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Abstract

We study whether a given Lorentzian surface (M, g) can be immersed as the hypersurface of codimension one into the pseudo-
Euclidean space R2,1. Using the methods of para-complex geometry and real spinor representations we succeed in proving
the equivalence between the data of a spacelike conformal immersion of (M, g) into R2,1 and two spinors satisfying a Dirac-
type equation on the surface. We generalize in this way with new technics a result of Friedrich [Th. Friedrich, On the spinor
representation of surfaces in euclidean 3-Space, J. Geom. Phys. 28 (1–2) (1998) 143–157] to the pseudo-Riemannian context.
Moreover we give a geometrically invariant representation of such surfaces using two Dirac spinors.
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1. Introduction

The relationship between immersions of Riemannian surfaces in Euclidean three- and four-dimensional spaces and
spinors has been studied by many authors (see [1,3,14,9,17–19]). In fact the spinor representations of surfaces are not
only of mathematical interest, but it is also of great importance in many areas of theoretical physics, especially soliton
theory [18] and string theory [11,12].

The restriction ϕ of a parallel spinor field on Rn to a Riemannian hypersurface Mn−1 is a solution of a generalized
Killing equation

∇
Σ M
X ϕ =

1
2

A(X) · ϕ, (1.1)

where ∇
Σ M is the spin connection on Mn−1, A is the Weingarten tensor of the immersion and · is the Clifford

multiplication on Mn−1. Conversely, Friedrich proves in [9] that, in the two-dimensional case, if there exists a
generalized Killing spinor field satisfying Eq. (1.1), where A is an arbitrary field of symmetric endomorphisms of
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T M , then A satisfies the Codazzi–Mainardi and Gauss equations of hypersurface theory and is consequently the
Weingarten tensor of an isometric immersion of M2 into R3. Moreover in this case, a solution ϕ of the generalized
Killing equation is equivalently a solution of the Dirac equation, where |ϕ| is constant.

Recently the case of pseudo-Riemannian manifolds of general dimension was examined in [6]: it was proven that if
ϕ is solution of a generalized Killing equation with Codazzi tensor A on a pseudo-Riemannian manifold M , then the
manifold can be embedded as a hypersurface into a Ricci flat manifold equipped with a parallel spinor which restricts
to ϕ. The motivation of our work was the question if, at least in low dimensions, we can omit the condition on A to
be Codazzi and generalize the result of Friedrich to the pseudo-Riemannian case.

With the methods of para-complex geometry and using real spinor representations we succeed in proving the
equivalence between the data of a conformal immersion of a Lorentzian surface in R2,1 and spinors satisfying a
Dirac-type equation on the surface. In fact, Lorentz surfaces can be viewed as real two-dimensional para-complex
manifolds, and admit therefore an atlas {U, φ} such that the coordinate changes are para-holomorphic. Using first
the real splitting of the tangent bundle we give a real Weierstraß representation in terms of (0+, 1−)- and (1+, 0−)-
forms for arbitrary conformal immersions of Lorentz surfaces in R2,1. As in the case of (1, 0)-forms on complex
manifolds, a para-complex (1, 0)-form ω on M can be written as ω = φ dz, where, having e as the para-complex
unit, z = x + ey is a para-holomorphic coordinate and φ is a para-complex function. We then deduce a para-complex
version of this representation using a triple of para-complex (1, 0)-forms verifying certain conditions analogous to the
complex model. This generalizes a result of Konderak (see [13]) for Lorentzian minimal surfaces.

We consider spin bundles on an oriented and time-oriented Lorentz surface M as para-complex line bundles L such
that there exists an isomorphism

κ : L2 ∼= T ∗M.

Consequently any section of L may be viewed as a square root of a para-complex (1, 0)-form on M . This allows us,
with the help of the real Weierstrass representation described above, to give a real spinor representation for conformal
immersions of M into the pseudo-Euclidean space R2,1. Then, we derive a Dirac-type equation for the two spinors
related to the representation. A similar result was proven in [14] for Riemannian surfaces immersed in R3.

Finally we give a geometrically invariant representation of Lorentzian surfaces in R2,1 using two non-vanishing
spinors ϕ1 and ϕ2 satisfying a coupled Dirac equation

Dϕ1 = Hϕ1, Dϕ2 = −Hϕ2, 〈ϕ1, ϕ2〉 = 1,

where D is the Dirac operator on the surface, and H a real valued function.
We show that ϕ1 and ϕ2 are equivalently solutions of two generalized Killing equations

∇Xϕ1 = A(X) · ϕ1, ∇Xϕ2 = −A(X) · ϕ2.

The Codazzi condition on A is then no more necessary to prove that these two properties are again equivalent to an
isometric immersion M ↪→ R2,1, with Weingarten tensor A.

2. Preliminaries

2.1. Para-complex differential geometry

We refer to [7] for a survey on para-complex geometry.
The algebra C of para-complex numbers is the real algebra generated by 1 and by the para-complex unit e with

e2
= 1. For all z = x + ey ∈ C , x, y ∈ R we define the para-complex conjugation ·̄ : C → C, x + ey 7→ x − ey

and the real and imaginary parts of z

R(z) :=
z + z̄

2
= x, =(z) :=

e(z − z̄)

2
= y.

We notice that C is a real Clifford algebra. More precisely, we have

C ∼= R ⊕ R ∼= Cl0,1.
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Definition 1. A para-complex structure on a real finite-dimensional vector space V is an endomorphism J ∈

End(V ) such that J 2
= Id, J 6= ±Id and the two eigenspaces V ±

:= ker(Id ∓ J ) to the eigenvalues ±1 of J
have the same dimension. We call the pair (V, J ) a para-complex vector space.

The free C-module Cn is a para-complex vector space where its para-complex structure is just the multiplication
with e and the para-complex conjugation of C extends to ·̄ : Cn

→ Cn , v 7→ v̄. A real scalar product of signature
(n, n) may be defined on Cn by

〈z, z′
〉 := R(zz̄′) = R(z1 z̄′

1 + · · · + zn z̄′
n).

In the following we will denote by

Cn∗
= {z ∈ Cn

|〈z, z〉 6= 0}

the set of non-isotropic elements in Cn and by K n the set of zero divisors. In particular note that in the one-dimensional
case

C ⊃ C∗
= {±r exp(eθ)|r ∈ R+, θ ∈ R} ∪ {±re exp(eθ)|r ∈ R+, θ ∈ R}.

Analogous to the complex case, this can be seen as a para-complex polar decomposition, where C∗
' R+

× H1 and
where H1 are the four hyperbolas {z = x + ey ∈ C |x2

− y2
= ±1}.

In addition we want to define square roots of a para-complex number w as solutions z of the equation z2
= w,

with z, w ∈ C . We remark that these are only defined for para-complex numbers w if R(w) ≥ 0. In this case there
exist at most four square roots of w: More precisely w has exactly four square roots if it is non-isotropic and two
square roots if it is isotropic.

Definition 2. An almost para-complex structure on a smooth manifold M is an endomorphism field J ∈

Γ (End(T M)) such that, for all p ∈ M , Jp is a para-complex structure on Tp M . It is called integrable if the
distributions T ±M = ker(Id ∓ J ) are integrable. An integrable almost para-complex structure on M is called a
para-complex structure on M and a manifold M endowed with a para-complex structure is called a para-complex
manifold. The para-complex dimension of a para-complex manifold M is the integer n = dimC M :=

dimM
2 .

As in the complex case we can define the Nijenhuis tensor NJ of an almost para-complex structure J by

NJ (X, Y ) := [X, Y ] + [J X, JY ] − J [X, JY ] − J [J X, Y ],

for all vector fields X and Y on M . As shown in [8] we have the

Proposition 1. An almost para-complex structure J is integrable if and only if NJ = 0.

The splitting of the tangent bundle of a para-complex, or of an almost para-complex, manifold M into the eigenspaces
T ±M extends to a bi-grading on the exterior algebra:

Λk T ∗M =

⊕
k=p+q

Λp+,q−T ∗M (2.1)

and induces an obvious bi-grading on exterior forms with values in a vector bundle E .
In particular the corresponding decomposition of differential forms on M is given by

Ω k(M) =

⊕
k=p+q

Ω p+,q−(M). (2.2)

We consider the de Rham differential d : Ω k(M) → Ω k+1(M). In the case where the almost para-complex structure
is integrable we have the splitting d = ∂+ + ∂− with

∂+ : Ω p+,q−(M) → Ω (p+1)+, q−(M), ∂− : Ω p+,q−(M) → Ω p+, (q+1)−(M).

Applying the Frobenius theorem to the distribution T ±M we obtain, on an open neighborhood U (p) of M , real
functions zi

±, i = 1, . . . , n, which are constant on the leaves of T ∓M and for which the differential dzi
± are linearly

independent. (z1
+, . . . , zn

+, z1
−, . . . , zn

−) is a system of local coordinates on M .
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Moreover

xi =
zi
+ + zi

−

2
, yi =

zi
+ − zi

−

2
defines a system of local real coordinates on U (p).

Similarly to the complex model, we now define local para-holomorphic coordinates, for which the real coordinates
xi (resp. yi ) can be seen as the real (resp. imaginary) part:

Definition 3. Let (M, JM ), (N , JN ) be para-complex manifolds. A smooth map ϕ : (M, JM ) → (N , JN ) is called
para-holomorphic if dϕ ◦ JM = JN ◦ dϕ. A para-holomorphic map f : (M, J ) → C is called a para-holomorphic
function.

A system of local para-holomorphic coordinates is a system of para-holomorphic functions zi , i = 1, . . . , n
defined on an open subset U ⊂ M of a para-complex manifold where (x1

= R(z1), . . . , xn
= R(zn), y1

=

=
1(z1), . . . yn

= =
n(zn)) is a system of real local coordinates.

The existence of a system of local para-holomorphic coordinates in an open neighborhood U of any point p ∈ M was
ensured by [8].

Hence, in contrast to the complex case there exist, due to the real splitting of the tangent bundle, three different
sorts of appropriate local coordinates on M . The adapted coordinates are very important in this work.

Definition 4. Let (M, J ) be a para-complex manifold. A para-complex vector bundle of rank r is a smooth real
vector bundle π : E → M of rank 2r where the total space E is endowed with a fiber-wise para-complex structure
J E

∈ Γ (End(E)). We will denote it by (E, J E ).

Given a para-complex vector bundle (E, J E ) over the para-complex manifold (M, J ) the space of one-forms
Ω1(M, E) with values in E has the following decomposition

Ω1(M, E) = Ω1,0(M, E)⊕ Ω0,1(M, E) (2.3)

where

Ω1,0(M, E) := {ω ∈ Ω1(M, E) | J ∗ω = J Eω},

Ω0,1(M, E) := {ω ∈ Ω1(M, E) | J ∗ω = −J Eω}.

The case E = M × C leads to a graduation of C-valued differential forms

Ω k
C (M) := Ω k(M,M × C) = Ω k(M,C) =

⊕
p+q=k

Ω p,q(M).

Now we consider a para-complex vector space (V, J ) endowed with a para-hermitian scalar product g on it, i.e. g
is a pseudo-Euclidean scalar product and J is an anti-isometry for g:

J ∗g := g(J ·, J ·) = −g.

A para-hermitian vector space is a para-complex vector space endowed with a para-hermitian scalar product.
The para-unitary group of a para-complex vector space (V, J ) is then defined by

Uπ (V ) = {A ∈ GL(V )|[A, J ] = 0 and A∗g = g}.

Note that if V has para-complex dimension 1, i.e V ' C ' R2, then Uπ (V ) = {± exp(eθ)|θ ∈ R}, where e is the
para-complex unit.

Definition 5. A para-hermitian vector bundle (E, J E , g) on a para-complex vector bundle (E, J E ) is a para-
complex vector bundle (E, J E ) together with a smooth fiber-wise para-hermitian scalar product g.

Note that if L is a para-hermitian line bundle, i.e. a para-hermitian vector bundle of dimension one, then L has
obviously the structure group Gl(1,C) ∩ O(1, 1) = Uπ (C).

Definition 6. A para-holomorphic vector bundle is a para-complex vector bundle π : E → M whose total space
E is a para-complex manifold, such that the projection π is a para-holomorphic map.
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3. A spinor representation for Lorentzian surfaces in R2,1

3.1. Lorentzian surfaces

We refer to [10] and [15] for spin geometry in general and to [5] for pseudo-Riemannian spin geometry.
In the following we call Lorentzian surfaces two-dimensional smooth manifolds endowed with an indefinite

metric. We recall that the tangent bundle of such a manifold splits into the orthogonal direct sum T M = η ⊕ ξ of a
one-dimensional spacelike bundle η and a one-dimensional timelike bundle ξ . The manifold is called time-oriented,
if the bundle ξ is oriented.

Now let M be a strongly oriented, i.e. a time-oriented and oriented, Lorentzian surface. We can consider the
SO+(1, 1)-principal bundle (PSO+

) of positively strongly oriented orthonormal frames over M . We recall that in this
case the existence of spin structures is ensured (see [4]). Denote by PSpin+

a spin structure on M .
We have

Spin+(1, 1) ⊂ Cl0
1,1

∼= Cl0,1 ∼= R ⊕ R ∼= C.

Therefore, the spin representation ∆1,1 splits under the action of the volume form ω1,1 into the direct sum of two
inequivalent representations and it holds for the spinor module Σ1,1 = Σ+

1,1 ⊕ Σ−

1,1
∼= R ⊕ R ∼= C . We remark that

ω1,1 defines a para-complex structure on Σ1,1 and we identify it in the following with the para-complex unit. Therefore
the spinor bundle Σ M = PSpin ×∆1,1 Σ1,1 = PSpin ×∆1,1 C of M can be identified with a para-complex line bundle.

Moreover, we have

SO+(1, 1) = {exp(eθ)|θ ∈ R} ⊂ H1,

Spin+(1, 1) ∼= Uπ (C) = {± exp(eθ)|θ ∈ R} ⊂ H1.

The unique two-to-one Spin-covering of SO+(1, 1) is given by

λ : C∗
⊃ Spin+(1, 1) → SO+(1, 1) ⊂ C∗,

z 7→ z2.

Let L be a para-hermitian line bundle over M . As seen in Section 2.1, the transition functions of L for a certain open
covering {Uα} of M are of the form ϕ̃αβ(x) = ± exp(ω1,1θαβ(x)), where θαβ : Uα ∩ Uβ → R, x ∈ M . This means
that L is a Spin+(1, 1)-bundle.

Consider now the product bundle L2
:= L ⊗C L . This bundle has transition functions given by ϕ̃2

αβ(x) ∈ SO+(1, 1)
for the same open covering {Uα}. Similarly to the approach of [2] (see also [14,16]) for Riemannian surfaces the above
considerations show, that the classical definition of spinor bundle reduces to the following

Definition 7. A spinor bundle on a strongly oriented Lorentzian surface M is a para-hermitian line bundle L endowed
with an isomorphism κ : L ⊗C L ∼= T ∗M . In the following we will denote it by Σ M .

A real formulation of Definition 7 is given by

Proposition 2. A spinor bundle on a strongly oriented Lorentzian surface M is equivalent to the data of two real line
bundles L± (called half spinor bundles and denoted in the following by Σ±M), with a pairing L+ ⊗R L− → R,
and isomorphisms T ±M ∼= L± ⊗R L±.

Proof. We put L+ ⊕ L− =: L . Let k±

αβ be the transition functions of the bundles L± with respect to an open covering

{Uα}. Then by definition the transition functions of L+ ⊕ L− = L are given by Kαβ =

(
k+

αβ
0

0 k−

αβ

)
.

Obviously the transition functions of the bundles L+ ⊗R L+ ⊕ L− ⊗R L− and L ⊗C L are the same, i.e. K̃αβ =(
(k+

αβ
)2 0

0 (k−

αβ
)2

)
= K 2

αβ . �

To illustrate this point of view, it is illuminating to consider the Minkowski space M = R1,1
= C =

R(1 + e)⊕ R(1 − e).
We have T ±

p M = R(1 ± e) ∼= R
√
(1 ± e)⊗R R

√
(1 ± e), p ∈ M .
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The pairing

R
√

1 + e ⊗R R
√

1 − e → R
a
√

1 + e ⊗ b
√

1 − e 7→ 2ab,

with a, b ∈ R, induces a Clifford multiplication on Σ±
p M = R

√
(1 ± e) by:

ρ±
: T ±M ⊗ Σ∓M = Σ±M ⊗ Σ±M ⊗ Σ∓M → Σ±M

a(1 ± e)⊗ b
√

1 ∓ e 7→ 2ab
√

1 ± e

and hence a Clifford multiplication

ρ : T M ⊗ Σ M → Σ M (3.1)

on Σ M = Σ+M ⊕ Σ−M ∼= M × R2.
Obviously (1 + e), resp (1 − e) corresponds to the multiplication by −2

(
0 1
0 0

)
, resp 2

(
0 0
1 0

)
.

Let ∇ : Γ (Σ±) → Γ (T ∗M ⊗ Σ±) be the covariant derivative on the spinor bundle.
As {1, e} is an orthonormal basis we have

Dψ = ρ(1)∇1ψ − ρ(e)∇eψ =
1
2
ρ(1 + e)∇1−eψ +

1
2
ρ(1 − e)∇1+eψ,

where D : Γ (Σ M) → Γ (Σ M) is the Dirac operator on R1,1 and ψ ∈ Γ (Σ M). Hence as ∇1+e = 2 ∂
∂z+

and

∇1−e = 2 ∂
∂z−

, the Dirac operator in the Minkowski space has the form

D = 2

 0 −
∂

∂z+

∂

∂z−

0

 . (3.2)

Remark that for a given w ∈ SO+(1, 1) ⊂ C∗ there exist exactly two square roots z ∈ Spin+(1, 1). We will
denote the one with =(z) > 0 by z =

√
w. Locally we can consider the (1, 0)-form dz, where z is a para-holomorphic

coordinate, as a section of T ∗M . There exist four sections s of L (see Section 2.1) such that κ(s ⊗ s) = dz, as z has
to be compatible with the orientation and the time orientation. Without loss of generality we can choose one of these
spinors and denote it by ϕ =

√
dz. Later we choose a trivialization of T ±M , which induces a trivialization of the

spinor bundle. Therefore, we can express any spinor s in the form s = f ϕ, for which it holds s2
= f 2dz.

We will use this point of view to derive a spinor representation of Lorentzian surfaces in the Minkowski space R2,1.

3.2. Weierstraß representations

Using the real splitting (2.1) of exterior forms on a para-complex manifold we give a real Weierstraß representation
for Lorentzian surfaces. This generalizes a result of Konderak (see [13]) for minimal surfaces. We recall that a
(1+, 0−)- (resp. a (0+, 1−)-form ω± on M can be written as ω± = φ±dz±, where z± are the adapted coordinates
introduced in Section 2.1 and φ± are real functions.

Let (M, g) be a Lorentzian surface with pseudo-Riemannian metric g. In this chapter, we say that M is conformally
immersed in R2,1 if and only if there exists a smooth map F : M → R2,1, such that

〈d F(X), d F(Y )〉R2,1 = µg(X, Y ),

for all X , Y ∈ T M , and where µ is a positive function. Let {U, φ} be a local chart on M and (x, y) real local
coordinates for this chart. Then in this coordinates g is conformally equivalent to dx2

− dy2, i.e.

g|U = λ(dx2
− dy2), λ > 0

and the above definition is equivalent to〈
∂F

∂x
,
∂F

∂y

〉
= 0,

〈
∂F

∂x
,
∂F

∂x

〉
= −

〈
∂F

∂y
,
∂F

∂y

〉
= λ > 0. (3.3)
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In local coordinates (xi , x j )we can write g = gi j dx i dx j , with i, j, k = 1, 2. The Laplace operator on M is defined
for an arbitrary real-valued function f by taking

4g f = gi j
(

∂2

∂xi∂x j
f − Γ k

i j
∂ f

∂xk

)
,

where we follow the Einstein summation convention and gi j is the inverse of the matrix gi j . Now let F : M → R2,1

be a conformal immersion, then for the local coordinates (z+, z−) we can write g = λdz+dz−, λ > 0 or in matrix

form g = λ
(

0 1
1 0

)
. A simple calculation shows that the Laplacian of a real-valued function f on M is given by

4 f =
2∂2 f

λ∂z+∂z−

, (3.4)

where λ is the conformal factor of the metric.
Moreover it holds true for the mean curvature H =

1
2 tr B of the surface, where B is the second fundamental form

of F , that

1
2

Hν = 4F, (3.5)

where ν is the (spacelike) unit normal vector field of the immersion.

Theorem 1. Let M be a Lorentzian surface. Then the two following conditions are equivalent:
(1) The map F : M → R2,1 is a conformal immersion.
(2) There exist a triple ω+ = (ω1+, ω2+, ω3+) of (1+, 0−)-forms and a triple ω− = (ω1−, ω2−, ω3−) of (0+, 1−)-

forms on M such that
(i) {

ω1
2
+ + ω2

2
+ − ω3

2
+ = 0,

ω1
2
− + ω2

2
− − ω3

2
− = 0,

(3.6)

(ii)
ω1+ω1− + ω2+ω2− − ω3+ω3− > 0, (3.7)

(iii) The forms ωi + resp. ωi − are ∂+-exact resp. ∂−-exact.
which satisfy the equation

F(q) =

∫ q

p
(ω1+ + ω1−, ω2+ + ω2−, ω3+ + ω3−)+ Constant.

Proof. (1) ⇒ (2): Consider a conformal immersion F = (F1, F2, F3) : M → R1,2 and let φ± = (φ±1, φ±2, φ±3),
φ±i =

∂Fi
∂z±

, i ∈ {1, 2, 3}. Then ω±i := φ±i dz± are (1+, 0−)-forms resp. (0+, 1−)-forms on M , which obviously
verify condition 2(iii).

Moreover we have:

φ±

1
2
+ φ±

2
2
− φ±

3
2

=

(
∂F1

∂z±

)2

+

(
∂F2

∂z±

)2

−

(
∂F3

∂z±

)2

=

(
∂F1

∂x
±
∂F1

∂y

)2

+

(
∂F2

∂x
±
∂F2

∂y

)2

−

(
∂F3

∂x
±
∂F3

∂y

)2

=

〈
∂F

∂x
,
∂F

∂x

〉
+

〈
∂F

∂y
,
∂F

∂y

〉
± 2

〈
∂F

∂x
,
∂F

∂y

〉
= λ− λ+ 0 = 0

which proves 2(i). Further

〈φ+, φ−
〉 =

〈
∂F

∂z+
,
∂F

∂z−

〉
=

〈
∂F

∂x
+
∂F

∂y
,
∂F

∂x
−
∂F

∂y

〉
=

〈
∂F

∂x
,
∂F

∂x

〉
−

〈
∂F

∂y
,
∂F

∂y

〉
= 2λ > 0,

which is equivalent to condition 2(ii).
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(2) ⇒ (1). Condition (iii) yields that F is well-defined. Moreover with conditions (i) and (ii) we have〈
∂F

∂x
,
∂F

∂x

〉
+

〈
∂F

∂y
,
∂F

∂y

〉
± 2

〈
∂F

∂x
,
∂F

∂y

〉
= 0〈

∂F

∂x
,
∂F

∂x

〉
−

〈
∂F

∂y
,
∂F

∂y

〉
> 0.

This implies
〈
∂F
∂x ,

∂F
∂x

〉
+

〈
∂F
∂y ,

∂F
∂y

〉
= 0 and

〈
∂F
∂x ,

∂F
∂y

〉
= 0. Hence〈

∂F

∂x
,
∂F

∂x

〉
=

〈
∂F

∂y
,
∂F

∂y

〉
= λ > 0

and F is a conformal immersion of M into R2,1. �

Proposition 3. A conformal immersion F = (F1, F2, F3) : M → R2,1 is minimal if and only if ∂φ−

∂z+
=

∂φ+

∂z−
= 0,

with φ± =
∂F
∂z±

.

Proof. Let ω+ and ω− be the triples of forms of the immersion as defined in Theorem 1. ω+ + ω− =
∂F
∂z dz and

consequently ω+ =
∂F
∂z+

dz+ and ω− =
∂F
∂z−

dz−. Moreover
〈
∂F
∂z+
, ∂F
∂z−

〉
=

1
4

(〈
∂F
∂x ,

∂F
∂x

〉
−

〈
∂F
∂y ,

∂F
∂y

〉)
=

1
2λ. Then we

have

H =
2ν · ∂+ω−

〈ω+, ω−〉
.

With Eqs. (3.4) and (3.5) F is minimal if and only if

0 =
1
2

Hν = 4F =
2∂2 F

λ∂z+∂z−

=
2∂2 F

λ∂z−∂z+

,

which yields the result. �

Remark 1. Condition 2(iii) of Theorem 1 is equivalent to the local condition that the forms ωi ± are closed and
∂−ωi + = −∂+ωi −, moreover it implies that the one-form ωi + + ωi − is exact.

From this real Weierstraß representation we can derive a para-complex Weierstrass representation in the following
way:

Theorem 2. Let M be a Lorentzian surface. Then the following two conditions are equivalent:

(1) The map F : M → R2,1 is a conformal immersion.
(2) There exists a triple ω = (ω1, ω2, ω3) of (1, 0)-forms on M satisfying the equation

F(q) = R

(∫ q

p
(ω1, ω2, ω3)

)
+ Constant,

such that

ω2
1 + ω2

2 − ω2
3 = 0, (3.8)

ω1ω̄1 + ω2ω̄2 − ω3ω̄3 > 0, (3.9)

the 1-forms R(ωi ) are exact. (3.10)

Proof. Considering para-complex (1, 0)-forms ωi , we have ωi = ω̃i + eJ ω̃i , with ω̃i ∈ Γ (T M∗). Using now the real
splitting (2.1), ω̃i = ωi + + ωi − holds, where ωi + and ωi − are (1+,0-)- resp. (0+,1-)-forms. Consequently

ωi
2

= ((ωi + + ωi −)+ e(ωi + − ωi −))
2

= 2(ωi
2
+ + ωi

2
−)+ 2e(ωi

2
+ − ωi

2
−),

and

ωi ω̄i = (ωi + + ωi −)
2
− (ωi + − ωi −)

2
= 4ωi +ωi − .
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Simple calculations show that the conditions (3.6) resp. (3.7) of Theorem 1 are equivalent to the conditions (3.8) resp.
(3.9).

Moreover R(ωi ) = ω̃i = ωi + +ωi −. Remark 1 then yields clearly the equivalence between (3.10) and part (iii) of
Theorem 1. �

This is a generalization of a result of Konderak (see [13]) for minimal surfaces immersed into R2,1. We remark
that the minimality of the immersion is just given by the condition on the (1, 0)-forms ωi to be para-holomorphic (i.e
locally ωi = φi dz, φi para-holomorphic).

3.3. A Veronese map

Let RPn
= P(Rn,1) be the real projective space of the pseudo-Euclidean vector space Rn,1. We introduce the

tautological line bundle of RPn :

τRPn = {(λ, v) ∈ RPn
× Rn,1

|v ∈ λ}.

Obviously this is a subbundle of the trivial (n + 1)-dimensional bundle T n+1
= RPn

× Rn,1.
We now consider the quadric

Q = {(x1, x2, x3) ∈ R2,1
|x2

1 − x2
2 + x2

3 = 0}

and the maps

W± : R1,1
→ R2,1.

(x1, x2) 7→ (x2
1 − x2

2 ,±(x
2
1 + x2

2), 2x1x2).

ThenW± can be seen as maps into the affine quadric Q. ObviouslyW±(x) = W±(x ′) is equivalent to x ′
= ±x .

We now define Veronese embeddings by

V± : RP1
→ RP2

[x1, x2] 7→ [W±(x1, x2)] = [x2
1 − x2

2 ,±(x
2
1 + x2

2), 2x1x2].

Proposition 4. The Veronese embeddingsW± induce diffeomorphisms

V± : RP1
→̃[Q]

between the projective space RP1 and the projective quadric

[Q] = {[x1, x2, x3] ∈ RP2
| x2

1 − x2
2 + x2

3 = 0}.

Proof. Let [y1, y2, y3] be a point of the projective quadric. Taking affine charts of RP1 and assuming that y3 6= 0,

we seek for [x1, x2], with x1, x2 6= 0, such that [
y1
y3
,

y2
y3
, 1] = [

x2
1−x2

2
2x1x2

,
±(x2

1+x2
2 )

2x1x2
, 1]. Summing up the first and second

components gives x1
x2

and consequently the surjectivity. �

Lemma 3. The following canonical isomorphism holds:

τRP1 ⊗R τRP1 ∼= V∗
±τRP2 . (3.11)

Proof. We have

τRP1 ⊗R τRP1 = {([z], v ⊗ w) ∈ RP1
× (R2,1)⊗

2
|v,w ∈ [z]}.

Moreover

V∗
±τRP2 = {([z], v) ∈ RP1

× Q|v ∈ V±([z]) = [W±(z)]}.

Using the isomorphism s ⊗ s → W±(s) we obtain the result. �



692 M.-A. Lawn / Journal of Geometry and Physics 58 (2008) 683–700

Remark that if kαβ are the transition functions of τRP1 for the covering {Uα}, then τRP1 ⊗R τRP1 and V∗
±τRP2 have

the same transition functions k2
αβ for this covering.

We now define the map

Ṽ : RP1
× RP1

→ RP2
× RP2, ([x1, x2], [x

′

1, x ′

2]) 7→ (V+([x1, x2]),V−([x
′

1, x ′

2])).

Let τRPn � τRPn be the vector bundle defined over RPn
× RPn such that the fibers are

(τRPn � τRPn )(p+,p−) := (τRPn )p+ ⊕ (τRPn )p− ,

with (p+, p−) ∈ RPn
× RPn .

As it is the Cartesian product of two smooth manifolds, RPn
× RPn is a para-complex manifold. In fact,

using the identification T(p+,p−)(RPn
× RPn) = Tp+RPn

⊕ Tp−RPn , we can define a para-complex structure
by J |Tp±RPn = ±Id. We refer to [8] for more details. Then τRPn � τRPn has the structure of a para-complex vector
bundle over RPn

× RPn by defining a para-complex structure which has eigenvalue 1 on the first and −1 on the
second summand.

Corollary 1. The following canonical isomorphism of para-complex vector spaces holds:

(τRP1 � τRP1)⊗C (τRP1 � τRP1) ∼= Ṽ∗(τRP2 � τRP2). (3.12)

Proof. Let kαβ be the transition functions of the bundle τRP1 with respect to an open covering {Uα}. Then by definition

the transition functions of (τRP1�τRP1) are given by Kαβ(p+, p−) =

(
kαβ (p

+) 0
0 kαβ (p

−)

)
, for (p+, p−) ∈ RP1

×RP1.

Moreover from Lemma 3 we obtain:

Ṽ∗(τRP2 � τRP2) ∼= V∗
+τRP2 � V∗

−τRP2 ∼= τRP1 ⊗R τRP1 � τRP1 ⊗R τRP1 .

Obviously the transition functions K̃αβ of the bundles τRP1 ⊗R τRP1 � τRP1 ⊗R τRP1 and (τRP1 � τRP1)⊗C (τRP1 �

τRP1) are the same, i.e. K̃αβ =

(
k2
αβ (p

+) 0

0 k2
αβ (p

−)

)
= K 2

αβ , which proves the lemma. �

3.4. The spinor representation

Using Theorem 1 and the Veronese map introduced in the last paragraph, we now generalize the results of [14] to
Lorentzian surfaces.

Let ω± ∈ Γ (T ∗M±). Locally one can write ω± = φ±dz± where φ± ∈ C∞(M) and the pair (z+, z−) is some
adapted local coordinate system on the para-complex surface M . This yields immediately a local identification of
C∞(M) = Ω (1+,0−)(M) = Γ (T ∗M+) = Ω (0+,1−)(M) = Γ (T ∗M−). Let M be a Lorentzian surface which is
conformally immersed in R2,1. The condition (3.7) of Theorem 1 on the isotropic one-forms ωi ± implies that

M± := {x ∈ M |φi ±(x) = 0,∀i ∈ {1, 2, 3}} = ∅.

Therefore we can consider the map

h : M → RP2
× RP2

x 7→ (h+(x), h−(x)) := ([φ1+(x), φ2+(x), φ3+(x)], [φ1−(x), φ2−(x), φ3−(x)]).

Moreover h can then be considered by condition (3.6) as a map into the product of projective quadrics [Q] ×

[Q] ∼=
Ṽ

RP1
× RP1. This allows us to define maps f : M → RP1

× RP1, such that h = Ṽ ◦ f and f± : M → RP1,

such that h± = Ṽ± ◦ f±.
Let us now define the maps

k±
: T ∗M±

→ h±
∗(τ ∗

RP2)

3∑
i

aiωi ±(x) =: α 7→ l±a ,
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where l±a is the linear functional given by l±a (φ+(x)) = a · φ+(x) =
∑3

i aiφi ±(x) ∈ R, with a = (a1, a2, a3) and
φ(x) = (φ1+(x), φ2+(x), φ3+(x)). We remark that l±a does not depend on the choice of dz±. We show that k± is an
isomorphism: Let α =

∑3
i biωi ±(x), for another triple b = (b1, b2, b3) 6= a, then we have

0 =

3∑
i

(ai − bi )ωi ±(x) =

3∑
i

(ai − bi )φi ±(x)dz±

and consequently (l±a − l±b )(φ
±(x)) = 0, which leads to la = lb.

Hence we have the isomorphism

T ∗M± ∼= h±∗
(τ ∗

RP2) ∼= f ∗
±V±

∗(τ ∗

RP2) (3.13)

and finally with Lemma 3 we find the isomorphisms:

κ±
: T ∗M± ∼= f ∗

±(τ
∗

RP1)⊗R f ∗
±(τ

∗

RP1). (3.14)

By Proposition 2 the above construction gives explicitly two half spinor bundles

Σ±M := f ∗
±(τ

∗

RP1)

on M and, as f ∗
+(τ

∗

RP1)⊕ f ∗
−(τ

∗

RP1) = f ∗(τ ∗

RP1 � τ ∗

RP1), we have

T ∗M ∼= f ∗(τ ∗

RP1 � τ ∗

RP1)⊗C f ∗(τ ∗

RP1 � τ ∗

RP1). (3.15)

Hence

Σ M := f ∗(τ ∗

RP1 � τ ∗

RP1)

is a spin bundle on M in the sense of Definition 7.
The following commutative diagram illustrates the above objects:

T M∗
∼ // h∗(τ ∗

RP2 � τ ∗

RP2)

��

// τ ∗

RP2 � τ ∗

RP2

��
f ∗(τ ∗

RP1 � τ ∗

RP1)

44iiiiiiiiiiiiiiii

��

// M

f

��

h // [Q] × [Q] ⊂ RP2
× RP2

τ ∗

RP1 � τ ∗

RP1
// RP1

× RP1
Ṽ

44hhhhhhhhhhhhhhhhhhh

We then have

Theorem 4. Let M be a strongly oriented Lorentzian surface. Then the following conditions are equivalent.

(1) There exists a conformal immersion M → R2,1 with mean curvature H.
(2) There exists a solution ψ = (ψ1, ψ2) of the Dirac-type equation(

D 0
0 −D

)(
ψ1
ψ2

)
= H

(
ψ1
ψ2

)
〈ψ1, ψ2〉,

for some real-valued function H, necessarily the mean curvature of the surface.

Proof. For pairs of sections (s1+, s2+) and (s1−, s2−) of f ∗(τRP1) we can write

ω+ = (ω+1, ω+2, ω+3) = (s1+
2
− s2+

2, s1+
2
+ s2+

2, 2s1+s2+),

ω− = (ω−1, ω−2, ω−3) = (s1−
2
− s2−

2,−s1−
2
− s2−

2, 2s1−s2−).

With si ±
2

= fi
2
±dz±, we have

∂−ω+ = 2(− f1+∂z− f1+ + f2+∂z− f2+,− f1+∂z− f1+ − f2+∂z− f2+,− f2+∂z− f1+ − f2+∂z− f1+)dz+ ∧ dz−,

∂+ω− = 2( f1−∂z+ f1− − f2−∂z+ f2−,− f1−∂z+ f1− − f2−∂z+ f2−,− f2−∂z+ f1− − f2−∂z+ f1−)dz+ ∧ dz−.
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Then a simple calculation shows that the integrability conditions of Theorem 1 for the pair (ω+, ω−) are equivalent
to the following conditions on s±

i :

s1+∂−s1+ = −s2−∂+s2−, s2+∂−s2+ = −s1−∂+s1−, (3.16)

s1+∂−s2+ = s1−∂+s2−, s2+∂−s1+ = s2−∂+s1−. (3.17)

We now calculate the mean curvature with respect to s±

i . The unit normal vector field is given by

ν =
ω+ × ω−

‖ω+ × ω−‖
,

where · × · is the natural pseudo-vector product in R2,1 (see [20]). We have

ω+ × ω− = −2(s1+s1− + s2+s2−)(s1+s2− + s1−s2+, s1−s2+ − s2−s1+, s1+s1− − s2+s2−),

‖ω+ × ω−‖ = 2(s1+s1− + s2+s2−)
2

= −〈ω+, ω−〉.

Then ν = −
(s1+s2−+s1−s2+,s1−s2+−s2−s1+,s1+s1−−s2+s2−)

s1+s1−+s2+s2−
and consequently

H =
2〈ν, ∂+ω−〉

〈ω+, ω−〉

= −
2(s1+s2− + s1−s2+, s1−s2+ − s2−s1+, s1+s1− − s2+s2−)

−2(s1+s1− + s2+s2−)
3 · 2

 s1−∂+s1− − s2−∂+s2−

−s1−∂+s1− − s2−∂+s2−

s1−∂+s2− + s2−∂+s1−


=

1

(s1+s1− + s2+s2−)
2 (s2−∂+s1− − s1−∂+s2−).

Consider now the spinors ψ1 := (s1+, s2−) and ψ2 := (s2+, s1−). Using the equalities (3.16) and (3.17) we compute

Hψ1 =
2

(s1+s1− + s2+s2−)
(−∂+s2−, ∂−s1+),

Hψ2 =
2

(s1+s1− + s2+s2−)
(−∂−s2+, ∂+s1−),

which is equivalent to the Dirac-type equation(
D 0
0 −D

)(
ψ1
ψ2

)
= H

(
ψ1
ψ2

)
〈ψ1, ψ2〉,

where D is the Dirac operator in the sense of Eq. (3.2). �

3.5. A geometrically invariant spinor representation

Let Mn be an oriented pseudo-Riemannian manifold of signature (p, q), with p + q = n, immersed into a pseudo-
Riemannian spin manifold N of signature (p + 1, q). Let ∇

Σ N be the spin connection on Σ N . Considering the spin
connection ∇

Σ M induced on the hypersurface, we recall that for the restriction ϕ = Φ|M of a spinor Φ ∈ Γ (Σ N ) we
have (see [9,6]):

∇
Σ N
X ϕ = ∇

Σ M
X ϕ −

1
2

A(X) · ϕ, (3.18)

for all X ∈ Γ (T M), where “·” denotes the Clifford multiplication on M and A is the Weingarten tensor of the
immersion. These considerations lead to the following

Proposition 5 ([6]). If Φ ∈ Γ (Σ N ) is a parallel spinor on N, i.e if

∇
Σ N
X Φ = 0,
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for all X ∈ Γ (T M), then its restriction ϕ = Φ|M to M is a solution of the equation

∇
Σ M
X ϕ =

1
2

A(X) · ϕ, (3.19)

where A is the Weingarten tensor of the immersion. Eq. (3.19) is called the generalized Killing equation.

The aim of this section is now to give a geometrically invariant representation of Lorentzian surfaces in R2,1

by solutions of a coupled Dirac equation (resp. coupled generalized Killing equations), similarly to the result of
Friedrich [9].

Theorem 5. Let (M, g) be a strongly oriented pseudo-Riemannian surface of signature (1, 1), H : M −→ R be a
real-valued function. Then the following three statements are equivalent:

(1) ϕ1 and ϕ2 are non-vanishing non-isotropic solutions of the coupled Dirac equations

Dϕ1 = Hϕ1, Dϕ2 = −Hϕ2, (3.20)

with 〈ϕ1, ϕ2〉 = 1,
(2) ϕ1 and ϕ2 are non-vanishing non-isotropic solutions of the generalized Killing equations

∇
Σ M
X ϕ1 =

1
2

A(X) · ϕ1, ∇
Σ M
X ϕ2 = −

1
2

A(X) · ϕ2, (3.21)

with 〈ϕ1, ϕ2〉 = 1 and where A is a g-symmetric endomorphism field with 1
2 tr A = H.

(3) If M is simply connected, there exists a global isometric spacelike immersion M ↪→ R2,1 with mean curvature H
and second fundamental form A.

Proof. “3 ⇒ 2” Let Φ1 be a parallel spinor on R2,1 and ϕ1 = Φ1|M its restriction to M . From Proposition 5 we have
that ϕ1 is a solution of the generalized Killing equation ∇

Σ M
X ϕ1 =

1
2 A(X) · ϕ1, where A is the Weingarten tensor of

the immersion.

Claim. The spinor ϕ2 := ν ·̃ ϕ1 is the solution of the generalized Killing equation

∇
Σ M
X ϕ2 = −

1
2

A(X) · ϕ2,

where ·̃ denotes the Clifford multiplication on R2,1.

Proof. We have by Eq. (3.18)

∇
Σ M
X ϕ2 = ∇

Σ M
X (ν ·̃ ϕ1) =

(
∇

ΣR2,1

X +
1
2

A(X) ·̃ ν

)
·̃ ν ·̃ ϕ1

= (∇ΣR2,1

X ν) ·̃ ϕ1 + ν ·̃ ∇
ΣR2,1

X ϕ1 −
1
2

A(X) ·̃ ϕ1

= ν ·̃

(
∇

ΣR2,1

X ϕ1 +
1
2

A(X) ·̃ ν ·̃ ϕ1

)
= ν ·̃ ∇

Σ M
X ϕ1.

Hence, as Φ1 is parallel, we have

∇
Σ M
X ϕ2 =

1
2
ν ·̃ A(X) ·̃ ν ·̃ ϕ1 = −

1
2

A(X) ·̃ ν ·̃ ϕ2 = −
1
2

A(X) · ϕ2. �

Moreover we remark that

X〈ϕ1, ϕ2〉 = 〈∇
Σ M
X ϕ1, ϕ2〉 + 〈ϕ1,∇

Σ M
X ϕ2〉 = 〈ϕ1, ν ·̃ ∇

Σ M
X ϕ1〉 = 0,

hence 〈ϕ1, ϕ2〉 = Const . �

“2 ⇒ 1”

Dϕ =

p+q∑
i=1

εi ei · ∇
Σ Mϕ =

p+q∑
i=1

εi ei ·
1
2

A j
i e j · ϕ,
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where A j
i := ε j g(A(ei ), e j )) and ε j A j

i is symmetric. Then, as ei · e j is anti-symmetric, we have

Dϕ =

p+q∑
i=1

εi
1
2

Ai
i ei · eiϕ = −

1
2

tr(A) · ϕ. �

“1 ⇒ 2” Let ϕ1, ϕ2 be two solutions of the system of equation (3.20). We define

βϕ1(ei , e j ) = 〈∇
Σ M
ei

ϕ1, e j · ϕ1〉, βϕ2(ei , e j ) = 〈∇
Σ M
ei

ϕ2, e j · ϕ2〉,

where 〈·, ·〉 is the pseudo-hermitian symmetric Spin+(p, q)-invariant bilinear form such that 〈X · ϕ,ψ〉 =

−(−1)q〈ϕ, X · ψ〉, for all X ∈ Γ (T M), ϕ,ψ ∈ Γ (Σ M) (see [4]).

βϕi (e1, e2) = 〈∇
Σ M
e1

ϕi , e2 · ϕi 〉 = −〈∇
Σ M
e1

ϕi , e2
1 · e2 · ϕi 〉

= −〈e1 · ∇
Σ M
e1

ϕi , e1 · e2 · ϕi 〉 = −〈Dϕi + e2 · ∇
Σ M
e2

ϕi , e1 · e2 · ϕi 〉

= −H〈ϕi , e1 · e2 · ϕi 〉 − 〈e2 · ∇
Σ M
e2

ϕi , e1 · e2ϕi 〉.

Moreover 〈ϕi , e1 · e2 · ϕi 〉 = 〈e2 · e1 · ϕi , ϕi 〉 = −〈e1 · e2 · ϕi , ϕi 〉 = −〈ϕi , e1 · e2 · ϕi 〉 = 0.

Consequently

βϕi (e1, e2) = −〈e2 · ∇
Σ M
e2

ϕi , e1 · e2 · ϕi 〉 = 〈e2 · ∇
Σ M
e2

· ϕi , e2 · e1 · ϕi 〉

= 〈∇
Σ M
e2

· ϕi , e2
2 · e1 · ϕi 〉 = βφ(e2, e1),

and βϕi is symmetric.

Let us define the g-symmetric endomorphisms

(Bϕ1)
j
i = g(Bϕ1(ei ), e j ) := βϕ1(ei , e j ) and (Bϕ2)

j
i = g(Bϕ2(ei ), e j ) := βϕ2(ei , e j ).

Clearly
tr(Bϕ1 )

|ϕ1|
2 = gi j (Bϕ1)i j = −

tr(Bϕ2 )

|ϕ2|
2 = H .

Moreover let

b±
ϕi
(X, Y ) = 〈∇

Σ M
X ϕ±

i , Y · ϕ±

i 〉

and

(B±
ϕi
)

j
i = g(B±

ϕi
(ei ), e j ) := β±

ϕi
(ei , e j ).

With the same calculation as above and with Dϕ±

i = Hϕ∓

i , we obtain tr(B±) = H〈ϕ∓

i , ϕ
±

i 〉.

Claim.

〈B±
ϕi
(X) · ϕ±

i , ei · ϕ∓

i 〉 = −3〈B±
ϕi
(X) · ϕ∓

i , ei · ϕ±

i 〉. (3.22)

Proof. Obviously we can suppose that ϕ±

i (p) 6= 0 in an open neighborhood of p as 〈ϕ+

i , ϕ
−

i 〉 6= 0.

We remark that
ei ·ϕ

±

i
〈ϕ+

i ,ϕ
−

i 〉
is a normalized dual frame of Σ∓M .

Consequently as 〈∇
Σ M
X ϕ±

i , ei · ϕ∓

i 〉 = 0, because of the isotropy of ϕ±

i , we have:
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∇
Σ M
X ϕi =

2∑
1

εi

(
〈∇

Σ M
X ϕ+

i , eiϕ
+

i 〉
ei · ϕ−

i

〈ϕ+

i , ϕ
−

i 〉
+ 〈∇

Σ M
X ϕ−

i , eiϕ
−

i 〉
ei · ϕ+

i

〈ϕ+

i , ϕ
−

i 〉

)

=
1

〈ϕ+

i , ϕ
−

i 〉

2∑
1

εi

(
bϕ+

i
(X, ei )ei · ϕ−

i + bϕ−

i
(X, ei )ei · ϕ+

i

)
=

1

〈ϕ+

i , ϕ
−

i 〉
(B+
ϕi
(X) · ϕ−

i + B−
ϕi
(X) · ϕ+

i ).

Comparing degrees, this yields

∇
Σ M
X ϕ±

i =
1

〈ϕ+

i , ϕ
−

i 〉
B±
ϕi
(X) · ϕ∓

i .

Moreover

〈B±
ϕi
(X) · ϕ±

i , ei · ϕ∓

i 〉 = −2g(B±
ϕi
(X), ei )〈ϕ

+

i , ϕ
−

i 〉 − 〈B±
ϕi
(X) · ϕ∓

i , ei · ϕ∓

i 〉,

but

g(B±
ϕi
(X), ei ) = b±

ϕi
(X, ei ) = 〈∇

Σ M
X ϕ±

i , eiϕ
±

i 〉 =
1

〈ϕ+

i , ϕ
−

i 〉
〈B±
ϕi
(X) · ϕ∓

i , ei · ϕ±

i 〉

〈B±
ϕi
(X) · ϕ±

i , ei · ϕ∓

i 〉 = −3〈B±
ϕi
(X) · ϕ∓

i , ei · ϕ∓

i 〉. �

Moreover we have:

〈∇
Σ M
X ϕi , eiϕ

±

i 〉 = 〈∇
Σ M
X ϕ+

i + ∇
Σ M
X ϕ−

i , eiϕ
±

i 〉 = 〈∇
Σ M
X ϕ±

i , eiϕ
±

i 〉 =
1

〈ϕ+

i , ϕ
−

i 〉
〈B±
ϕi
(X) · ϕ∓

i , ei · ϕ±

i 〉

and

〈Bϕi (X) · ϕi , ei · ϕ±

i 〉 = 〈B+
ϕi
(X) · (ϕ+

i + ϕ−

i ), ei · ϕ±

i 〉 + 〈B−
ϕi
(X) · (ϕ+

i + ϕ−

i ), ei · ϕ±

i 〉

= 〈B+
ϕi
(X) · ϕ∓

i , ei · ϕ±

i 〉 + 〈B−
ϕi
(X) · ϕ∓

i , ei · ϕ±

i 〉.

Then with (3.22) we have

〈Bϕi (X) · ϕi , ei · ϕ±

i 〉 = 〈ϕ+

i , ϕ
−

i 〉〈∇
Σ M
X ϕ±

i , eiϕ
±

i 〉 + 〈B±
ϕi
(X) · ϕ±

i , ei · ϕ∓

i 〉

= 〈ϕ+

i , ϕ
−

i 〉〈∇
Σ M
X ϕi , eiϕ

±

i 〉 − 3〈B±
ϕi
(X) · ϕ∓

i , ei · ϕ±

i 〉

and finally

〈∇
Σ M
X ϕi , ei · ϕ±

i 〉 = −
1

2〈ϕ+

i , ϕ
−

i 〉
〈B±
ϕi
(X) · ϕ±

i , ei · ϕ∓

i 〉. (3.23)

As ei · ϕ±

i is a dual frame of Σ±M it shows that, for all X ∈ T M ,

∇
Σ M
X ϕ1 = −

1

2|ϕ1|
2 Bϕ1(X) · ϕ1, ∇

Σ M
X ϕ2 = −

1

2|ϕ2|
2 Bϕ2(X) · ϕ2.

As 〈ϕ1, ϕ2〉 = Const , we have

0 = X〈ϕ1, ϕ2〉 = 〈∇
Σ M
X ϕ1, ϕ2〉 + 〈ϕ1,∇

Σ M
X ϕ2〉 =

〈
−

Bϕ1(X)

2|ϕ1|
2 −

Bϕ2(X)

2|ϕ2|
2 · ϕ1, ϕ2

〉
.

Let

B(X) :=
Bϕ1(X)

|ϕ1|
2 +

Bϕ2(X)

|ϕ2|
2 .
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It is well-defined as the spinors ϕ1, ϕ2 are non-trivial at any point. B : T (M1,1) → T (M1,1) is obviously g-symmetric,

and tr(B(X)) = H − H = 0, i.e. in matrix form B =

(
a b

−b a

)
, with a, b ∈ R.

This yields

0 = 〈B(e1) · ϕ1, ϕ2〉 = a〈e1 · ϕ1, ϕ2〉 − b〈e2 · ϕ1, ϕ2〉

and

0 = 〈B(e2) · ϕ1, ϕ2〉 = b〈e1 · ϕ1, ϕ2〉 + a〈e2 · ϕ1, ϕ2〉.

If a 6= 0 and b 6= 0 we get with a simple calculation that 〈e1 · ϕ1, ϕ2〉 = 〈e2 · ϕ1, ϕ2〉 = 0.
We remark that ei · ϕ1 is a basis of Σ M , then we have

ϕ2 = 〈ϕ2, e1 · ϕ1〉
e1 · ϕ1

|ϕ1|
2 + 〈ϕ2, e2 · ϕ1〉

e2 · ϕ1

|ϕ2|
2 = 0.

Consequently B = 0 and
Bϕ1 (X)

|ϕ1|
2 = −

Bϕ2 (X)

|ϕ2|
2 =: −A(X), which conclude the proof. �

“2 ⇒ 3”: Recall that the spin curvature is defined by

RΣ M (X, Y ) = ∇
Σ M
X ∇

Σ M
Y ϕ − ∇

Σ M
Y ∇

Σ M
X − ∇

Σ M
[X,Y ]

ϕ,

and can be computed in terms of the curvature tensor RM in the following way:

RΣ M (ek, el) · ϕ =
1
2

∑
i≤ j

εiε j 〈R(ek, el)ei , e j 〉ei · e j · ϕ. (3.24)

Then a simple calculation shows that the integrability conditions for the generalized Killing equations (3.21) are given
by:

RΣ M (X, Y ) · ϕ1 = d∇ A(X, Y )ϕ1 + (A(Y ) · A(X)− A(X) · A(Y )) · ϕ1 (3.25)

RΣ M (X, Y ) · ϕ2 = −d∇ A(X, Y )ϕ2 + (A(Y ) · A(X)− A(X) · A(Y )) · ϕ2. (3.26)

With the equation we calculate in dimension 2:

RΣ M (e1, e2) · ϕi =
1
2
ε1ε2 R1221e1 · e2 · ϕi =

1
2

R1212e1 · e2 · ϕi .

Consequently, using the fact that

A(e2)A(e1)− A(e1)A(e2) = −2 det(A)e1 · e2,

the integrability conditions (3.25) can be expressed by

R1212e1 · e2 · ϕi = − det(A)e1 · e2 · ϕi + ((∇Σ M
e2

A)(e1)− (∇Σ M
e1

A)(e2)) · ϕi .

Let us now define the vector field

B = (∇Σ M
e2

A)(e1)− (∇Σ M
e1

A)(e2)

and the function

f = R1212 + det(A).

Then we obtain the system of equations

B · ϕ1 = f e1 · e2 · ϕ1, B · ϕ2 = − f e1 · e2 · ϕ2. (3.27)

We recall that the spinor bundle decomposes under the action of the real volume form ω1,1 into the direct sum

Σ M = Σ+M ⊕ Σ−M,
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where Σ+M , respectively Σ−M , are the eigenspaces to the eigenvalues 1, respectively −1. Then, for any spinor
ϕi ∈ Γ (Σ ) we have ϕi = ϕ+

i + ϕ−

i . Consequently we obtain the following system of equations:

B · ϕ±

1 = ∓ f ϕ∓

1 , B · ϕ±

2 = ± f ϕ∓

1 . (3.28)

This yields

‖B‖
2ϕ±

i = f 2ϕ±

i , i = 1, 2 (3.29)

and consequently ‖B‖
2

≥ 0. Moreover we have

〈B · ϕ1, B · ϕ2〉 = − f 2
〈e1 · e2 · ϕ1, e1 · e2 · ϕ2〉 = f 2

〈ϕ1, ϕ2〉

and

〈B · ϕ1, B · ϕ2〉 = 〈ϕ1, B · B · ϕ2〉 = −‖B‖
2
〈ϕ1, ϕ2〉.

Then ‖B‖
2

≤ 0 holds and finally B = 0, as B is non-isotropic. In fact if ‖B‖ = 0, then B · ϕ = 0: writing
B = B1e1 + B2e2, we have

B1e1 · ϕ = −B2e2 · ϕ ⇔ B1ϕ = B2ω1,1 · ϕ ⇔ B1ϕ
±

= ±B2ϕ
±,

which yields, as ϕ+ and ϕ− are linearly independent, that B1 = B2 = 0. �

Remark 2. If M1,1 is immersed into a pseudo-Riemannian manifold N 2,1 admitting a Killing spinor Φ ∈ Γ (Σ N )
(i.e ∇

Σ N Φ = λX ·N Φ, λ ∈ C), the restriction ϕ = ΦM is a solution of the equation

∇
Σ Mϕ =

1
2

A(X) · ϕ + µX · ωCp,q · ϕ, (3.30)

with µ = −iλ. Moreover we recall that the model spaces Mp,q
κ with curvature κ admit the maximal number of linearly

independent Killing spinors, where λ = ±
κ
2 , if κ ≥ 0 and λ = ±

iκ
2 , if κ < 0. Using this fact and replacing the parallel

spinor by Killing spinors on S2,1 (resp. H2,1) the same result as in Theorem 5 can be computed for surfaces in the
Lorentzian 3-space forms using analogous calculations, where the two generalized Killing equations are exactly given
by (3.30), changing the sign of the right terms in the second one. The supplementary term gives exactly the curvature
term in the Gauss and Codazzi equations. This is a generalization of the case of Riemannian surfaces immersed in
Riemannian 3-space forms proven in [17].
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