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a b s t r a c t

We give a variational formulation of perfect fluids on a general pseudoriemannian
manifold by variating tangent fields according the flux produced by them. In fact, in
this approach the key point is to consider those variations that preserve the canonical
structure of the bundle of fluxes (see below). As a result, Euler and continuity equations
are obtained quite directly.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Different variational approaches to perfect fluids are available for a long time to the present (see, for example,
[3,4,8–11] and the review [2]). Most of them use constraints or potentials. Indeed, in [10] is proven that constraints are
required for (ordinary) variational formulations of perfect fluids. In this paper we offer a formulation that only requires a
natural restriction: to preserve the canonical structure of the bundle of fluxes; the approach thus developed is based on
what we have called flux variations (see below).

A steady fluid on a manifold is, firstly, described by a vector field: the field of its velocities; that includes non steady
fluids if we add a time coordinate by considering a space–time manifold. So, the object we will deal with is a vector
field, this is to say, a section u of the tangent bundle TM → M , where M is a smooth manifold. In order to consider
variations of u, we take prolongations of vector fields on M to the tangent bundle. It is virtually obligatory to perform the
prolongation preserving the so called contact system of TM (roughly speaking, the differential system characterizing the
curves in TM consisting of curves parameterized in M together with the velocity vector in each of its points). However, the
aforementioned preservation is not sufficient to determine a unique prolongation. In fact, the set of such prolongations
has an affine type structure (see Proposition 2.1). To choose a single one, it is necessary to impose some further condition.
As we will see, one of these impositions leads to the well known covariant prolongation or also vertical lift (see, for
instance, [9]). Nevertheless, there are other alternative possibilities at least if we dispose of an appropriate additional
object. Let us see how to obtain a prolongation well adapted to the context of fluid dynamics. When M is orientable
and endowed with a pseudoriemannian metric g , we get the corresponding volume element vol. In some way, the most
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important aspect of u now is the infinitesimal flux that it produces: ıuvol, which is the inner contraction of u with vol.
This is why is natural to consider the variation that a vector field produces on the flux ıuvol, instead of the variation
caused on u itself. These considerations, conveniently carried to term, leads to what we can call flux prolongation (2.3)
and the related concept of flux variation.

On the other hand, the function of ‘‘length’’ ρ(ux) :=
√

|g(ux, ux)| will be interpreted as the ‘‘density’’ of the fluid moved
along u (see, for instance, [6], p. 50). Finally, we will consider a Lagrangian density Φ(ρ)vol, where Φ is an arbitrary smooth
function, and will take the infinitesimal variations of its restriction Φ(ρ)vol|u, according to how the flux of u varies. The
vanishing of these variations produces simultaneously the equations of the fluid dynamics (Euler equation) along with
the conservation of mass law (continuity equation).

1.1. Notation

Let us fix an n-dimensional smooth manifold M . In local computations we will take coordinates x1, . . . , xn. Each smooth
function f ∈ C∞(M) defines on the tangent bundle TM the function ḟ by the rule

ḟ (vx) := df (vx) = vx(f ), ∀vx ∈ TxM.

The set xj, ẋj, gives us a local chart on TM as usual and symbols ∂j and ∂ẋj will denote the respective partial derivatives; in
particular, ḟ = ḋ(f ) where, by definition, ḋ := ẋj∂j (see [5] for an intrinsic analysis of this operator). If u is a tangent vector
field and ω a differential form, ıuω will denote the inner contraction of ω with u. Moreover, when M is endowed with a
pseudoriemannian metric tensor g (symmetric 2-covariant tensor without kernel), with each vector field u, we associate
the differential 1-form u♭

:= ıug .

2. Infinitesimal variations on the bundle of fluxes

2.1. Prolongations of vector fields to the tangent bundle

Let M be an n-dimensional manifold. Its tangent bundle TM is endowed with the so called contact system Ω which is
comprised by the differential 1-forms vanishing on the prolongation of parameterized curves: given a differentiable curve
t → γ (t) ∈ M , we can consider its prolongation γ̂ : t ↦→ (dtγ )(d/dt)t ∈ Tγ (t)M . In local coordinates, if γ is described by
xj = γ j(t), then γ̂ is

(xj = γ j(t), ẋj = (dγ j(t)/dt)) =
dγ j(t)
dt

(∂j)γ (t),

and so, the contact system Ω is generated by the 1-forms

ẋℓdxj − ẋjdxℓ, j, ℓ = 1, . . . , n.

On TM there is defined the infinitesimal generator of the homotheties (along fibres) which is the vector field W that
have the local expression

W = ẋj∂ẋj .

For a given tangent field ξ on M , a little computation shows that we can ‘‘prolongate’’ it to the tangent bundle in
several ways by imposing the invariance of the contact system:

Proposition 2.1 (See [1]). Let W be the infinitesimal generator of the homotheties along fibres of TM. The set of vector fields
on TM that project onto ξ = ξ j∂j, and preserve the contact system by Lie derivative, is

ξ j∂j + ξ̇ j∂ẋj + ϕW

where ϕ is an arbitrary function on TM.
Therefore, it is necessary to impose some additional condition in order to determine a prolongation. For example, we

can consider the class of time comprised by the horizontal forms, α = αj(x, ẋ)dxj, such that if we define ḋ := ẋj∂j (the
‘‘generic velocity’’), then ıḋ α = αj(x, ẋ)ẋj = 1 (the 1-forms df /ḟ , f ∈ C∞(M), generate the class of time module contact
forms; see [5] for details). If now we impose on the possible prolongations of a field ξ the condition of preserving the
class of time we get the usual prolongation

ξ = ξ j∂j ↦→ pr(1)ξ := ξ j∂j + ξ̇ j∂ẋj .

This is called covariant prolongation of ξ , or vertical lift of ξ in [9]. However, as we will see (Section 2.3), another
prolongations are also natural and useful depending on the context.

On the other hand, each vector tangent to M at a point x, say ex, defines a tangent vector (ex)vx ∈ Tvx (TxM), for any
vx ∈ TxM due to the linear structure of such a fibre by using the directional derivative:

(ex)vx f :=
d
dt

⏐⏐⏐⏐
t=0

f (vx + tex) (2.1)

for each function f ∈ C∞(TM).
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In local coordinates, when ex = ejx(∂j)x we have (ex)vx = ejx(∂ẋj )vx .
If, instead, we have a vector field e on M we get a vertical vector field E on TM , that we call the vertical representative

of e (see [5]); in local coordinates,

e = ej∂j ↦→ E = ej∂ẋj . (2.2)

If now we have two vector fields e and v on M , we can get a tangent field ev defined on the submanifold v(M) :=

{vx | x ∈ M} ⊂ TM by the rule:

ev: vx ↦→ (ex)vx ∈ TvxTxM.

In other words, ev is the restriction of the vertical representative E to the submanifold v(M).

2.2. Lifting of tangent fields to the bundle of fluxes

When we have a vector field u and a volume form vol, the integral of the (n − 1)-form ıuvol on the hypersurface
enclosing an open region, measures the flux of u through that hypersurface. This is why we call bundle of fluxes the
bundle Λn−1M → M , where Λn−1M denotes the space of differential (n − 1)-forms on M . A coordinate system xj on M
and the choice of a (local) volume form, say vol, induces a local chart xj, wj, on Λn−1M by the rule

σx = wj(σx)ı∂jvol, for each local section σx of Λn−1M → M.

In the same way in which Liouville form is defined on the cotangent bundle, it is defined on Λn−1M the tautological
(n − 1)-form Υ : given an (n − 1)-form σx at the point x, and tangent vectors Dk

σx
∈ TσxΛ

n−1M , k = 1, . . . , n − 1, we set

Υσx (D
1
σx

, . . . ,Dn−1
σx

) := σx(π∗D1
σx

, . . . , π∗Dn−1
σx

),

where π∗ is the tangent map corresponding to the projection π :Λn−1M → M . In local coordinates, it is described by

Υ = wj ı∂jvol = ı
wj∂ jvol,

where we assume that n-form vol of M is pull-backed to Λn−1M by means of π . A computation shows the following

Lemma 2.2. Each vector field ξ on M determines another one, ξ̃ , on Λn−1M which is the unique one which projects onto ξ

and preserves the tautological form Υ ; that is to say,

L̃
ξ
Υ = 0

(L̃
ξ
denotes de Lie derivative operator).

Proof. Let ξ = ξ j∂j in local coordinates; so, ξ̃ = ξ j∂j + Bj∂wj for some Bj to be determined. We have,

L̃
ξ

Υ = L̃
ξ
(ı
wj∂j

vol)

= ıL̃
ξ
(wj∂j)

vol + ı
wj∂j

L̃
ξ
vol

= ı
{Bj∂j − wh∂h(ξ j)∂j − ∂h(Bj)∂wj}

vol + ı
wj∂j

div(ξ )vol

= ı
{(Bj

− wh∂h(ξ j) + div(ξ )wj)∂j}
vol

where we have used that ı∂
wj vol = 0 and we denote by div(ξ ) the divergence of ξ with respect to vol: Lξ vol = div(ξ ) vol.

Thus, L̃
ξ
Υ vanishes if and only if Bj

= wh∂h(ξ j)− (div(ξ ))wj. As a consequence, each Bj is completely determined and the

uniquely defined ξ̃ is, in local coordinates,

ξ̃ = ξ j∂j +
(
wh∂h(ξ j) − div(ξ )wj) ∂wj . □

2.3. Transfer to the tangent bundle

Let us assume that M is oriented by a global volume form vol. For instance, if M is orientable and endowed with a
pseudoriemannian metric g we can take the volume form vol associated with g; locally, vol :=

√ dx1 ∧ · · · ∧ dxn, where
√ denotes the squared root of |detg|.

In this case, we get the isomorphism

φ: TM → Λn−1M, ux ↦→ φ(ux) := ıuxvol,
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which in the above introduced coordinates can be written simply as wj
= ẋj. In this way, ξ̃ defined on the bundle of

fluxes is transferred to the tangent bundle as the vector field (we keep notation)

ξ̃ = ξ j∂j +
(
ẋh∂h(ξ j) − div(ξ )ẋj

)
∂ẋj = ξ j∂j + ξ̇ j∂ẋj − div(ξ )W ,

and then we get the prolongation

ξ ↦→ ξ̃ = pr (1)ξ − div(ξ )W , (2.3)

which belongs to the set of contact preserving prolongations of ξ according to Proposition 2.1. We will call ξ̃ the flux
prolongation of ξ with respect to the pseudometric g . This prolongation is the most appropriate if what we want is to
look at the flux as the main property of a vector field.

Remark 2.3. Some points of contact of this concept with others approaches should be indicated. In the convective approach
of Carter [4] (see the review [2] and references therein, of Andersson and Comer who have also applied the theory in
different topics) is already the idea of using the space of 3-forms (case n = 4) and similar type of variations are considered.
However, the conservation condition is pre-fixed from the beginning. Also a prolongation of this type is used in [7] to
formulate fluids in the context of a constrained variational approach.

3. Flux variational problems

We keep the previous notation and hypotheses. We will consider variational problems defined on the tangent bundle
with respect to variations defined according the flux prolongations. For a given L ∈ C∞(TM) let us define the functional:

u
I

↦−→ I(u) :=

∫
u(M)

λ,

where u:M → TM is a tangent vector field and λ = L vol is a lagrangian density on TM .
Now, we apply the variations of I at u associated with compact supported vector fields ξ by means of ξ̃ (see (2.3)):

δξ I(u) :=

∫
u(M)

L̃
ξ
λ =

∫
M
u∗L̃

ξ
λ. (3.1)

The pull-back u∗L̃
ξ
λ depends only on the values of ξ̃ when restricted to the section u(M) ⊆ TM; these values are

ξ̃ux =
(
ξ j∂j + ξ̇ j∂ẋj − div(ξ )W

)
ux

= ξ j(x)∂j,ux + ux(ξ j)∂ẋj,ux − divx(ξ ) u
ux
x

where uux
x is defined as in (2.1). In addition, taking into account that, for each point x ∈ M ,

(u∗ξ )x = (ξ j∂j)ux + ξx(uj)(∂ẋj )ux ,

we arrive to

ξ̃ux = u∗ξx − ([ξ, u]x + divx(ξ ) ux)
ux (3.2)

where, for each tangent vector vx ∈ TxM , vux
x is defined as in (2.1).

Let us put by definition

δξ u := [ξ, u] + div(ξ ) u,

in such a way that (3.2) is written as

ξ̃ux = u∗ξx − (δξu)
ux
x

In this notation we state the following

Proposition 3.1. For each vector field ξ with compact support, the (flux) variation of I at the section u is

δξ I(u) = −

∫
M
(δξ u)

u(L) vol,

where δξ u := [ξ, u] + div(ξ ) u, and, by its very definition (2.1), the derivative in above integrand is

(δξ u)
u(L) =

(
d
dt

⏐⏐⏐⏐
t=0

L(u + tδξ u)
)

. (3.3)
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Proof. Let γ1 (respectively, γ2) a tangent field on TM which coincides on u(M) with the field ux ↦→ u∗ξx (respectively,
ux ↦→ (δξu)

ux
x ), defined only for the points ux ∈ u(M). Further, we can assume that γ2 is vertical with respect to TM → M .

Then,

u∗L̃
ξ
λ = u∗Lγ1λ − u∗Lγ2λ, (3.4)

because ξ̃ and γ1 − γ2 are equal on u(M). Now, by the Cartan formula and that fact of u∗dλ = du∗λ = 0 (since an
(n + 1)-differential form on the n-dimensional manifold M must vanish), it holds

u∗Lγ1λ = dıξu∗λ. (3.5)

Similar arguments, but now taking into account the verticality of γ2 and the horizontality of λ, imply that

u∗Lγ2λ = u∗ıγ2dλ = u∗γ2(L) vol = (δξu)u(L) vol. (3.6)

From (3.4), (3.5), (3.6),

u∗L̃
ξ
λ = dıξu∗λ − (δξu)u(L) vol.

If, besides that, ξ is compact supported, the term dıξu∗λ disappears when is integrated. Thus the proof is finished. □

3.1. Variation of mass density

In this section we assume that M is orientable and endowed with a pseudoriemannian metric g and vol is associated
with g; so that vol =

√ dx1 ∧ · · · ∧ dxn locally.
Physical considerations (see [6], p. 50) lead to treat the ‘‘density’’ function in the tangent bundle:

ρ: TM → R, ρ(ux) =

√
|g(ux, ux)|;

that is to say, ρ is the length function. If L = Φ(ρ) (for a certain function Φ), then

(δξ u)
uΦ(ρ) = ±Φ ′(ρu)

g(u, δξ u)
√

|g(u, u)|
= ±Φ ′(ρu) g(v, δξ u), (3.7)

where, ρu =
√

|g(u, u)|, v := u/ρu, the sign ± is that of g(u, u) and we have applied (3.3) and

(δξ u)
uρ =

1

2
√

ρ2
u

(δξ u)
uρ2

=
1

2
√

ρ2
u

(
d
dt

⏐⏐⏐⏐
t=0

ρ2(u + tδξ u)
)

=
1

2ρu

(
±

d
dt

⏐⏐⏐⏐
t=0

g(u + tδξ u, u + tδξ u)
)

= ±
2 g(u, δξ u)

2ρu
= ±g(v, δξ u).

As a consequence,

δξ I(u) = ∓

∫
M

Φ ′(ρu) g(v, δξ u) vol. (3.8)

Next, we need the following

Lemma 3.2. For each couple of vector fields p, q on M, if we define p♭
:= ıpg, it holds

p♭
∧ ıqvol = p♭(q) vol = g(p, q) vol.

Proof. By taking the inner product of q by the null (n + 1)-form p♭
∧ vol we get

0 = ıq(p♭
∧ vol) = (ıqp♭)vol − p♭

∧ ıqvol.
Since ıqp♭

= p♭(q) = g(p, q), the proof is finished. □

By the above lemma and the identity

ıδξ uvol = ı[ξ, u] + (div ξ )uvol = Lξ (ıuvol),

we arrive to

g(v, δξ u) vol = v♭
∧ ıδξ u vol = v♭

∧ Lξ (ıuvol).

With this expression, the integrand of (3.8) becomes

Φ ′(ρu) v♭
∧ Lξ (ıuvol) = Lξ

(
Φ ′(ρu) v♭

∧ (ıuvol)
)
− Lξ (Φ

′(ρu) v♭) ∧ ıuvol. (3.9)
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The first summand on the right hand side of (3.9) is an exact differential form because is the Lie derivative of a differential
n-form on the n-dimensional manifold M; so, we can discard it if we integrate when the field ξ has compact support. Let
us denote with the symbol ≡ the equality up to terms of the above type (those that can be discarded in the integration):

Φ ′(ρu) v♭
∧ Lξ (ıuvol) ≡ −Lξ (Φ

′(ρu) v♭) ∧ ıuvol
that, by the Cartan formula, is (minus) the sum of

α := d(ıξΦ ′(ρu) v♭) ∧ ıuvol and β := ıξ d(Φ ′(ρu) v♭) ∧ ıuvol,
but

α = d
(
ıξΦ ′(ρu)v♭

∧ ıuvol
)

− (ıξΦ ′(ρu)v♭)dıuvol ≡ −(ıξΦ ′(ρu)v♭)div(u)vol.

In addition, for any 1-form σ and vector field q we have (similarly to Lemma 3.2)

0 = ıq(σ ∧ vol) = (ıqσ )vol − σ ∧ ıqvol
so that

β = ıuıξ d(Φ ′(ρu)v♭)vol,

and then,

Φ ′(ρu) v♭
∧ Lξ (ıuvol) ≡ ıξ

{
Φ ′(ρu) div(u)v♭

+ ıud(Φ ′(ρu)v♭)
}
vol. (3.10)

We derive the

Proposition 3.3. In the above notation

δξ I(u) = 0, for all ξ with compact support,

if and only if

Φ ′(ρu) div(u)v♭
+ ıud(Φ ′(ρu)v♭) = 0 (3.11)

where u = ρuv.

Proof. According to the result established in Eq. (3.10) it holds that

δξ I(u) = ∓

∫
M
ıξ

{
Φ ′(ρu) div(u)v♭

+ ıud(Φ ′(ρu)v♭)
}
vol.

If we assume that δξ I(u) vanishes for arbitrary ξ of compact support we get the statement. □

3.2. The fluid equations

Let us see subsequently, the simplest non trivial case and then, the general one.
Case Φ(ρ) = ρ: Now Φ ′

= 1 and thus (3.11) becomes

div(u)v♭
+ ıudv♭

= 0. (3.12)

By contracting with u and taking into account that ıuıudv♭
= 0 and ıuv♭

= g(u, v) = ±ρu (according to the sign of
g(u, u)); it follows that

div(u)ρu = 0 ⇒ div(u) = 0;

that is to say, u is conservative. By substituting into (3.12), we see that ıudv♭
= 0. But u = ρuv, and then, that is equivalent

to

ıvdv♭
= 0 (3.13)

(at least where ρu ̸= 0).
Next, we will need to apply the following

Lemma 3.4. For each vector field w, it holds the identity

ıwdw♭
= (w∇w)♭ −

1
2
d(g(w, w))

(where ∇ denotes the Levi-Civita connection associated with g)
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Proof ([5], Remark 1.6, [1], Section 0). Let z be another vector field. Then

(ıwdw♭)(z) = dw♭(w, z)
(1)
= w(w♭(z)) − z(w♭(w)) − w♭([w, z])

(2)
= w(g(w, z)) − z(g(w, w)) − g(w, [w, z])
(3)
= g(w∇w, z) + g(w, w∇z) − z(g(w, w)) − g(w, [w, z])

where we have used: (1) the definition of exterior differential, (2) the definition of w♭ and (3) one of the characterizing
properties of the Levi-Civita connection. Moreover, this connection is symmetric so that, [w, z] = w∇z − z∇w, and then

(ıwdw♭)(z) = g(w∇w, z) + g(w, z∇w) − z(g(w, w));

If, in addition, we take into account that

g(w, z∇w) =
1
2
z(g(w, w)) = d(g(w, w)/2)(z)

and substitute, we arrive to

(ıwdw♭)(z) = g(w∇w, z) − d(g(w, w)/2)(z) =
(
(w∇w)♭ − d(g(w, w)/2)

)
(z),

as required. □

From Lemma 3.4 and Eq. (3.13), by taking into account that g(v, v) = ±1, we arrive to

v∇v = 0. (3.14)

Putting all together,

Proposition 3.5. The critical sections for the functional

I(u) =

∫
u
ρ vol

under flux variations are the conservative fields u such that v = u/ρu (the unitary field associated with u) is a geodesic field.

General case Φ(ρ): Exactly as in the above case, by inner contraction of (3.11) with u it is derived that u is conservative:
div(u) = 0 (at least in the open set where Φ ′(ρu)ρu ̸= 0). Then, by substituting into (3.11),

ıud(Φ ′(ρu)v♭) = 0.

being u = ρu v with
√

|g(v, v)| = 1, we have

0 = ıvd(Φ ′(ρu)v♭) = ıv(dΦ ′
∧ v♭

+ Φ ′dv♭) = v(Φ ′)v♭
∓ dΦ ′

+ Φ ′(v∇v)♭, (3.15)

where we have applied that ıvv♭
= g(v, v) = ±1 and, then, that by Lemma 3.4, ivdv♭

= (v∇v)♭.
Now, by passing to the dual using de metric we have dΦ ′

↦→ gradΦ ′, v♭
↦→ v, etc., in such a way that Eq. (3.15)

becomes

0 = v(Φ ′)v ∓ gradΦ ′
+ Φ ′ v∇v (3.16)

In order to put Eq. (3.16) in a more usual form we take the following definitions. Firstly, let ϵ the function such that
Φ(ρ) = ρ(1 + ϵ(ρ)). Since Φ ′

= 1 + ϵ + ρϵ′
=

Φ+ρ2ϵ′

ρ
it results, by denoting P := ρ2ϵ′, that Φ ′

= (Φ + P)/ρ and that

Φ ′′
=

(Φ ′
+ P ′)ρ − (Φ + P)

ρ2 =
(Φ + P) + P ′ρ − (Φ + P)

ρ2 =
P ′

ρ
.

In this way, v(Φ ′) = Φ ′′v(ρ) = (P ′/ρ)v(ρ) = v(P)/ρ and analogously grad(Φ ′) = grad(P)/ρ. Therefore,

Proposition 3.6. The critical sections for the functional

I(u) =

∫
u
Φ(ρ) vol

under flux variations are the conservative fields u (div u = 0, continuity equation) such that

0 = (Φ + P)v∇v + v(P)v ∓ grad P,

where Φ = ρu (1 + ϵ(ρu)), P := ρ2
uϵ

′(ρu), u = ρuv, g(v, v) = ±1.

In the particular case of a couple (M, g) being a Lorentzian manifold, these are the continuity and the Euler equations
for a relativistic perfect fluid.
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4. Conclusions

Based on physical reasons, we have considered the natural variational problem consisting of functionals of the length
of vector fields. With no other restriction than to preserve the canonical structure of the bundle of fluxes, we get the well
known equations of a relativistic perfect fluid consisting of the Euler equations joint with the conservation of mass law
(indeed, more than that is obtained because we get analogous equations on any pseudoriemannian oriented manifold).
Thereby, the only price to pay is to take variations according the flux produced by vector fields. On the other hand, we
think this is a quite natural and justified procedure.
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