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1. Introduction

In [4], V.V.Fock and A.B.Goncharov have introduced the “cluster ensemble”, which is a pair of schemes “.A-variety Ax"
and “Xx-variety X|y|,” with a morphism A5 — X5, called an ensemble map. For the construction of these schemes, cluster
A (resp. X)-tori Ay = {(A;) | i €1, Aj € C*} (resp. Xx = {(X;) | i € I, X; € C*}) associated with seeds ¥ = (I, Iy, B, d)
(see Section 3) are defined. The schemes are defined as unions of cluster tori which are glued by the following mutations
Mt Ay = Ay, Xy — X

Ai ifi £k,
U _ by —by
P A ) =\ My o0 4Ty 08
Ak
XX (1 4 Xy bikif i £ k,

WX i) =
R P ifi=k,

ifi=k,

where X' = (I', Iy, B/, d’') is a new seed, and the map M, : I — I’ is as in Section 3.

Furthermore, in [4] Fock and Goncharov presented a conjecture on “tropical duality” between these two cluster
varieties. To be more precise, the conjecture claimed that the “universal positive Laurent polynomial ring” on A, x(resp.
X x) is described by the positive summation of points in the set of Z-valued points (see 3.2) X‘Ev‘(ZT) (resp. A‘;v‘(ZT)),
where XV is the Langlands dual seed of X [4]. Though in [6], unfortunately, counterexamples for the conjecture have been
found, and in [7], the conjecture has been refined to be more valid, which is now called “full Fock-Goncharov conjecture”.
It seems to be still generally open except for several special cases.
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As topics related to cluster varieties, in [1], Berenstein, Fomin and Zelevinsky proved that the coordinate ring of the
double Bruhat cell G* holds an upper cluster algebra structure in the case G is a simply connected, connected, semisimple
complex algebraic group, where a certain family of generalized minors plays a role of an initial cluster. In [5], Fock and
Goncharov show that double Bruhat cells of the adjoint form of a semisimple algebraic group have cluster Xx-variety
structures. H. Williams generalized these results, and considered the relations between cluster ensembles associated with
Weyl group elements and double Bruhat cells in Kac-Moody setting [16]. Therein, he also constructed the regular map
pum from A, x| to x| compatible with all cluster mutations (Proposition 3.4), which plays a role of the ensemble map in
the context of [16].

In [3], A.Berenstein and D.Kazhdan have initiated the theory of “geometric crystals”, which is aimed at constructing a
geometric analogue of the Kashiwara’s crystal base theory [9] on a variety birationally isomorphic to a split torus. In [14],
the second author extended this notion to the Kac-Moody setting and gave some explicit forms of geometric crystals
on Schubert/Bruhat cells. Geometric crystals have a bunch of remarkable properties, in particular, the fact that positive
geometric crystals can be transferred to the Langlands dual Kashiwara’s crystal bases by the “tropicalization” procedure is
one of the most crucial features. More precisely, there exists a functor Trop (denoted by &/D in [14,15]) from a category of
split tori to the category of sets, and via this functor a geometric crystal structure on a torus induces a crystal structure on
its set of co-characters. It is an interesting problem to find morphisms corresponding to operators (e.g. the star operator
*) on crystals.

The aim of this article is to compute explicit formulae for the induced geometric crystal structures on the cluster tori
X5 and Ay of [16]. These main results are presented as Theorems 5.1, 6.1 and 6.3. Due to this, we can integrate the
geometric crystal theory with cluster theory. As a corollary of them, we see that the sets of Z"-valued points |5 |(Z"),
A x(Z") have crystal structures. We expect this approach will be a guide to construct the geometric analogue of operators
on crystals in terms of cluster theory (the mutations, ensemble maps, and so on).

To achieve the aim, first we define geometric crystal structures on the cluster tori X5, Ayx. We will see that double
Bruhat cells G** and their quotients G,; have geometric crystal structures in Proposition 2.9 and Definition 4.1. Using

birational maps from Ay, X5 to G*¢, G,; given by H. Williams, we obtain geometric crystal structures on Ay, Xx

(Definition 4.3(1)). By using “twist map” ¢*€, we can also construct another geometric crystal structures on them
(Definition 4.3(2)). Second, we will verify compatibilities between these structures in Proposition 4.4. We mainly treat
the geometric crystal structures of Definition 4.3(1) on Xx and those of Definition 4.3(2) on Ay in this article. Third, we
will present explicit formulae for geometric crystal structures on the tori Ay, Xx. These explicit formulae imply the tori
have positive geometric crystal structures. Since the set of Z"-valued points A E‘(ZT) (resp. X );‘(ZT)) is a union of the
sets of co-characters of Ay (resp. Xx), we see that it has a crystal structure.

The organization of this article is as follows. In Section 2, we review the theory of geometric crystals and some explicit
formulae for a geometric crystal on the double Bruhat cell G*-¢ which will be needed in the rest of the article. In Section 3,
the cluster ensembles will be introduced and we will see the cluster ensembles associated with arbitrary Weyl group
elements. Cluster tori Ag,, Xy, birationally isomorphic to G**°, Gf\‘de are defined in this section. In Section 4, we define

geometric crystal structures on the cluster tori Ay;, Xx,. We will also present a compatibility between these structures.
In Section 5, we give explicit formulae for geometric crystal structures on Xy;. In Section 6, we also give explicit formulae
for geometric crystal structures on Ay, by using the compatibility shown in Section 4. In Section 7, we present explicit
formulae for geometric crystal structures on Agy; in the case G = SL,41(C) and u is the longest element of W in a different
way from Section 6.

2. Geometric crystals
In this section, we will review notion of geometric crystal following [2,3,14,15].
2.1. Notation and definitions

Following [16], we define several notions. For a positive integer I, we set [1,1] := {1,2,...,1}. Let A = (ai})ijef1,r]
be a symmetrizable generalized Cartan matrix with a symmetrizer diag(dy, ..., d:) (di € Z-¢), and g = g(A) = (e;, fi, b)
the Kac-Moody Lie algebra associated with A over C. The Cartan subalgebra b C g contains simple coroots a7, ..., o,
and bh* contains simple roots ay, ..., o, which satisfy aj(e;’) = a;;. Let ¥ = dim b = 2r — rank A. The simple
reflections s; € Aut(h*) (i € [1,r]) are defined as s;(8) = B — Bl )i, which generate the Weyl group W. Let
P:={A e b*|M«;") € Z for all i € [1, 7]} and {A;}ie;1,7 C P be a basis which satisfies A;(«;") = §;j fori e [1,7],j € [1,1].
Let G be the Kac-Moody group associated with (g, P) and H C G a maximal torus. The set P is identified with the set
Hom(H, C*) of characters. We call A; (i € [1, 7]) fundamental weights. By fixing { A;}ic(1.7, we obtain a corresponding dual
basis of Hom(C*, H) and denote its elements «y, ..., ;. If i € [1, 7] then o;” is just the ith coroot of g. For t € C* and

h € Hom(C*, H), let t" denote the element h(t) € H. The equation

aj = Z ai]-A,- (2.1)

1<i<¥
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defines numbers a; fori € {r +1,...,7} andj € {1,2,...,r}. We can also define elements {«;}icjr+1,... 7 of P by
r
o = D Z dj_1a,-jAj,
j=1

where D is the least common integer multiple of dq, ..., d;.

For each real root «, there exists a one-parameter subgroup {x,(t)[t € C} C G, and G is generated by all one-
parameter subgroups and H [8,13]. Let N, N~ be the subgroups of G generated by {x,(t)|t € C, o : positive root},
{x,(t)|t € C, « : negative root}. Let B= HN, B~ = HN~ be Borel subgroups. For T € H, let ¢;(T) or T* denote the value
of «; at T (as the character).

2.2. Double Bruhat cells

We set x;(c) := exp(ce;), yi(c) .= exp(cf;) € G for c € C. We also set 5; := x;(—1)y;(1)xi(—1) for i € [1,r], and for a
reduced expression w = sj, ---s;, € W, set w := §;, - - -5;,. The following two kinds of Bruhat decompositions of G are

n

known [13]:
G=]]BuB=]]BuB"
uew ueWw

Then, for u, v € W, the double Bruhat cell G*? is defined as follows:
G"' := BuBN B vB".
Proposition 2.1 ([16]). For u, v € W, the double Bruhat cell G*' is a rational affine variety and dim G** = I(u) + l(v) + 7
2.3. Crystals
Let us recall the definition of crystals [10]. We use the notation in 2.1.

Definition 2.2. A crystal is a set B together with the maps wt; : B — Z, &;, ¢; : B - Z U {—o0o} and é,»,ff :B— BU{0}
(i € [1, r]) satisfying the following: For b, b’ € B,1i,j € [1,1],

(1) ¢i(b) = &i(b) + wty(b), 5 B

(2) wtj(é;b) = wtj(b) + a;; if &(b) € B, wtj(fib) = wtj(b) — q;; if fi(b) € B
(3) &i(&(b)) = ei(b) — 1, ¢i(&(b)) = ¢i(b) + 1 if &;(b) 6 B,

(4) &(fi(b) = &i(b) + 1, @i(fi(b)) = ( )— 1if fi(b) €

(5) f,( )=1"b"if and only if b = el(b/)

(6) if ¢i(b) = —oo then &(b) = fi(b) = 0.

We call ¢;, ﬁ Kashiwara operators, and wt; weight functions. A crystal B is said to be free if the Kashiwara operators é;
(i € [1, r]) are bijections &; : B — B.

Note that the above definition of crystals is slightly weaker than the original one in [10]. In the case the generalized
Cartan matrix (a; ;)i jer1,r) has rank r then the above deﬁniti~on is equivalent to the one in [10].

For two crystals (B3, {&;}, {f,} {&i}, {(p,} {wt,}) (B B, {E;}, {fi'}, {s;}, {(p;}, {wt/,-}), a bijection f : B — B is called a crystal

isomorphism if it satisfies f(&(b)) = &(f(b)), f(fi(b)) = f; (F(b)), &;(f(b)) = &i(b), ¢;(f(b)) = @i(b) and Wt (f(h)) = wt;(b) for
be Bandie€[1,r]. Here we understand f(o)y=o.

2.4. Geometric crystals

For algebraic varieties X, Y and a rational function f : X — Y, let dom(f) denote the maximal open subset of X on
which f is defined.

Definition 2.3. For a symmetrizable generalized Cartan matrix A = (a; )i jer1,-) and an irreducible algebraic variety X over
C, let y;, &; (i € [1, r]) be rational functions on X, and e; : C* x X — X a rational C*-action (i € [1, r]) (to be denoted by
(c, x) — ef(x)). A quintuple (X, {ei}ic(1,r1, {Vitier1,r1 {€i}ier1,r) is called a geometric crystal if

(i) Fori e [1,r], ({1} x X) N dom(e;) is open dense in {1} x X.

(ii) For any i, j € [1, r], the rational functions {yi}ic[1,r] satisfy yi(ef(x)) = cliy;(x).

(iii) For any t € H, w € W and its two reduc(elgl wor(czl)s ii, the( )relation ei(t) = ey(t) holds, where for a reduced word
i=(i,..., i) of w, we define ¢(t) = eff (r))ef;“ .. eg;' ©

(iv) The rational functions {g;}ic[1,r) satisfy ei(ef(x)) = c~'ei(x) and gi(ej?(x)) = ¢gi(x) if a;j = a;; = 0.

, O{U) = S,‘n .. -Sij+1((xij).

Let X*(T) := Hom(T, C*) be the set of characters for a split algebraic torus T.
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Definition 2.4. Let T, T’ be split algebraic tori over C.

(i) A regular function f = Z/},EX*(T) ¢, - non T is positive if all coefficients ¢, are non-negative numbers. A rational
function on T is said to be positive if there exist positive regular functions g, h such that f = % (h #0).

(ii) Let f : T — T’ be a rational map between T and T'. Then f is called positive if for any & € X*(T’), the rational
function & o f is positive in the sense of (i).

Let 7 be a category whose objects are algebraic tori over C and morphisms are positive rational maps. In [2,14], a
functor Trop : 7. — &et is introduced, where Get is the category of all sets. Each torus T in 75 corresponds to the set of
co-characters X,(T) = Hom(C*, T) under the functor Trop.

Definition 2.5. Let x = (X, {ei}ic(1.r1, {Vi}ier1.r1, {€i}ierr.r)) be @ geometric crystal, T an algebraic torus, 6 : T — X a
birational map. The map 6 is called positive structure on y if it satisfies the following:

(i) Fori € [1, r], the rational functions y; o 0, €; o 8 are positive.
(i) For i € [1, r], the rational map ;9 : C* x T — T, defined by (¢, t) — 671 o ef o O(t) is positive.

We say (x, 0) is a positive geometric crystal.
Applying the functor Trop to e; g, i 0 6 and &; o 0, we get
& = Trop(eiq) : Z x X.(T) — X.(T),
7i =Trop(y;00): Xu(T) —> Z, & = Trop(gjo0): X (T) — Z,
Theorem 2.6 ([2,14]). Let x = (X, {ei}ie(1.r> {Vitier1.r1s {€itier1.r) be a geometric crystal, T an algebraic torus, 6 : T — X its
positive structure. Then (X.(T), {€i}ic1.r), {Vi}ierr.r {Eitier1.r1) has a free crystal structure.
In the above notation, for x € X,(T), x — €;(1, x) and x — é;(—1, x) give actions of Kashiwara operators on X,(T), and
7; define the weight functions x — 7;(x) on X,(T). The maps ¢; are defined by ¢;(x) = &;i(x) + yi(x) (i € [1, r]).

2.5. Geometric crystal actions on G*°

For a Weyl group element u € W, let y; : G** — C* be the rational function defined by

inGu'eL)B_:)HXN_le)HE)CX.

Fora € A™, let g, be the root space, and N, := exp(g,). Fori € [1, 7], we set N := N*N§N¥5; " and N == N*N5N*5; 7,
where N* = N. Indeed, we have N* = N.,,. We also set
Yig; = (X4i(t)NeXi(—t)It € C, ¢ € AT\ {Fo}),
where x_;(t) := y;i(t).
Lemma 2.7 ([13]). For a simple root «; (i € [1,r]), we have

(l) Y:qu = N;j::,
(i) N* = N;* - Y, (semi-direct product).

By this lemma, we have the unique decomposition:
N™ =N -Y_4 =N_g N,

and we get the canonical projection & : N~ — N_,,. Let x; be the function on N~ defined as y; := yi‘l o0& : N~ — C,
where y; : C — N_g is defined as ¢ > y;(c). We extend this to the function on B~ by x;(u - t) := x;(u) foru € N~ and
t € H. We set

9i = (Xilgue) ' 1 GV > CF, &= $i.gue L 0%
Vi
For a reduced expression u = s;, - - - s;,, we suppose that {iy, ..., i} = {1,2, ..., r}. Then xj|cue is not identically zero [14].

Thus, in this case, we can define the rational functions ¢; and ¢; (i € [1, r]).

For each i € [1,r], let us define a rational C*-action e; on G"¢ as follows: First, let g : G — B~ x N be the inverse
birational map of the multiplication map B~ x N — G. We set a rational morphism 7~ : G — B~ as 7~ := projz- o g,
and define rational N-action on B~ by ag- :== 7~ om : N x B~ — B~, where m is the multiplication map N x B~ — G.
Then we define a rational C*-action as (c € C*, x € G*€)

ef(x) = ap-(xi((c — i), X) = xi((c — D(x)xi((c™" = Dei(x)),

if xilgue 0 and ef(x) = x if x;|gue= 0. In the above definition, the second equality is shown in [3]. Let ;'(T) = T% € H
for T € C*.
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We define the set B, as
B, = {tyi,(c1) - yi,(cn)lt €H, C1,...,cn €C™,} (2.2)
which is an open subset of G*¢ [16].
Proposition 2.8. For u € W and its reduced expression u = s;, - - - 5;,, we define the set B, as
B, = {tyi,(c1)e(c; )+ i (e (c, DIt € H, €1,y € CF)

Then we have B, = B;.
Proof. Note that y(S)e(T™') = o (T~ ")yi(ST~%i) for S, T € C* and i, j € {1, 2, ..., r}. We have

B, 3 tyiy(c0)ay(c; ) - yin (e (1)

_ _ 1 —a —a 1 __
:ta,-vl(cl1)...aij(cn1)y,-](c—l_[cj i) ylS 1_[ ¢ ) yln ) €B,,
i j=s+1
—_ —a: s —aj i —aj i
which means B, C B,. Next, for ci,...,c; € C*, we put & = ¢, and & = & "¢, g
s=1,...,n—11Itis clear that §; € C* forj =1, 2, ..., n. We obtain

¢, for

B, >ty (1) Yi,(cn)
= fa,‘f(é“fl)- . 'air({{])aif(é“l)-"Ol,'j({n)J’il(Cl)' Vi, (Cn)
C1

fo (617 e 6 W7 & ey (4n)
1

j=2

- Vi - 1—[ g 1]15 O 0 (&) ym(;{l)aiz@n)

S j=s+1
= tog (g 1) o (G i (8 Dl (20) -+ yig(8s e (86) -+ Yin (& e (8a) € By
which means B, C B;. O
Proposition 2.9 ([14,15]). For u € W and its reduced expression u = s;, - - - s;,, we suppose that {iy, ..., i} ={1,2,...,1}.

Then the quintuple (G*°, {ei}ici1.r1» {Vilier1.r1> {€i}ier1.ry) is a geometric crystal. The map H x (C*)" — G"“¢, (t, ¢y, ..., Cn) >
tyi, (c1 )aif(cl’l)- - Yi,(Cn )(xij(cn‘l) is a positive structure on this geometric crystal.

Proposition 2.10 ([14,15]). Let u = s;, - - - s;, be a reduced expression of u € W such that {iy, ...,i,} = {1,2,...,r}. The
action of e]? on the open subset

w = (i (00 (6 Wiy () (65 1) -+ yig () (DIt € H, ..., 6y € CF} C GM°
is given by
&5 (tyi, (1) (6 iy () (651 - - i () (671))
= tyi, (o (67 Wiy () (657 1) - -y (61Dt (671),

where
(L m (et
¢ ¢ CZl<m<k im=j : m + Zk<m<n im=j tme1 tm
k= tk a [ [ a P
1J 14 i1J im—1.J
CZl<m<k 1m_}t b m tm+2k<m<n lm—]t "'tmTl tm
Furthermore,
-1
1
i . ML T Vi1 — - -
BGCAGHMCREEAY M IEY B |
1<m=<n, in=j 'mtm11 n

aj(t)
(L g ’

Wty (00 (671 -+ yi () (6,1)) =
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2.6. Generalized minors and a bilinear form

We set Gy := N™HN, and let x = [x]_[x]o[x]+ with [x]_ € N7, [x]o € H, [x]+ € N be the corresponding decomposition.
Definition 2.11. Fori € {1,...,7} and w, w’ € W, the generalized minor A, 4, .4, is a regular function on G whose

. 1. —1 4 . . .
restriction to the open set w'Gow ! is given by A agwa; (%) = ([w xw]o)”i. Here, A; is the ith fundamental weight and
fora=T" € H (h € ®jepr,...nZey, T € C*), we set ai .= T4M,

Let w : g — g be the anti-involution
w(e) =fi, olfi)=-e, w(h)=nh,

and extend it to G by setting w(x;(c)) = yi(c), w(yi(c)) = xi(c) and w(t) = t (t € H). One can calculate the generalized
minors as follows. Let V()) be the irreducible highest weight g-module with a fixed highest weight vector v, (A € @ie[”]
ZsoA;). Since V() is an integrable module, it is also a G-module. There exists a bilinear form on V(1) such that (v, v;) = 1
and

(au, v) = (u, w(a)),  (u,veV(r), acg/orG)).
For g € G, we have the following simple fact:
AAi,Ai(g) = (gUA,-y U/h')a

where vy, is a fixed highest weight vector in V(A;). Hence, for w, w’ € W, we have

7_1 . _ JR—
Aw/Ai,wA,'(g) = AA,‘(w, gw) = (gw : UA,-7 w’ - UA,-)~ (23)

Using generalized minors, the rational functions y; and ¢; in 2.5 are written as

d A
@ A A;
Yi = A/(}I,Ajv $i = Aill, (2.4)
=1 siAj, Aj

where we use (2.1) in the first relation.
3. Cluster ensembles

Following [16], let us recall the notions of cluster .4-variety and X-variety.
3.1. Definitions of cluster A-variety and X-variety

Definition 3.1. A seed X = (I, Iy, B, d) is a quintuple of the following data:

(i) I is a finite index set and Iy is a subset of I. The elements of I, are called frozen.
(ii) B = (b;;) is an I x I-matrix called exchange matrix which satisfies b;; € Z unless both i and j are frozen.
(iii) d = (d;)ier is a set of positive integers such that b; jd; = —b; ;d;.

For k € I'\Ip, we say a seed X’ = (I, Ip, B, d') is obtained from X' by mutation at k if there exists a bijection My : [ — I
which satisfies My (i) =i for i € Iy, d;‘/’kU) =d;forjel and

b _ —bj; ifi=korj=xk,
Mi(i),M(G) "— bij + \bik|bkj‘§bik|bkj| otherwise.
Then we write X/ = pu,(X).

To a seed X = (I, Ip, B, d), we associate a set of variables {A;};c; and a split algebraic torus Ay = Spec (C[Aiil|i ell]
called cluster A-torus . We call {A;}i; cluster A-coordinate on Ax. If X' = (I',lp,B,d") = u(X) then there exists a
birational map (called mutation) uy : Ax — Ayxs defined as

A; if i k,

Ay ) = by.j by j
LAGINO) ITo, =04+ by j<04;

i ifi=k,

where {Af};e;r is the cluster A-coordinate associated to X’

Definition 3.2. The cluster A-variety A,y is the scheme obtained by gluing together all tori Ay of seeds £’ which are
obtained from X by an iteration of mutations.
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To a seed X = (I, Iy, B, d), we also associate an algebraic torus Xy := Spec (C[X,-ﬂli € I] called cluster x-torus with
variables {Xi}ic;. We call {Xi}ic; cluster xX-coordinate on Xx. If X’ = (%) then there exists a birational map (called
mutation) i : Xy — Xy defined as

[b1 kl+ b; g e
XiX (1+ Xe) ik ifi £k,
’u'k(XI(/’k(l ) - l
x,;l ifi =k,

where {X/};c; is the cluster A-coordinate associated to X’ and [b; ;] := max(b;, 0).
Definition 3.3. The cluster x-variety Xy, is the scheme obtained by gluing together all tori X5+ of seeds X’ which are
obtained from X by an iteration of mutations.

In what follows, we identify I with I’ by My, and write bl’V’k(iLMkU = b}, Ay, M) = = A;and X M, o =X

ij? i

Proposition 3.4 ([16]). Let M = (M;;) be an I x I-matrix such that M;; = 0 unless both i and j are frozen. For a seed
X =(I, Iy, B, d) such that B = B + M is an integer matrix, we define a map py : Ay — Xx as

pax) =A%
jel
Then py extends to a regular map py : Ajg| — Xz
If ¥ = u(X) and B’ is the exchange matrix of X’ then B = B’ + M’ is an integer matrix. Thus, we can define
py i Az — Xz by ppi I—[jel ; ’j. This proposition means the following diagram is commutative:

As LAE, (3.1)

pm l lpﬁ,,
e = A
The map py : Ajx| — Xx is called an ensemble map in the context of [16].
3.2. The set of Z"-valued points

Let ZT be the tropical semi-field of integers, that is, it is equal to Z as sets, and product and sum are defined as + and
max respectively. For a split torus H, we set

H(Z") := X.(H),

where X, (H) is the group of co-characters of H. We can verify that H(Z") = (Z")4™H_ Note that a positive rational map
f :H — H’ induces a map Trop(f) : H(Z") — H'(Z"), where Trop is the functor in 2.4.

Definition 3.5 ([4]). For a seed X and the cluster A-variety A5 and X-variety X|x|, we set

Aiz(Z ]_[A);/ )/{identifications Trop(u), w : mutation},

Xp;|( ]_[X;r (z")/{identifications Trop(s), w : mutation},

where X’ runs over the set of all seeds which are obtained from X by an iteration of mutations. We call them the sets
of Z"-valued points of cluster A(X)-variety.

The sets of Z"-valued points of cluster varieties appear in the context of Fock-Goncharov conjecture in [4,7].
3.3. Seeds associated with reduced words

We will use the notation in 2.1. For u € W and its reduced word i = (iy, ..., iy), one associate a seed X as follows.
Weseti_j=—jforj=1,2,...,7

Definition 3.6 ([16]). We define the index set as I := {—7,...,—2,—1}U{1,2,...,n}. For k € I, we set k* := min{l €
Il >k, li| = lik]} U{n+ 1} and Iy :== {k € I|k < 0, or k¥ > n}. The exchange matrix B; = (bj ) is defined by
Q)i | i
bjx = M(—[i =kT1+ [T =kl—[k<j<k™[j>0]+ [k <j" <kT][jT <n]

2
+0 < k<jllk>0]—[j < k" <j"lk" <nl),
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where for a proposition P,
1 if P: true
Pl = ’
[Pl {0 if P : false.

Let dy = d,;,| for k € I, where the right-hand side means the symmetrizer of the Cartan matrix (a;;); je;. Then we define a
seed X := (I, Iy, B;, d).

The lattice @1<z<f Za; is a sublattice of P, and we see that its kernel {t € H|t* = 1, 1 <i < T} is a discrete subgroup
of the center of G. Let Gaq denote the quotient of G by the discrete subgroup {t € H|t* = 1, 1 <i <7} and Haq denote
the image of H in Gaq. The character lattice Hom(Haq, C*) is canonically isomorphic to @15, <7 Zai. Thus, the co-character

lattice Hom(C*, Haq) has a dual basis A7, ..., AY of fundamental coweights such that ;(A;) = &;; for i,j € [1,7]. Let

T4 be an element of Haq such that ozj(TAiv) = T%i for i,j € [1,7] and T € C*. Now we define numbers aj (i,j € [1,7])
as a;j ‘= Olj(()liv).

Proposition 3.7 ([16]). The 7 x T integer matrix (a; j)1<i j<; is nondegenerate and symmetrizable. We also get o/ = Z;zl a;j A

Definition 3.8 ([16]). Let X5, be the cluster X-torus which associates to the seed X;. An open immersion X, : X5, — Guy
is defined for an element u € W and its reduced word i = (iq, i3, ..., 1) :
AY Y

AFV AY A% ) Ain
XZ',-:(X—?,~~~aX—17X15~~'7Xn)'_>X_f "'X_1yi1(1)x1 yiz(])xz "'.Vin(l)xn .

Letuoy:=s;, ---s; forke[1,n]and us =efork e {—7,..., -2, —1}.

Lemma 3.9 ([16]). Let Ay, be the cluster A-torus which associates to the seed X. There exists an open immersion ay, : Az, —
G"¢ such that the pull-back a}‘:l_ identifies each coordinate function Ay with a generalized minor A”sk/‘\i,<\=/‘|ik\ fork el

Definition 3.10 ([16]). For x € Go := N™HN, we write x = [x]_[x]o[x]+ with [x]_ € N7, [x]o € H, [x]+ € N.. Foru e W,
the twist map ¢%¢ : G¢ — G*” "¢ is defined by

x> 0([u k- x),

where @ is the automorphism of G such that 8(a) = a~! (a € H), 8(x(T)) = yi(T) and 8(yi(T)) = x(T) (T € C). We also
define ¢ as the antiautomorphism of G defined by a — a~' for a € H and x;(T) — x;(T), yi(T) — y{(T) for T € C.

Proposition 3.11 ([16]). For x € G*¢, we get i 'x € Go. The map ¢ o %€ . G*¢ — G"°® is a biregular isomorphism.
Theorem 3.12 ([16]). Let M = (M x) be the following I x I-matrix
My = S0 Gk >+ 3k < 0],

(1) There is a regular map ax, : Az — G*° which extends ax, : Ax;, — G%¢ in Lemma 3.9. It induces an algebra
isomorphism C[G"*] — C[A5;].

(2) There is a regular map xx, : Xjx,) — Gy which extends x5, : X5, — Gy in Definition 3.8.

(3) The all entries of B; + M are integer and the following diagram is commutative:

a 5| we
Al —= G

NS

u,e
X\Zil X5 GAd

where p¢ : G¢ — Gy is the composition of the automorphism ¢ o £ and the quotient map G to Gpg.
4. Compatibility between geometric crystal structures on the cluster tori

In 3.3, we defined tori Ay (resp. Xyx) birationally isomorphic to G** (resp. G” +)- In this section, we will define two
geometric crystal structures on each torus Ay (resp. Xx) (Definition 4.3). Furthermore we will discuss a compatibility
between these geometric crystal structures (Proposition 4.4). In Sections. 5, 6, we will calculate the explicit formulae
of them. In the rest of article, for a reduced expression u = s;, - - - s;,, we suppose that {iy, ..., i;} = {1,2,...,7}. Let
Z={teH|ti=1, 1<i<T}L
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First, we define a geometric crystal structure on G,;. Recall that G*¢ has a geometric crystal structure (G**, {e}je[1,r1
{&j}jerr.r» {Vj)jern,n) (Proposition 2.9). The definitions imply that ¢; and y; are Z-invariant, and e; satisfies ej(c, tx) = te;(c, x)

for t € Z, (c, x) € dom(e;). Thus, the geometric crystal structure on G*¢ induces a geometric crystal structure on G,y
Definition 4.1. We write this geometric crystal structure as (G;‘\f, {ej}ier1,rs {&i}jeri,r1s {¥jljer1, ), that is, we use the same
notation for e, & and y; on G,; as those on G**.

In the formulae of Proposition 2.10 for ej?, gj and yj, an element t € H is replaced with t € Hp¢ when we consider the

. u,e
geometric crystal structure on Gyy.

Proposition 4.2. The biregular map G,{ — Gyy defined as XZ + (1 0 £"4(x))Z (x € G*¢) is well-defined. Let us denote it by
togte,

Proof. We take x € G“¢ and z € Z. By Proposition 3.11, we have " 'x € G,. Considering the decomposition
ulx= m’1x]_[ﬂ’1x]0[ﬁ’1x]+, we obtain T~ 'xz = m’1x]_[ﬂ’l)c]()z[ﬂ’1)c]4r and [t~ 'x]oz € H, which yields
[ 'xz]_ = [u 'x]_. (4.1)
It follows from (4.1) that
(Lo %) (xz) = 1o O([u 'xz]= 't 'x2)
Lo B[ X~ 'u x2)
WO 'x1-'w Xz
(o[ 'x12"u %)z
= (toZ"®)(x)z.

Thus, the biregular map G,y — Gy is induced. O

Definition 4.3. We use the same notation as in Theorem 3.12. Let X be a seed obtained from X; by an iteration of
mutations 7z, and @® : Ay, > Az, ¥ : X5, — Xy be the corresponding birational maps. Let ayx, x5 denote the birational
maps ay, o (%) : Ay — G, xx, o ()" : Xz — G,y, respectively. We define two geometric crystal structures on the
torus Ay (resp. Xx) as follows:

(1) The first one is

(Ax, a; o€ oay, goay, yjoay), (resp.(Xy, xgl o€ oXz, &0Xz, ¥joXs)).
(2) The second one is

(Asx, aEl o(Lo{”’E)’] oe; o(tot"®oax, go(tol™)oay, yjo(to" ) oay),

(resp. (X, X}] o(to g‘”"")oejC o(to ;‘“’e)_1 oXs, gof(to ;‘”-e)_l oXs, Yjolto {“"’)_1 oXxx)).

Proposition 4.4. Let p = ps be the restriction of the map py in Theorem 3.12 to the torus Ax. The following commutative
diagrams hold:

aglo(zo{”f)*]oej?om;”foa; agloefoax
As As As Asx
p p P p
z - b)) z - x (4.2)
Xy oe;ox; Xy o(to{”f)oefo(to{“f)’lox;

We also get the following commutative diagrams:
.Az AZ

é‘jo(to{u'e)oaz yjo(tog'”’e)oaz

MY X X
z £joX s ~ z Yjoxs — (4.3)
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Sjoaz' yjoag

=
=

P — C X —
gjo(tog™€) " loxx yjoltog™€) " loxx

Proof. First, let us prove them for ¥ = X;. We set p := py,. It follows from Theorem 3.12(3), definitions of p; and action
of ef that
j

2o o 0p = x5! 06 opeoas
=Xz o€foqoor )oay
:X}i]oqoej?o(tog‘“'e)oazi
= Xgll oqo(tor™®)o(tor™)! oejco(tog‘”*e)oazi
= XE:] opgo(torthe)! oejco(tog‘”’e)oa};i
=podz o(tor™)  oef o(tor™)oay,

and

Poa;oefoa};i = x3! opcoef oax,

= X3, o(tocrue oqoe oay,

—1 C
=Xz o o(togwe o€ o(ods

lo(Log‘“’e)oqani

)
)
= X3, o(co;“)oef o(togme)”
= X}i (totU)oef o(tor™) Topgoay,
— %! o (9T € o (0T o5, 0p.
Thus, we get (4.2) for ¥ = X,
The definitions of y; on G*¢ and G,y mean y; o q(g) = yj(g) for g € G*°. Hence, we have
YjoXz,0p = YjoPpcodsy;
yjoqo(tot"®)oagy,
o(tog"%)oag,.

Thus, we get the first commutative diagram in (4.3), and one can verify other diagrams via similar ways for ¥ = X;.

Next, we assume that X' is obtained from X; by an iteration of mutations . Let ;1% : Ay, — Ay (resp. 0" : X5, = Xx)
be the corresponding birational map. By Proposition 3.4, (3.1) and Definition 4.3, we obtain a5, = as o 0%, x5, = Xy o "
and ps, = (") o px o & In conjunction with commutative diagrams for X;, we obtain the diagrams (4.2), (4.3) for
general seeds . O

Remark 4.5. In the rest of article, we will treat geometric crystals (Xsx, x; o ej? o Xy, & o Xy, ¥ o Xy) and

(Ax, aglO(Lo{“'e)_loej?o(tog‘"'e)oaz, gio(tot"®oay, yjo(tot"“®)oay) only.

Proposition 4.6. Fori < [1,7] and w € W, we have

(L o ;uye)*AwAi,A,‘, = AuA,-,wA,w

Proof. Recall that we defined anti-involution w : G — G in 2.6, One can verify that ¢t 0 & = w. For x € G"¢, we get
Lo f™¢(x) = tod([u X~ "u k)
([ 'xlo[u ™ 'x1+)

= w([u'x11) - w([u'xlo).

For x € G"¢, we get ux e Go by Proposition 3.11. Writing ulx = [ﬁ’lx]_m’]x]o[ﬁ’lx]+, we have a)(ﬁ’lx) =
o[t %) o[ 'Xlo)o([ 'x]-) and o([u'x]4) € N=, o([u'x]o) € H, o(["'x]_) € N. Using the bilinear form in 2.6,
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we get
(L0 %) Aya, a;(%) = (Wog,, (Lo CU)X)ya,)
= (Wua,, ([0 'X]4) - ([T 'xlo)va,)
= (wv ay (@ X))
= (u" xwvA,, v4;)

= (vaAi’ uvA,') - AuAl-,wA,-(x)~ o

A result similar to Proposition 4.6 for unipotent quantum minors of quantum unipotent cells is obtained in [12].
5. Explicit formulae for geometric crystals on cluster X -tori

In this section, we will reveal the explicit formulae for geometric crystal structures (Xs,, x 21 oej OXyx;, €0Xx;, VjoXx,)
in Definition 4.3.

Theorem 5.1. Let e (j € [1,r], ¢ € C*) be the rational C*-action on Gyy (Definition 4.1). We set
X X XG0 Xn) == X5 o el oxg(Xogy o, X, X, oo, Xa),
and (K1, Ky, ..., Kj} = {1<|1 <K<n, ix=j) (Ky <--- <K). Then
c Z 1K Xicmr + - Xiy) + Z;:pH(XKmXKmH < Xiy)
rrl:](meme+1 s X))+ Zin:p(XKmXKm+1 X, .

For k € {1,2, ..., n} with iy # j, we also set {kq, ka, ..., ks} .= {K|k <K < kT, j=ix} (ky < ky <--- < k). We can write
ki = K, with some y € {1,2,...,1}. Then

(5.1)

4
XK,, = Xk, -

y+s 1 I i
X =X Z XicmXimyr = Xi_y + Zm:wrs XicmXimyr = Xk ‘ (5.2)
k — Nk I . .
¢ Zm:l XKmXKm+1 o 'XKl—l + Zm:y XKmXKm+1 o 'XKl—l
Forie[1,7],
X=X [ xx
1<s<n,is=i
Furthermore, let yj, &; be the functions of geometric crystal on G/‘i’(f. Then
VioXg(Xog, oo, Xo, X1, oo, Xn) = XXk - X,
-1
goxg(Xop o Xon Xes o Xa) = [ Y X, Xy, X
First, let us prove the following lemma.
Lemma 5.2.
(1) Amap f : (C*)" — (C*)",
=i, 4.5 ~Tic 5, —aj,
t s+1~5t s+2:1s St in,is .1
T A A e )
ts tn
is bijective.
(2) Amap g : (C*)" — (CX)",
(trs ooty tn) = ( 1_[ toy o e ]_[ tes oo, tn)
1<k<n,ip=i; j<k<n.ig=ij
is bijective.
ajp i “ligyq.ds Ty, is  ~Cip i
Proof. (1) For (¢q, ..., ) € (CX), by setting t, = +, t,_y = M, ot = s t* “n - inductively,
&n tn—1 s
T

we have

(G- &) =fts ..o ),

which means f is surjective.
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, ) ) ; o Cinin_ pr i1 ;al"s+1~"s t7a2is+2~"5.,.t;“in,is
Next, we assume f(t1, ..., ta) = f(t; -, ;). Then we get ;- = &, " —— = “1 e s =
n - n—1
p sg1ds s s gy s
s+l 5+2t, , ---. Hence, we can inductively show that t, = t;, th_y = t;_,, ..., t; = t/, - - -. Therefore, f is
S

injective. Similarly, we can prove (2). O

Proof of Theorem 5.1. Note that y;(t)X4 = X4’ y,(X%t) holds. Therefore,

Xz, (X, oo Xo, X, o, X))
AY AY Ay Ay Ay
= X7 - Xy (DX, Ty (DX, % -y, (DX

AY AY A A
— T 1 1 in
=X XXX,

vl [T %wulC [T XwuC [T X0y
1<k<n,ix=iq 2<k<n,ix=iy 3<k<n,ix=i3

By Lemma 5.2, there exist tq, ..., t, € C* such that

iy 1.is tiais+2~i5 . t_ainJ's

t
[[ %==—* ! (5.3)

- ts
s<k<n,ix=is

fors=1,2,...,n
Hence,

Xz,(X_f, oo X2, X1, o0, Xn)
AY Ay AY AY
— 1 1 i
=X XXX
tz—aiz,i1 t;ai3.i1 o t;ain,il | (t;ai3,i2 t;ai4.i2 o t;ain,iz
. Vi, 6
t—ai4,i3 o t—ain,i3 1

4 n L
h ) Vi .

'yh( )

'.yig( )

Vv

A Ay AiV] Ain v v v
=X XTIX T Xy ey (e (6) - - e () (54)
Vi () (67 Wiy () (651) - - iy (tn)ety/ (671),
where we use
Yi(S)ey) (T1) = o) (T~ "y(ST™%4), (S, TeC*, i,pe{l,2,...,1}) (5.5)

in the second equality. Here, we denote the image of ozpV (T™') € G*¢ under the quotient map G — Gaq by the same
notation «(T~1).
By the definition of ej? and Proposition 2.10, if (¢, x5;(X_7, ..., X_1, X1, ..., Xy)) € dom(e;) then we have
e; OXE,.(X,f, X1, X, .,Xn)

Vv

A7 Ay Aiv1 Ay v v v
= Xff "'X,1 }(1 X" ail(ﬁ)aiz(tz)...ain(tn)
-1 1 _
Vi (6 (67 Wiy (65D (6571) - - iy (7)o (6771,
with ¢, ..., t; € C* in Proposition 2.10.

Using (5.5) again, we obtain

ef OXEI.(X,;, . ,X_1,X], . ,Xn)

AY AV AY AiV
= x_Fr ...x_llxl B o Xy "Ot,f(ﬁ)oli;(fz)---ol%(tn)

i i —di —a i
A0 PV T | s il
t t ety

(a7 a6 i (2 3 - ) (5.6)
1
— iy i —liy i —lip. i —diy,i —ip,i
t/332t/442--~t/nn2 t’443~--t/nn3 1
Vi y Wis( y ) Vi)
t2 t3 tn
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It follows from Lemma 5.2 that there exist X{, ..., X € C* such that
(tlé+1)_aik+1'ik(t,;+2)_afk+2vik co () i

n
o = Il % (5.7)

k<p<n,ip=ij

for k=1, 2, ..., n. Substituting these into (5.6), we get
e oXx,(X7, ..., X1, X1, oo, Xn)

AY AY AY A
=X XX X Mo (B ety (82) - - 0 (£n)
(6 ey e ([T XD
1<l<n,ij=iq
Yol [T XwaC [T XD vilX)
2<l<n,ij=iy 3<l<n,ij=i3

AY v

AY A
= XD XTIX T X Mg (e (62) - - - o ()

\/

_ _ i —A;

o (t] 1)a12(té Dty 1)xl i D
v

1A ' /AI.v /Ain
Vi, (DX Ty (DX, 2 -y, (DX, ™,

where we use yl-(T)XAIv = XAlvyi(X‘S"-IT) in the second equality. Note that putting {Ky, K, ..., K} .= {1 < K < n|ix = j}
Ky < -+ <K,

-1
et =
P a a a; aj. aj j
i1 g iy, 1. 111 121 i —1+J
¢ Ztl 65 ey Z t; ce by
= s an if k = K, (55)
Giy.j , Giy j Qi 14 "lj”l] i —1- ’
Cztll tzz ’ KmTl tic +Zt RN L "
1 if iy, #j.
Thus, by Proposition 3.7, we get
-1 -1 -1
o (e (t2) - - o (tn) - o (7 Do (6571) - - 0/ (6,7 1)
— — -1 T gAY
= o (ti, by, ittt ) = @ (€) = cZim1 B
Therefore, it follows that
E'jc OXZ‘I.(X,;, X, X, ,Xn)
/Av 1AY Ay /Av AV
—X _11.yi1( )X ylz( ) "'Yin(l)xn 'na
where fori € [1, 7],
X', = X_icl 1_[ XX
1<s<n,is=i
Finally, let us prove (5.1) and (5.2). Eq. (5.7) means that
I X! kg1, T ik 42.0 Ky -1
Kp+1 Kp+2 T Kyq—1
X = PSSS’X’fs = 7 p Pl , p=1,2,....D (5.9)
Hp<s§l Ks t1<p tK
where Ty := 1. Substituting ¢ = 1, we obtain
t_afl(p+1»f gy 424 _ail(p+1—1~j
Kp+1 Kp+2 K11
Xk, = " L . (5.10)
Kp *Kp11
Therefore,
aj, i aj i aj i a; :
-1 _ Ky+17 7Ky +29  TIKy 439 K —1+J
(Xlﬁsz “.XKm—l) =l tK1+1 tK1+2 tK1+3 "'t1<mn—11 tkn»
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Qige j a; i
where we use t;, * =t/ =t . Thus,
P P P

Qi G, a,~K 14 _ i, j Gy Qi j J
£ 1 i (X X - X, )T =2 t,('(’" Yt (5.11)
Using (5.8) and (5.9), we obtain
iy 1 i 4200 a’KpH 1
Kp+1 Kp+2 T K1
XKP = Y
Kp "Kp1
" 'Kp+1f iy 42,0 o i, —1
Kp+ Kp+2 Kpy1—1
= (5.12)
Ly ticy 1
@, g ;
c ZPH o 0121 : 't1<,:.(n_111 )th + ern:p+2 t:”']t;lz‘] tK:El1 Jth
Qi 1 i Gy 4 .
Z l] I alz] te tKr:Tl] ]th + an:p t:wt;lzj e tl(,:nl11 Jth
It follows from (5.10), (5.11) and (5.12) that
Xk
P
+1 _ ! _
X c p (XK1XK2 < Xk p) Ty Zm=p+2(XK1XK2 < Xk 1) !
= AKp © [
e Pt (X Xy - Xy ) > mep Xy Xiey ++ Xigy_y )™
+1 1
% Zp XKmXKm+1 e Xk, )+ Zm:p+2(X’<me1n+1 o .XKI—I)
= Xg, N .
¢ Zm:l(XKmXKm-H o 'XK1—1 )+ Zm:p(XKmXKm-H o 'XKl—l)

Thus, we obtain (5.1).
Next, for k € {1,2,...,n}, let us suppose that i, # j. We set {ki,ky, ..., ks} = K|k < K < kT, j = ix}

(ky < ky < --- < ks). Because of (5.7),
Hksznsn,ip:ik XI;

X, =
l_[kJr <p=n,ip=ik X[/J
—a; . —a; . —a; i
B (tl/<+1) ’k+1«’k(tl/<+2) Tet200k . (tl/ﬁr 1) et -1
tk kt+
1 @G 1 i 1k ¢! V=i i 100k
= ot (tk+1) k1 "'(thfl) 1 (tkl) j'k(tkpq) 1
ktikt

(b 1) () Bty ) et

Y (T I Y (0 e Y (D I Y (P
I} such that k; = K,,. In this case, we have k; = K, .5_1. By (5.8) and (5.10),

7aik+71 Sk

Since iy, = j, there exists y € {1,2, ...,

!
X
ys—1 Gipj Gy j g —1.J I aiyj iy j Gig, 1 Giiig
- X m=1 01 b "'tK T] tin + mey-#s &t "'thml Eim
=k y=1 Migj %ip X1<m 14 "'11 Gigij '1<m 14
Z 1h G tK tign + Zm y t tK tin
+5—1 _ 1\ %
¢ nE K Xiey Xt )™+ Loy 1K Xiey  Xigu )\
Xk ]
X h A (Ki X  Kig ) A Doe, Ky Xy -+ Xy )
+s—1 ! 4
X (C V S XKmXKm+1 "XKH + Zm:y+sXKmXKm+l e 'Xl<11) e
= Ak I .
c Zm:l Xien X1 Xy + Dmey XXy =+ Xy
Thus, we get (5.2).
Taking into account (5.4), we get
AY AV AY AY
a](}(_Fr .. .)(_11)(l o, .Xn lnai\;(tl)ai\z/(tz) .. al\;([n))
vioxg(X_p, .., X1, X1, ., Xp) = tailyj — tgi"'j

1
AV AV AY
— . [ 1 oo in
=X I - X_1X, X, ™)

XX, -+ - X
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Using (5.3), we also get

1

t taim+lvj L. tain-f
1=m=n, im=j "M *m+1 n

8jOX2i(X_f—, ...,X,],Xh ...,Xn)

-1

-1
= E XKp+1XKp+2 . 'XKI O
p=0

By Theorem 5.1, we can verify that the map x5, : X5, — Gxg’ is a positive structure on the geometric crystal
(GX’j, {ei}ier1.rs {¥itier.r1> {€itierr.ry)- Let X' be a seed obtained from X by an iteration of mutations. Then the corresponding
birational map X5, — Xy is positive. Hence, we obtain the following:

Corollary 5.3. The map x5 : X5 — G,y is a positive structure on the geometric crystal (Gyy, {€i}ie(1,r, {Vitier1,r1, {€iliert.r)-
Applying Theorem 2.6, we obtain a crystal
(Xe(Xx), {8iier1.n, (Vikienn.n, (Eidiern)-

It induces a crystal structure on the set of Z-valued points X, gi‘(ZT).
6. Explicit formulae for geometric crystals on cluster .A-tori

In this section, we will present the explicit formulae for geometric crystal structures (Ag;, a}} o(tol®®) 1o ej? o(to

") oay,, go(tot"®)oays, yjo(tol"?) oay) in Definition 4.3. For a fixed reduced word i = (iy, ..., i;) of u and
ke{1,2,...,n}, weset k= :=max{l € I|l <k, |ij| = |ix|]}. Forj € [1, r], we also set jmax := max{l € I|i; = j}.

Theorem 6.1. Let M be the matrix in Theorem 3.12, and p = py be the map in Proposition 3.4. We put
(Y_;,...,)?,1,)?1,...,Yn)zxgg oef oxz op(A s, ..., A1 Ay, ... Ay
Then forje {1,...,r}and k € {1, ..., n}, we have

(a3 o(to g™ ) Toefo(tot™)oazA)- 6.1)

Dy (k+1)~
= A .CD(k<k+1..,..n),{(k+1)f.(k+2)* ~~~~~ ™ jmax | <@> (%)

)?k 7(k+1

(P(A)k+2 )D(k,k+1},((k+1),(k+2)) (p(A)n )D(k,k+1 ..... =1} {(k+ 1) (k2) "™}

Xie2 Xn

(i1, .- .. Ji} (resp {k1, ..., ki}). Furthermore, for k € {1, 2, ..., r}, we obtain

(a5, 0 (Lo £™*) " o6 0 (104") 0 Ax Ay = CH* ALy, (62)
Ifie{1,2,...,7}\ {i1,iz,...,0n} then
(a5, o (Lo ™) o€l 0 (10" ) oaxA) i =As. (6:3)

Remark 6.2. In the above theorem, we obtain formulae of (agil o(tot*®) 1o ej? o(tot*®)oaygA) forallk el.

Proof of Theorem 6.1. First, let us prove (6.2). By a property of the irreducible highest weight module V(Ay) with the
highest weight vector v,,, we obtain fjvy, = 0 (j # k) and frvs, = Sxva, ([13], Chap.ll). If j # k, by using the bilinear
form in 2.6, we obtain

(&) A 4 )X) = Any 4 (35((c = Degi()xi((c ™ = 1)ej(x)))
= (va,, X((c — Dej(x)xx;((c™" — Dej(x))va,)
= (yj((c = Dgj(x)vay, xva,)
= (v, Xva,)
= Ay, (%),

. C \k p—
which means (ej) App Ay = A Ay
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We also obtain

((€7)"An;,4)(x) = (€ — Dg(X)va;s xv4;)
= (va;, xva;) + (€ = Dgi(X){fjva;, Xva;)
= (va;, Xva;) + (€ = Dgi(X)(S5v4;, XV4;)
= (va;, Xva;) + (€ = D{va;, Xva;) = c(vag, Xvg),

where we use (2.4) in the fourth equality. Thus, we get (e ( <Y Apjap = CAp; 4 and

(a):i o(toc%e)! oej o (1o ") o ax) A
= af, 0 (10 2"¢)" 0 (€5) 0 (10 £%) 1) 0 (a5 Aty
az 0 (10 C%) o (€6) 0 (10 £4) Y Auny.,
= o(tot™®) o (ejc)*AAk.Ak
(

s 3j
= az- o LO;“e)*CJ'kAAk,Ak

— ik = clik
=c) aEiAUAk,Ak =c Akmax’

where we use Proposition 4.6 in the third and fifth equality. Thus, we obtain (6.2).
Next, let us prove (6.3). If i € {1,2,...,7}\ {i1, 02, ..., in} then uA; = A;. Since we know Proposition 4.6, our claim
(6.3) follows from the following calculation:

(agi1 o(to™®) 1o e o(tot")oax)A
= a3, 0 (Lo 8") o (&) o (10 £**) 1) o (a5 VA
Lo Z"Y o (€f) o ((to ™)V Au
Lo £ 0 (€ 0 (0 €)1 Ay
o(tod™ ) o(e) Ana
Lo Cu e)*AA;,A,'

a*Z-AUAi A = A_;.

— A%
—a):o

*
az,

— o~ o~ —~

:axio

We now turn to (6.1) by mductlon on n—k. First, let us consider the case n—k = 0 so that n = k. By Proposition 4.4(4.2),
we have (poa)T o(tocr®e)! oefotot" oagA)y = X,. We set F := {i € I|i* = n+ 1}. Note that B, ,- = —1 and

ifle I\ M\ {n"} then Bn,l =0 by I < I < n and Definition 3.6 and the definition of the matrix M in Theorem 3.12.
Therefore, the definition of p and (6.2) imply

Xp=(po a}il o(tocte)! oej? oto¢"®oaxAh

-1 en—1 , By
[Taz o cos™) " oef orog™ oasA)"

lel
-1 u,ey—1 C u.e B N
= H(azio(to;' ) o otot"oagA)"
lel\F
( -1 ( u,e)—l C u,e A)Bn.l
azl_oto; oejoLo;“ odxA)
leF
-1 =1 , 1 By Bny
= (ag, o(to ™) T oefoto " oaxA), " comimax HA,”

leF
= (a; otot" ) oefortor"o aE.A)*JcmeaxAT (A,

which yields our claim (‘12 o(tot™®) 1o e] otot*oagA)- =A, _ cBrimax p(A)” for k = n.
Next, let us consider the case n—k > 0. Using Proposition 4.4 (4.2), we have Xk = (poag1 (toz®e)~1 0e; Co(tog")oay,A).
Note thatBk,kf = —landifl e {-7F,...,—1,1,...,n}\F\{n—, ..., (k+ 1),k }theanl = Obyl < I < kand

Definition 3.6 and the definition of the matrix M in Theorem 3.12. Hence the submatrix (B,,,)kflsn, I=(k+1)~ of B;
is as follows:

,,,,, N~ ,jmax

Bik+1y-  Brww2-  --- Bin Bjma
=1 Bepikt2 oo+ Bierin Bittjma
0 -1 oo Brpan Brrzjma
0 0 R

n,jmax
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In conjunction with the definition of p, (6.2) and induction hypothesis, we obtain

Xy=(po agi] o(to™®) 1o ej o(to¢")oasAk

_ l—[ (agll olto é.u,e)fl ° ejc o(to é.u,e) o aZiA)fk.I

Il
—~
Q

M
o
—
(S
o
w

=
o

e—1 (o u,e -1
) oefo(tott)oaxA)
_ _ B
I (ag o(to ") o€l o (10" oagA)"
le{—7,....,—1,1,....,n}\F\{n—,...,(k+1)~ ,k~}

[T (az' oo ) oef olior ) oasA)™

. H(a}il o(to {“’e)f1 o e]? o(to™®)o aEiA)f"‘l

k—
-1 ey—1 : By
1_[ (a5, 0(tog™ ) o€ o(tos™ ) oaxA)

= (agi] o(toc™®) 1o ej o (1o ") oagA)

leF
— — _ -~ X E
= (a5 0o £") 0 o (0" )0 a A - chim [ A
leF
Dy 141)-
1_[ (Al_CD(I.HI..,A.n).((Hl)_.(I+2)_ o jmax) (p(j‘)’) (%)
le{n,....k+1} X X1+1

D - - D . N Ek,r
(p(A)H—Z) (L1 ()™, (42) 7} (P(A)n> (L, =11 (1) 7 (42)7 ™)
Xl+2 Xn

1_[ (p(A)l>Ek,l+Zs—l—1.l—2 ..... k1 Beos=Dis, 12, 1) (5o (l—T)= 1)
le(n,....k+1} Xi

-1 1 -1
= (3 o (Lo 0") o€ o (10 £%) 0 az ) A plA)y

.CD(I<,k+1.....n).((k+l)_ ..... n~ Jjmax}

1_[ (p(A)l>D(k,k+1 ..... =1, (k1) ™)

le(n,....k+1} Xi

which yields our claim (6.1). O

Theorem 6.3. Leti = (iy, ..., i,) be a reduced word of u ¢ W, A = (A5, ...,A_1,Aq, ..., Ay) € Ax;, M be the matrix in

Theorem 3.12, and p = py : As; — Xy, be the map in Proposition 3.4. For j € [1,r], we set {Ky, K3, ..., K} ={K|[1 <K <
n, ix =j} (Ky < --- <Kj).

yio(to"®) oax(A) = p(A)_jp(A), - - - p(A),,
-1 -1
go(tol")oaxg(A)= (Z p(Ak,, P(A),,, - 'P(A)m) .
s=0

Proof. It follows from Proposition 4.4 (4.3) that gjo x5, op =¢gjo(to¢"®)oax, and yjoxs, op = yjo (1o l"®)oay,. Our
claims follow from Theorem 5.1. O

Theorems 6.1 and 6.3 imply that the map (1 0 £*®) o ay, : Az, — G™° is a positive structure on the geometric crystal
(G*¢, {eitier1.r, {vitier1.n {€itier1.n)- Let X be a seed obtained from X by an iteration of mutations. Then the corresponding
birational map Ay, — Ay is positive. Hence, we obtain the following corollary.:
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Corollary 6.4. The map (1o ¢"*)oay : Ax — G"° is a positive structure on the geometric crystal (G**, {ei}icr1.r1» {¥Vitie1.n»
{&i}icr1.r7)- Applying Theorem 2.6, we obtain a crystal (X.(Ax), {€i}icr1,r, {Vi}ier1.r» {€itier1,n)- It induces a crystal structure on
the set of Z-valued points A, s, (Z").

7. Type A-case

In the rest of article, we set G = SL;,1(C) and consider the cell G*0-¢ with the longest element wo € W. Let n := @

I={-r,...,—1,1,2,...,n} and ig be the following reduced word of wy:
ih=01,2,....r—2,r—1,r,1,2,...,r—=2,r—1,1,2,...,r—=2,..., 1,2
~—~—
1st cycle 2nd cycle 3rd cycle r—1th cycle

and i, be the kth index of iy from the left.
In this section, we shall calculate explicit forms of a}: o(tot¥oe)lo ej? o(tog™®)o s, by a direct calculation. In

the last subsection, we will verify the explicit forms coincide with those of Theorem 6.1.

1)

7.1. Fundamental representation of Type A;
First, we review the fundamental representations of the complex simple Lie algebras g of type A, [11,15]. Let g =
sl(r + 1, C) be the simple Lie algebra of type A,. The Cartan matrix A = (a; )i je(1,2,...r} Of g is as follows:
2 ifi=j,
ajj = -1 lf|l—j| =1,
0  otherwise.

For g = (b, e;, fii € {1,2,...,1})), let us describe the vector representation V(A;). Set B") := {v;] i=1,2,---,r+1} and
define V(A1) := @, g Cv. The weights of v; (i =1, -- -, r 4 1) are given by wt(v;) = A; — Aj_1, where Ag = A, = 0.
We define the g-action on V(A1) as follows:

h; = (h, wt())v; (h € @iepinZey, j€{1,2, ..., 1+ 1}), (7.1)
fivi=vigr, evim=vy (1<i<r)

and the other actions are trivial.

Let A; be the ith fundamental weight of type A;. As is well-known that the fundamental representation V(A;)
(1 <i<r)is embedded in A'V(A;) with multiplicity free. The explicit form of the highest (resp. lowest) weight vector
va,; (resp. uy,) of V(A;) is realized in AlV(A4) as follows:

Vg = VI AV A A, Up; = Vr—ig2 A Ur—ig3 A v oo A Upgg. (7.3)

It is known thatif 1 <j; <--- <j,<r+1,1<l; <--- <l <r+1andx € G = SL1(C) then the value of bilinear
form in 2.6 on x

(vj1 A Vjy A A Vjg, XUy /\U]z/\-”/\vls)

is equal to an ordinary minor Dy, jq.y,...1(X).
7.2. Geometric crystal action on cluster A-varieties for type A, case

Lemma 7.1. The rational maps y;, & : G*>® — C* can be described as

Dj1,j+1 D;,;
g = o

’

i = .
Djt1 Djt1,j+1

Proof. Our claim follows by (2.4) and (7.3). O

Lemma 7.2. We suppose that 1 <j; < --- <js<r+1landje {1,2,...,r}. If there existsi € {1, 2, ..., s} such that j = j;
and jiy1 > ji + 1 (we set jo 1 =1 + 2) then

(ST RS
() Dty cish 1.5) = Dl i) (st + (€ = D=5 Dy i i gl (1 as)
{1, j—1j+14{1,....j}

otherwise,

(€)' Dyjy....ishf1.es) = Dy o). (15}
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Proof. Because of Lemma 7.1, we obtain

Dby Dpgnpd
(pf_EJM_D. D L L
J+1j {1, j=1j+11{1,...j}

We can calculate

= (Uj; AU Ao AU, € (X)V1 AV A A )
= (v, AV, A= A, (6 — DOXx((c = DeilX))vr Ava A -+ A vg)
= (yj((c = Dgi(XNvj; Avjy A=+ Avj, XU AV A -+ A vg).

If there exists i € {1, 2, ..., s} such that j = j; and ji;1 > j; + 1 then

= (14 (c = Degi(x)fj)vj; Avjy Av+ AVj, XU1 AV A==+ A )
= (Vj; AVj, A+ AVj, XU AV A==+ A vg)
+(c = Dgi(x)(vj, A= AVj_; AVjg1 Av - AV, XUT AU A -+ A )
= Dy jo 105y (X) + (€ = D@i(X)Dy, .o iy it i eedsh (1.5} (X)
= Dy,...jsh i1 (%) + (¢ — 1)%@;&,...,ji,1$j,~+1,j,v+1 ..... Jshi1,..s)(X)-
(1o e L 11, (1, )
Otherwise, we have (ejf)*D{,-l,m,js},{lws)(x) = (U, AU, A AV, XUT AV A As) =Dy, g (X). O

Recall that a regular map py; : Agio — X;io = Xj, is defined as
B;
prX) = [A™
kel
where (X;)i is a coordinate of Xz, . In what follows, we denote py by p.
We write a coordinate A= (A_,,...,A_1,A1,...,Ay) € A;io as
(A_r, ... A1, A1 A, A Ao, Aoy oo An e, Ars 1, Arsa 2, Ar ).
Note that (a3, VY 'Amad = (Ump1 AVmga A- - AUmad, VI AV A---Avg) forme {1,2,...,r}andd € {1,2,...,r—m+1}.
0

We also set

(P_y,...,P_1,P11,P1o, ..., P, P21, P2, .. Porq, oo, Pro1 1, Proa 2, Prp) = pA).
Theorem 7.3. Forme {0,1,2,...,r}andd € {1,2, ..., min(r — m+ 1, 1)}, we obtain

-1 ey—1 .
(axioo(tog""oe) oejo(to{woe)oa;ioA)m,d

A o PraPadProdatPrdProdat+PmdProdd)+Pmi1.dProddt+Prodatl ifi=d
_ Jfimd P1,dP2,d-Pr—d,d+P2,d-Pr—d,at  +Pr—d,a+1 ’

| Ana ifj # d,

where we set Ag g := A_g4.

Proof. By Proposition 4.6 and Lemma 7.2, we get
(ag )
1p
And —> (Umt1 AUmi2 Ao+ A Unid, V1 AV2 A= Ag)
(Uma1 AUmia A+  AUrg1, V1T AV2 A - AUg A Umgd1 A0 A Urg1)

(Umtd1 A Umadi2 Ao AVrids “Umgde1 A -0 A Upy)
 {Wov1 AV A AVt VT AV A A UG A Umgd41 A A Upg)

(Wov1 A V2 A+ AUr—m—di1s “Umtd+1 A - ** A Upy1)
(o ™0-¢)=1y* (U1 A U2 A+ AU A Umgd+1 A+ AUpg1, V1T A V2 A -+ A Upomi1)
—

(Umtd+1 A v " AUpp1, V1 AV A= A Ur_m_d1)
_ Dy, dmid1,. 10,012, r—mt 1)

Dimtdat1,....r+1),(1,2,...r—m—d+1)

(€5 1
—

(Di1, .o dimerd 1,41, (1,21 r—me 1)
Dimtdi1,...r+1).(1,2,....r—m—d+1)
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+c—-1)

D{l,m,df1,d+1,m+d71,.A..r+1},{1$2,.“.r7m+1}>
Di1,...a-1.d+1).01,....d)

(tog W0-€Y* 1
—>

(D{m+1,m,r+1},{1,2,m,d,m+d+1,m,r+1}
Dimtdat,....r 1), fmd+1,..r+1)

Dyr—dya,...d)01,....d)

+c—1) D(m+l,m,r+1},{1,2,A.A,d—l,d+l,m+d+l,...,r—m+l]) .

Dyr—ds2,....r+1},(1,....d—1,d+1)

Hence, we need to show that

1
(az, ) Dima1,...r+11,{1,2, .. d,md-+1,....7+1)
D{m+d+1,...,r+l}¢{m+d+1 ,,,,, r+1}
Dy —dio,....r+13,(1,....0)
+c—1) Dimt1,...r+1}1,01,2,....d—1,d+1,m+d+1,...r—m+1}
Dy—ay2,...r+1).41,....d—1,d+1)

c(P1aPag-- Pr_ga+Ppa--Pr—ga+ - +Pna--Pr—ga)+Pnyra - Pr—ga+--+Pr_ga+1
d .

=A
" PyaPa-- Pr_gqg+Pra - Progqg+-+P_ga+1

Let us take an element of the open subset E;O in (2.2)

X = ayr(tl,r) o 'y1(t1,1) r(tZ,r) o 'yZ(tZ.Z) o 'Yr(tr—l,r)erl(tr—l,r—l)yr(tr,r) € E;o C Gwo,e
with a = diag(ay, ..., ar, ar4+1) € H and t;; € C*. We get
1

Dimtds,.... 1), (mad1,..r+1)

Dy —ay2,...r+1).(1,....d)
+c—1) - - ' Dimt1,...r+11,01,2,....d=1,d+1,m+d+1,....r—m+1} | (X)
Dyr—ay2,..r+1).41,...d—1,d+1)

d d
= Om+1 " Am+d l_[fi,ifi.i+1 < timgic1 + (€ — 1)1_[ Giitiit1 -« bir—d+i
i=1 i=1
d—1 r -1
l_[ Giiliiv1- - ti,r—d+i(2 tav1,de1tart,dez - - tarnitaivt - - - tar)
i=1 i=d
d—1 m+d—1
l_[fi,ifi.i+1 “+ timyioa( Z tastattartas - tapritdicn - - tdmtd—1)
i=1 i=d

d
= Gmt1- - Umyd l_[ tiitiirr - timyict (14 (€ = Dtgmeatamedet -~ tar
i=1

m+d—1
Doimg tartasitariacz o tarnitaicn o tamed—1
T
D i tartaitartasz - o bapritaivn o tar

d
= Gm41- - Amyd 1_[ tiitiip1 - - - timgiz1
i=1

r m+d—1
D immed tartasitartdi - tarnitdivr - tar FCY g tarrder - tapnitaisn o tar

Yidtertasitartare - tartitdict - tar
Next, let us calculate
c(Pra---Pr—ga+--+Pma-Pr_ga)+Pny1a- Prga+-+P_ga+1

(a3 YAma (x).
Fip 2 T PiaPrg- - Prdgd+Pog-Proqa+ - +Pr_ga+1

. ~ Asi1. s d1As_ )
The construction of Bj, means Py 4 = 34012l (9= 1,2, .. r — d). We obtain
’ s+1,d—1s,d+1s—1,d

d
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dt1
-1
(a2i0 VAs—1,a+1(X) = D5, sy, (1,....d+1)(X) = G5 - - - Qs g 1_[ tiitiit1 - - - bispiz2,
i=1

d—1

1

(azio VAsi1,d-1%) = Disya, . stdy(1,...d=1)(X) = Ggyz - - - Asyq l_[ G itiiv1 - -« bistis
i=1

d+1

-1
(azio VAs d+1(X) = Dis1,... s4d1),01,....d+1)(X) = Gsp1 - - - Asyat1 1_[ tiitiiv1 - bispizt,
=1

td,s+d
td 41,5+

Consequently, we have (ag: VPsq(x) =
0
d .
[Tie; tiitii1 - - - tis+i—1, ONe obtain

(a3 YA dC(Pl,d o Prga+- 4+ Png--Pr_gd) +Pmira- - Progat+ -+ Prga+ 1
Fip T Py aPyg---Pr_gda+Pra- - Proga+--+Pr_ga+1

(x)

d
Am+1 - Amd l_[ G itiit1 - - Lisie1
i=1

C(Zm td,s+dld.s+d+1td.r )+ Zr—d+1 td.s+dld,s+d+1td,r
$=1 ta11,s+dld+1,s+d+1"td+1,r S=M+1 o1 stdldt1.s+d+1td41,r
ZT*dH td s4dtd s+d+1--td.r
s=1 ta41,s4dld+1s+d+1 " tdt1r

d
Um+1 - Omd l_[ G itiit1 - - - Lisyie1
i=1

m r—d+1
(D emq tar1,1 - - - tapts—1dtastdbasdet - tar) F D g_moq L1 tarts—14dlased - tar
r—d+1 :
Zs:l

The relation (7.4) follows from (7.5) and (7.6).

ta+1,1 - tav1.s—1+dbd.s+dbds+d+1 - Lar
O

7.3. An example

Example 7.4. We consider the case SL;(C), ip = (1, 2, 3,4, 1, 2, 3, 1, 2, 1). The matrix Bio is as follows:

-4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

—4 1 o o o o0 o0 -1 1 0O o O0O o0 o0 o0

-3 -1 1 0O 0 0 -1 1 0o o0 o0 o O o0 o
-2]10 -1 1 0o -1 1 0o o o o O o o0 o

-1 o 0 -1 1 1 o o o0 o o o o o0 o0

1 0 0 1 -1 0 -1 0 O 1 0O 0 0O o0 O

2 0 1 -1 0 1 0O -1 0 -1 1 0O o0 0 O

B — 3 1 -1 0 0 O 1 0O -1 0 -1 1 0 0 O
™ 4 -1 0 0 O O O 1 1 0O o0 -1 0 O O
5 o o0 o0 o0 -1 1 0o 0 O -1 0 1 0 O

6 o o0 o o0 0 -1 1 0 1 0o -1 -1 1 0

7 o o o o O o0 -1 0 O 1 1 0 -1 0

8 o o o o o0 O o o0 -1 1 0 0 -1 1

9 o o o o O o o o o0 -1 o0 1 1 -1

10 o o o o o o0 o o o o o0 -1 0 1

21

o Omad

(7.6)

Let A= (A-4,A3,A2,A1,A1, Ay, A3, A, As, Ag, A7, Ag, Ag, Ag) € As; = (C*)™, M be the matrix in Theorem 3.12,

and p = py : Agio — X;io be the map in Proposition 3.4. We set (P_4, P_3, P_5, P_1, P1, ..., P1o) = p(A).

In this example, we shall calculate (agil0 o(tor®e)! oefo(tot™®)o a);ioA)k via two ways: (1) A way using Theorem 6.1,

(2) a way using Theorem 7.3.
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First, let us calculate it using Theorem 6.1. Taking Theorem 5.1 into account, we get
Xgll o€ o Xz, o p(A)
_ <P_4, PP, P1PsPg 4+ PsPg + Pg + 1 P cP1PsPg + PsPg + Pg + 1 7
cP1PsPg + PsPg + Pg + 1 P1PsPg + PsPg + Pg + 1

]c(Plpspg + PsPg) + Pg + 1 p, CPiPsPs + PsPy +Ps + 1

P,PsPg + PsPg + Pg +1 ' “c(PyPsPsg + PsPg) + Pg + 1

c(P1PsPg + PsPg + Pg) +1 _ c(P1PsPg + PsPg) + Pg + 1

® CPPsPs + PsPs + Ps + 1~ C(P1PsPs + PsPs + Pg) + 1’
c(P1PsPg + PsPg + Pg + 1) _ c(P1PsPg + PsPg)+ Pg + 1
c(P1PsPs + PsPs)+ Ps +1° ° cPPsPs + PsPs + Ps + 1
Pio c(P1PsPg + PsPg + Pg + 1)) .

c(P1PsPg + PsPg + Pg) + 1
Hence, we can calculate

(a5, oo™

= (a};lo (e} (t o ;U,E)

, P3, Py,

P;, Pg

1 o eﬁ o (l o é‘u'e) o a):‘iOA)lo—
“Toefo(tog")o as; As
Pyo
(X3, 0§ oxx; o p(A)o
—A (C(P1P5P3 +P5P3 +P8) + 1)

— ASCDIO,lo

P1PsPg + PsPg + Pg + 1
Similarly, we obtain

(a5 o(tog™ ) Toelo(tol™)oay, Ao
ig 0

= (a5 o(to¢™) T oeo(tol" ) oas, Ak
ig 0

d P Dg g
= AgcPo.101.8.10) 9 .
(X5 €5 0 Xz, 0 PAY \ (X5 0 € 0 x5, 0 PAo
= A,

and

¢(P1PsPg + PsP P, 1
(a}foo(toc“f)1oe§o(to;“'e>oaxi0A)s=A5( (PPl + PoPa)t Po & )

P1PsPg 4 PsPg + Pg + 1

(a},1 o(to ;‘”’e)_l oei o(to ;“’e)oa;i A)z3 = As, (a; o(to ;”‘)‘1 oeﬁ o(to ;“’e)oa;i Ay = A,
io ) io o

CP1PsPg + PsPg + Pg + 1
(CIE:OO(tOfu’e)71OeﬁO(lOCu’e)OazioA)l:Al( 1P5Ps + P5Ps + Pg + >’

PyPsPg + PsPg + P + 1

(ag}o o(tog" ) Toefotot™Yoan A)j=Ay (1<j<4),
(a3, o(tog™) Toefo(tor™)oax A= c* A (k=4,7,9,10).
To
Next, by Theorem 7.3, we get
(a5 o(toc™) Toefo(tot™)oay Ag = (a5 o(tol™) Toelo(tor™)oas A,
To 1o ig ig »
C(P1,1P2,1P3,1 + Py 1P31 +P3 1) + 1
Py1Py P31 + Py 1P3 1+ P+ 1
c(P1PsPg + PsPg + Pg) + 1
® "PyPsPg + PsPg + Pg + 1

= A3,

(a; o(tof™) 1o eSo(tol™)oay, A = (a; o(tor™®) 1o efo(tos")oax A,
ig 0 ig 0

= Ay = As,

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)
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and these results coincide with (7.7) and (7.8). Similarly, we can verify the results of calculations for (ag;0 o(tog"®) 1o
ejo(tog")o agiOA)k by using Theorem 7.3 coincide with (7.9)-(7.13) (k = —4, -3, -2, -1,1, 2, 3,4,5,7,9, 10).
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