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Abstract  

We connect  Liouville theory, anyons and Higgs model in a purely geometrical way. 
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1. The Higgs model for anyons 

The main aim of this paper is to show that well-known results [ 1,7] allow one to 

connect the Higgs model for anyons and Liouville theory within a rich geometrical 
structure. In a forthcoming paper [8] we will show how this geometrical framework 

allows us to obtain results concerning anyon spectra and the exclusion principle. The 
crucial point is based on the following remark: 

Remark 1. 
a. The configuration space of n anyons is the manifold of n unordered points in C = 

C u {oo}, 

Mn = (Cn\An)/Symm(n), ( 1.1 ) 

with An the diagonal subset where two or more punctures coincide. 
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b. The Liouville action on the Riemann sphere with n-punctures evaluated on the classi- 
cal solution is the K~ilaler potential for the natural metric (the Weil-Petersson metric) 
on 

.Mn = ( cn\An)  /Symm(n)  × PSL(2, C). (1.2) 

This remark implies that starting from anyons on C one can recover the two-form as- 
sociated to the natural metric on the configuration space by first computing the Poincar8 
metric e ~ on the punctured sphere and then, after evaluating the Liouville action for 

= ~oct, computing the curvature two-form of the Hermitian line bundle on .Mn defined 
by the classical action (see Section 5). 

To understand the physical relevance of this remark we recall that the quantum 
Hamiltonian for n anyons is proportional to the covariant Laplacian on Mn. 

Actually, the connection between anyons and Liouville arises also in considering the 
critically coupled Abelian Higgs model in (2+ 1 )-dimensions where the space Mn plays 
a crucial role in the analysis of the nth topological sector of the theory. Remarkably 
f = 2Re log ~b, with ~b the Higgs field, satisfies the modified (non covariant) Liouville 
equation 

fzz  = e f  - 1, (1.3) 

which is the second Bogomol'nyi equation. Notice that the non covariance (the - 1  in 
(1.3)) is due to the Higgs mass. 

In Refs. [ 1,2] Samols has studied the metric on vortex moduli space in the Abelian 
Higgs model. In Ref. [ 3 ] Manton has proposed a model for anyons which is based on 
the structure of such a space. 

Let us consider the Lagrangian density of the Abelian Higgs model 

£. = ½ O l , ~ b D ~ c k  _ ! ~  r ~ ' ~  - 4" / . tv-- 1 (1 12 1) 2 ' ~b = ~bl + i~b2, (1.4) 

where 

D~b = ( 8~ - iAu)gb, F m, = 8~,Av - avA u, 

and the metric has signature ( 1, - 1,  - 1 ). 
In the temporal gauge the finiteness of the energy implies that at infinity the Higgs 

field is a pure phase. The magnetic flux through R 2 is 

f F12 = ( . 5 )  27rn, 1 

where n is the winding number labelling the topological sectors of the map 

I,~l:S~ , U(1).  (1.6) 

In the static configuration Ai = 0, ~ = 0, the energy has the lower bound E > ~r[n[. The 
critical case E = ~[n[ arises when the Bogomol'nyi equations 

(D1 +sgn(n) iD2)q~=O, F]2 + sgn(n)½ ([~b[ 2 -  1) =0 ,  (1.7) 
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are satisfied. It is crucial that in the nth topological sector the space of smooth solutions is 
a manifold ?tin of complex dimension n. In particular, each solution is uniquely specified 
by the n unordered points {zk} where the Higgs field is zero [4]. The same happens 
in considering the Liouville equation for the Poincar6 metric on Riemann surfaces. In 
particular, due to the uniqueness of the solution of the Poincar6 metric, to each complex 
structure of the n-punctured Riemann sphere (the unordered set of n points) corresponds 
a solution of the Liouville equation (see below for details). 

Topologically/~tn coincides with ~n. It is a remarkable fact that the Abelian Higgs 
model (almost) provides a smooth metric and U(1) gauge field on M,. In particular 
the kinetic energy induces the metric 

' /  ds  2 = -~ (d~add~a + d A i d A i ) .  (1.8) 

C 

The field evolution is described by geodesic motion on -~n. 
The zt's are good coordinates only on the subspace Mn. Good global coordinates on 

M. are provided by the coefficients of the polynomial [ 5 ] 

P n ( z )  = wkz  k -- I I ( Z  -- Zk). (1.9) 
k=0 k=l 

Note that the field evolution defines deformation of the complex structure of the 
punctured sphere. Recently it has been shown that this deformation is strictly related 
with Liouville theory (see below). 

In Refs. [ 1,2] Samols introduced the following metric on h4n: 

= 1 ~ ( +20b~'~ 
3rs d z r d G ,  (1.10) ds2 2 azs J 

r,s=--I 

where the br'S satisfy the equations 

ab~ _ ab~. ( 1.11 ) 
a es azr 

2. The Liouville equation 

Let us denote by H the upper half-plane and by F a finitely generated Fuchsian 
group. A Riemann surface isomorphic to the quotient H / F  has the Poincar4 metric ~, as 
the unique metric with scalar curvature R~ = -1  compatible with its complex structure. 
This implies the uniqueness of the solution of the Liouville equation on 2. The Poincar6 
metric on H is 

dg2= [dwl2 (2.1) 
(Imw) 2" 
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Note that P S L ( 2 , R )  transformations are isometries of H endowed with the Poincar6 
metric. 

An important property of F is that it is isomorphic to the fundamental group ~rl (-Y). 
Uniformizing groups admit the following structure. Suppose F uniformizes a surface 
of genus h with n punctures and m elliptic points with indices 2 < q~-l < q~-i < 
. . .  < qm I < <x~. In this case the Fuchsian group is generated by 2h hyperbolic ele- 
ments H1 . . . . .  H2h, m elliptic elements E1 . . . . .  Em and n parabolic elements P1 . . . . .  P~, 
satisfying the relations 

m n h 

l=l k=l j=l 

where the infinite cyclicity of parabolic fixed point stabilizers is understood. 
Setting w = j ~ l ( z  ) in (2.1), where j~ l  : 2 ~ H is the inverse of the uniformization 

map, we get the Poincar6 metric on 2 

dg 2 = 2~ze Idz I 2 = e ~'(z'e) ]dz [2, 

where 

e~t( z,~) _ 

(2.3)  

IJH~(Z) ' I2 (2.4)  
(Im J~l ( z ) )  2' 

which is invariant under SL(2 ,  •) fractional transformations of j~ l  (z) .  Since 

R~ = -~ZeOzO ~ log~ze, ~z~ = 2e-~c,, (2.5) 

the condition R~ = - 1  is equivalent to the Liouville equation 

a z a ~ c l (  Z, z )  = ½e ~c'(z'~). (2.6) 

Eq. (2.4) shows that from the explicit expression of the inverse map we can find the 
dependence of e ~" on the moduli of 2. Conversely we can express the inverse map (to 
within an SL(2 ,C)  fractional transformation) in terms of ~Oct. This follows from the 
Schwarzian equation 

{JH 1 , z}  = T F ( z ) ,  (2 .7)  

where 

1~ t \ 2  TF(z) = ÷'c~ -- ~ t~ct )  (2 .8)  

is the classical Liouville energy-momentum tensor and 

r'" 3 
{ f , z }  = f ,  2 \ f ' / I  = - 2 ( f ' ) l / z ( ( f ' ) - I / Z ) "  (2.9) 

is the Schwarzian derivative. 
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3. The Riernann sphere 

53 

Here we now discuss basic geometrical results on the Riemann sphere with n- 

punctures 

~v= C\{Zl  . . . . .  Zn}, C. ------ C U {oo}. (3.1) 

Let P1 . . . . .  Pn, n _> 4, be the set of  parabolic generators of  F satisfying the constraint 

PI " ' "  P,  = I and with the property that their parabolic fixed points {Wl . . . . .  w,} C 

I~ U {oo} map onto {Zl . . . . .  z,}. The moduli  space of  n-punctured spheres is the space 

of  classes of  isomorphic X's, that is 

- /~n  ----- { ( Z l  . . . . .  Zn) E ~n [ Zj 5t= Zk f o r j  4: k}/Symm(n) x PSL(2,C), (3.2) 

where Symm(n) acts by permuting {zl . . . . .  z,} whereas PSL(2,C) acts by linear 

fractional transformations. By PSL(2, C) we can recover the 'standard normalizat ion ' :  

z~-2 = 0, zn-i  = 1 and z, = oc. Furthermore, without loss of  generality, we assume that 

Wn-2 = 0, w~_j = 1 and w, = oo. For the classical Liouvil le  tensor we have 

1 
E - TF(z)  = 2(Z Zk) 2 + " (3.3) 
k=l Z -- Zk 

Notice that T F is holomorphic on 2 = ~2\{zl . . . . .  zn}. Such a characteristic of  T F 

extends to higher genus surfaces as well. This follows from the Liouvil le  equation. 

Equivalently one can consider local univalence of  the inverse map, which implies that 

Oz JH l (Z) ~ O, Vz C X, so that the Schwarzian derivative of  J~, l is hoiomorphic on v.  

The Ck'S, called accessory parameters, satisfy the following constraints: 

,I--I n--I 

Z ck--0, Zckzk=,-n/2, 
k=l k=l 

(3.4) 

so that cl . . . . .  cn-3 can be considered as the basic set. These parameters are functions 

on the space 

V (n)= { ( Z l  . . . . .  Zn-3) C c n - 3 [ Z j  ~ O, l ; z j  ~ Zk, f o r j  4: k}, (3.5) 

which is a covering of  .Mn whereas the Teichm[iller space Tn is a covering of  V ( ' )  

whose transformations form a subgroup of  the modular  group. Note that 

A4,, "~ V(") /Symm(n),  (3.6) 

where the action of  Symm(n) on V (n) is defined by comparing (3.2) with (3.6) .  In 

particular, if a permutation involves at least one of  the punctures between 0, 1 and 

c~, then we must perform a linear fractional transformation to recover the standard 

normalization. This means that the last three punctures of  the transformed surface .S 
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must be z~-2 = 0, Zn--I  = 1, zn = oo. Thus if o'k C Symm(n) interchanges Zk and Zk+l, 
the coordinate on 2 is 

z, k = l  . . . . .  n - 4 ,  

~= (Z--Zk)/(1--Zk), k = n - 3 ,  
1 - z ,  k = n - 2 ,  ( 3 . 7 )  

z / ( z - 1 ) ,  k = n - 1 .  

4 .  L i o u v i i l e  a c t i o n  a n d  t h e  W e i l - P e t e r s s o n  m e t r i c  

Let us consider the Liouville action on the Riemann spheres with n-punctures [6]:  

S ~n) = lim S~ n) = lim I f  (Ozq~Oe~p + e ~) + 2~(n log r  + 2(n - 2)logllogr I ) 
r ---,0 r----~0 

n--I ) 

, ~ r = , ~  ( i U l { Z l l z - z i l < r } u { z l l z l > r - I  } , (4.1) 

where the field ~p is in the class of  smooth functions on ~ with the boundary condition 

given by the asymptotic behaviour of  the classical solution 

= f - 2 1 o g l z  -zkl-21oglloglz -zkll+O(1), z ~ z k ,  k + n, (4.2) 
~ c l (  Z ) 

t - 2 l o g  [zl - 2 1 o g l o g l z l  + O ( 1 ) ,  z 

Eq. (4.1) shows that already at the classical level the Liouville action needs a regulariza- 
tion, the effect of  which is to cancel the contributions coming from the non covariance 
of  I~z 12. This regularization provides a modular anomaly for the Liouville action, which 

is strictly related to the geometry of the moduli space [7].  In particular, it turns out 
that the Liouville action evaluated on the classical solution c~n) is not invariant under O cl 

the action of  Symm(n) [7] ,  

~'(n) (Zl , Zn-3)  (n) - -  S~l ( o r i , n ( Z l ,  Zn--3)) Ucl , . . . . . .  , 

4 ~ r ~ l o g l z k  - z i l -2~r(n-4) loglz i (z i -  1)l, i =  1 . . . . .  n - 3 ,  
k+i  

n - 3  

= 4~" ~--~ log Izkl, i = n - 2 ,  (4.3) 
k=l 
n -3  

4 ~ - E l o g l z k - l [ ,  i = n - l ,  
k=l 

where tri,, C Symm(n), i ~ n, is the transformation interchanging the i and n punc- 
tures. Furthermore, the asymptotic behaviour of  the classical Liouville action when the 
punctures coalesce is [ 7 ] 

l Recall that e ~ is a ( I, 1 )-differential. 
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S~;)tZl,.-J-3) = 2TlOglZk-Zil+o(l), zi-+zk, k # n, 

271-log IZil + c?( 1) Zi + CQ. 
(4.4) 

It turns out that the Liouville action computed on the classical solution is a continu- 

ously differentiable function on V(“) and [ 61 

1 as;;’ 
--- = cJ,, 

2?i- &k 
k=l,...,n-3, (4.5) 

where the ck’s are the accessory parameters defined in (3.3). 

Notice that by (3.4) and (4.5) it follows that 

n-3 asp c - = WC,-1 + c,_2), 
n-3 a#;’ 

k=l aZk c Zk aZk 
-=r(n-2+2c,_,). (4.6) 

k=l 

Since Sf;’ is real, Eq. (4.5) yields 

n-3 

(a + a>$;’ = -27r c ( CkdZk + Ckd.fk > , 
k=l 

and 

aCj aCk 

ii&=az,* j,k= I,..., n-3, 

dc, at?k 

dz, = az,’ 
j,k= l,..., n - 3. 

(4.7) 

(4.8) 

(4.9) 

We stress the strict similarity between (4.9) for the accessory parameters and the 

Samols equations ( 1.11) . 

Another important result in [6] is 

~=&(&,-f-), j,k=l,..., n-3, (4.10) 

where the brackets denote the Weil-Petersson metric on the Teichmtiller space T, pro- 

jected onto V(“). Therefore by (4.5) 

CPS’.“’ 
_i=-($,$), j,k=l,..., n-3, 
JZjaZk 

that is 

Wwp = LiJaS(“) n-3 &k _ 
2 cl 

= -ir 
,z zdzj A dZkt 

(4.1 I) 

(4.12) 

where wwp is the Weil-Petersson two-form on V (“). Thus the Liouville action evaluated 

on the classical solution is the Kahler potential for the Weil-Petersson two-form defining 

the symplectic structure on V(“). 
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5. Geometric quantization 

The symplectic structure considered above allows us to consider the following Poisson 
bracket relations [9]: 

i (5.1) {cj, c }wp = o, {cj, z }wp = -gsjk, 

where the brackets are defined with respect to Weil-Petersson metric Wwp. These re- 
lations suggest performing the geometric quantization of the space .A4n. To do this we 
must define a suitable line bundle. Let us consider the function [7] 

r7 n-3 ( - 
f,~k.,, = 11j~k,j=l Zj Zk) 2 

(Zk(Zk -- 1 ) )  n - 4  ' k=  1 . . . . .  n - 3 ,  

n-3 n-3 

= I I z ; ,  so,,_,o = 1-[(zJ-  5.2) 
j=l j=l 

Extension by the composition f,~,~2 = ( f ~  o tr2)f~2 defines a 1-cocycle {ftr}o'ESymm(n) 
of S y m m ( n )  [7]. Let us now consider the holomorphic line bundle 

E,  = V ~n) × C I S y m m ( n ) ,  (5.3) 

on A4, where the action of o- E Symm(n)  is defined by ( x , z )  ~ ( o ' x , f ~ . ( x ) z ) ,  

x c V  (m,z  EC.  Since 

e x p / ~ c / ~  If,~12 =exp , (5.4) 

it follows that exp(S~7)/Tr) is a Hermitian metric in the line bundle /2n ---, .A4,. By 
(4.5) exp(S~7 )/7"r) has connection form - 2  E i  cidzi and, by (4.12), curvature two-form 
-(2i /7r)  rowe [7]. The covariant derivatives are 

~(n) 
Dk = ,gzk -- O ~ l  = Ozk + 2ck, Dk = 0~. (5.5) 

Zk "77" 

In the geometric quantization the Hilbert states are sections of/~n annihilated by 'half' 
of the derivatives (polarization). The natural choice is 

7-t = {~/, ~ /2 ,  [Dk~' = 0} ,  (5.6) 

with inner product 

1 f d ( W P ) e - S ~ ; ' / ~ l ~ t 2 ,  (5.7) (¢1  ['tO2) -- n!(n--- 3)[ 
A4. 

where 

d ( W P )  =_ g~aooct , (5.8) 



M. Matone/Journal of Geometry and Physics 17 (1995) 49-58 57 

which by (4.12) is the Weil-Petersson volume form. An alternative to (5.8) is to use 
the volume form A n-3 w, where 

02S~? ) 
to = li-50 iogdet ~ . (5.9) 

However, in general, the correspondence principle can be proved only if the scalar 
product is defined with respect to the volume form associated with the K~ihler potential 
[ 10]. This means that in our case we must use the Weil-Petersson volume form. 

We conclude the discussion on the geometric quantization of .A4n by noticing that an 
interesting alternative for the polarization choice in the geometric quantization above is 

c° I o}. (5.1o) 

In this case the states and the classical Liouville action are related by 

¢(") = 7rSzk log~.  (5.11) Zk~cl 

6. Anyons, Higgs and Liouville theory 

A crucial aspect that should be further investigated concerns the classical-quantum 
interplay arising both in Liouville and anyon theories. In Refs. [ 11,12] it has been 
emphasized that the regularization arising at the classical level for the Liouville action 
is strictly related to the conformal properties both of quantum and classical (Poincar6 
metric) Liouville operators. A similar approach should be applied to anyons to provide 
a geometrical interpretation of the statistics. As in the case of conformal weights in 
2D quantum gravity [ 12] we can consider anyons as elliptic points whose ramification 
index fixes the statistics. 

The approach considered here makes it possible [8] to connect anyon theory with 
the geometrical approach to quantum gravity recently considered in Refs. [ 11,13,12 ]. 

Another interesting aspect is the connection between Liouville and Higgs. This pro- 
vides a way to consider the Higgs model in a 2D gravity framework. 

Finally we note that our results should be useful in investigating the underlying 
geometry 2 of the approach considered in Ref. [ 14]. 
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