Journal of Geometry and Physics 117 (2017) 84-98

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Symmetries of second order differential equations on Lie @CmssMark
algebroids

Liviu Popescu

University of Craiova, Department of Statistics and Economic Informatics, 13, Al. I. Cuza, st., Craiova 200585, Romania

ARTICLE INFO ABSTRACT

Article history: In this paper we investigate the relations between semispray, nonlinear connection, dy-
Received 24 January 2017 namical covariant derivative and Jacobi endomorphism on Lie algebroids. Using these
Received in revised form 18 February 2017 geometric structures, we study the symmetries of second order differential equations in

Accepted 10 March 2017

Available online 18 March 2017 the general framework of Lie algebroids.

© 2017 Elsevier B.V. All rights reserved.

MSC:

17B66
34A26
53C05
70S10

Keywords:

Lie algebroids

Symmetries

Semispray

Nonlinear connection
Dynamical covariant derivative
Jacobi endomorphism

1. Introduction

The geometry of second order differential equations (SODE) on the tangent bundle TM of a differentiable manifold M is
closely related to the geometry of nonlinear connections [1,2]. The system of SODE can by represented using the notion of
semispray, which together with the nonlinear connection induce two important concepts, the dynamical covariant derivative
and Jacobi endomorphism [3-9]. The notion of dynamical covariant derivative was introduced for the first time in the case
of tangent bundle by ]. Carifiena and E. Martinez [10] as a derivation of degree 0 along the tangent bundle projection. The
notion of symmetry in fields theory using various geometric framework is intensely studied (see for instance [4,11-18]).
The notion of Lie algebroid is a natural generalization of the tangent bundle and Lie algebra. In the last decades the Lie
algebroids [19,20] are the objects of intensive studies with applications to mechanical systems or optimal control [21-34]
and are the natural framework in which one can develop the theory of differential equations, where the notion of symmetry
plays a very important role.

In this paper we study some properties of semispray and generalize the notion of symmetry for second order differential
equations on Lie algebroids and characterize its properties using the dynamical covariant derivative and Jacobi endomor-
phism. The paper is organized as follows. In Section 2 the preliminary geometric structures on Lie algebroids are introduced
and some relations between them are given. We present the Jacobi endomorphism on Lie algebroids and find the relation
with the curvature tensor of Ehresmann nonlinear connection. In Section 3 we study the dynamical covariant derivative on
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Lie algebroids. Using a semispray and an arbitrary nonlinear connection, we introduce the dynamical covariant derivative
on Lie algebroids as a tensor derivation and prove that the compatibility condition with the tangent structure fixes the
canonical nonlinear connection. In the case of the canonical nonlinear connection induced by a semispray, more properties
of dynamical covariant derivative are added. In the case of homogeneous second order differential equations (spray) the
relation between the dynamical covariant derivative and Berwald linear connection is given. In the last section we study the
dynamical symmetries, Lie symmetries, Newtonoid sections and Cartan symmetries on Lie algebroids and find the relations
between them. These structures are studied for the first time on the tangent bundle by G. Prince in [ 16,17]. Also, we prove that
an exact Cartan symmetry induces a conservation law and conversely, which extends the work developed in [35]. Moreover,
we find the invariant equations of dynamical symmetries, Lie symmetries and Newtonoid sections in terms of dynamical
covariant derivative and Jacobi endomorphism, which generalize some results from [4,16,17]. We have to mention that the
Noether type theorems for Lagrangian systems on Lie algebroids can be found in [26,36] and Jacobi sections for second order
differential equations on Lie algebroids are studied in [37]. Finally, using an example from optimal control theory (driftless
control affine systems), we prove that the framework of Lie algebroids is more useful than the tangent bundle in order to find
the symmetries of the dynamics induced by a Lagrangian function. Also, using the k-symplectic formalism on Lie algebroids
developed in [38] one can study the symmetries in this new framework, which generalize the results from [12].

2. Lie algebroids

Let M be a real, C*°-differentiable, n-dimensional manifold and (TM, ), M) its tangent bundle. A Lie algebroid over
a manifold M is a triple (E, [-, -], o), where (E, 7w, M) is a vector bundle of rank m over M, which satisfies the following
conditions:

(a) C*°(M)-module of sections I"(E) is equipped with a Lie algebra structure [-, -]g.
(b) o : E — TM is a bundle map (called the anchor) which induces a Lie algebra homomorphism (also denoted o) from
the Lie algebra of sections (I"(E), [, -]¢) to the Lie algebra of vector fields (x (M), [-, -]) satisfying the Leibnitz rule

[s1,fs2]e = fls1, 2] + (0 (1) )s2, V51,82 € T'(E), f € CZ(M). (1)
From the above definition it results,
1° [, -]¢ is a R-bilinear operation,

2° [, -]g is skew-symmetric, i.e. [S1, 2] = —[S2, S1lg, VS1, 82 € I'(E),
3° [, -]g verifies the Jacobi identity

[s1, [s2, s3]ele + [S2, [$3, S1lele + [s3, [S1, S2]ele = O,
and o being a Lie algebra homomorphism, means that o[sq, 2] = [0(s1), o(52)].
The existence of a Lie bracket on the space of sections of a Lie algebroid leads to a calculus on its sections analogous to the

usual Cartan calculus on differential forms. If f is a function on M, then df (x) € E; is given by (df (x), a) = o(a)f, for Va € E,.
For w € A\X(E*) the exterior derivative dw € A\*T'(E*)is given by the formula

k+1

d (st ... se1) = Y (=1 ols)olst, 08 Se)
i=1

+ Z (—‘l)lﬂw([Si.Sj]E, S1y ey SAi, ey 54]_7 .. .Sk+1),
1<i<j<k+1

where s; € I'(E), i = 1, k 4+ 1, and the hat over an argument means the absence of the argument. It results that
(dP? =0, d¥(w1 Aw)=dwr Awr + (—1)%80; A dEw,.

The cohomology associated with df is called the Lie algebroid cohomology of E. Also, for £ € I'(E) one can define the Lie
derivative with respect to &, given by £ =iz o df +df o iz, where i; is the contraction with £. We recall that if L and K are
(1, 1)-type tensor field, Frolicher-Nijenhuis bracket [L, K] is the vector valued 2-form [39]

[L,KIe(X,Y) = [LX, KY]g + [KX, LY]r + (LK + KL)[X, Y] — L[X, KY]g — K[X, LY]g — LIKX, Y]r — K[LX, Y],

and the Nijenhuis tensor of L is given by
1
N(X,Y)= E[L’ L = [LX, LY]g 4+ L*[X, Y]g — LIX, LY]g — L[LX, Y].

For a vector field in X(E)and a (1, 1)-type tensor field L on E the Frélicher-Nijenhuis bracket [X, L]z = £xL is the (1, 1)-type
tensor field on E given by

LxL=Lxol—Lo Ly,
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where Ly is the usual Lie derivative. If we take the local coordinates (x)onanopenU C M, alocal basis {s,} of the sections
of the bundle 7 ~1(U) — U generates local coordinates (x, y*) on E. The local functions o,(x), Lzﬂ(x) on M given by

o(sa)za;@, [Sar5ple = Ligsy, i=1.n o By=1m, (2)

are called the structure functions of the Lie algebroid, and satisfy the structure equations on Lie algebroids
oL 90! 9ol _
i "By 5 g _ j_B 9% _ iy
Z (oﬁf xi +L0”ILA‘3V) =0, Ou axi Op ax OYLDtﬁ’
(a.B.7)
Locally, if f € C*°(M) then dff = %a;s‘”, where {s*} is the dual basis of {s, } and if @ € I"(E*), 0 = 0,5 then

; 060 1
dto = (G‘:‘E)Tﬁ - 5GyLZ/f;) s* AsP.

Particularly, we get d*x' = o}s* and ds* = — L% s” A 7.
2.1. The prolongation of a Lie algebroid over the vector bundle projection
Let (E, w, M) be a vector bundle. For the projection w : E — M we can construct the prolongation of E (see [24,26,40]).
The associated vector bundle is (TE, 3, E) where
TE = UyeeTwE, TowE = {(uXv vw) € Ex x T,E | G(ux) = Twn’(va T[(w) =XE€ M},

and the projection w5 (uy, vy,) = we(vy,) = w, where g : TE — E is the tangent projection. We also have the canonical
projection ; : TE — E given by m1(u, v) = u. The projection onto the second factor 6! : TE — TE, ol(u,v) = v
will be the anchor of a new Lie algebroid over the manifold E. An element of 7E is said to be vertical if it is in the kernel
of the projection ;. We will denote (VTE, w3, E) the vertical bundle of (TE, 72, E) and o! ly7g : VTE — VIE is an
isomorphism. If f € C°>°(M) we will denote by f© and f" the complete and vertical lift to E of f defined by

ffwy=o@)f), f'u)=f(r), uek.

For s € I'(E) we can consider the vertical lift of s given by s'(u) = s(w(u));, foru € E, where ! : Eyqy — Tu(Ezq)) is the
canonical isomorphism. There exists a unique vector field s€ on E, the complete lift of s satisfying the following conditions:

(i) s is w-projectable on o(s),
(ii) (o) = L@,

forall« € I'(E*), where Q(u) = a(m(u))(u), u € E (see [41,42]).
Considering the prolongation 7E of E [26], we may introduce the vertical lift s¥ and the complete lift s of a sections € I'(E)
as the sections of TE — E given by

s'(u) = (0,5"(u)),  s(u) = (s(w(w)),s(u)), uekE.

Other two canonical objects on TE are the Euler section C and the tangent structure (vertical endomorphism)]. The Euler section
Cisthesection of TE — E defined by C(u) = (0, u;), Yu € E. The vertical endomorphism is the section of (TE)®(TE)* — E
characterized by J(s¥) = 0, J(s) = 5", s € I'(E) which satisfies

J?=0, Im] =ker] =VTE, [C.Jl7t=—].
Asection S of TE — E is called semispray (second order differential equation—SODE) on E if J(S) = C. The local basis of I"(TE)

is given by {X,, V,}, where
0
)=o), 8
u ay u

and (3/8x', 8/dy*) is the local basis on TE (see [26]). The structure functions of TE are given by the following formulas

() = (sa(n(u», ot L
o0x!

;0 d
1 _ 1 —

0'(Xy) = o, i C (Vo) = 3y (4)

[(Xas Xgl7e = LhpXy,  [Xe, Velre =0, [Vo, Vgl7e = 0. (5)

The vertical lift of a section p = p%s, is p¥ = p*V,. The coordinate expression of Euler section is C = y*V, and the local
expression of J is given by ] = x“ ® V,, where {x“, V*} denotes the corresponding dual basis of {X,, V,}. The Nijenhuis
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tensor of the vertical endomorphism vanishes and it results that J is integrable. The expression of the complete lift of a
section p = p“s, is

o i 810& o &
pf = p% X, + <O‘; o - Lﬂapﬁ)y‘va. (6)
In particular s}, = V,, s, = X, — ngysv,g. The local expression of the differential of a function L on 7E is dfL =

o4 B x* + 57V and we have d°x' = ol x*, dfy* = V*. The differential of sections of (7E)* is determined by

1
d x* = —-15 xP Ax7, dV =0
2 Y
In local coordinates a semispray has the expression
S(x,y) = y* X + S*(X, YV, (7)
and the following equality holds
JIS, X]1e = —JX, X € I'(E). (8)

The integral curves of o !(S) satisfy the differential equations

dx! dy*

i o Y 4
ar = o, (X)y”, ar = S%(x,¥).

If we have the relation [C, S]7¢ = S then S is called spray and the functions S* are homogeneous functions of degree 2 in
y*. Let us consider a regular Lagrangian L on E, that is the matrix
L
gaﬂ - aya ayﬁ s
has constant rank m. We have the Cartan 1-section 6; = f—y@X"‘ and the Cartan 2-section w; = d*6;, which is a symplectic
structure induced by L given by [26]

_ s w1 L ;9L L
wp = gupV" N XT + 3 (% oxi0y? — 0y ox0y" — BygL"‘ﬂ) XY AN XP.
Considering the energy function E; = C(L) — L, with local expression
E =y oL L,
ay“

then the symplectic equation
isa)]_ = —dEEL,

determines the components of the canonical semispray [26]

9L .92 oL
Sé‘ — eB 1 [ 1 i o LV o " , 9
g (Uﬁ oxi  Cegxigyp) T Y 8y1’> (9)

where ga,ggﬂV = 8%, which depends only on the regular Lagrangian and the structure function of the Lie algebroid.

2.2. Nonlinear connections on Lie algebroids

A nonlinear connection is an important tool in the geometry of systems of second order differential equations. The
system of SODE can by represented using the notion of semispray, which together with a nonlinear connection induce
two important concepts (the dynamical covariant derivative and Jacobi endomorphism) which are used in order to find
the invariant equations of the symmetries of SODE.

Definition 1. A nonlinear connection on 7E is an almost product structure N on 7 : TE — E (i.e. a bundle morphism
N : TE — TE, such that N2 = Id) smooth on TE \ {0} such that VTE = ker(Ild + N).

If A is a connection on TE then HTE = ker(Id — N) is the horizontal subbundle associated to A’and TE = VTE ®@ HTE.
Each p € I'(TE)canbe writtenas p = p"+4p", where p", p¥ are sections in the horizontal and respective vertical subbundles.
If p" = 0, then p is called vertical and if p¥ = 0, then p is called horizontal. A connection A’ on TE induces two projectors
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h,v: TE — TE such that h(p) = p" and v(p) = p" for every p € I'(TE). We have

=

1
h=§(1d+/\/), v=—(ld—N), kerh=Imv=VTE, Imh=Xkerv=HTE.

N | =

hW>’=h, v’=v, hv=vh=0, h+v=Id, h—v=n\.

Jh=]J, =0, Jv=0, vj=].

Locally, a connection can be expressed as N(X,) = X, — 2vaﬂ, N(Vg) = —Vg, where Nf = Nf(x,y) are the local
coefficients of \. The sections

8o = h(Xy) = X, — NPV,

generate a basis of HTE. The frame {§,, V,} is a local basis of TE called Berwald basis. The dual adapted basis is {x¢, §V*}
where §V* = V¥ — J\/’gé\fﬂ. The Lie brackets of the adapted basis {3, V,} are [30]

Y

[8e, 8pl7E = LZ,grSy + RZﬁVy, [8e, VolTE = W;Vyv Ve, Vglre =0, (10)
Rig = Sp(NY) — 8u(NG ) + LipNY . (11)
Definition 2. The curvature of the nonlinear connection A on 7E is £2 = —N}, where h is the horizontal projector and Ny, is

the Nijenhuis tensor of h.

In local coordinates we have
1
—_ __pY ypa B
Q2= SR AN @V,

where Rgﬂ are given by (11) and represent the local coordinate functions of the curvature tensor. The curvature of the
nonlinear connection is an obstruction to the integrability of HTE, understanding that a vanishing curvature entails that
horizontal sections are closed under the Lie algebroid bracket of TE. The horizontal distribution H7E is integrable if and
only if the curvature §2 of the nonlinear connection vanishes. Also, from the Jacobi identity we obtain

[h, 2] =0.
Let us consider a semispray S and an arbitrary nonlinear connection A with induced (h, v) projectors. Then we set (see
also [32]).
Definition 3. The vertically valued (1, 1)-type tensor field on Lie algebroid TE given by

@ = —voLgV, (12)
will be called the Jacobi endomorphism.

The Jacobi endomorphism @ has been used in the study of Jacobi equations for SODE on Lie algebroids in [37] and to
express one of the Helmholtz conditions of the inverse problem of the calculus of variations on Lie algebroids [32] (see also
[43]). We obtain

®=-VoLsv=voLsh=vo(Lsoh—hoLgs)=VvoLsoh,

and in local coordinates the action of Lie derivative on the Berwald basis is given by

98%
— o v _
ﬁsgﬂ = (N‘g — Lﬁg_yg) 80( +Rﬁvy, ﬁsVﬁ = —(Sﬂ — (Ng + W) V- (13)

The Jacobi endomorphism has the local form

S VIE L,
— N LY (14)

. 087 a
— U B Yo Y o
& =Rjve @ X, Rj = —0j7r = SN+ NGNY + NG

P ax
Proposition 1. The following formula holds
D =l'39+VO,CV5h. (15)

Proof. Indeed, @(p) = vo Lshp = vo Lyshp + vo Lyshp and £2(S, p) = v[hS, hplg = v o Lyshp, which yields
@(p) = 2(S,p)+VvoLyshp. O

For a given semispray S on TE the Lie derivative £s defines a tensor derivation on TE, but does not preserve some of
the geometric structures as tangent structure and nonlinear connection. Next, using a nonlinear connection, we introduce a
tensor derivation on TE, called the dynamical covariant derivative, that preserves some other geometric structures.
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3. Dynamical covariant derivative on Lie algebroids

In the following we will introduce the notion of dynamical covariant derivative on Lie algebroids as a tensor derivation and
study its properties. We will use the Jacobi endomorphism and the dynamical covariant derivative in the study of symmetries
for SODE on Lie algebroids.

Definition 4 ([32]). Amap V : T(TE \ {0}) — Z(TE \ {0}) is said to be a tensor derivation on 7E \ {0} if the following
conditions are satisfied:

(i) VisR-linear

(ii) V is type preserving, i.e. V(TL(TE \ {0})) C TL(TE \ {0}), for each (r,s) e N x N.

(iii) V obeys the Leibnitz rule V(P ® S) = VP ® S + P ® VS, for any tensors P, S on TE \ {0}.
(iv) V commutes with any contractions, where T3(7E \ {0}) is the space of tensors on TE \ {0}.

—_ T —

For a semispray S and an arbitrary nonlinear connection A we consider the R-linearmap V : I'(TE\ {0}) — I'(TE\ {0})
given by

V=hoLsoh+VvoLsov, (16)

which will be called the dynamical covariant derivative induced by the semispray S and the nonlinear connection A/. By
setting Vf = S(f), for f € C*°(E \ {0}) using the Leibnitz rule and the requirement that V commutes with any contraction,
we can extend the action of V to arbitrary section on 7E \ {0}. For a section on TE \ {0} the dynamical covariant derivative
is given by (Vo)(p) = S(¢)(p) — ¢(Vp). For a (1, 1)-type tensor field T on 7E \ {0} the dynamical covariant derivative has
the form

VI=VoT—-ToV, (17)

and by direct computation using (17) we obtain

Vh = Vv =0,
which means that V preserves the horizontal and vertical sections. Also, we get
9S8* 9sP
VVs = VIS, Vglre = — (N§ + — | Vo, VOV = (NP §1°,
B [ ﬁ]TE < ’3+8y/f‘> o <a+aya

Vs = h[S, 8pl7e = (N — L5,)°) 80 VAP = — (W —Ly") 2°.
The action of the dynamical covariant derivative on the horizontal section X = hX is given by following relations
VX =V (X%y) = VX%8y, VX =8X*)+ (Ng —i—ySLg‘ﬂ)Xﬁ. (18)
Proposition 2. The following results hold
hoLsoJ=-h, JoLsov=—v, (19)

ash
Vi=Ls]+N, V]=—|——
Iy~

—yLf + 2/\/5) Vg ® X%, (20)
Proof. From (8) we get

JIS. KXl = =JX = J ([S.X]7e +X) =0 =[S, JX]7e + X € VTE,

h([S,JX]7e +X) =0= h[S,JX]rr = —hX & ho Ls o] = —h.
Also, in J[S, JX]7£ 4+ JX = 0 considering JX = vZ it results J[S, VZ]7g = —VZ < J o Ls o v = —V. Next
Vo] =hoLsohoJ+VvoLsovo]=VvVoLso]
=(Id—h)oLso]=Lso]—hoLso]=Lso]+h.
But, on the other hand
JoV=JoLsoh=JoLso(d—V)=JoLs—JoLsoV=]oLs+v.
and we obtain

VoJ—JoV=rso]+h—JoLs—Vv=V]=Ls]+h—v=_Ls]+N.
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For the last relation, we have

V] =V (X @) =Vvaf @ v+ xf @ Vv

a5
= -(WI - Ly ) X @Vs + 47 ® (—NE' - W) Va
o

B A B e o 1B IS g
_NaX ®Vf5+La€yX ®V/3_NﬁX ®Va_ X ®vot

ayP

as?
(ijeyS ~ 2/\45’) X*Q®Vs. O

The above proposition leads to the following result,

Theorem 1. For a semispray S, an arbitrary nonlinear connection A" and V the dynamical covariant derivative induced by S and
N, the following conditions are equivalent,

(i) V] =0,
(i) £oJ + N =0,

Gii) M = 3 (=35 +yLl )

Proof. The proof follows from the relations (20). O

This theorem shows that the compatibility condition V] = 0 of the dynamical covariant derivative with the tangent
structure determines the nonlinear connection N' = —Lgs]. For the particular case of tangent bundle we obtain the results
from [4]. In the following we deal with this nonlinear connection induced by semispray.

3.1. The canonical nonlinear connection induced by a semispray

A semispray S, together with the condition V] = 0, determines the canonical nonlinear connection ' = —LgJ with
local coefficients

1/ 3sP
N =- = ‘I8 ).
o 2( ay* Ty “8>

In this case the following equations hold

[S, Velre = =85 + (Nf — L§Y") Ve,

(S, 8s17e = (NE — LEY) Sa + R Ve,

where

o

.08
b= =0 — SWE) = NN + (LN + Ly NG 1)
are the local coefficients of the Jacobi endomorphism.

Proposition 3. If S is a spray, then the Jacobi endomorphism is the contraction with S of curvature of the nonlinear connection
D =iss2.

Proof. If S is a spray, then the coefficients S* are 2-homogeneous with respect to the variables y# and it results

a8

=37

25¢ yP = —ZNﬁ"‘yﬂ +L‘§yyﬁy” = —2N§yﬂ.

(*3

IN;
S=hS=)"8, vS=0, Nj= ay;y‘+L§gy€,

which together with (15) yields @ = i5$2. Locally,we get R = Ryy* and represents the local relation between the Jacobi
endomorphism and the curvature of the nonlinear connection. Also, we have @(S) =0. O

Next, we introduce the almost complex structure in order to find the decomposition formula for the dynamical covariant
derivative.

Definition 5. The almost complex structure is given by the formula
F=ho [,3]'1 —_]
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We have to show that F2 = —Id. Indeed, from the relation Lsh = Lsoh —ho s weobtainF = hoLsoh—hoLs—] =
hofLso(h—Id)—] = —hoLsov—JandF?> =(=hoLsov—])o(~hoLsov—])=hoLsovohoLsov+hoLgo
voJ+JohoLsov+]?=hoLsoJ+]JoLsov=—h—v=—Id
Proposition 4. The following results hold

FoJ=h, JoF=v, voF=Foh=—],
hoF=Fov=F+]J, NoF=F+2], &®=Lsh—F—].

Proof. Using the relations (19) we obtain F o] = (~hoLsov—J)o] = —hoLgsovo] —J> = —hoLgo] =
JoF = —Jo(thoLsov+])=—JohoLsov—J>=—JoLsov=v,voF =vo(hoLsh—]) = —vo] = ],
Foh=(-hoLsov—J)oh=—Joh=—]J,hoF=ho(ho£Lsh—])=hoLsh=F+],Fov=(—hoLsov—])ov=
—h o £s ov =F +]. In the same way, the other relations can be proved. O

In local coordinates we have
F=-V, QX%+ Q5.

For a semispray S and the associated nonlinear connection we consider the R-linear map Vy : I'(TE \ {0}) — I'(TE \ {0})
given by

Vop = h[S, hplre + VIS, vplre, VYp € I'(TE\{0}).
It results that
Volfp) =8(f)p +fVop, Yf € C(E), p e I'(TE\ {0}).

Any tensor derivation on 7E \ {0} is completely determined by its actions on smooth functions and sections on 7E \ {0}
(see [44] generalized Willmore’s theorem). Therefore, there exists a unique tensor derivation V on TE \ {0} such that

Viessry =S, Viperegoy = Vo
We will call the tensor derivation V, the dynamical covariant derivative induced by the semispray S (see [3] for the tangent
bundle case).
Proposition 5. The dynamical covariant derivative has the following decomposition

V=Cs+F+]— . (22)

Proof. Using the formula (16) and the expressions of F and & we obtain
V=hofLsoh+voLsov
=ho(Lsh+hoLs)+vVvo(Lsv+VoLs)
=hofLsh+voLsv+(h+V)oLs=Ls+hoLsh+VoLsV
=Ls+F+]—-®. O
In this case the dynamical covariant derivative is characterized by the following formulas

o 98%
VVlg =v[S, V,B]TE = (Na —L peY ) (ayﬂ +Lﬁey )
Vés =h[S, s = < — L% y°) 6 05" LS Sa-
B = [S, ﬁ]TE = (Nf; - f;gJ’) o 3yf’ + ﬂsy

The next result shows that V acts identically on both vertical and horizontal distributions, that is enough to find the action
of V on either one of the two distributions.

Proposition 6. The dynamical covariant derivative induced by the semispray S is compatible with | and F, that is
V] =0, VF =0.

Proof. V] = 0 follows from (20). Using the formulaF = —ho Lsov —]Jand VF = Vo IF — FF o V we obtain
VF = (hoLsoh+voLsov)o(—hoLsoVv)—(—hoLsoVv)o(hoLsoh+VvoLsoV)
= —hofsohoLsov+hoLsovoLsovV
=hoLso(v—h)oLsov=hoLsoLg]oLsoV
=hoLso(Lso]—JoLs)oLsoV
=hoLsoLso(JoLsov)—(hoLso]J)oLsoLsoV
= —hofsoLsoVv+hoLsoLsov=0. O
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The next proposition proves that in the case of spray V has more properties.

Proposition 7. If the dynamical covariant derivative is induced by a spray S then
Vs =0, VC=0.

Proof. Indeed, if S is a spray then we have S = hS and vS = O and it results VS = hoLsohS+VoLsovS = hoLsoS = 0.
Also VC = 0 follows from hC = 0,vC = Cand [C, S]7g =S. O

Next, we introduce the Berwald linear connection induced by a nonlinear connection and prove that in the case of
homogeneous second order differential equations it coincides with the dynamical covariant derivative. The Berwald linear
connection is given by

D: I'(TE\{0}) x I'(TE\ {0}) — I"(TE \ {0}),

DxY = v[hX, vY]7¢ + h[vX, hY]r¢ + J[vX, (F +])Y]7e + (F + )[hX, JY]7E.

Proposition 8. The Berwald linear connection has the following properties

Dh=0, pv=0, D=0, DF=0.

Proof. Using the properties of the vertical and horizontal projectors we obtain DxvY = v[hX, vY]r¢ +]J[vX, (F+])Y]+¢ and
v(DxY) = v[hX, vY]7¢ +J[vX, (F +J)Y ] which yields Dv = 0. Also, DxhY = h[vX, hY]y¢ + (F + J)[hX, JY]7 = h(DxY)
and it results Dh = 0. Moreover, DxJY = v[hX, Y]+t + J[vX, hY];¢ and J(DxY) = J[vX, hY];¢ + v[hX,JY];¢ and we
obtain D] = 0. From DxFY = v[hX, —]JY]7¢ + h[vX, (F + J)Y]7¢ + J[VX, =hY]7¢ + (F 4 J)[hX, vY]7¢ and F(DxY) =
(F+)[hX, vY]re —JIvX, hY]7E + h[vX, (F +])Y]7re — v[hX, JY]7r = DxFY we get DF = 0. O

It results that the Berwald connection preserves both horizontal and vertical sections. Moreover, D has the same action
on horizontal and vertical distributions and locally we have the following formulas

NG o, NG
ayﬁ v Sa VB = 8yﬂ

We can see that the dynamical covariant derivative has the same properties and this leads to the next result.

'D5a3}3 = Vy, 'Dva(s}g =0, Dy, Vg = 0.

Proposition 9. If S is a spray then the following equality holds

V = Ds.

Proof. If S is a spray then S = hS and vS§ = 0 which implies
DsY = v[S, vY]7e + (F + IS, JY]7E.

But VY = h[S, hY];¢ + v[S, vY ]+ and we will prove that h[S, hY ]+ = (F + J)[S, JY ]+ using the computation in local
coordinates. Let us consider Y = X%(x, y)x, + Y#(x, ¥)Vg and using (10) we get

[S. WYl = [¥*8a. XP8p17e = Y*XPRE 5 Ve + YO XPLE 48, + ¥*8a(XP )85 + XP NG 80,

h[S, hY ] = (y*8a(X?) + X“NE + yX°LE,) 85.
Next

AN
[S,JY17E = [¥*8a, XPVgl1e =anﬁWVs + y*8.(XP )V — XP .

Also, we have

otXﬂ 8/\/5
ayb

and using the relations (F + J)(Vy) = 84, (F 4+ J)(8,) = 0 we obtain the result which ends the proof. O

y = NGXP — L, y°XP,

Moreover, VS = DsS = 0 and it results that the integral curves of the spray are geodesics of the Berwald linear
connection.
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4. Symmetries for semispray

93

In this section we study the symmetries of SODE on Lie algebroids and prove that the canonical nonlinear connection
can be determined by these symmetries. We find the relations between dynamical symmetries, Lie symmetries, Newtonoid
sections, Cartan symmetries and conservation laws, and show when one of them will imply the others. Also, we obtain
the invariant equations of these symmetries, using the dynamical covariant derivative and Jacobi endomorphism. In the

particular case of the tangent bundle some results from [4,16,17,35] are obtained.

Definition 6. A section X € I'(TE \ {0}) is a dynamical symmetry of semispray S if [S, X]7¢ = 0.
In local coordinates for X = X*(x, y)X, + Y%(x, y)V, we obtain
[S. X]7e = (V*LL, X" = YP + S(XP)) x5 + (S(YP) — X(5P)) V.
and it results that the dynamical symmetry is characterized by the equations
Y = S(X*) +yLEXP,
S(Y*)—-X(s*)=0.
Introducing (23) into (24) we obtain

QLY G axP
2oy oy eB B a i a yp a 77
SY(XY) — X(8%) = (a; P XP + Lo, o >y7y8+sy (Lyﬁx + LY 8yy>'

(23)
(24)

Definition 7. A section X = i“(x,y)sa on E \ {0} is a Lie symmetry of a semispray if its complete lift Xisa dynamical

symmetry, that is [S, )?C]TE =0.

Proposition 10. The local expression of a Lie symmetry is given by

LOXP
Wy o - -
a'yB o€ iax\s Yo iasﬂ v asP . € i 9°XP B ax”
S X‘a +y y UaW — Ua axi -y X‘s aya +S GS 8yaaxi _Lyg 8ya = 0,
where
~ X ~
X =o0l— - 13X

ox!

Proof. Considering X¢ = )N(“Xa + ysil‘zva and using (1) we obtain

- . JOXP OXP
(S, XT7e = (X"‘yELfa +y'oi— —yXl + 5 3y ) Xg

oxi
X ash o SP - 92XP X7
a6 i le Yo i ayB eV o€ i _yB
+ (y y Ua—axi X aa—axi + S X‘a y XIE Ty‘)‘ + S% (US oy ox Ly‘8 8y°‘> Vg.

We deduce that X O‘y‘gLfO, +y%ol % — yS}N(I’f = 0 and it results the local expression of a Lie symmetry. O
We have to remark that a section X = X“(x)sa onE \ {0} is a Lie symmetry if and only if (see also [45])

axP L ash - 3SP
a8 i le o« i ayB v

— =X - S*X —y°X =
Y'Yy o, axt O X + e — Y A Ay

0,
and it results, by direct computation, that the components )N(“(x) satisfy Egs.(23),(24).

Definition 8. A section X € I'(TE \ {0}) is called Newtonoid if J[S, X]7¢ = 0.
In local coordinates we obtain
JIS, Xle = (S(X*) = Y* + y°LIXP) Va,
which yields

YO =S(XN) + Y LLXP . X =XYX, + (S(XY) 4+ Y LX) Ve
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We remark that a section X € I'(TE \ {0}) is a dynamical symmetry if and only if it is a Newtonoid and satisfies Eq. (24).
The set of Newtonoid sections denoted X s is given by

Xs=Ker(JoLs)=Im(ld+] o Ls).

In the following we will use the dynamical covariant derivative in order to find the invariant equations of Newtonoid sections
and dynamical symmetries on Lie algebroids. Let S be a semispray, N an arbitrary nonlinear connection and V the induced
dynamical covariant derivative. We set,

Proposition 11. A section X € I'(TE \ {0}) is a Newtonoid if and only if

v(X) =J(VX), (26)
which locally yields
X =Xy + VXV,
with VX® given by formula (18).
Proof. We know that ] o V = J o £Ls + v and it results J[S, X];r = 0 if and only if v(X) = J(VX). In local coordinates we
obtain
X = XY (80 + NIVg) + (SX*) + ¥ LLXP) vy
= X8y + (SX*) + XP (VG +¥°LEy)) Va
= X%y + VX*V,. O
Proposition 12. A section X € I'(TE \ {0}) is a dynamical symmetry if and only if X is a Newtonoid and
V(VX)+ ®(X)=0. (27)

Proof. If X is a dynamical symmetry then h[S, X]+¢ = Vv[S, X]7r = 0 and composing by J we get J[S, X]7¢ = O that
means X is a Newtonoid. Therefore, v[S, X7t = VIS, vX]7¢ + V[S,hX]x = V(vX) + @(X) and using (26) we get
VUVX)+ @(X)=0. O

Forf € C*°(E)and X € I'(TE \ {0}) we define the product

f#X =(d+] o Ls)X) =X+ IS, XI7re + S(FUX,
and remark that a section X € I'(TE \ {0}) is a Newtonoid if and only if

X =X%x,y) * Xy,.
IfX € Xs then

f*X =X+ S(FfYX.
The next result proves that the canonical nonlinear connection can by determined by symmetry.
Proposition 13. Let us consider a semispray S, an arbitrary nonlinear connection N and V the dynamical covariant derivative.
The following conditions are equivalent,

(i) V restrictstoV : Xs — Xs satisfies the Leibnitz rule with respect to the * product.

(i) V] =0,

(iii) Esj +N =0,
) N

8
(iv 5( o +y£La5).

Proof. For (ii) = (i) we consider X € Xs and using (26) we have vX = J(VX) which leads to V(vX) = V(JVX). It results
(VV)X 4+ v(VX) = (V])VX) + JV(VX) and using the relations Vv = 0 and V] = 0 we obtain v(VX) = JV(VX) which
implies VX € Xs .For X € X5 we have

V( *X) = VX + SEYX) = SEX + fFVX + SHFX + S(FIVUX),

Vf « X +f % VX = S(F)X 4+ S*(FYX + fVX + S(FY(VX).

But V(JX) = (V])X 4+ J(VX) and from V] = 0 we obtain V(JX) = J(VX) which leadsto V (f * X) = Vf x X + f * VX.

For (i) = (ii) we consider the set Xs U I'Y(TE \ {0}) which is a set of generators for I'(TE \ {0}). We have VJ(X) = 0
for X € I'Y(TE \ {0}) and for X € X5 using V (f * X) = Vf x X + f * VX it results S(f)V(JX) = S(f)J(VX), which implies
S(f)V])X = 0, for an arbitrary function f € C*°(E \ {0}). Therefore, V] = 0 on Xs which ends the proof. The equivalence of
the conditions (ii), (iii), (iv) has been proved in the Theorem 1. O
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Next, we consider the dynamical covariant derivative V induced by the semispray S, the canonical nonlinear connection
N = —LsJ and find the invariant equations of dynamical and Lie symmetries.

Proposition 14. A section X € I'(TE \ {0}) is a dynamical symmetry if and only if X is a Newtonoid and

VX + &(X) = 0, (28)
which locally yields

VXY + REXP = 0.

Proof. From (20) it results V] = 0 and using (27) and (17) we get (28). Next, using (25) and (14) the local components of
the vertical section V2JX + ®(X)is VX* + RgXF. O

Proposition 15. A section X e I'(E \ {0})is a Lie symmetry of S if and only if
VXY 4+ &(X°) = 0. (29)
Proof. Using (28) and the relation]()?c) = X" we obtain (29). O

Let us consider in the following a regular Lagrangian L on E, the Cartan 1-section 6;, the symplectic structure w; = df6;,
the energy function E; and the induced canonical semispray S with the components given by the relation (9).

Proposition 16. If X is a section on E such that L0 is closed and dE()?CEL) = 0, then X is a Lie symmetry of the canonical
semispray S induced by L.

Proof. We have
iz sjor = Lxeliswy) — is(Lzewy) = —Lzed"Ep — is(Lzed™6))
= —dfLzcEp — isd®(LxcO) = —dB(X°E;) — isdf(Le6) = 0.
But w; is a symplectic structure (L is regular) and we get [)? ¢, S] = 0 which ends the proof. O
Definition 9.

(a) AsectionX € I'(TE \ {0}) is called a Cartan symmetry of the Lagrangian L, if Lyw; = 0 and £xE; = 0.
(b) A function f € C*°(E) is a constant of motion (or a conservation law) for the Lagrangian L if S(f) = 0.

Proposition 17. The canonical semispray induced by the regular Lagrangian L is a Cartan symmetry.

Proof. Using the relation isw; = —dFE; and the skew symmetry of the symplectic 2-section w; we obtain
0 = iswi(S) = —d°E(S) = —S(E;) = —£LsE;.

Also, from dfw; = 0 we get
Lsw, = dfisw, +isdfw, = —dE(dEE) =0,

and it results that the semispray S is a Cartan symmetry. O

Proposition 18. A Cartan symmetry X of the Lagrangian L is a dynamical symmetry for the canonical semispray S.

Proof. From the symplectic equation isw; = —dfE;, applying the Lie derivative in both sides, we obtain
Lx(isw) = —LxdPE, = —dfLxE; = 0.
Also, using the formula iy vy, = £x o iy — iy o Ly it results
Lx(iswr) = _i[S,X]TECUL +islxwy = _i[S,X]TEwL
which yields
iis.x1s0L = 0. (30)

But w; is a symplectic 2-section and we conclude that [S, X]7¢ = 0, so X is a dynamical symmetry. O
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Since Lie and exterior derivatives commute, we obtain
dEEXe]_ = [:xdEeL = £X(1)]_ =0.

It results that, for a Cartan symmetry, the 1-section £x6; is a closed 1-section.

Definition 10. A Cartan symmetry X is said to be an exact Cartan symmetry if the 1-section £x0; is exact.

The next result proves that there is a one to one correspondence between exact Cartan symmetries and conservation
laws. Also, if X is an exact Cartan symmetry, then there is a function f € C*°(E) such that £x6; = d~f.

Proposition 19. If X is an exact Cartan symmetry, then f — 6,(X) is a conservation law for the Lagrangian L. Conversely, if
f € C®(E) is a conservation law for L, then X € I'(TE \ {0}) the unique solution of the equation ixyew; = —dEtf is an exact Cartan
symmetry.

Proof. We have S(f —6,(X)) = df(f —0,(X))(S) = (Lx6, — dFix(6))) (S) = ixdEO,(S) = ixwr(S) = —iswi(X) = d°E(X) = 0,
and it results that f —6;(X) is a conservation law for the dynamics associated to the regular Lagrangian L. Conversely, if X is the
solution of the equation ixyw; = —dff then £x6;, = ixw; is an exact 1-section. Consequently, 0 = df£x0; = £xdf6, = Lxow;.
Also, f is a conservation law, and we have 0 = S(f) = dff(S) = —ixwi(S) = iswi(X) = —dFE (X) = —X(E.). Therefore , we
obtain £xE; = 0 and X is an exact Cartan symmetry. O

We have to mention that the Noether type theorems for Lagrangian systems on Lie algebroids are studied in [26,36] and
Jacobi sections for second order differential equations on Lie algebroids are investigated in [37].

4.1. Example

Next, we consider an example from optimal control theory and prove that the framework of Lie algebroids is more useful
that the tangent bundle in order to calculate some symmetries of the dynamics induced by a Lagrangian function. Let us
consider the following distributional system in R? (driftless control affine system) [31],

X' =u' 4+ ux!
¥ = uPx?
2=

Let xo and x; be two points in R3. An optimal control problem consists of finding the trajectories of our control system which
connect Xo and x; and minimizing the Lagrangian

((W'? 4+ @), x(0)=xp, X(T) = x,

N =

T
min/ L(u(t))dt, £(u) =
0

3 3

where X' = % and u', u? are control variables. From the system of differential equations we obtain u? = %3, u! = x' —x3x'.

The Lagrangian function on the tangent bundle TR? has the form
1
= (@ - + 6P,
with the constraint

X =X

Then, using the Lagrange multiplier A = A(t), we obtain the total Lagrangian (including the constraints) given by
1
L(x, %) = L(x, %) + A ()22 — 5(3x2) =3 ((>’<1 — x4 (5(3)2) + A ()22 — )23x2) .

We observe that the Hessian matrix of L is singular, and L is a degenerate Lagrangian (not regular). The corresponding Euler—
Lagrange equations lead to a complicated system of second order differential equations. Moreover, because the Lagrangian
is not regular, we cannot obtain the explicit coefficients of the semispray S from the equation isw; = —dE; and it is difficult
to study the symmetries of SODE in this case.

For this reason, we will use a different approach, considering the framework of Lie algebroids. The system can be written
in the next form

X 1 x!
x=uXy+uX, x=[|x]eR: Xi=(0), X =¥
0

x> 1

The associated distribution A = span{Xy, X,} has the constant rank 2 and is holonomic, because

9 N R
X=X —+x"—+—, [Xi,X2]l=X;.

X = —,
1T X ax! ax2  ox3
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From the Frobenius theorem, the distribution A is integrable, it determines a foliation on TR? and two points can be joined by
a optimal trajectory if and only if they are situated on the same leaf (see [31]). In order to apply the theory of Lie algebroids,
we consider the Lie algebroid being just the distribution, E = A and the anchor ¢ : E — TR? is the inclusion, with the
components

1 !
o.=10 «
0 1
From the relation
(X, Xpl = L pX,, «, B,y =1,2,
we obtain the non-zero structure functions
1 1
L, =1, L =—-1.
The components of the semispray from (9) are given by
Sl — _ulu2’ 52 — (ul)Z.

The functions S* are homogeneous of degree 2 in u and it results that S is a spray. By straightforward computation we obtain
the expression of the canonical spray induced by £

ad ad B ad d
Sx,u) =W +u’x")— + ' — + v — —u'v — + (') —.
(x )= )8)(1 0x2 0x3 ou! ) ou?
From Proposition 17 it results that S(x, u) is a Cartan symmetry of the dynamics associated to the regular Lagrangian £ on
Lie algebroids.
The coefficients of the canonical nonlinear connection N' = — L]/ are given by

N =u* N} =0, Nf =u', N7 =0,
and the components of the Jacobi endomorphism from (21) have the form

R} = -’ R = —u'v?, Ry =u'v’, R} = (u')".
Also, the non-zero coefficients of the curvature from (11) of A are

1 2 2 1 1 2 2 1
Ry, =U", R, =U, Ryy =—U", Ry =—u,

and we obtain that the Jacobi endomorphism is the contraction with S of the curvature of A, or locally RS = Reglt®.
The Euler-Lagrange equations on Lie algebroids given by (see [34])

dx! i« 4 (0L (0L o 5L
— =0 s — =0,— — )
dt o dt \ due “9xi BT Jue

lead to the following differential equations

u] — _uluZ7 l:lz — (ul)Z,
which can be written in the form
dx! ; du®
— =clu*, — =3S8%x,u),
dt * dt (x.w)
and give the integral curves of S. The Cartan 1-section 6 has the form
0, = uldx! + v (x'dx' + x*dx® + dx),
and the symplectic structure is w, = d*6,. The energy of Lagrangian £ is
1
Eqr = > (W'Y + @y).
For the optimal solution of the control system (using the framework of Lie algebroids) see [31].

Conclusions

The main purpose of this paper is to study the symmetries of SODE on Lie algebroids and relations between them, using
the dynamical covariant derivative and Jacobi endomorphism. The existence of a semispray S together with an arbitrary
nonlinear connection A defines a dynamical covariant derivative and the Jacobi endomorphism. Let us remark that at
this point we do not have any relation between S and the nonlinear connection N. This will be given considering the
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compatibility condition between the dynamical covariant derivative and the tangent structure, VJ = 0, which fix the
canonical nonlinear connection ' = —LgJ. This canonical nonlinear connection depends only on semispray. In this case we
have the decomposition V = £s + F + J — & which can be compared with the tangent case from [4,7]. Also, in the case
of homogeneous SODE (spray), the dynamical covariant derivative coincides with Berwald linear connection and the Jacobi
endomorphism is the contraction with S of the curvature of the nonlinear connection. We study the dynamical symmetry,
Lie symmetry, Newtonoid section and Cartan symmetry on Lie algebroids and find their invariant equations with the help of
dynamical covariant derivative and Jacobi endomorphism. Finally, we give an example from optimal control theory which
proves that the framework of Lie algebroids is more useful than the tangent bundle in order to find the symmetries of the
dynamics induced by a Lagrangian function. For further developments one can study the symmetries using the k-symplectic
formalism on Lie algebroids given in [38].
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