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The aim of this work is to prove that any contact Lie algebra has a semi-invariant. We
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algebra. As a consequence we can prove that any perfect contact Lie algebra has trivial
center. Moreover, we prove that a perfect Lie algebra is a contact Lie algebra if, and only
if, it has only one invariant.
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1. Introduction

There is a deep interplay between mathematics and physics. The theory of Lie groups and Lie algebras, as well as their
representation theory, are good examples of this. Another good example is given by Frobenius Lie groups or Frobenius
Lie algebras as they provide ‘‘integrable models’’ via their relations with the classical Yang–Baxter equation, more exactly
with the so-called rational solutions of the CYBE. First relation between Frobenius algebras and the CYBE were discovered
by Belavin and Drinfeld in their famous paper [5]. Final relations between rational solutions and Frobenius Lie algebras
were established in [21].

In particular, the study of invariant polynomials is an useful tool since they represent important physical quantities in
quantum mechanics such as angular momentum, a relativistic elementary particle’s mass and spin or the Hamiltonian of
a particle undergoing geodesic motion.

Invariant polynomials of a semisimple Lie algebra were found first by G. Racah, who gave an explicit construction of
them. Currently, invariant polynomials are known as Casimir invariants or Casimir operators. Formally, given a Lie algebra
g, a Casimir invariant is a polynomial in the universal enveloping algebra of g that commutes with every element of g,
i.e. the Casimir invariant is a central element of the universal enveloping algebra of g. If the Lie algebra g is semisimple,
it is well-known that the number of invariants of g is equal to its rank, i.e., each one of its invariants is Casimir. As
we can expect, the non-semisimple case is not easy to work with, and one can find plenty of works on this topic, for
instance: [1,6–12,15,16,18,23], among others.

For example, in [9] and [12] R. Campoamor describes the invariants for perfect Lie algebras, proving that each one
of them is a Casimir invariant, and giving a bound for the number of them. On the other hand, in [15] and [16] explicit
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calculations are made over particular families of Lie algebras, for example, Lie algebras with abelian nilradical, or Lie
algebras with nilpotent radical. In these cases, the invariants are not necessarily of polynomial type: they can be rational
functions, or even transcendental ones.

Our motivation to determine the invariants of contact Lie algebras comes from [17]. In this work, A.I. Ooms presents a
deep study on Frobenius Lie algebras; in particular, he proves that a Frobenius Lie algebra only admits one semi-invariant,
and he explicitly shows how to compute it in terms of the Pfaffian associated to the Frobenius structure of such a Lie
algebra. On the other hand, there exists a close relationship between Frobenius and contact Lie algebras. There exists a
parallelism between the two theories that has been developed in [2,4,13,14] and [20]. Thus, following the ideas of [17],
we can associate a Pfaffian Pfg to each contact structure on a Lie algebra g, and we can prove that Pfg is a semi-invariant.
If in addition g is perfect, then Pfg is an invariant of g; moreover, Pfg is a Casimir invariant and it is the only invariant that
such a g admits. We also prove that perfect contact Lie algebras with non-trivial center do not exist. In order to do this, for
the sake of completeness we describe the structure of a contact Lie algebra with non-trivial center, and as a consequence
we obtain that any perfect Lie algebra with non-trivial center has at least two invariants, and hence we can conclude that
every perfect contact Lie algebra has trivial center. Therefore, as a corollary we can prove that a perfect Lie algebra is a
contact Lie algebra if, and only if, it has only one invariant.

This work is organized as follows. In Section 2, we provide basic definitions on contact and Frobenius Lie algebras;
we also prove that a Pfaffian can be associated to any contact Lie algebra. For the sake of completeness, in Section 3 we
present some previous results on contact and Frobenius solvable Lie algebras with abelian nilradical (see [2] for more
details), and we state a characterization of contact Lie algebras in terms of its extended structure matrix. In Section 4
we show how to associate to every contact Lie algebra a semi-invariant, and give conditions for it to be an invariant. As
a consequence, in Section 5 we prove that contact perfect Lie algebras with non-trivial center do not exist. Moreover, a
perfect Lie algebra is a contact Lie algebra if, and only if, it has only one invariant. Finally, this family of contact Lie algebras
are interesting because they provide examples of such algebras that can not be expressed as contact double extensions
of contact Lie algebras of codimension 2 (see [3] and [19]).

2. Preliminaries

Throughout this paper g will be a finite-dimensional Lie algebra over a field F. Here and subsequently, F will denote
either the real field R or the complex field C.

2.1. Contact and Frobenius Lie algebras

Let g be a Lie algebra over F. Given an element ϕ ∈ g∗ we can construct the following skew-symmetric bilinear form
on g:

Bϕ(x, y) := ϕ([x, y]),

Let, as usual, Rad(Bϕ) = {x ∈ g | Bϕ(x, y) = 0, ∀y ∈ g}. It follows that Z(g) ⊆ Rad(Bϕ). From the definition we get that
Bϕ([x, y], z) + Bϕ([y, z], x) + Bϕ([z, x], y) = 0 for all x, y, z ∈ g, i.e., Bϕ is a 2-cocycle for the scalar cohomology of g.

Definition 2.1. Let g be a Lie algebra. We say that g is a Frobenius Lie algebra, or a symplectic exact Lie algebra, if there
exists ϕ ∈ g∗ such that Bϕ is a non-degenerate skew-symmetric bilinear form on g. If dim g = 2n + 1, g is a contact Lie
algebra if there exists ϕ ∈ g∗ such that ϕ ∧ (dϕ)n ̸= 0.

Remarks 2.2.

(1) Let g be a Lie algebra such that dim g = 2n, and let ϕ ∈ g∗. Then Bϕ is non-degenerate if, and only if, (dϕ)n ̸= 0.
(2) Let g be a Lie algebra such that dim g = 2n + 1, and let ϕ ∈ g∗. Then ϕ ∧ (dϕ)n ̸= 0 implies dim(Rad(Bϕ)) = 1.

2.2. Invariants on Lie algebras

Let U(g) be the universal enveloping algebra of g, D(g) the division ring of quotients of U(g) and let S(g) be the
symmetric algebra of g.

Definition 2.3. Let g be a Lie algebra, λ ∈ g∗. The set of all f ∈ D(g) such that [x, f ] = λ(x)f for all x ∈ g is denoted by
D(g)λ. Its elements are called semi-invariants of D(g) relative to λ. We put U(g)λ = U(g)∩D(g)λ. More over, when λ = 0,
f will be called an invariant.

Given a Lie algebra g, the following task is to construct or determine the basis of the functionally independent invariants
(semi-invariants). To do that, we consider the realization of g in the space C∞(g∗) determinated by the differential
operators

X̂i :=

n∑
k=1

n∑
j=1

Ck
i,jxk

∂

∂xj
,
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where Ck
i,j are the structure constants of g, i.e., if {e1, . . . , en} is a basis for g, then

[ei, ej]g =

n∑
k=1

Ck
i,jek,

for all 1 ≤ i, j ≤ n, and {x1, . . . , xn} are the coordinates in g∗ associated with the basis dual to the basis {e1, . . . , en}. Now,
f (x1, . . . , xn) ∈ C∞(g∗) is an invariant whenever

X̂i(f ) = 0, ∀ i, 1 ≤ i ≤ n. (1)

This shows, in some way, that polynomial invariants of g are completely determined by its structure constants. The
solutions of (1) are called generalized Casimir invariants. A maximal set of functionally independent solutions of (1) will
be called a fundamental set of invariants. Let N(g) be maximal possible number of functionally independent invariants.
Now, it has been proved (cf. [6]) that:

N(g) = dim g − sup{Rank C(x)| C(x)i,j =

n∑
k=1

Ck
i,jxk}, (2)

where x = (x1, . . . , xn).
Given a polynomial invariant f (x) one finds the corresponding invariant of the Lie algebra g as symmetrization, Sym(f ),

of f . More precisely, the symmetrization operator Sym acts only on the monomials of the forms xi1 · · · xir , where there
are non-commuting elements among xi1 , . . . , xir , and is defined by the formula

Sym(xi1 · · · xir ) =
1
r!

∑
σ∈Sr

xiσ (1) · · · xiσ (r) .

For polynomial invariant f (x), Sym(f (x)) is a Casimir operator replacing the variables xi by the corresponding generator
ei.

2.3. Pfaffian associated to Lie algebras

We recall the following very well known facts: Let n = 2k and A be the skew-symmetric n × n matrix such that
(A)ij := xij for i < j. Then there exists a unique polynomial PfA with integer coefficients in the 1

2n(n − 1) independent
indeterminates xij and such that:

det(A) = (PfA)2, and PfB = 1,

for B = Diag(J, J, . . . , J), where J =

(
0 1

−1 0

)
. Observe that PfA is homogeneous of degree n

2 .

Let g be a finite dimensional Lie algebra, and let C(g) be its structure matrix defined by:

C(g)ij := [ei, ej]

where β = {e1, . . . , en} is a basis for g. Clearly C(g) ∈ Mat(n × n, S(g)), where S(g) denotes the symmetric algebra of g,
and C(g)T = −C(g).

We can associate to a Lie algebra g its Pfaffian (with respect to a fixed basis β) in the following way:

Pfg := PfC(g), where det(C(g)) = Pf2C(g) .

Obviously, if g is an odd-dimensional Lie algebra then Pfg = 0.

3. Solvable contact and Frobenius Lie algebras

In order to get some insight this section is devoted to collecting some previous results that appear in [4].

3.1. Contact and Frobenius solvable Lie algebras with abelian nilradical

From now on, we shall use the convention that the space Fn will be considered as an n-dimensional abelian Lie algebra,
and we will denote it by an. Let h ⊂ gl(an) be an n-dimensional Lie subalgebra of gl(an).

Theorem 3.1 (See Thm. 3.3 in [4] or Prop. 1 in [22]). Let an be a finite dimensional vector space, and h ⊂ gl(an) be a Lie
subalgebra such that dim h = dim an = n. The semidirect sum g = h⋉ an of h and an is a Frobenius Lie algebra if, and only if,
there exists ϕ ∈ a∗

n such that det(ϕ(N)) ̸= 0.

Where C(g) =

(
C(h) N
−NT 0

)
.
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Remark 3.2. In fact, Proposition 2.1 in [22]

Corollary 3.3. Under the same hypotheses Pfg = (−1)
n(n+1)

2 det(N). More over, Pfg ∈ S(an).

For contact Lie algebras we have:

Theorem 3.4 (See Thm. 3.5 in [4]). Let an+1 be a finite dimensional vector space, and h ⊂ gl(an+1) be a Lie subalgebra such
that dim h+ 1 = dim an+1. The semidirect sum g = h⋉ an+1 is a contact Lie algebra if, and only if, there exists ϕ ∈ a∗

n+1 such
that

det
(

[ϕ]
T

ϕ(N)

)
̸= 0,

where [ϕ]
T is the associated matrix of ϕ in a given basis of a∗

n+1.

Moreover, there is a deep relationship between these two types of Lie algebras. Let us define a linear transformation
e0 : h⋉ an+1 → h⋉ an+1 in the following way: e0|h≡ 0 and e0|an+1= Idan+1 . It is easy to verify that e0 ∈ Der(h⋉ an+1). We
can consider the Lie algebra defined by the semidirect sum of ⟨e0⟩ and h ⋉ an+1,

⟨e0⟩ ⋉ (h × an+1) ≃ (⟨e0⟩ ⊕ h) ⋉ an+1

≃ an+1 ⋉ an+1

Theorem 3.5 (See Thm. 3.6 in [4]). (h ⋉ an+1, ϕ) is a contact Lie algebra if, and only if,
(
(⟨e0⟩ ⊕ h) ⋉ an+1, ϕ

)
is a Frobenius

Lie algebra, where ϕ ∈ a∗

n+1.

3.2. Characterizing contact Lie algebras

Let g be a contact Lie algebra with contact structure given by ϕ ∈ g∗, i.e., ϕ∧(dϕ)n ̸= 0. Let C(g) be its structure matrix,
and Bϕ its associated skew-symmetric bilinear form, then

[Bϕ] = ϕ(C(g)).

We will denote by [ϕ] =
(
x1 · · · x2n+1

)t the coordinate vector in F2n+1 such that ϕ =
∑2n+1

i=1 xiei where
{e1, . . . , e2n+1

} is the dual basis associated to the fixed basis {e1, . . . , e2n+1} of g. We define

[̂Bϕ] =

(
0 [ϕ]

T

−[ϕ] ϕ(C(g))

)
∈ Mat((2n + 2) × (2n + 2),F).

Moreover, [̂Bϕ]
T

= −[̂Bϕ]. A straightforward computation proves:

Lemma 3.6. Let g be a Lie algebra with dim g = 2n + 1 and ϕ ∈ g∗. With the same notation as before:

ϕ ∧ (dϕ)n = det([̂Bϕ]) e1 ∧ · · · ∧ e2n+1.

And, we get:

Theorem 3.7. Let g be a Lie algebra with dim g = 2n+1. Then ϕ ∈ g∗ is a contact structure on g if, and only if, det([̂Bϕ]) ̸= 0.

Remark 3.8.

(1) It follows that we can think of det([̂Bϕ]) as a homogeneous polynomial in the variables {xi}, therefore det([̂Bϕ]) ∈

F[x1, . . . , x2m+1].
(2) Moreover, this suggests that we can define a Pfaffian associated to any contact structure on a Lie algebra.

4. Invariants of contact Lie algebras

The aim of this section is to prove that every contact Lie algebra admits one semi-invariant, since we can define a
Pfaffian associated to its contact structure.

Let g be a Lie algebra, ϕ ∈ g∗, and C(g) its structure matrix, i.e., C(g)i,j := [ei, ej], where g = ⟨e1, . . . , em⟩F and
g∗

= ⟨e1, . . . , em⟩F, with ei(ej) = δij , ϕ =
∑m

l=1 xle
l and [ϕ]

t
=

(
x1 · · · xm

)
.

We have two cases, if dim g = 2k, we define Ĉ(g) := C(g). If dim g = 2k + 1, then

Ĉ(g) :=

⎛⎜⎜⎝
0 e1 · · · em

−e1
...

−em

C(g)

⎞⎟⎟⎠ ∈ Mat((2k + 2) × (2k + 2), S(g)),
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where, as usual, S(g) is the symmetric algebra of g. Given ϕ ∈ g∗, we can define

Ĉ(g) ↦−→ ϕ (̂C(g)) =: B̂ϕ .

Now, we define Φ : g∗
→ F[x1, . . . , xn] by:

ϕ ↦−→ det(̂Bϕ) ↦−→ Pfϕ .

Let ĝ the vector space defined by ĝ := ⟨Idg⟩ ⊕ g. Then B̂ϕ defines a skew-symmetric bilinear form on g, B̂ϕ : ĝ× ĝ → F
by:

(Idg, x) ↦−→ ϕ(Idg(x)), and (x, y) ↦−→ ϕ([x, y]g)

for all x, y ∈ g.
Let T : ĝ → ĝ be the linear isomorphism defined by Idg ↦→ Idg, and x ↦→ A(x), where x ∈ g and A ∈ Aut(g). Using T ,

we can define B̂ϕ,T (u, v) := B̂ϕ(Tu, Tv) for all u, v ∈ ĝ, therefore:

[̂Bϕ,T ] = [T ]
t
[̂Bϕ][T ]

and we get:

det([̂Bϕ,T ]) = det([T ])2 det([̂Bϕ])

This last equation implies the following:

Proposition 4.1. Let g be a Lie algebra, dim g = 2k + 1, ϕ ∈ g∗ and B̂ϕ its associated skew-symmetric bilinear form. Let
g ∈ Aut(g) be an automorphism of g. Then:

Pf̂Bϕ,g = det(g) Pf̂Bϕ

Proof. Given g ∈ Aut(g), we can define a linear isomorphism Tg : ĝ → ĝ letting Tg (Idg) = Idg and Tg (x) = g(x) if x ∈ g. □

Corollary 4.2. Let g be a Lie algebra, dim g = 2k + 1, ϕ ∈ g∗ and g ∈ Aut(g). Then

g. Pfϕ := Pf̂Bϕ,g = det(g) Pfϕ .

As direct consequences:

Theorem 4.3. Let g be a Lie algebra, dim g = 2k + 1, ϕ ∈ g∗ and x ∈ g. Then:

[x, Pfϕ]U(g) = x(Pfϕ) = Tr(x) Pfϕ .

Theorem 4.4. Let g be a Lie algebra, ϕ ∈ g∗ and Pfϕ its associated Pfaffian. Then (g, ϕ) is a Frobenius or contact Lie algebra
if, and only if, Pfϕ ̸= 0.

Corollary 4.5. Let g be a Lie algebra, ϕ ∈ g∗. Then:

(1) If (g, ϕ) is a Frobenius Lie algebra, then N(g) = 0.
(2) If (g, ϕ) is a contact Lie algebra, then N(g) ≥ 1.

The main results of this section are:

Theorem 4.6. Let g be a contact Lie algebra with contact structure given by ϕ ∈ g∗. Then Pfϕ is a semi-invariant of g.
Moreover:

Theorem 4.7. Let g be a perfect contact Lie algebra, i.e., g = [g, g], with contact structure ϕ ∈ g∗. Then Pfϕ is an invariant
of g.

Proof. It follows from Theorem 4.3. □

Theorem 4.8. Let g be a contact Lie algebra with contact structure given by ϕ ∈ g∗. Suppose that ag is a maximal abelian
ideal in g such that dim(ag) = n + 1. Then Pfϕ is a polynomial in the variables of ag.

Example 4.9. Let g = sl2 ⋉ F4, where sl2 = ⟨H, E, F⟩ and F4
= ⟨e1, e2, e3, e4⟩. As usual:

[H] =

⎛⎜⎝3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞⎟⎠ , [E] =

⎛⎜⎝0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎞⎟⎠ , [F ] =

⎛⎜⎝0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0

⎞⎟⎠ .
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Note that g = [g, g] and β(g) = 4 and ag = F4. Let ϕ = x1e1 + x2e2 + x3e3 + x4e4 ∈ (F4)∗. Then

N̂ =

⎛⎜⎝ e1 e2 e3 e4
3e1 e2 −e3 −3e4
0 e1 2e2 3e3
3e2 2e3 e4 0

⎞⎟⎠ .

We get:

Pfϕ = det(ϕ(N̂)) = x21x
2
4 − 6x1x2x3x4 + 4x32x4 + 4x1x33 − 3x22x

2
3.

An easy calculation proves that X̂(Pfϕ) = 0, where X = H, E, F , and, for example, Ĥ = 3x1 ∂
∂x1

+ x2 ∂
∂x2

− x3 ∂
∂x3

− 3x4 ∂
∂x4

.

5. Contact perfect Lie algebras

5.1. Perfect Lie algebras g with dim Z(g) = 1

Let g be a perfect Lie algebra, i.e., g = [g, g]. Let ρ : g → gl(V ) be a finite-dimensional linear representation of g to V ,
and suppose that in V there is a skew-symmetric bilinear form B : V × V → F such that:

B(ρ(x)u, v) + B(u, ρ(x)v) = 0,

for all x ∈ g, u, v ∈ V .
We can define a Lie algebra structure on the vector space V̂ := V ⊕ ⟨h⟩, where h is a new element, h /∈ V , h /∈ g, by

letting

[u, v]V̂ := B(u, v)h, [u, h]V̂ := 0

for all, u, v ∈ V .

Lemma 5.1. Let V̂ be as above. Then, there exists an abelian Lie algebra a, such that V̂ = a ⊕ hn, where hn is the Heisenberg
Lie algebra of dimension 2n + 1. B is non-degenerate if, and only if, V̂ = hn.

Proof. Let a be the radical of B, i.e, a := Rad(B) = {u ∈ V |B(u, v) = 0, ∀v ∈ V }, and let W be a complementary subspace
of a such that B|W×W is a non-degenerate skew-symmetric bilinear form, then hn = Ŵ and V̂ = a ⊕ hn. □

With this structure V̂ is a 2-step nilpotent Lie algebra, which implies that ZV̂ (V̂ ) ̸= {0}. In fact, ZV̂ (V̂ ) = a ⊕ ⟨h⟩. And
we can extend ρ to ρ̂ : g → gl(V̂ ) defining ρ̂(x)h = 0, for all x ∈ g. But this definition is forced upon us because g is a
perfect Lie algebra and h ∈ ZV̂ (V̂ ).

Let g ⋉ V and g ⋉ V̂ be Lie algebras as before.

Lemma 5.2. g ⋉ V is a perfect Lie algebra if, and only if g ⋉ V̂ is a perfect Lie algebra.

Proof. We observe that

g ⋉ V̂ = g ⊕ V ⊕ ⟨h⟩
= [g ⊕ V ⊕ ⟨h⟩, g ⊕ V ⊕ ⟨h⟩]
= [g, g] ⊕ [g, V ] ⊕ [V , V ]

= g ⊕ [g, V ] ⊕ ⟨h⟩

if, and only if, [g, V ] = V , so [g ⋉ V , g ⋉ V ] = g ⋉ V . □

Corollary 5.3. Let g ⋉ V̂ and g ⋉ V be as before. Then g ⋉ V̂ is a central extension of g ⋉ V .

On the other hand, if a = Rad(B) ̸= {0}, we get a ∩ [g ⋉ V̂ , g ⋉ V̂ ] = {0}, i.e., g ⋉ V̂ is a non-perfect Lie algebra.

Corollary 5.4. Let g⋉ V̂ as before. Then g⋉ V̂ is a perfect Lie algebra if, and only if, B is non-degenerate. Furthermore, V̂ = hn.

From now on, gL will denote a semisimple Lie algebra and we suppose that g = gL ⋉ NilRad(g) is a perfect Lie algebra
such that dim Z(NilRad(g)) = 1. Let Z(NilRad(g)) = ⟨h⟩. It is straightforward to see that:

[x, h]g = 0, ∀ x ∈ gL.

Therefore, Z(g) = Z(NilRad(g)) = ⟨h⟩; in other words, Z(g) is the only copy of the trivial gL-module in NilRad(g). Let

NilRad(g) = V1 ⊕ · · · ⊕ Vr ⊕ Z(g),
= V1 ⊕ · · · ⊕ Vr ⊕ ⟨h⟩,
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the gL-module decomposition of NilRad(g). Using that g = [g, g] we have two possibilities:

(1) there exists an index i, 1 ≤ i ≤ r , such that Λ2(Vi) has a copy of Z(g) in its gL-module decomposition; or
(2) there are two indices a and b, 1 ≤ a < b ≤ r , such that we can define a non-degenerate skew-symmetric bilinear

form Ba,b : (Va ⊕ Vb) × (Va ⊕ Vb) → F, and for the representation ρa,b = ρa ⊕ ρb : gL → gl(Va ⊕ Vb) we get

Ba,b(ρa,b(x)u, v) + Ba,b(u, ρa,b(v)) = 0

for all x ∈ gL, u, v ∈ Va ⊕ Vb; moreover, Ba,b(Vk, Vk) = 0, for k = a, b.

In the second case, the existence of this bilinear form implies that Vb ≃ V ∗
a as gL-module, therefore, we can rewrite

NilRad(g) as:

n := NilRad(g) =

l∑
p=1

Vip ⊕

m∑
q=1

(Vaq ⊕ Vbq ) ⊕ Z(g) ⊕ (Vc1 ⊕ · · · ⊕ Vct ),

At this point, we must note that:
l∑

p=1

Vip ⊕

m∑
q=1

(Vaq ⊕ Vbq ) ⊕ Z(g) ≃ hn

for some n ∈ N. Combining nk = {0}, nk−1
= Z(g) = Z(n) and n2 ⊊ n, we get

n2 :=

l1∑
p=1

Vip ⊕

m1∑
q=1

(Vaq ⊕ Vbq ) ⊕ Z(g) ⊕

t1∑
s=1

Vcs ,

with:

l1 < l, m1 < m, t1 < t, and 0 < l1 + m1,

and we are also reordering indices in such a way that the last one does not appear in the first derived ideal. We conclude
that, at most,

nt =

lt−1∑
p=1

Vip ⊕

mt−1∑
q=1

(Vaq ⊕ Vbq ) ⊕ Z(g),

and, obviously (at most) nt+2
= {0}. In particular, t < l + m and k ≤ t + 2.

5.2. Perfect Lie algebras with trivial center

Let g be a perfect Lie algebra with abelian nilradical and Levi–Malcev decomposition

g = gL ⋉ NilRad(g),

let ag := NilRad(g) be the abelian nilradical. The gL-module decomposition of ag is given by:

ag = V1 ⊕ · · · ⊕ Vr ,

where dim Vi ≥ 1, 1 ≤ i ≤ r .

Lemma 5.5. Let g be a perfect Lie algebra. Then Z(g) = {0} if, and only if, dim Vi > 1 for all 1 ≤ i ≤ r and ag = V1 ⊕· · ·⊕Vr
is an abelian Lie algebra.

Proof. If NilRad(g) is not an abelian Lie algebra, each x ∈ Z(NilRad(g)) defines a trivial 1-dimensional gL-module, and
therefore x ∈ Z(g). □

From now on, we will suppose that:

1 < dim Vr ≤ · · · ≤ dim V2 ≤ dim V1,

5.3. Contact perfect Lie algebras

The aim of this subsection is to prove that contact perfect Lie algebras are completely characterized by the equation
N(g) = 1.

Theorem 5.6. Let g be a perfect Lie algebra with non-trivial center. Then N(g) ≥ 2.
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Proof. Note that N(g) ≥ dim Z(g). If dim Z(g) ≥ 2 we are done. Suppose that dim Z(g) = 1.
Case dim g = 2k.
Let C(g) be the skew-symmetric matrix defined by C(g)i,j := [ei, ej], where g = ⟨e1, . . . , e2k⟩, and Z(g) = ⟨e2k⟩. This

implies that the last row and column are trivial in C(g), but then Rank(C(g)) ≤ n − 2. From the fact that

N(g) = dim g − sup{Rank(C(g)) | {e1, . . . , e2k} is a basis of g}, (3)

we conclude N(g) ≥ 2.
Case dim g = 2k + 1.
Let C(g) be the skew-symmetric matrix defined by C(g)i,j := [ei, ej], where g = ⟨e1, . . . , e2k+1⟩, and Z(g) = ⟨e2k+1⟩. Let

Ĉ(g) be the submatrix of C(g) obtained by removing the last row and the last column. Obviously Ĉ(g) is a skew-symmetric
matrix of (2k)× (2k) size. If det Ĉ(g) ̸= 0 then its associated Pfaffian Pf̂C is another non-trivial invariant. In any other case
apply (3) to get N(g) ≥ 2. □

Corollary 5.7. Let g be a perfect Lie algebra with dim g = 2n. Then N(g) = 2r.

As an immediate consequence:

Theorem 5.8. Let g be a perfect Lie algebra with non-trivial center. Then g is not a contact Lie algebra.

Our final result is:

Theorem 5.9. Let g be perfect Lie algebra. Then g is a contact Lie algebra if, and only if N(g) = 1.

Proof. Clearly if g is a contact Lie algebra, then N(g) = 1. Let g be a perfect Lie algebra with N(g) = 1. From (3):

dim g = N(g) + sup{Rank(C(g)) | {e1, . . . , e2k} is a basis of g}
= 1 + sup{Rank(C(g)) | {e1, . . . , e2k} is a basis of g}
= 1 + 2n,

where C(g) ∈ Mat((2n + 1) × (2n + 1), S(g)), C(g)T = −C(g). Let ϕ ∈ g∗ as before, such that ϕ =
∑2n+1

l=1 xlel, where
g = ⟨e1, . . . , e2n+1⟩, g∗

= ⟨e1, . . . , e2n+1
⟩ and ei(ej) = δ

j
i . Let [ϕ]

t
=

(
x1 · · · x2n+1

)
and

[̂Bϕ] :=

(
0 [ϕ]

T

−[ϕ] ϕ(C(g))

)
∈ Mat((2n + 2) × (2n + 2),F).

From Rank(C(g)) = 2n it is straightforward to prove that there exists ϕ ∈ g∗ such that det([̂Bϕ]) ̸= 0. Thus, from
Theorem 3.7, (g, ϕ) is a contact perfect Lie algebra. □
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