in such a way that conditions (i), (ii) are
preserved and the resulting generalized distribution A′ is still integrable, then A′ is a generalized holomorphic structure
w.r.t. an underlying generalized complex structure J′, possibly differing from the original J. This will be the very starting
point of our deformation theory in the coming sections.

Given an almost generalized holomorphic structure A and a finite dimensional holomorphic representation (ρ,U), a
canonical L-connection in V := P×ρ U can be defined. Recall that Γ (V ) can be identified with Γ (P,U)G, the space of G-
equivariant U-valued functions on P. For s ∈ Γ (V ), by s̃ denote the corresponding element in Γ (P,U)G. One can define the
L-connection D as follows: let x ∈ M and W be a small neighbourhood of x. For a ∈ Γ (L), choose â ∈ Γ (A|p−1(W ))

G, which
descends to a|W . Then

(Das)(x) := [(q, (π1(â)s̃)(q))], (2.3)

where q is any point in p−1(x). If further A is integrable, then D is a generalized holomorphic structure in V . In particular, if
ρ is the adjoint representation of G on gh, then we get the canonical generalized holomorphic vector bundle (gA,D).

3. The underlying DGLA

As can be expected from general deformation theory [11], deformations of a generalized holomorphic structure are
governed by a DGLA, through a Maurer–Cartan type equation. The purpose of this section is then to explore the underlying
DGLA in detail, also preparing for the next sections.

Definition 3.1. A DGLA (S, [·, ·], d) is the data of a Z-graded complex vector space S =


i∈Z S i with a bilinear bracket
[·, ·] : S × S → S and a linear map d ∈ Hom(S, S) satisfying the following conditions:

(i) [·, ·] is graded skew-symmetric, i.e. [S i, S j] ⊂ S i+j and

[a, b] + (−1)|a||b|[b, a] = 0

for every a, b homogeneous (|a| is the degree of a).
(ii) Each triple of homogeneous elements a, b, c satisfies the graded Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]].

(iii) d(S i) ⊂ S i+1, d2 = 0 and d[a, b] = [da, b] + (−1)|a|[a, db].

A1 =
2m

k=0 Γ (∧
k L) is an example of DGLA, where the degree of Γ (∧k L) is k − 1, the bracket is the Schouten bracket3

(still denoted by [·, ·]c) associated to the Lie algebroid L, and the differential is just dL; A2 =
2m

k=0 Γ (∧
k L ⊗ gA) is another

example, where for ai ∈ Γ (∧ki L), Fi ∈ Γ (gA), i = 1, 2, the bracket is characterized by

[a1 ⊗ F1, a2 ⊗ F2] = (a1 ∧ a2)⊗ [F1, F2], (3.1)

and the differential is D. In this section, we will find a new DGLA, which, to some extent, is a combination of the above two.
Let (M, J)be a compact generalized complexmanifold, andA0 a generalizedholomorphic structurew.r.t J in a generalized

principal G-bundle P overM . We continue to use the notation of the previous section.

Definition 3.2. A deformation of A0 is a G-equivariant bundle homomorphism ε : A0 → A0 which vanishes on Ka and is
skew, i.e. ⟨a, ε(b)⟩ + ⟨ε(a), b⟩ = 0 for a, b ∈ A0.

ε can also be viewed as a homomorphism from L := A0/Ka to A0, i.e. ε ∈ Γ (L∗
⊗ A0)

G. For ε small enough, the graph Aε
of ε satisfies conditions (i), (ii) in Definition 2.8. ε is called integrable if Aε is involutive.

By abuse of notation, we will label an element a ∈ L and its representative in A0 by the same letter. No ambiguity would
arise from the context. We call an element s ∈ ∧

k L∗
⊗ A0 skew if for ai ∈ A0, i = 1, . . . , k + 1

⟨s(a1, . . . , ak), ak+1⟩ + ⟨a1, s(ak+1, a2, . . . , ak)⟩ = 0.

Let Ak ⊂ ∧
k L∗

⊗ A0 (k = 1, . . . , 2m) be the subbundle consisting of skew elements. We also denote the trivial complex
line bundle over P by A−1.

Consider A =
2m

k=−1 Γ (Ak)
G and set the degree of Γ (Ak) to be k. We show there is a differential and a bracket on A,

which are ingredients to define a DGLA.

3 We refer the reader to [10] for all properties of this Schouten algebra, which will be used without mention.
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Since for f ∈ Γ (A−1)
G, df ∈ Γ (K⊥

C ), by dAf we denote the A-component of df . Also for a, b ∈ Γ (K⊥
C )

G, [a, b] ∈ Γ (K⊥
C )

G

and the A-component [a, b]A makes sense.
Define δ : Γ (A−1)

G
→ Γ (A0)

G by δf = dAf . Define δ : Γ (A0)
G

→ Γ (A1)
G by

δs(a) = −[s, a]A, a ∈ Γ (A)G, (3.2)

or generally, define δ : Γ (Ak)
G

→ Γ (Ak+1)
G by

δs(a0, . . . , ak) =


i

(−1)i[ai, s(a1, . . . ,ai, . . . , ak)]A
+


i<j

(−1)i+js([ai, aj], a0, . . . ,ai, . . . ,aj, . . . , ak)+ (−1)k+1dA⟨s(a0, . . . , ak−1), ak⟩.

Lemma 3.3. δ is well-defined, and the sequence

0 −→ Γ (A−1)
G δ

−→ Γ (A0)
G δ

−→ Γ (A1)
G δ

−→ · · ·
δ
−→ Γ (A2m)

G
−→ 0

is a complex.

Proof. It is easy to see that if s is G-invariant, so is δs. By definition, δs(a0, . . . , ak) is skew-symmetric w.r.t. its arguments.
We prove that it is C∞(P)G-linear. It suffices to prove δs(fa0, . . . , ak) = f δs(a0, . . . , ak):

δs(fa0, . . . , ak) = f δs(a0, . . . , ak)+ dAf ⟨a0, s(a1, . . . , ak)⟩ +


i≠0

(−1)iπ1(ai)fs(a0, a1, . . . ,ai, . . . , ak)
+


i≠0

(−1)i+1π1(ai)fs(a0, a1, . . . ,ai, . . . , ak)+ (−1)k+1dĀf ⟨s(a0, . . . , ak−1), ak⟩

= f δs(a0, . . . , ak).

To see δs is skew, we only prove the case in which s is of degree 0, since the general case only involves more complicated
notation:

⟨δs(a0), a1⟩ = −⟨[s, a0]A, a1⟩
= −π1(s)⟨a0, a1⟩ + ⟨a0, [s, a1]⟩
= −⟨a0, δs(a1)⟩.

We also will not prove the formula δ2 = 0 completely, and this shall be done at the level of complexes overM (Lemma 3.5).
However, to show how the Jacobi identity plays its role, we prove δ2s = 0 for s of degree 04:

δ2s(a0, a1) = [a0, δs(a1)]A + [δs(a0), a1]A − δs([a0, a1])

= −[a0, [s, a1]A]A − [[s, a0]A, a1]A + [s, [a0, a1]]A

= 0,

where the last equality holds due to the Jacobi identity. �

To define the bracket on


k Γ (Ak)
G, we first remark that


k Ak has another characterization:

Lemma 3.4. Let I(∧2 Kh) be the ideal generated by ∧
2 Kh in the exterior algebra ∧

• A0. Then
k

Ak ∼= ∧
• A0/I(∧2 Kh),

and Ak is precisely identified with ∧
k+1 A0/I(∧2 Kh).

Proof. At any point q ∈ P, by the natural pairing on E, each element in the fibre at q of ∧
k+1 A0/I(∧2 Kh) defines a skew

element in ∧
k L∗

q ⊗ A0q. It is easy to see this correspondence is injective. Counting dimensions then leads to the claimed
identification. �

4 For degree −1, this holds due to the general fact that the left adjoint action by an exact 1-form on Γ (E) is trivial.
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Since A0 is a G-equivariant Lie algebroid over P, the Schouten bracket makes sense on G-invariant sections of ∧• A0. Note
that

[Γ (∧• A0)
G,Γ (I(∧2 Kh))

G
] ⊂ Γ (I(∧2 Kh))

G.

The Schouten bracket then descends to Γ (∧• A0/I(∧2 Kh))
G, or


k Γ (Ak)

G. This way, we get the necessary bracket, which
we denote by [·, ·]A.

What is most relevant to us in this paper is the case of degree 1. Let s, t ∈ Γ (A1)
G. Then it can be checked that

[s, t]A(a, b) = [s(a), t(b)] + [t(a), s(b)] − s([a, t(b)]A + [t(a), b]A)− t([a, s(b)]A + [s(a), b]A).

In particular,

[s, s]A(a, b) = 2[s(a), s(b)] − 2s([a, s(b)]A + [s(a), b]A).

By taking the quotient, all G-equivariant vector bundles over P descend toM . Let gA,Ak and LA be obtained this way from
Kh, Ak and L respectively. Due to the G-isomorphism Π, LA can be canonically identified with L, and Ak with a subbundle of
∧

k L ⊗ A0. Note that A0 is an extension lying in K⊥
C /G of L by the adjoint bundle gA:

0 −→ gA
i

−→ A0
Π
−→ L −→ 0. (3.3)

Generally Ak, k = 0, 1, . . . , 2m, is an extension of ∧k+1 L by ∧
k L ⊗ gA:

0 −→ ∧
k L ⊗ gA

i
−→ Ak

Π
−→ ∧

k+1 L −→ 0. (3.4)

Remark. Note that when k = 2m,∧2m+1 L = {0}. For our purpose, we also set ∧
−1 L ⊗ gA = {0} and then the above

sequence also exists for this case.

Before proceeding further, we describe Ak in terms of local data.
Let {eα} be a basis of gh, andeα (resp. ̄eα) be the vector fields generated by eα (resp. ēα). Due to the remark below

Lemma 2.7, over a sufficiently small open set W ⊂ M , we can choose a local section φ of P and a G-invariant admissible
isotropic splitting such that we are in the situation of Example 2.6. Then P|W is of the formW ×G and an element s ∈ Γ (A0)

G

is locally of the form

b − θα(b)eα + Fαeα, b ∈ Γ (L|W ).

Here, b is viewed as a section of p∗(L)|P|W by pull-back, θα ∈ Γ (p∗(L)|P|W ), and θα are the complex conjugate of θα; Fα are
functions over P|W . G-invariance implies that θα(b̄), Fα are holomorphic in the G-orbit directions, and form G-equivariant
gh-valued functions θ(b̄) = θα(b̄)eα, F = Fαeα . θ restricted to φ is precisely the connection form of (gA,D) in the frame
induced by φ.

If one chooses a new G-invariant admissible splitting related to the old by p∗(B) for a 2-form B on W , then the new
(b′, F ′) = (b− ιπ2(b)B, F). Since b and b− ιπ2(b)B represent the same local section of Lw.r.t. the corresponding local splittings
of E related by B, φ actually provides a local splitting of the sequence (3.3). Thus, with the help of θ , a section s ∈ Γ (A0)
is locally of the form (b, F), where b and F are local sections of L and gA respectively. It can be checked that, if φ′

= φg is
another local section of P, then in the new frame induced by φ′,

s = (b,Adg−1(F)− ιπ2(b)(g
−1dg)),

where g−1dg is the pull-back of the Maurer–Cartan form on G.
The above argument holds generally. φ provides a local splitting of the sequence (3.4). If Γ (Ak) ∋ s = (b, F) in the frame

induced by φ, then in the frame induced by φ′,

s = (b,Adg−1(F)+ (−1)k+1b(g−1dLg)),

where g−1dLg is the L-component of g−1dg .
Let {Wα} be an open cover of M such that P is trivialized on each Wα by a local section φα . If gαβ are the transition

functions, then the identification on the overlapsWα ∩ Wβ

(b, F) ∼ (b,Adg−1
αβ
(F)+ (−1)k+1b(g−1

αβ dLgαβ))

gives rise to a vector bundle Rk isomorphic to Ak, which is, however, independent of A.
The differential δ and the bracket [·, ·]A all have their counterparts on M . Without ambiguity we use the same symbols

to denote them. This way the sequence in Lemma 3.3 descends to a complex overM:

0 −→ C∞(M)
δ
−→ Γ (R0)

δ
−→ Γ (R1)

δ
−→ · · ·

δ
−→ Γ (R2m) −→ 0. (C)

Lemma 3.5. The sequence (C) is an elliptic complex.
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Proof. As the problem is local in essence, we can choose a local section φ of P, which provides special splittings for the
sequences (3.4). Let θ be the connection form of (gA,D) associated to φ. Then for a function f ,

δf = (dLf , π2(θ)f ).

For a local section (b, F) of R0,

δ(b, F) = (dLb, dLF + [θ, F ] + [b, θ]c).

It can be checked that generally for a local section (b, F) of Rk,

δ(b, F) = (dLb, dLF + [θ, F ] + (−1)k[b, θ]c),

where [b, θ]c is the Schouten bracket of b and θ . Therefore,

δ2s = (d2Lb,D(DF + (−1)k[b, θ]c)+ (−1)k+1
[dLb, θ])

= (0, (−1)kD[b, θ]c + (−1)k+1
[dLb, θ]),

where the formula D2
= 0 is used. Noting that

D[b, θ]c = dL[b, θ]c + [θ, [b, θ]c]
= [dLb, θ]c + (−1)k[b, dLθ ]c + [θ, [b, θ]c],

and that

[b, [θ, θ]]c = [[b, θ]c, θ] + (−1)k[θ, [b, θ]c] = (−1)k2[θ, [b, θ]c],

we have

δ2s =


0,


b, dLθ +

1
2
[θ, θ]


c


= 0,

where the Maurer–Cartan equation for θ is used.
Denote δ : Γ (Rk) → Γ (Rk+1) by δk , k = −1, . . . , 2m− 1. Then the first two symbol maps are (Rk should be pulled back

to T ∗M)

σξ (δ−1)(f , 0) = (f ξ L, ⟨ξ L, θ⟩f ),

and

σξ (δ0)(b, F) = (ξ L ∧ b, ξ L ⊗ F − ⟨ξ L, θ⟩b),

where ξ ∈ T ∗M and ξ L/L are its L/L-components. For general k,

σξ (δk)(b, F) = (ξ L ∧ b, ξ L ∧ F + (−1)k+1
⟨ξ L, θ⟩b).

From this local description, it is easy to find out that the complex is elliptic. �

The bracket [·, ·]A can also be described explicitly in local terms. Let si = (bi, Ei) be of degree di, i = 1, 2 respectively.
Then it is easy to find

[s1, s2]A = ([b1, b2]c, [b1, E2]c + (−1)d1d2+1
[b2, E1]c − [E1, E2]). (3.5)

Note that unlike δ, this bracket is actually independent of A0.
Combining the argument in this section and the elliptic complexes (C1) and (C2), we thus obtain

Theorem 3.6. There exists a short exact sequence of elliptic complexes:

0 −→ C2
i

−→ C
Π
−→ C1 −→ 0.

In particular, we have the following long exact sequence of cohomology groups:

0 → H0(gA) → H0(A) → H̃0(L, dL) → H1(gA)

→ H1(A) → H̃1(L, dL) → H2(gA) → H2(A) → H̃2(L, dL)
→ · · · → H2m(A) → 0.

Proof. Note that H−1(A) = H̃−1(L, dL) = C and hence that the connecting homomorphism H̃−1(L, dL) → H0(gA) is zero.
The long exact sequence then follows. �
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Proposition 3.7. A =
2m

k=−1 Γ (Rk) equipped with the differential δ and the bracket [·, ·]A is a DGLA, and the short exact
sequence in Theorem 3.6 is a sequence of DGLAs.

Proof. It is convenient to use the local description. It holds obviously that the bracket is graded skew-symmetric. Let
si = (bi, Fi) be of degree di, i = 1, 2, 3.

For the graded Jacobi identity, due to linearity and graded skew-symmetry, we need to consider 6 cases according to
whether bi = 0 or Fi = 0, but here we only treat the case where F1 = 0, F2 = 0 and b3 = 0 and leave others to the
interested reader. Noting that

[s1, [s2, s3]A]A = (0, [b1, [b2, F3]c]c), [s2, [s1, s3]A]A = (0, [b2, [b1, F3]c]c),

and

[[s1, s2]A, s3]A = (0, [[b1, b2]c, F3]c),

we need to prove that

[b1, [b2, F3]c]c = [[b1, b2]c, F3]c + (−1)d1d2 [b2, [b1, F3]c]c,

which holds because of the graded Jacobi identity in A1.
We next prove that δ and [·, ·]A are compatible, i.e.

δ[s1, s2]A = [δs1, s2]A + (−1)d1 [s1, δs2]A.

It is enough to consider the case where F1 = 0 and b2 = 0. Since

[s1, s2]A = (0, [b1, F2]c),

then

δ[s1, s2]A = (0, dL[b1, F2]c + [θ, [b1, F2]c]).

On the other side, we have

[δs1, s2]A = (0, [dLb1, F2]c + (−1)d1+1
[[b1, θ]c, F2]),

and

[s1, δs2]A = (0, [b1, dLF2 + [θ, F2]]c).

We have to prove

[θ, [b1, F2]c] = (−1)d1+1
[[b1, θ]c, F2] + (−1)d1 [b1, [θ, F2]]c,

which certainly holds due to the compatibility of adjoint actions with wedge products in A1.
It is easy to find that

δi = iD, i([·, ·]) = [i(·), i(·)]A

and

Πδ = dLΠ, Π([·, ·]A) = [Π(·),Π(·)]c,

i.e. i and Π are all homomorphisms of DGLAs. Thus, the short exact sequence in Theorem 3.6 is actually a sequence of
DGLAs. �

4. The Maurer–Cartan equation and some simple examples

We continue to use the notation of the previous sections. Let ε be a small deformation of a generalized holomorphic
structure A. Integrability of ε means for arbitrary a, b ∈ Γ (A)G

ε([a, ε(b)]A + [ε(a), b]A) = −[a, ε(b)]A − [ε(a), b]A + [ε(a), ε(b)] + ε([a, b]). (4.1)
Denote the element in Γ (R1) corresponding to ε by the same label. In terms of δ and [·, ·]A, Eq. (4.1) can be reformulated as

δε −
1
2
[ε, ε]A = 0. (4.2)

IfΠ(ε) = b, asΠ is a homomorphism between DGLAs, we have

dLb −
1
2
[b, b]c = 0,

which is precisely the Maurer–Cartan equation for b as a deformation of the underlying generalized complex structure J.5

5 Compared with the common form, the extra minus sign is only a matter of convention.
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In local terms, if ε = (b, F), then Eq. (4.2) splits into two: one is the Maurer–Cartan equation for b, and the other is

dLF + [θ, F ] − [b, θ]c − [b, F ]c +
1
2
[F , F ] = 0. (4.3)

When b = 0, Eq. (4.3) is the traditional Maurer–Cartan equation for deformations of a generalized holomorphic structure:

DF +
1
2
[F , F ] = 0. (4.4)

In the following, we interpret the content of Eq. (4.3) in the context of symplectic or complex manifolds. As there are
many examples of flat vector bundles, co-Higgs bundles and Poisson modules in the existing literature, we will not provide
any further concrete examples of these here, but will pay more attention to other possibilities.

Example 4.1. Let (M, ω) be a symplectic manifold. By projection, we can identify L with TCM , and then ∧
· L with ∧

· T ∗
CM .

This way, dL = d, and the Schouten bracket on forms is obtained from the Schouten bracket on multi-vector fields via ω,
e.g. for 1-forms ξ, η,

[ξ, η]c = −
i
2
ω([ω−1(ξ), ω−1(η)]).

Thus an integrable deformation of ω is described by a 2-form b, satisfying the equation db −
1
2 [b, b]c = 0. Let P be a flat

(hence generalized holomorphic, see [6]) principal G-bundle over M and Π(ε) = b. In a flat local frame, ε = (b, F), and
Eq. (4.3) turns to

dF − [b, F ]c +
1
2
[F , F ] = 0.

Note that d − [b, ]c is a twisted de Rham operator db. Then F can be said to determine a db-flat structure in P. Another
interpretation is that F determines a connection, whose curvature is [b, F ]c . Note that the original flat structure (F = 0) is
also db-flat.

Concretely, we provide the following simple example.

Example 4.2. Let (M, ω) be a symplectic manifold and l a line bundle overM . Then the frame bundle P of l is a flat principal
C∗-bundle and gA is a trivial line bundle. If b is a multiple of ω and F is a closed 1-form, then dF − [b, F ]c = 0 always holds,
because in this case for any form ξ, [b, ξ ]c is a multiple of dξ .

Example 4.3. Let (M, J) be a complex manifold, and P a holomorphic principal G-bundle over it. When viewed as a
generalized holomorphic structure, locally a traditional deformation decomposes into F = F1 + F2 w.r.t. the splitting
L = T ∗

0,1 ⊕ T1,0. Eq. (4.4) then decomposes:

∂F1 +
1
2
[F1, F1] = 0, ∂F2 + [F1, F2] = 0, [F2, F2] = 0.

The first equation determines a new holomorphic structure, the second means F2 is a gA-valued holomorphic vector field,
and then the third means F2 is a co-Higgs field.

A complex structure, as a generalized one, may have three primary kinds of integrable deformations, described
respectively by holomorphic Poisson structures, ∂-closed (0, 2)-forms and T1,0-valued (0, 1)-forms satisfying the
Maurer–Cartan equation [4]. Accordingly, if we deform the underlying generalized complex structure at the same time,
deformations of a holomorphic structure are combinations of three primary cases. In the following several examples, we
continue to use the notation in Example 4.3.

Example 4.4. Let ε be an integrable deformation such thatΠ(ε) = β is a holomorphic Poisson structure. In a holomorphic
frame, ε = (β, F1 + F2) and Eq. (4.3) splits:

∂F1 +
1
2
[F1, F1] = 0, ∂F2 + [F1, F2] − [β, F1]c = 0,

1
2
[F2, F2] − [β, F2]c = 0.

Since in another holomorphic frame related to the old by g , the new F ′

1 = Adg−1(F1), such a deformation still gives rise to a
new holomorphic structure D′. It is easy to check that the second equation means, in a local frame holomorphic w.r.t. D′, F2
is a gh-valued holomorphic vector field. The third equation then precisely means that gA is a holomorphic Poisson module.
In particular, if F1 = 0, then F2 is holomorphic w.r.t. the original holomorphic structure; however, F2 is not a global section
of gA, since in the frame related to the old by g , the new

F ′

2 = Adg−1(F2)+ β(g−1dg).

Note that if s = (β, F1 + F2) is an integrable deformation, so is sc = (cβ, F1 + cF2) for any complex constant c .
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Example 4.5. Let ε be an integrable deformation such that Π(ε) = B is a ∂-closed (0, 2)-form. In a holomorphic frame,
ε = (B, F1 + F2) and Eq. (4.3) splits:

∂F1 − [B, F2]c +
1
2
[F1, F1] = 0, ∂F2 + [F1, F2] = 0, [F2, F2] = 0.

F1 and F2 are actually global sections of T ∗

0,1 ⊗ gA and T1,0 ⊗ gA respectively. F1 determines a semi-connection ∂ ′, whose
curvature is [B, F2]c . The second equation means F2 is ∂ ′-flat, while the third is again an algebraic commutative condition.
We call such a triple (gA, ∂ ′, F2) a B-twisted co-Higgs bundle. Note that when F2 = 0 or B is also d-closed, B plays no essential
role and we obtain usual holomorphic structures or co-Higgs bundles.

As B-twisted co-Higgs bundles are scarcely touched in the literature, we provide the following example.

Example 4.6. If M is a Kähler manifold, any ∂-closed (0, 2)-form B has the form Bh + ∂ξ , where Bh is the harmonic part
of B and ξ is a (0, 1)-form. Therefore, for a B-twisted co-Higgs bundle, the essential part of B is ∂ξ . The simplest B-twisted
co-Higgs bundles are constructed from genuine co-Higgs bundles: let (V , ∂,Φ) be a co-Higgs bundle over M , and define
∂ ′ = ∂ + [ξ,Φ]c . Then it is not hard to check that (V , ∂ ′,Φ) is a B-twisted co-Higgs bundle. It is natural to ask whether all
B-twisted co-Higgs bundles are obtained in this way, but we will not tackle this problem in this paper.

Example 4.7. Let ε be an integrable deformation such thatΠ(ε) = ϕ is a deformation of the underlying complex structure
in the classical sense. In a holomorphic frame, ε = (ϕ, F1 + F2) and Eq. (4.3) splits:

∂F1 − [ϕ, F1]c +
1
2
[F1, F1] = 0, ∂F2 − [ϕ, F2] + [F1, F2] = 0, [F2, F2] = 0.

∂ − [ϕ, ]c is a new Dolbeault operator ∂ϕ associated to the complex structure Jϕ determined by ϕ. Note that in another
holomorphic frame related to the old by g , since g is holomorphic w.r.t. J ,

F ′

1 = Adg−1(F1)+ ϕ(g−1∂g) = Adg−1(F1)+ g−1∂ϕg,

i.e. the first equation gives rise to a holomorphic structure Dϕ w.r.t. Jϕ . Then as one may expect, the remainder equations
only mean that F2 is actually a co-Higgs field w.r.t. Dϕ .

5. The deformation theorem

We come back to the general theory. To obtain a finite dimensional moduli space, certain deformations should be
identified. It is convenient to deal with the problem at the level of G-equivariant bundles over P. If v ∈ Γ (K⊥)G, v would
generate a family of inner automorphisms of Ewith one parameter, which also preserves K⊥ because [Γ (K⊥)G,Γ (K⊥)G] ⊂

Γ (K⊥)G. We denote this family by Ftv . Let A be a generalized holomorphic structure. We identify A with Ftv(A) ⊂ K⊥
C . This

way, Ftv acts on deformations of A.

Proposition 5.1. Let A be a generalized holomorphic structure in a generalized principal G-bundle P over (M, J), and ε be a small
deformation of A. If v ∈ Γ (K⊥)G, then for sufficiently small t ∈ R, the action of Ftv on ε has the following form:

Ftv(ε) = ε + tδvA + R(ε, tv), (5.1)

where R satisfies

R(tε, tv) = t2R̃(ε, v, t),

and R̃ is smooth.

Proof. We follow closely the treatment of [10]. If ε is a deformation, then Aε can be described by the following
endomorphism on K⊥

C = A ⊕ A:

Aε =


1 −ε̄

−ε 1


.

For s ∈ R, the combined action of sε and Ftv on K⊥
C is of the following form:

FtvAsε =


µ −ν̄
−ν µ̄


=


µ 0
0 µ̄

 
1 −τ̄

−τ 1


= CµAτ .

Then Ftv(sε) = τ . Differentiating Aτ = C−1
µ FtvAsε and evaluated at (s, t) = (0, 0), we get

Ȧτ |(0,0) = −Ċµ|(0,0) + Ḟtv|(0,0) + Ȧsε|(0,0).
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Let a ∈ Γ (A)G. We need to compute the A-component of Ȧτ |(0,0)(a). Since Cµ preserves the splitting K⊥
C = A ⊕ A, the term

Ċµ|(0,0) has no contribution. By definition, the term

Ḟtv|(0,0)(a) = [v, a]A = −δvA(a),

and

Ȧsε|(0,0)(a) = −ε(a).

Therefore, by Taylor’s theorem,

τ = sε + tδvA + R(sε, tv), (5.2)

where the remainder R(sε, tv) is of order s2, st and t2. Setting s = t in Eq. (5.2), we get R(tε, tv) = t2R̃(ε, v, t); setting
s = 1 in Eq. (5.2), our first claim then follows. �

Remark. Though Proposition 5.1 is presented in terms of G-invariant objects over P, we will use it later in its reduced form
overM without mention.

Example 5.2. The B-twisted co-Higgs bundles in Example 4.6 are just obtained by carrying out the transformation Fξ+ξ̄ on
the co-Higgs bundle (V , ∂,Φ).

We discuss briefly the corresponding Hodge theory. Choose a Hermitian structure on R0. Then gA as a subbundle acquires
a natural Hermitian structure and L can be identified with the orthogonal complement of gA in R0. Hence Π is just the
orthogonal projection onto L. This way, ∧k L ⊗ gA,∧k+1 L and Rk are all equipped with Hermitian structures.

Let δ∗ be the formal adjoint of δ and | · |l be the L2l -Sobolev norm on Γ (Rk) induced from the Hermitian structure (l is
large enough). By Hk(A) denote the harmonic part of Γ (Rk), which is isomorphic to Hk(A). Let G be the Green smoothing
operator quasi-inverse to∆δ = δδ∗

+ δ∗δ, i.e.

G : L2l (Rk) → L2l+2(Rk)

so that we have the following orthogonal decomposition:

Id = H + G∆δ = H +∆δG,

where H is the orthogonal projection from Γ (Rk) onto Hk(A). As in [10], we introduce the once-smoothing operator

Q = δ∗G : L2l (Rk) → L2l+1(Rk).

We then have Q2
= 0 and

Id = H + δQ + Qδ. (5.3)

Note that∆δ does not necessarily commute withΠ . Hence that ε is harmonic does not necessarily imply thatΠ(ε) is.
We now turn to the deformation theorem. Let A be a generalized holomorphic structure in P w.r.t. J. We follow closely

the lines of [12,13] concerning the deformation theorem of (generalized) complex structures.

Theorem 5.3 (Deformation Theorem). There exists an open neighbourhood W ⊂ H1(A) containing 0, a smooth family M =

{εu|u ∈ W , ε0 = 0} of almost generalized holomorphic structures deforming A, and an analytic obstructionmapΦ : W → H2(A)
with Φ(0) = 0 and dΦ(0) = 0, such that the deformations in the sub-family M = {εz : z ∈ Z = Φ−1(0)} are precisely the
integrable ones. Moreover, any sufficiently small deformation ε of A is equivalent to at least one member of the family M. In
particular, when the obstruction map vanishes, M is a smooth locally complete family.

Proof. As the proof is quite standard, for completeness, we just outline it here. For the details, one can refer to [12].
First, we construct the family M and show it contains the family M of integrable deformations defined by a mapΦ .
Define a map Ψ : ε → ε +

1
2Q[ε, ε]A and extend it to a map

Ψ : L2l (R1) → L2l (R1).

Ψ is a smooth map of the Hilbert space into itself and whose derivative at the origin is the identity. By the inverse
function theorem in Banach space, Ψ−1 maps a neighbourhood of the origin in L2l (R1) smoothly and bijectively to another
neighbourhood of the origin. Then for a sufficiently small ϵ > 0,Ψ−1 takes the finite-dimensional subset of harmonic
sections

W = {u ∈ H1(A) ⊂ L2l (R1)||u|l < ϵ}

into another finite dimensional set, which is precisely the family M (elliptic regularity implies that these elements are
smooth).
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Integrable elements in M are singled out by the zero locus of themapΦ : ε(u) → H[ε(u), ε(u)]A, i.e. M = M∩Φ−1(0).
In fact, since

ε(u)+
1
2

Q[ε(u), ε(u)]A = u,

we have

δε(u)+
1
2
[ε(u), ε(u)]A = −

1
2
δQ[ε(u), ε(u)]A +

1
2
[ε(u), ε(u)]A

=
1
2
(Qδ + H)[ε(u), ε(u)]A,

where Eq. (5.3) is used. Since the two terms in the last line are orthogonal, we only need to prove that H[ε(u), ε(u)]A = 0
implies Qδ[ε(u), ε(u)]A = 0. This is correct, because due to our analysis of the underlying DGLA in the previous section,
all the essential identities which lead to the corresponding conclusion concerning deformations of a generalized complex
structure [10] have their counterparts here. We omit the details.

The local model M has another characterization: M is actually a neighbourhood of zero in the set

M′
=


ε ∈ Γ (R1)|δε +

1
2
[ε, ε]A = δ∗ε = 0


.

Since no original ideas are needed to prove this claim, we omit the details and the interested reader can refer to [12].
Second, we need to prove the miniversality property of M. Noting that K⊥

C /G = R0 + R0, by vR0 we denote the R0-
component of v ∈ Γ (K⊥/G). Let P be the image of δ∗ on Γ (R1). In the following, we prove that there are neighbourhoods
of the origin U ⊂ Γ (R1) and V ⊂ P such that for any element ε ∈ U , there exists a unique v ∈ Γ (K⊥/G) such that vR0 ∈ V
and the gauge-fixing condition δ∗Fv(ε) = 0 is satisfied. This conclusion shall lead to that every sufficiently small integrable
deformation is equivalent to another in M.

Restricting to sufficiently small neighbourhood of the origin in Γ (K⊥/G) so that we can set t = 1 in Eq. (5.1). We see
that δ∗Fv(ε) = 0 iff

δ∗ε + δ∗δvR0 + δ∗R(ε, v) = 0.

Assuming vR0 ∈ P , we obtain δ∗vR0 = HvR0 = 0, and

δ∗ε +∆δv
R0 + δ∗R(ε, v) = 0.

Applying G, we get

vR0 + Qε + QR(ε, v) = 0.

The map

Υ : (ε, v) → vR0 + Qε + QR(ε, v)

is continuous from a neighbourhood of the origin in Γ (R1) × P to P (all spaces are equipped with suitable L2l -norms), and
thus can be extended to a continuous map from the completion of the domain. Note that the derivative of Υ w.r.t. v at 0
is invertible. By the implicit function theorem, for sufficiently small ε, the equation Υ (ε, v) = 0 has a unique solution v,
depending on ε smoothly. Elliptic regularity implies that this solution is smooth.

The above argument is also enough to imply that when the obstruction vanishes, M is a smooth locally complete
family. �

Example 5.4. Let (M, ω) be a symplectic surface and G be a reductive complex group. If P is a flat principal G-bundle such
that H0(gA) = 0, then the obstruction vanishes: since H̃2(L, dL) ∼= H3(M,C) and we are in real dimension 2, H̃2(L, dL) = 0;
by Poincaré duality, H2(gA) = 0.

Example 5.5. Let M be a Riemann surface and P be a holomorphic principal G-bundle. Then gA is a holomorphic vector
bundle. Since we are in complex dimension 1, H2(gA) = H̃2(L, dL) = 0. Therefore all infinitesimal deformations are
integrable, and since the only possible deformations of the underlying complex structure are classical ones, all possible
deformations are actually co-Higgs bundles.

Example 5.6. Let V be a holomorphic vector bundle over P2 (with the Fubini-Study metric), viewed as a generalized
holomorphic bundle. Let P be the frame bundle of V . In this case gA = Hom(V), and H̃2(L, dL) =


p+q=3 H

q(P2,O(∧p T1,0)).
Since we are in complex dimension 2 and ∧

2 T1,0 = O(3), we have

H3(P2,O) = H0(P2,∧3 T1,0) = H1(P2,O(∧2 T1,0)) = 0.
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By the Euler sequence, we also have H2(P2,O(T1,0)) = 0. Thus, the vanishing of the obstruction space requires
H2(P2,O(Hom(V))) = 0. By Serre duality, this is equivalent to H0(P2,O(K ⊗ Hom(V))) = 0, where K is the canonical
line bundle.

If the holomorphic structure of V is obtained from a Hermitian–Einstein (H–E for short) connection and the H–E constant
γ is negative, then no nontrivial global holomorphic section exists [14, Chap. 2]. In our case, if V is stable, then one can find
an H–E metric in V ; in particular this also holds for Hom(V) with γ = 0. Since K = O(−3), K has a negative H–E constant,
implying that K ⊗ Hom(V) has a negative H–E constant and H0(P2,O(K ⊗ Hom(V))) = 0.

Combining these facts together, we conclude that any infinitesimal deformation of a stable vector bundle over P2 is
integrable.

Remark. The above example is also good to illustrate how the second drawback mentioned in Section 1 may be overcome:
There are fairly many holomorphic Poisson structures over P2, which provide nontrivial deformations of the complex
structure. Then our example shows around the holomorphic structure of a stable vector bundle, there are many Poisson
modules. However, this claim only depends on the cohomological information of the original holomorphic vector bundle,
which is oftenmore computable than the cohomology groups involved in the traditional deformation theory when one tries
to get Poisson modules near a given one.
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