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Abstract

In this paper, motions of non-stretching curves in some Klein geometries, determined by the transformation groups acting on
S x R, are studied. It is shown that several 1 + 1-dimensional integrable equations including the KdV, mKdV, defocusing mKdV,
Sawada—Kotera, Burgers equations and their hierarchies arise naturally from motions of non-stretching curves in such geometries.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Invariant geometric flows play an important role in image processing and computer vision (see [1] and references
therein). It has been known for a long time that integrable equations that can be solved by the inverse scattering
method are closely related to invariant geometric flows in certain geometries. Many interesting results have been
obtained on this subject. Hasimoto transformation [2] sets up a one-to-one correspondence between the integrable
Schrédinger equation and the binormal motion of a space curve driven by its curvature and torsion (see [3] for the
history of this equation, also known as the Betchov—Da Rios equation). More developments in this direction were
obtained later in [4-8]. Motions of curves in $2 and S° were considered by Doliwa and Santini [9]. Lakshmanan
et al. [10,11] interpreted the dynamics of a nonlinear string of fixed length in R3 through the consideration of the
motion of an arbitrary rigid body along it, deriving the AKNS spectral problem without spectral parameter. Nakayama
[12,13] showed that the defocusing nonlinear Schrodinger equation, the Regge—Lund equation, a coupled system of
KdV equations and their hyperbolic type arise from motions of curves in hyperboloids in the Minkowski space.
Motion of plane curves in Minkowski space was also discussed in [14]. In an intriguing paper [15], Goldstein and
Petrich related the mKdV equation and its hierarchies to a motion of a non-stretching closed curves on the plane.
Nakayama, Segur and Wadati [16] obtained the sine—-Gordon equation by considering a nonlocal motion of plane
curves. Recently, Chou, Qu, Zhang and Zhang [17-22] studied systematically the motion of non-stretching curves in
Klein geometries in R? or R3, and they showed that a number of 1 + 1-dimensional integrable equations including
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Table 1

Lie algebras of vector fields of some geometries in S xR

Name Generators Dimension
C 89,5in989+%0059u8u,cos€8 —%usinB&u 3
C, 3. sin03p + § cos Budy, cos O3 — Susin0dy, udy 4
C3 dg, sinfdg — (2sin @ + u cos )y, cosBdg — (2cosd — u sinf)dy, 3
Eq dg, SinB 9y, cos By 3
S1 dg, SinB 9y, cos Oy, udy 4
S dg, Sin@dy, cos By, Ay, udy 5
Aq dg, SinB 9y, cos By, cos 2600y — sin20udy,, sin 26099 + cos 260udy, 5
Ay dg, SinBdy, cos B9y, cos 2009 — sin20udy,, sin 2609y + cos 20udy,, udy 6
Cy dg, sin 2609y, cos 200, cos 2609y — 2 sin 20udy,, sin 2609y + 2 cos 20udy,, Iy 6
E, dg, usinfdy — (au3 sin@ — u? cos 0)0y, ucosfoy — ((lu3 cos 6 + u? sin )9y 3
H, 8p, usinfdg — [(w? — 1)3/2sin0 — ? — 1) cos 019y, ucos 03y — [(u? — 1)3/2cos® + w? — 1) sin 610, 3

the KdV, mKdV, Camassa—Holm, Kaup—Kupershmidt, Harry—Dym, Burgers, defocusing mKdV equations and their
hierarchies arise naturally from the motion of inextensible curves in Klein geometries. In [23], Ivey provided an
approach for classifying integrable geometric evolution equations for plane curves. Beffa, Wang and Sanders [24]
discussed motion of inextensible curves in Riemannian manifold and established the correspondence of the invariant
curve flows and certain integrable equations.

It is well known that the existence of bi-Hamiltonian structure of a nonlinear evolution equation can identify
the integrability of the equation. Beffa, Gonzalez-L6pez and Herndndez [25-29] in a series of papers investigated
the relationship between invariant geometric flows and Hamiltonian structure. On the basis of the moving coframe
method, they established a general setting for generating compatible Hamiltonian structure from the geometry of
curves in flat homogeneous space of the form G/H, where G is a semisimple Lie group, and H is a subgroup of G.
Recently, Anco [30,31] obtained the bi-Hamiltonian operators and associated hierarchies of multi-component soliton
equations from invariant geometric flows of non-stretching curves in constant curvature manifolds and Lie groups.

The purpose of this paper is to study motion of plane curves in Klein geometries in S! x R = {(8,u),0 €
S', u € R}, where S! is the circle. These geometries are characterized by their associated Lie algebras of vector fields
in S! x R. Each Lie algebra generates the isometry group of its corresponding Klein geometry. To the best of our
knowledge, there is no complete classification of Lie groups or the Lie algebra of vector fields acting on S! x R.
Throughout the paper, we assume that the geometries are invariant under translation with respect to # € S'. This
means that dy is an element of the corresponding Lie algebra of the isometry group of the geometry considered. The
outline of this paper is as follows. In Section 2, we provide some background material and notions. In Section 3, we
discuss motion of inextensible curves in the geometries in Table 1, which admit three-dimensional isometry groups.
In Sections 4-6, we consider respectively the four-, five- and six-dimensional cases. Section 7 contains concluding
remarks on this work.

2. Preliminaries and definitions

In this section, we provide the background notions and results from differential geometry and invariant theory used
throughout the paper. Our basic references are the papers [33—35] and the books [32,36,37]. The reader is referred to
these works for definitions and proofs of results stated below.

2.1. Klein geometry and differential invariant

Let us briefly recall some basic facts about Klein geometry, which was introduced by Klein in 1872 and was further
developed by Killing [37]. For any Lie group G acting transitively and effectively on a manifold, there is an associated
Klein geometry. A Klein geometry is the theory on geometric invariants of the transformation group G. For example,
the curvatures and arc-lengths of curves are invariants under the isometry group of the Klein geometry.

Assume G be a Lie transformation group acting transitively and effectively on S! x R. Its Lie algebra g can be
identified with a subalgebra of the Lie algebra of all smooth vector fields in S! x R with the usual Poisson bracket.
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According to the Erlanger Programme, every G or g determines a Klein geometry for curves via its invariants. To
describe the invariants, let us assume that a curve y and its image ' under a typical element g in G are represented as
graphs (6, u(0)) and (9, i (1)) over S'. For the space M = S! x R, the n-th jet space denoted by J® = S! x R™ ig
an + 2-dimensional Euclidean space [32].

Definition 2.1. A differential invariant of G is a C” function & defined on the n-th jet space J™ = §' x R®™, for
some n > 1, which is invariant with respect to each element of G.

Definition 2.2. An invariant one-form, or more precisely a horizontal contact-invariant form, is a one-form defined in
the n-th jet space S' x R™, which is invariant with respect to each element of G.

Therefore, if &0, u(®),...,u"™(0)) is a differential invariant then it satisfies (@, u(@),...,u"™©®)) =
&, (D), ..., 7" ®)) for all g € G. An invariant one-form, given in the form do = P(0, u(9), ..., u" (0))ds,
satisfies

/P(@,u(@),...,u(">(9))d9 =/_P(z?,ﬁ(ﬂ),...,ﬁ<”>(z9))dﬁ, (1)
1 1
forany I C [0,27] and g in G, and [ is the image of / under g € G. Let
. 9 B]
=EO0,u)— + 70, u)— 2
v=E&( u)89+n( u)au 2

be an arbitrary vector field in g. We denote its n-th prolongation vector field on S' x R by pr(v. The following
propositions provide a method for computing the differential invariant and invariant one-form of the group G.

Proposition 2.1. A function ¢: J"™ — R is a differential invariant for a connected group G if and only if
prv(d) =0
holds for every v € g of the form (2).

Proposition 2.2. A differential one-form do = P, u(6), ..., u™ (0))d6 is an invariant one-form for a connected
group G if and only if P satisfies

prv(P) + PdivE =0 (3)

for every v € g of the form (2).
Given a group, the existence of differential invariants is guaranteed by the following theorem.

Theorem 2.3 (/32,36]). For any Lie transformation group G acting transitively and effectively on S' x R, there exist

an invariant one-form do = P(0,u(@), ..., u™ (0))dO and a differential invariant @, both of lowest order, such that
every differential invariant can be written as a function of ® and its derivatives D P, D%, ..., where

_ 1 d

- Pde’

Moreover, every invariant one-form is of the form Qdo, where Q is an arbitrary differential invariant of G.

Invariant one-forms of lowest order are unique up to multiplication by a non-zero constant, and differential
invariants of lowest order are unique up to compositions of nonconstant functions. For each concrete geometry, we
shall specify one such differential form and call it the arc-length and one such invariant and call it the curvature.
Usually the latter is chosen so that it is linear in the highest order of u.

Fels and Olver [34,35] developed a practical and simple method for computing moving frames, differential
invariants, invariant one-forms and invariant differential operators. Their approach is generally called the method
of “moving coframe”. Indeed, a complete set of differential invariants of a given group can be found among the
coefficients of a moving coframe. In particular, it can be used to compute differential invariants and invariant one-
forms of the isometry groups of the geometries in S! x R.
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Table 2
Arc-length and curvature for the geometries in Table 1
Name Arc-length Curvature
C u=2do k= u3(ugg + %u)
1 3
C) k2u~2do uZk " 2 kg
1 +§ +l 3+
G (ug + Lu® +1)2do RS LA Sl
(u9+%uz+l)§
Eq udé V=ugy +u
Yy
S1 do Y
Yoo
SH de 7
2 1, =4 _1
Ay v3do w=v""[(v 3)gg +v 3]
21 2 _3
Ay v3nu2do v3pn 2
1
2 ) -3 -1
Cy UHZ de 4vy “ve99 — Sy, ng —4v,
1 2,3
Ey %[(MTQ +au)2 +1]2do ugg+3auug+a u3+u
[(5€ +au)2+1]2
3u2ug 3 3
upp+ tu tu—31
/2
H; W= 1)12d0, i = up /v U2 — 1+ u “ 713

13

2.2. Geometriesin S! x R

In this paper, we are interested in some Klein geometries acting on S' x R, (0, u) € S' x R. Those geometries are
determined by the corresponding Lie algebras of the isometry groups listed in Table 1.

In Table 2, we obtain the curvature and arc-length for a curve in the geometries listed in Table 1. In the following
we shall consider motion of curves in the geometries listed in Table 1.

2.3. Invariant curve flows

The nice thing about Klein geometry for curves is that we have a very precise notion of arc-length, curvature,
tangent and normal vectors [36,37]. For any parametrized curve y in a Klein geometry, we can define its tangent
T = y, and normal N, where N is chosen to be independent of T, and s is the arc-length of the curve.

The invariant curve motion flow in a Klein geometry is governed by

e = fN+gT, )

where f and g are functions depending on the curvature and its derivatives with respect to the arc-length. We shall
follow the procedure in [18,19] to derive invariant curve motions whose corresponding equations for the curvature are
integrable. The procedure is as follows: First, by differentiating (4) with respect to time ¢, we obtain the evolution of
the frame vectors

(3,2 5)() ®

Next we compute the first variation of the perimeter and obtain the conditions for f and g by requiring that the
derivative with respect to the arc-length commutes with the derivative with respect to time and that the perimeter of
a closed curve is invariant when the curve evolves according to (4). Finally, we obtain the evolution of the curvature,
i.e., the equation for the curvature. Very often the recursion operator for a certain integrable hierarchy comes out
naturally in the equation of the curvature.

3. Motion of curves in geometries Cy, C3, E> and H;

The geometries in Table 1 with three-dimensional isometry groups in S! x R contain conformal geometries C|
and Cs, the extended Euclidean geometry E» and the hyperbolic geometry Hj. First, we consider the motion of plane
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curves in conformal geometry C1, where the curve flow is driven by (4). One can show using the expressions in row
1 of Table 1 in Section 2.2 that the arc-length and curvature are given respectively by

ds = u~2do

1
k =M3 <u99 + Zu> .

The tangent vector is T = uz(l, up) and the normal vector is chosen to be N = u(0, 1). Then the curve flow (4)
becomes

and

vi = fu(0,1) + gu*(1, up). (©6)
It gives the time evolution for 8 and u
0, = u® ,
= & (N
ur =uf +u-upg.

In this paper, the curve that we will consider is non-stretching during the motion, that is, the distance between any two
points of the curve does not vary in time. So arc-length s and time ¢+ commute. Let p be a parameter which does not
depend on time 7. We can represent df by gdp in terms of p. For any functions v, we have

_ g
vgr = (Upg i = v — EIUQ’

2~—1
Uy = 78 up)

L DY (®)
= Ui+ Qug~u, —*§2g) gvy
= Uy + (2& — g—f) Ug.
u 8
Also
. 200, 96 2 L -
$ =% T (u"g)og-
Using (7) and above expressions, we deduce
Ug & -1 2 2
2; — E =u  Quf+22u-ugg) — (u-ge +2uupg)
= —(8 —2/). )
It follows from (8) and (9) that commutativity of the derivatives with respect to s and ¢ implies
g =21,
which gives
g=20"f. (10)

The perimeter of a closed curve is

L=fM=fm%a (11)

Using (8)—(11), one obtains the first variation of the perimeter
dL D)
o = Puy)dp

=f%—wm. (12)
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Assuming that the perimeter of a closed curve is invariant under the curve motion flow, we then obtain

f fds = 0. (13)

The evolution of the curvature is

ke = u?(u —l—lu
t = 06 4 .
1
Sy 4 (W)@, + Zu,). (14)

A straightforward computation gives

ugr = urg — (U>g)oup
= ufy +upf +uugesg,

> (15)
uggr = ugrg — (U”g)oUgg
= ufpo + 2ug fo + upo f + uugeog.
Utilizing (14) and (15), we obtain
1
ki = 3k(f +uupg) + Zu4(f + uugg) + u (ufog + 2up fo + uge f + u’upeg)
= u® fag + 2ulug fo + 4kf + u’keg
= fos +4kf + ksg.
It turns out that k satisfies
k; = (83 + 4k + Zk‘gas_l)f = () f, (16)

after using (10), where {2; is the recursion operator of the KdV equation. Letting f = —k; in (16), we obtain the KdV
equation

ki + kgss + 6kks = 0.

Letting f = —Qf_zks (n > 2) in (16), we obtain the KdV hierarchy with the recursion operator (2.

Next we consider motion of a curve in the conformal geometry C3. The arc-length and curvature of the curve are
given respectively by

_ 1, 0\

ds = u9+Zu +1) do
and

_ugg+%uu9+z—ltu3+u

et tu4 1)

The tangent and normal vectors are
T=0"2(l,up) and N=u(,1),

where | = ug + %uz + 1. So the curve motion flow reads as

yi = fu0, 1)+ gl (1, up).
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This implies
_1
6; =["2 8,
1 1
ur=12f4+1"2uyg.

The perimeter for a closed curve is

L:fdgzygz%de.

Differentiating (17), we obtain
1
ugr = u — (728)gug
1 1 1
=12fp+UA2)of +1 2uppg,
_1
Uggr = Uy — (1 28)9 upy

1
= l%fee +l_%lef9 + <§l_;le> f—i—l_%ueeeg,
0

1
L =17f+ [(1%» + Euzi} f+ 172 (ugo + uo)g.

3¢ Lp
Uy = — —uug — —u> —u,
060 ) 6 4
2 1 3 2 35
ugey = 1“¢s + 51219¢> — E(MM% +ug) — Zu Ug — Up.

Using the above expressions and (17), we get the first variation of the perimeter

dL |
- jg[ 1731, +z%(1§g)e]de

dr 2
= e (L + 1) £l ae
= 80 29 3 0 ]
11 i
= 7§ (g§+§fs+z¢f> ds.

This leads to the inextensibility condition
+ : fi + 1(15 f =0
gS 2 N 4 -
and
fﬁ ¢fds =0.

We compute the curvature evolution to get

g = |17 (s + Sutg + 2 +
r = Uugg zuug 4M u ,

3 1 1 1 3.3 3
U@\ s+ Slof 172 \uoo + Suug | g | +172 112 fi5 + 2o

1739

A7)

(18)

1 3 3 3
n 5(1—%@)@}‘ 1 2uggeg + (—ue Fll 1) (2 f 41 Tugg) + Sulfs + (D)o f + l—iueeg)}

20Ty
= fizs t (@) f +cd)g.

19)
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The coefficients c;(¢) in ¢; can be determined as
35, ,23[(1,21 3.1 31 3,10 1
= —- 72| =121 =2 —u(l2 —u“l2 +12
c1(¢) 4¢> + |:<2 9)9 + Sl2uo + 2u( Yo + i + ]

35 31/ 1 1 3, 3 1 11 5 1 1,
= _Z¢ +1072 3 l 2199—51 2150 +Zl 2u19+512(u9+u)+12 btg—i—zu +1

3 1 _ 31 1 3 3
= _Z¢2 + El 2 |:12¢§ + 512 <u99 + Euug) ¢ — Euugg — Eug
3 1 1 1 1 1
— Zuzug — u9i| + El_z (Euugg + §u§> — 4_11_3 (ugg + uugugg + Zu2u§>
3., 1 1, )
—i—Zl u u99+§uu9 +§l (up +u”)+1
1 3 3 1 1 3
— S 213 13 _ 22,2
1 3 1 1 1
+ Zlfzu (l%qﬁ — Ut — Zu3 — u) + Zlfzug — Zqﬁz
143, (3 1 4 3 1, 2
— 212 — — — | = —
—|—4l |:l ¢(2uu9+4u +u> <2uu9+4u +u)
LSy (19 L3 g+ ) + 1
) uug uuy 4u u 3 ug + u
s
- 2 A 4 k)
3 1 ) 3 2 3,
(@) = _El ugo + s ¢+ 177 | uges + E(uuee +ug) + J4ue + ug
= ¢s.
Plugging (20) into (19), we arrive at
b= frs+ g — (507 — g5 —1) f
1 — Ss Sg 4 2 A
» 1, 1
= (9; _14’ —Zqﬁgag dp+1)f 2D

Letting f = —¢;5 in (21), we have the mKdV equation
3
¢ + dsss — §¢ ¢5 +¢; = 0.

Letting f = Qf_zqﬁg (n > 2) in (21), we get an mKdV hierarchy with the recursion operator {2 = 852 — 41'1‘1’2 —
19506
It is known that the motion of non-stretching plane curves in Euclidean geometry is closely related to the mKdV
hierarchy [15]. We now consider motion of curves in the extended Euclidean geometry E,. For this geometry, the
arc-length and curvature are given respectively by
dw = )\%u_ldQ and o= )L_%(ugg + 3auugy + a’u’ + u),

where A = (u"'ug + au)® + 1 and a is a constant. The tangent and normal vectors are

T =2"2u(l, up).
_ -1 2y 1 =32 2 3.2
N=QA"2g +au”), \"2(ug +au“ug) — A2u”).
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The curve motion flow reads as
1 1 1 1
ve = f(A" 2(ug + auz), )L_f(ug + auzug) — )ﬁuz) 4+ gA"2u(l, up).
Using it, a straightforward computation gives
1 1
6 =272 (ug + au’) f + 1 2ug,
R 2 15 1
u =[A"2(ug + auug) — A2u”1f + 1" Zuupg,
1 1
ugr = up — (A2 (ug + au®) f + 1" 2glguugy

19 _1 5 Up 5 1 _1
—A2ufo+ | A 2u (—+au> — —aug —2A2uug | f +ur"2ugpg,
u u

A= 2(”—0 +au> (@ - +au,).
u u u

The variation for the perimeter is

ar 7€ UM (G aud T f 4 ug)g |d
—_—= _— —_— u au u @
dr w o e 86

= ‘% [—u_l((ug + au2))\_%f + )\_%ug) + 27! (M—e + au)
u

(Mez Ugy

u u?

+ au,) + ()f%(ug + auz)f + )f%ug)g] dw

= %(gw +of)dw.

As usual, we require

§ efdo =0

8w tof =0.

The evolution of the curvature is

and

3 3
or = )F%[uggt + 3auug, + Baug + 3a%u* + Du;] — E)FI)»,. 22)
A straightforward computation gives

uger = (B — aug) fao + 2(Bo — wgug — augg) fo + (Bag — catis — 2aguos) f + 1~ 2 unigaog
= A(B — qup)u > fow + [222u (By — ctgutg — tigg) + (' A2)g
(B — aug)) f + (Bog — wpoutg — 20uge) f + A2 uttggog.
Also we have
2

1
B —aug = —A2u”,

1 /U
Bo — cgug = A" 2 (—0 + au) (ué — auzug) — ZA%uug,
u

1. _3 22 1 _1 2 _1
Boo — apoug — 20pugy = Z)\ 2hgu —E)\ 2 hgou” — 207 2 hguug

1 T 1
— 2A7u§ — 20 2uugg + A7 2 (ug + au2)u999,
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2
u

o =2 (" 4 an) <___+)
u u u

2
2 3
u u u u UppU u
Ao =2<ﬁ——§+au9) +2(—9 +au) (ﬂ—S bl +2—§+au99>,
u u u u u

u

where o = 2712 (ug + au?), B = 17V (u2 + au®up) — 1'/2u?. Substituting the expressions for ug,, ugs, and A, into
(22), we arrive at

0r = fow + )»73[u(%9 + 2Bauugy + a’ud + u)ugg + 6a3u4u£

+ 9a2u2u§ + 6au’ug + a*u® + 24a%u* + uz]f + 008
= foo +0°f +0wg = (¥ + 0" — 0ud, ' 0)f, (23)
after a cumbersome calculation. Letting f = —g,, in (23), we obtain the mKdV equation

1
01 + Owww + EQZQw =0.

Letting f = —Qg‘*zgw in (23), where {3 = 83) + 0% — Qwaajlg, n > 2, we obtain the mKdV hierarchy with the
recursion operator {23.
Finally, we turn to the hyperbolic geometry H;. The arc-length and curvature are given respectively by

46 = 1(u? — 1)~ 246,

3
p =3 |:u99 + 3(142 — 1)_%142149 +udtu— Et] ,

where t = (u? — 1)~1/2

ug + u. The tangent and normal vectors are
T=:"'a(l,uy) and N=(@,p),
where &@ = (u? — 1)1/2, /§ = —u(u? — 1). So the curve motion flow (4) becomes
1 _ 1
ye=f(@® = D2, —u@® = 1)+ g @ = DI(1, up).
It yields the evolution of 8, u and ug:
O =a(f+"g),
U; = Bf + L_I&ugg,
ugr = (B — aug) fo + (B — Goup) f + 1 'Qugosg,

2 _1 2 _3
=W — 1) Zug; — (" — 1) 2Zugu; + uy.

(24)

The perimeter for a closed curve in this geometry is L = § t(u? — 1)~1/2d0. Its time evolution is
dL - _ ~
5 = %{—(MZ — D7y 4+ @ 40 9)1e)dE

= yg{[rl&*‘(ﬁ — Gug) + &l fo + [—a2fu + 1 ((Bo — Goug) — fu® — 1) 2ug + ) + ol f
+ g5+ (=1 g + 2 (ugy + (1 — W2 — 1) Tug)aug) + (' @)plg)ds
_ f (g5 + f)d6.

Hence the motion is inextensible if

ffdazo
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and
g= —B&_If.
Under this inextensibility condition, we compute the evolution of the curvature to get
v =1 [u99, +3u2u? = 1) Tug — Gudu? — 1) Tup — 6u(® — 177 — 3u> — Lyu, — %at] —3u .
(25)
Also we have
Clu=f+gs + @ = D uu —[a(f + g e,
ugor = 2@® = 1)1 B — Gug) fr5 + 2% — 1) 2(fy — Goup — Gugy) (26)
+ (@ = D7 200(B — que)l f5 + (oo — Goous — Gouao) f.
where
B —aug = —1(® = 1),
Bo — Gguy — Gugy = —(u® — DZugy + (1 — 3uPyug — > — 1) 2uuf,
Boo — Gapuo — Gougy = (u® — 1)~ Buugugy + (>@® = 1)~ = D] + (1 = 3uPugy — 6uu.

It follows that v satisfies

v =—fs6 taW)f +c2(v)g,
where the coefficients are determined as
c1(v) = 173 [=2ugp — 3uPW? — 1) ZTug + 3% — 1) 2ug + @® — 17 3ud 4+ 3u@? — 1720 — ud + u]
=1-=2v,
erv) = =3[ u? = D7 g — (@ = D7),

1 3
+ 0 (U = 1)2 (ugge + 3ulug + ug) + E(M2 — 1) uuguag

3
+ (3142 — E) Ugg — 3(142 — 1)_1u3u5 + 6uu9:|
= V5.
Hence we get the equation for the curvature

v = —fo5 +(—2v+ 1) f+vs8
= —[32+ Qv -1 +v59;'1f. 27)

Letting f = vz in (27), we obtain the KdV equation with lower order term
Ve + V556 + 3vvg — vz =0.

Letting f = .Qf_lv;, (n = 2) in (27), where {24 = 8(% +2v—1+v; 8&_1, we obtain the KdV hierarchy with the
recursion operator {2s.

4. Motion of curves in geometries C; and S;

The geometries with four-dimensional isometry groups contain conformal geometry C» and similarity geometry
S1. We first consider motion of curves in the conformal geometry C,. The arc-length and curvature in C, are given
respectively by

dr = u~2k2d0
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and
k= uk kg,
where k = u3(u99 + %u). The tangent and normal vectors are
T=u?"2(1,up) and N=u(0,1).
The motion of curve (4) now reads as
1
vi = fu©, 1)+ gu’k =2 (1, ug).
Thus we have
1
0, =u’k 2g,
t g2 1 (28)
ur=uf +uk 2upg.

The perimeter of a closed curve is

L= ?gds = fu_zk%de. (29)

The first variation of the perimeter is
dL 2, 1
T = pukin

k S
— % [ﬁ — 2& _|_ (uzk_;g)e} d‘L’ = % J(k, kf, k-[-[, .. )df (30)
u

Differentiating (28) with respect to ¢, we get

_1
ug = up — (U’k"2g)gup
1
= ufy +upf +ulk 2ugpg,

1
uger = uere — (k2 g)guag
1
= ufop + 2ug fo + ueo f +k 2ulugpog.

Also we have

ko 1[4 !
% oo |M I\ )|

1 1 1

= E(kfn+§u2k Zkefz+4kf+krg>
1 1- 1- 31

= Sfeot R 2 + ke, D

u
(gu*k~2)g — 22 = WPk~ 2g) — 2(f + uk tugg)

g —2f — %lgg
Thus we obtain
J =gt s for bR S
2 4
So the motion is inextensible if

1 1~
gr+§frr+zkfr =0
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and

5£l€frdr =0.

The evolution for the curvature is

ko= (kutke) = (K ko) = (K 'ho)e
1 1~ 1~
= (Efrr + Zkfr +2f + 5k8>r

1 ~ ~ 1-~ 1-~
= Z[zai + k0?2 + (ke + 8)3:1f + ke + Skeg,

where g = —% fr— 4—1‘8; Tk fr. Consequently, we have

~ 1 1o 1~ -

k = 3 (af - Zk — Zktaf 1k+4> fr. (32)
If we let f = —2k in (32), we obtain the defocusing mKdV equation with lower order term

- - R -
ki + kppr — §k2k, + 4k, = 0.

In general, letting f = —20, ! (Osk, we obtain the mKdV hierarchy with the recursion operator {25 = 8,2 —(1/4)k* -
(/D)kr 37 + 4.
Next, we consider the similarity geometry Sj. The arc-length and curvature are given by

de = do

and

¢ = v g,

where v = ugg + u. The tangent and normal vectors are
T=(1,up) and N =v(0,1).
The motion of curves is governed by

Yo = fv(0, 1) + g1, ug).

This gives
0 =g,

The first variation of the perimeter is

dL
5= (% d9> = %(Qp)tdp = fgpdp =0. (34)
t t

This leads to the inextensibility condition
g =0 1ie. g=c,
where c is a constant. Since

v = (ugg +u); = uger + Uy = uspp +uy = (Vf +uggleg + (vf +ugg),
vor = (Ugee + Ug)r = Ugper + Uor = Ureee + Uy = (Vf + uogloos + (vf + usg)e,
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the evolution for the curvature is

o = ( vg) = v g, — v 2vgy

v (Wf)ese + (vf)o + c(ugags + uge)] — v >vp[(vf)ee + vf — cvo(ugps + us)]
foon +20fs0 + G + 9> + 1) fo + (9o + 2090) f + coe

= (37 + 2007 + Bz + ¢ + e + (g +200¢)) f + coe

=[O + ¢ + 99 ) + 11 + cge. (35)
Letting f = 1 in (35), we obtain the Burgers equation
¢ = pse + 209
Letting f = ¢ in (35), we obtain the third-order Burgers equation
@ = @ee + 300ee + 397 + 39070 + (c+ D

In general, letting f = .Qg_zgog, we obtain the Burgers hierarchy with the recursion operator {2 = s + ¢ + ¢ g L

5. Motion of curves in geometries S and A

From Table 1, the geometries with the five-dimensional isometry group in S' x R contain the extended similarity
geometry S and the special affine geometry A;. We first look at the extended similarity geometry S». The arc-length
and curvature are given respectively by

dn =db

and
W =h""he,

where h = uggg + ug. The tangent and normal vectors are given by
T=(l,up) and N =hr(0,1).

The motion of curves is governed by

Ve = fh(ov 1) +g(1su9)

So we have
6[ - g9
{”t =hf +upg. (%6)

The first variation of the perimeter is

dL
%= (f de) = @ap = § gyip =0,
t t

where p is a parameter commuting with time ¢. This leads to the inextensibility condition
g0 =0.
One can put g = 0 without loss of generality. A straightforward computation gives

hy = (ugee + uo)r = urgoo + ug = (hf)ese + (hf)o,

(37
her = (esee + ugo)r = ure000 + urgg = (hf)esee + (hf)ae.

Using (36) and (37), we derive the equation for the curvature

v = (h'hg) = h™'he, — h2hgh,
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= ' [(hf)ovs0 + (hf)oo] = hhal(hf)oso + (hf)o]
= foooo + 30" ho fage + (6h heg — 3hT2hG + 1) fag + h ' [(4 — 3h ™ ho)hoe + hol fo
+h™*(hhgeo — hoheoo + hhog — h3) f
= [0 + 399, + (63 + 397 + Doy + @y + Oy + v + 290,
F Yy + 300 + 30y + 39Uy + Yy f
= [(3;7+1ﬂ+Wnan_1)3+3n+w+w,,8,l_l]f,7. (38)
Letting f = 1 in (38), we obtain the third-order Burgers equation

Vi = Yy + 39V + 30 + 307

In general, we obtain the Burgers hierarchy with the recursion operator {27 = (9, + ¥ + vy, 8,7’1 )+ O+ +vy0, L
We now consider the special affine geometry Aj. The arc-length and curvature are given respectively by

dp = (uge + u)%dé = v%dé

and

s

1
p=v"' (v 3)gg +v73,
where v = ugg + u. The tangent and normal vectors are
T=v"3(l,us) and N=0v"3(0,1).

The curve motion flow in this geometry reads as

i = fT+gN= fv3(0,1) + gv3 (L up).

This implies

2
0 :U_§ s
' _ig _2 (39)
ur=v 3f+v 3upg.

A straightforward computation shows

2 1 2
ugr = U — (V" 38)gug = (V"3 flg + v 3ugpg,
_2 _1 _2
uggr = oo — (V" 3g)ougg = (V"3 flog + v 3uppeg,
_1 1 1 2
(v 3f)0=U3fp_§v3vpf7

1

(v‘%f)ee = Vfpp — gv%(v_%vp)pﬁ

_1 5 2 I 4 _2 I 2.2 _2
(v 3f)996=U3fppp+vpv3fpp_§v3(v 3Up)pfp_§v3[v3(v 3Up)plo fo 40)

_1 7 8 4 2,2 1, 2
(V73 fegee = U3fpppp+§U3vpfppp+[v3(v3v,o)p_SU (W73vp)p1fop
1 4 2 _2 2 4 _2 1 2 2 _2 2
_§[U3(U3(U 3Up)p)p + 03 (V3 (V 3Up)p)p]f,o_§U3[(U3(U 3Up)p),olﬂ]pf,
1 2

vy = uggr +ur = (V3 fog +U_%f+v_§vog,
_2 _1 _1 _2

vor = vg — (V3 8)gvg = (v 3 flgge + (v 3)g f + v 3vgeg,

2 1 1 2
Vogr = vgrg — (V" 38)aVes = (V73 fleges + (V73 e + v 3vgss g.



1748 W. Wo, C. Qu / Journal of Geometry and Physics 57 (2007) 1733-1755

The perimeter is

=¢@=%ﬁw

Using (39) and (40), we get the first variation of the perimeter

2 2
Lt=¢ §U v+ (v73g)g | dp

2
-4 [gp + 53U+ m} ap,

after a cumbersome calculation. As usual we obtain the inextensibility condition

2
gp‘f‘g(fpp‘i‘ﬂf):o

yg,ufdp =0.

We now compute the evolution for the curvature:

and

_ _1 _4
e = [0 (v F)gp + 073,

1 -1 n 7 1o 40 _13 9 4
= —=v 3y — Vg — =V 3U; — =
3V v\t Tl T o7 073

1 8 10
v 3 v[+§v

1 7. _1 _1 _2
= -3V 3[(v73 fesee + (V73 fleg + v 3 vggeg]

3 vgvey

7 _10 40 _1 5, 4 _1
+ gy Tvee - ov vy —qvs (™3 f)og + v~ 3f+v 3veg]

27 3

8 _1o _1 _1 _2
+§v 3vg[(v73 fages + (V3 fle + v 3vgegl

1
= _gfpppp +c1() fop + c2() fp +c3() f +ca(p)g.

The coefficients ¢; (u) in u, are given by

(41)

(42)

(43)

7 2 7 40 _10 ,
ci(n) = —§v 3[3v?(v?vp)p—v (v~ 3vp)p+3v]+§v ?v99—27v vy —
5/1 _10 _4 5
= 5 3v 3v,g)g——v 3vp —v 3 =—§u,
1 5 3 2 _2 8 5 [1 2
o) = Y Sv2(v3 (v 3Up)p)p+(v3(v *vp)p)p]—gv vy gv(v 3vp)p — 1
2 /(1 _, 5 ., 40 54 4 9
= 3\3v veow — 3V vel}ee%—ﬁv v9+§v 3 Vg
2
= _gﬂpy
H 2
c3(u) = v_3[ (w3 3vp)p)pv3)p+ (v 3”,0),0

7 10 40 ?3 , 4 -1
—v 3 vgg — ==V - =0
9 00— 37Y T3

1
1—=-v
3

(v_gvp)p]

8 10
— —v3v

27

o[(W3 (W™ 3v,),), + v30,]
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1 40 s . 4 5 5,
ca(p) = —3V Veoo — 5oV Upves — T3 vp + 2V v
= Up.

Thus we get the equation for the curvature:
1
nr = _g[fpppp + Sﬂfpp + 2Mpfp + (Mpp +4M2)f - 3//«,03]

1 _
_§<ag F 5005 4+ By + thop + A% + 2000, ) f. (44)

Letting f = 3, in (44), we obtain the Sawada—Kotera equation [38]

Wt + Wopppp + Siiopp + Sttpiop + S’ 1ty = 0.

Letting f = 3(32 + p + pd, Hw in (44) with w = 2§11, and
_ _ 1 _ _
.Qg = (8/3) —+ 2/,Lap +28pu) |:8S —+ 8§M8p 1 + 8,0 1 + E(Mzap 1 + ap 1M2)] ,
we obtain the Sawada—Kotera hierarchy [39].
6. Motion of curves in geometries A, and Cy

From Table 1, it is noted that the geometries with six-dimensional isometry groups in S! x R contain the fully
affine geometry A, and the conformal geometry Cj.
We first consider the fully affine geometry. The arc-length and curvature in A; are given by

do = v%/ﬁde,
and
-1 _2 _3

K= Mg =0V 3 2,

respectively, where v = ugg 4+ u, ;t = v~ [(v"'/3)gg + v™1/3]. The fully affine tangent vector is
2

T =002 (1, up),
and the normal vector is chosen to be

N=0v"3u710,1).

The curve motion flow reads as

1 2 1
ve= fo3pT 0, 1) + guT3 T 2(1, up).

So we have
6= v-3u}
= N
{’ PR 45)
ur=v 3 fHvTIn 2upg.

Hence, the first variation of the perimeter is

dL }{%%de ?§ M 20 e |a
_— = DE = —_— —_— 3 o
dr H ‘ 2u - 3v vooR S8

= % J(K, Ko, Koo, - . .)do. (46)



1750 W. Wo, C. Qu / Journal of Geometry and Physics 57 (2007) 1733-1755

One has the following formulas:
2 1 _1 1 2 1
ugr = ug — (V3" 2g)gug = (V32 flg + v 3" Zugyg,
_2 _1 1 _2 _1
ugor = g — (W I 2)guge = (VI feg + v I Zugeng,
and
_1 oy _1 o 2 _1
v =uger +ur = (V3T fleg +vT 3T f+Hv 3 2vgg,
1 11 1
WIS Pe=vin 2 fo + (I e f,

_1 31 3 _1
(v 3u 1f)99=vfaa—§v3,u 2o fo + W3 o f,

_1 501 3 2 1 1 4 3 1 _3
W3 ego =V3IU2 fooo + Vo — zvu we | foo + VIV 30 )99—5(1}3# 2uglo | fos

2
_1 1 8%1_5,1 3
(v 3u f)9999 = U3Mfoaoo+ gv’/JLZUG v3ip 2ug faaa+ Vo zvﬂ Mo
9
2 01 2 1 _1 _4 3 1
toodpuripnz (W ipT e — S (@3

3 1 _3 2 1 1 _ 1
— W pg)e)e + 0 (v 1)900} fo + @ 30 Yoao f.

Furthermore,
2v _2 _1 2 _2 3 P T S _1 o
§+(v SpT28)g = §faa—v 7 2M9f0+§v (V3" Deg +v 3 1f
_2 _1 1 2 3
+v 3u 280—51) 3268
2 1, 1
faa fa_g KU_EK -1 f+g0_§ng
Wt 1 % —1 40 13 4_% 8 10
— = —— ——v Vgg — —Vv 3 vy —4v vy — =V 3 vgy,
2 o1 Voot s 9 t 0 Vot
L1 (7 v -2.2 - —1,, -1 -2
=il \3v v g —4) [ flee + (03 f v 3 vpg)]
I 7. _1 4 _1 2
— 3V ™3™ fesee + (W31 e + 1 v 3 vggeg]
8

1

_10 1 1 1 2
+ v vl Tk "f)eoe + 30 o+ u v 3 vgeg]

_Efmfmr +c1(k) fooo + 2(k) foo + c3(k) fo + cale) f +c5(k)g,

where the coefficients c; (k) are given by

0 = Lt [ty - Lot (Bodudu, 1ot t
C1K —ZM 9U M= Vg 3U 3UMU9 Vo =g
1 2 3 1
— —gv SM ZMQ :—glc’
) 5_11_% 4_1370 %_+_22 23»3 43
k) = = —V 3vgg — =V Vg — v —v - — — =V
2 6# 3 06 9 0 3 no Mee 2 n Me 9 122
2 1, 5
= U'+_K_

M_gue)e)] Joo + [(vgui(v_éu«_l)ee

47

-2
Vo Lo
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N SR Y A Bt -1 -1
c3(k) = SR gk 2v77 | ese — 2V vglge — ST g e

14 -2 2 10 -1, -1 2 2 —1 9 -2
+3U M9U9+?U 2 Ueﬂg—gv M0v99+§M e
- = =V "Ugg — =V g — UV
2M 3 06 9 2 Mo
1 7 3 3 9 I 7 53
+ i ST e 5#«91’9"‘50#9—#1} T v Tuy
+ 2t (Lt — =
3v 3 3v 3 Vgo 9v 3vg — V3 ,
7 1 15 11
T i TR T Tt
© 1 1 1 1+1 5 2+2 1, 2
c4(k) = =k — —KKgg — = Kk )k =Ko — Sk — =,
4 6777 T 12" T ¢ 2" e T3 T3 3
() !
Cc5(K) = —K.
> 2

To simplify the expressions, setting A = (2/3) fyo — kfy — (2/3) (ks — (1/2)k> — 1) f in (47), we have

2v, _2 _1 1
-t 3u 28 =A+8 — 5«8,
3v 2
" 1 1 1
i:—on-o-—gKAg—A-Fng.

(48)

So the motion is inextensible if f and g satisfy

" 2v _2 _1 1 1
2;4_3_1)’4_(1) 3 Zg)eng—ZA(m—gchg:O (49)

fKAgda =0.

Using (48) and (49), we obtain the evolution of the curvature:

and

3
2 o)

2v 2 1
= (= —x[ﬂ+—’+(v‘3u‘2g)e}
- 2u - 3v

_2
ke = 3u

1 1
= (A +2kAy +A—xg) (50)
2 4 -

Plugging (49) into (50), we arrive at
1 1

1
K = _EAW, + §K2Agg + ga(,‘(KAJ) —2A,

1

1
— (ag—ZKZ—ZaGIKH) A, (51)

Letting A =20, ! Q;“] ks in (51), we obtain the defocusing mKdV hierarchy
Ky = — .Q;l_ ! Kg.

where () = Dg — (1/4)K? — (1/d)ky 0, & + 4 is a recursion operator of the defocusing mKdV equation.
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Finally, we consider the motion of curves in the conformal geometry Cy4. The arc-length and curvature in Cy4 are
given by

ds = q2do

and
X =4q2qe0 — 5q a5 —4q7",

where ¢ = uggg + ug. The tangent and normal vectors are
T=¢ 2(1,up) and N =g 2(0,1).

The curve motion flow is specified by

1 1
ve=fq 2(0,1)+gq 2(1, up).
So we have
1
0, =qg 2 R
r Q_lg N (52)
ur=q 2f+q upg.
Using the expressions
1 1 1
ugr = e — (9 28)oute =¢q 2upeg + (g~ 2 fe,
_1 1 _1
ugor = oo — (@~ 28)oUgs =q 2ugeeg + (g 2 fes,
_1 _1 _1
ugpor = tggro — (@~ 28)oUgee = q 2uggeeg + (¢ 2 [ess,

1 1 1

qr = ugoer +uer =q 24908 +(q" 2 flege + (@ 2 f)g,
_1 1 3

(q 2f)9=fs—§61 2qp f,

1 1 1 1
@G 2 oo =q2 fss — Ef]_l%fa + (@ 2)es f,

1 5 1
(fq 2)go0 = qfsss — (t]l%e - Zqzqu) fs + (a7 2)e00e f,

we obtain the first variation of the perimeter:

dL 1 q: _1
_— = 2d0 = — 2 d3
ar (7§" ) ﬂzq T g)e}
= f + lf 1 Ji 1 f)ds (53)
= 85+ 5 006 — X T 1 X8 .
The motion is inextensible if f and g satisfy
f X6 £d5 =0
and
2 s — s xfs = x5 f =0
85 5 /888 SX ) 16)(3 =0.
A straightforward computation gives

1 1 1 1
qor = g0 — (97 28)eq0 = q 29008 + (g~ 2 fleg + (g~ 2 [eses,

_1 _1 _1 _1
qo0r = qot0 — (@~ 28)eqe0 = q 2q0008 + (@~ 2 ess + (g2 f)evsse,
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_1 3 _1 5 3
(@72 f)o000 = q2 fssss + qo fsss — (q 2q99 — —4q 261(3) Sss

4
3 _ 23 _ 35 _ 1
- (561 Y q000 — 74 2q0q00 + K 3‘13) S5+ (@ 2)evoe f,
1 51 5 _ 5 1 35 3 25 _s
(fqa~2)e0000 = qfsssss + quqefaaaa + 14 Yq0 fss5 — <§q 2qp09 — 74 2q0q00 + 79 2613) fss
41 287 315
<261 2q9000 — Zq 2q0q000 — 89 2q3y — — ¢ g3 q00 — T6 1 4!13) fs
+(6177)99999f-
This implies that the curvature satisfies
Xt = —8q2qo0q: +4q *qo0r — 109 qoqe; + 150 *q3q: +4q *q;
_ _ N 1 1
= —(8g >qo0 — 150" q5 — 44 g 2qog + (@2 flo + (@2 fose]
_ 1 1 1
— 109 q0lq " 2q008 + (@ oo f + (a2 fosse]
I 1 1
+497%lq " 2qe008 + (g2 fese + (@2 essse]
= 455858 + c1(x) fass +c2(x) fos +c3(x) fs +ca() f +es(x)g. (54)

The coefficients in (54) can be determined as
c1(x) = —2(4q *qp9 — 5¢ q5 —4q~") = =2x.

H» (5 _1 35 3 25 _s _ 1 5 3 1
o) = —4q 2<§q 24000 — —9 240900 + —q 2q3>+10q g0 (q 24900 — 74 2615—42>

4 4
_ 5
- 2)(87
c3(x) = —8q >qoase + 569 *qaqess — 2269 q3qee + 40 g2,
565
— 169 q00 + = =4 ¢y +30¢ g7 + 447
_ _ _ _ _ 135 _
= -2 (44 3q0000 — 28¢ *qoq000 — 189 g5y + 108q g3 qee + 4q > qes + -4 "qé)
25
+49 g5y — 109 >q5q00 — 8q > qee + Iq_(’qé‘ +10g4g3 + 4972
J— 2 + 1 2
- X88 4X ’
-3 —4 2 -2 -1 -1
ca(x) = —Bq"qoe —15¢™"q5 —4q )(g " 2)ese + (g~ 2)s]
o 1 _1 _ _1 _1
+49721(q™ 2)oov00 + (@~ age] — 10 > qol(q™ 2)oave + (¢~ )oe]
1 1
= _EXSB(S + gXXs,
1 _
cs(X) = g 2qs(=8q 2qee + 150743 + 49> + 497 2q 2 qoss — 109 g0 2 qos
= Xs-
Thus the curvature satisfies the equation
5 1 1
Xt = 4 fsss85 — 2X fs55 — Exafas — 2xs5 — —X fs— X888 = G XXs f+xsg. (55)

Inserting g = — fss5 + %Xf + %85_1)(1“5 into (55), one obtains

Xt = 435585 — 2X fsss — 5 X5.fos — (2)(35 — X2 - 1_16)(835_1)() Js — (%X&ss - %XX(S) I (56)
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Letting f = 2 in (56), we obtain the KdV equation

1
Xt + X585 — 6= 0.

7. Concluding remarks

In this paper, we have carried out a study of inextensible motions of curves in geometries in S! x R. A number
of well-known 1 + 1-dimensional integrable equations and their hierarchies can be obtained in a natural way, in the
sense that the recursion operators of these integrable equations come out in the equations of the curvature. Similarly,
we can discuss motion of inextensible space curves in S' x R? and we believe that many 14 1-dimensional integrable
systems are associated with such motions. It is important and interesting to perform a complete classification of the
Lie algebra of vector fields acting on ! x R2.
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