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a b s t r a c t

Methods in Riemann–Finsler geometry are applied to investigate bi-Hamiltonian
structures and related mKdV hierarchies of soliton equations derived geometrically from
regular Lagrangians and flows of non-stretching curves in tangent bundles. The total
space geometry and nonholonomic flows of curves are defined by Lagrangian semisprays
inducing canonical nonlinear connections (N-connections), Sasaki type metrics and linear
connections. The simplest examples of such geometries are given by tangent bundles
on Riemannian symmetric spaces G/SO(n) provided with an N-connection structure and
an adapted metric, for which we elaborate a complete classification, and by generalized
Lagrange spaces with constant Hessian. In this approach, bi-Hamiltonian structures are
derived for geometric mechanical models and (pseudo) Riemannianmetrics in gravity. The
results yield horizontal/vertical pairs of vector sine-Gordon equations and vector mKdV
equations, with the corresponding geometric curve flows in the hierarchies described
in an explicit form by nonholonomic wave maps and mKdV analogs of nonholonomic
Schrödinger maps on a tangent bundle.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Some interesting studies in geometric mechanics and field theory and theory of partial differential equations are
related to nonholonomic structures characterizing integrability of certain nonlinear physical systems, their global and local
symmetries [1–5]. In parallel, the differential geometry of plane and space curves has received considerable attention in the
theory of integrable nonlinear partial differential equations and applications to modern physics [6–12]. More particularly,
it is well known that both the modified Korteweg–de Vries (mKdV) equation and the sine-Gordon (SG) equation can
be encoded as flows of the curvature invariant of plane curves in Euclidean plane geometry. Similarly, curve flows in
Riemannian manifolds of constant curvature give rise to a vector generalization of the mKdV equation and encode its bi-
Hamiltonian structure in a natural geometric way [13,14]. This approach provides an elegant geometric origin for previous
results on the Hamiltonian structure of multi-component mKdV equations (see, e.g. Refs. [15,16]).
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In recent work [17], geometric flows of curves were studied in Riemannian symmetric spaces M = G/SO(n) which
provide the simplest generalization of n-dimensional constant-curvature Riemannian geometries. The isometry groups G of
these spaces are exhausted by the Lie groups SO(n+1) and SU(n), as known fromCartan’s classification [19]. Themain results
of [17] were to show that, firstly, the Cartan structure equations for torsion and curvature of a moving parallel frame and
its associated frame connection 1-form encode O(n− 1)-invariant bi-Hamiltonian operators. Secondly, this bi-Hamiltonian
structure generates a hierarchy of integrable flows of curves in which the frame components of the principal normal along
the curve (analogous to curvature invariants) satisfy O(n − 1)-invariant multi-component soliton equations that include
vector mKdV equations and vector sine-Gordon equations. The two groups G = SO(n + 1), SU(n) give different soliton
hierarchies and account precisely for the two known integrable versions [18,20,21] of vector mKdV equations and vector
sine-Gordon equations. Thirdly, the curve flows corresponding to such vector soliton equations were shown to be described
geometrically by wave maps and mKdV analogs of Schrödinger maps into the curved manifoldsM = G/SO(n).
A crucial condition [14,17] behind such constructions is the fact that the frame curvature matrix is constant on these

spacesM = G/SO(n). This approach can be developed into a geometric formalism for mapping arbitrary (semi) Riemannian
metrics [22] and regular Lagrange mechanical systems into bi-Hamiltonian structures and related solitonic equations
following certainmethods elaborated in the geometry of generalized Finsler and Lagrange spaces [2,3,23] and nonholonomic
manifolds with applications in modern gravity [24–26].
The first aim of this paper is to prove that solitonic hierarchies can be generated by (semi) Riemannian metrics gij on a

manifold V of dimension dim V = n ≥ 2 if the geometrical objects are lifted into the total space of the tangent bundle TV , or
of a vector bundle E = (M, π, E), dim E = m ≥ n, by a moving parallel frame formulation of geometric curve flows when
V has constant matrix curvature as defined canonically with respect to certain preferred frames. The second purpose is to
elaborate applications in geometric mechanics, in particular, that the dynamics defined by any regular Lagrangian can be
encoded in terms of bi-Hamiltonian structures and related solitonic hierarchies. It will be emphasized that, in a similar way,
any solution of the Einstein equations given by a generically off-diagonal metric can be mapped into solitonic equations.
The paper is organized as follows:
In Section 2 we outline the geometry of vector bundles equipped with a nonlinear connection. We emphasize the

possibility to define fundamental geometric objects induced by a (semi) Riemannian metric on the base space when the
Riemannian curvature tensor has constant coefficients with respect to a preferred nonholonomic framing.
In Section 3 we consider curve flows on nonholonomic vector bundles. We sketch an approach to classification of

such spaces defined by conventional horizontal and vertical symmetric (semi) Riemannian subspaces and equipped with
nonholonomic distributions defined by a nonlinear connection structure. Bi-Hamiltonian operators are then derived for a
canonical distinguished connection, adapted to the nonlinear connection structure, for which the distinguished curvature
coefficients are constant.
Section 4 is devoted to the formalismof distinguished bi-Hamiltonian operators and vector soliton equations for arbitrary

(semi) Riemannian spaces admitting nonholonomic deformations to symmetric Riemannian spaces. We define the basic
equations for nonholonomic curve flows. Thenwe consider the properties of cosymplectic and symplectic operators adapted
to the nonlinear connection structure. Finally,we construct solitonic hierarchies of bi-Hamiltonian anholonomic curve flows.
Section 5 contains some applications of the formalism in modern mechanics and gravity.
We conclude further with some remarks in Section 6. The Appendix contains necessary definitions and formulas from

the geometry of nonholonomic manifolds.

2. Nonholonomic structures on manifolds

In this section, we prove that for any (semi) Riemannian metric gij on a manifold V it is possible to define lifts to the
tangent bundle TV provided with canonical nonlinear connection (in brief, N-connection), Sasaki type metric and canonical
linear connection structure. The geometric constructions will be elaborated in general form for vector bundles.

2.1. N-connections induced by Riemannian metrics

Let E = (E, π, F ,M) be a (smooth) vector bundle of over base manifold M , with dimensions dimM = n and
dim E = (n + m), for n ≥ 2, and with m ≥ n being the dimension of typical fiber F . Here π : E → M defines a surjective
submersion. At any point u ∈ E, the total space E splits into ‘‘horizontal’’, Mu, and ‘‘vertical’’, Fu, subspaces. We denote the
local coordinates in the form u = (x, y), or uα =

(
xi, ya

)
, with horizontal indices i, j, k, etc.= 1, 2, . . . , n and vertical indices

a, b, c , etc.= n+ 1, n+ 2, . . . , n+m.1 The summation rule on repeated ‘‘upper’’ and ‘‘lower’’ indices will be applied.
Let the base manifoldM be equipped with a (semi) Riemannian metric, namely a second rank tensor of fixed signature,2

hg = g
ij
(x)dxi⊗dxj. It is possible to introduce a verticalmetric structure vg = g

ab
(x)dya⊗dyb by completing thematrix g

ij
(x)

1 In the particular case when we have a tangent bundle E = TM , both type of indices run over the same values since n = m but it is convenient to
distinguish the horizontal and vertical ones by using different groups of Latin indices.
2 In physics literature, one uses the term (pseudo) Riemannian/Euclidean space.
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diagonally with±1 till any nondegenerate second rank tensor g
ab
(x) ifm > n. This defines a metric structure g = [hg, vg]

(we shall also use the notation g
αβ
= [g

ij
, g
ab
]) on E . We can deform the metric structure, g

αβ
→ gαβ = [gij, gab], by

considering a frame (vielbein) transformation,

gαβ(x, y) = e αα (x, y) e
β

β (x, y)gαβ(x), (1)

with coefficients g
αβ
(x) = gαβ(x). The coefficients e

α
α (x, y) will be defined below (see formula (18)) from the condition of

generating curvature tensors with constant coefficients with respect to certain preferred frames.
For any gab obtained from gαβ , we consider a generating function

L(x, y) = gab(x, y)yayb

inducing a vertical metric

g̃ab =
1
2
∂2L

∂ya∂yb
(2)

which is ‘‘weakly’’ regular if det |g̃ab| 6= 0.3
By straightforward calculations we can prove the following4:

Theorem 2.1. The Euler–Lagrange equations on TM,

d
dτ

(
∂L
∂yi

)
−
∂L
∂xi
= 0,

for the Lagrangian L =
√
|L|, where yi = dxi

dτ for a path curve x
i(τ ) on M, depending on parameter τ , are equivalent to the

‘‘nonlinear’’ geodesic equations

d2xi

dτ 2
+ 2̃Gi

(
xk,
dxj

dτ

)
= 0

defining path curves of a canonical semispray S = yi ∂
∂xi
− 2̃Gi(x, y) ∂

∂yi
, where

2̃Gi(x, y) =
1
2
g̃ ij
(
∂2L
∂yi∂xk

yk −
∂L
∂xi

)
with g̃ ij being inverse to the vertical metric (2).

This theorem has an important geometric mechanical interpretation.

Corollary 2.1. For any (semi) Riemannian metric g
ij
(x) on M, we can associate canonically an effective regular Lagrange

mechanics on TM with the Euler–Lagrange equations transformed into nonlinear (semispray) geodesic equations.

The differential of mapπ : E → M is defined by fiber preservingmorphisms of the tangent bundles TE and TM . Its kernel
is just the vertical subspace vE with a related inclusion mapping i : vE → TE.

Definition 2.1. A nonlinear connection (N-connection) N on a vector bundle E is defined by the splitting on the left of an
exact sequence

0→ vE
i
→ TE → TE/vE → 0,

i.e. by a morphism of submanifolds N : TE → vE such that N ◦ i is the identity map in vE.
Equivalently, an N-connection is defined by a Whitney sum of conventional horizontal (h) subspace, (hE), and vertical

(v) subspace, (vE),
TE = hE ⊕ vE. (3)

This sum defines a nonholonomic (alternatively, anholonomic, or non-integrable) distribution of horizontal (h) and vertical
(v) subspaces on TE. Locally, an N-connection is determined by its coefficients Nai (u),

N = Nai (u)dx
i
⊗

∂

∂ya
.

The well-known class of linear connections consists of a particular subclass with the coefficients being linear in ya, i.e.,
Nai (u) = Γ

a
bj(x)y

b.

3 Similar values, for e αα = δ
α
α , where δ

α
α is the Kronecker symbol, were introduced for the so-called generalized Lagrange spaces whenLwas called the

‘‘absolute energy’’ [2].
4 See Refs. [2,3] for details of a similar proof; here we note that in our case, in general, e αα 6= δ

α
α .
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Remark 2.1. A manifold (or a bundle space) is called nonholonomic if it is provided with a nonholonomic distribution (see
historical details and summary of results in [24]). In a particular case, when the nonholonomic distribution is of type (3),
such spaces are called N-anholonomic [26].

Any N-connection N =
{
Nai (u)

}
may be characterized by an N-adapted frame (vielbein) structure eν = (ei, ea), where

ei =
∂

∂xi
− Nai (u)

∂

∂ya
and ea =

∂

∂ya
, (4)

and the dual frame (coframe) structure eµ = (ei, ea), where

ei = dxi and ea = dya + Nai (u)dx
i. (5)

We remark that eν = (ei, ea) and eµ = (ei, ea) are, respectively, the former ‘‘N-elongated’’ partial derivatives δν =
δ/∂uν = (δi, ∂a) and N-elongated differentials δµ = δuµ = (di, δa) which emphasize that operators (4) and (5) define,
correspondingly, certain ‘‘N-elongated’’ partial derivatives and differentials which are more convenient for tensor and
integral calculations on such nonholonomic manifolds.5
For any N-connection, we can introduce its N-connection curvature

� =
1
2
�aij d

i
∧ dj ⊗ ∂a,

with the coefficients defined as the Nijenhuis tensor,

�aij = e[jNai] = ejNai − eiNaj =
∂Nai
∂xj
−
∂Naj
∂xi
+ Nbi

∂Naj
∂yb
− Nbj

∂Nai
∂yb

. (6)

The vielbeins (5) satisfy the nonholonomy (equivalently, anholonomy) relations

[eα, eβ ] = eαeβ − eβeα = W
γ

αβeγ (7)

with (antisymmetric) nontrivial anholonomy coefficientsW bia = ∂aN
b
i andW

a
ji = �

a
ij.

These geometric objects can be defined in a form adapted to an N-connection structure via decompositions being
invariant under parallel transport preserving the splitting (3). In this casewe call them ‘‘distinguished’’ (by theN-connection
structure), i.e. d-objects. For instance, a vector field X ∈ TV is expressed

X = (hX, vX), or X = Xαeα = X iei + Xaea,
where hX = X iei and vX = Xaea state, respectively, the N-adapted horizontal (h) and vertical (v) components of the vector
(which following Refs. [2,3] is called a distinguished vector, in brief, d-vector). In a similar fashion, the geometric objects on
V, for instance, tensors, spinors, connections, etc. can be defined and called respectively d-tensors, d-spinors, d-connections
if they are adapted to the N-connection splitting (3).

Theorem 2.2. Any (semi) Riemannian metric g
ij
(x) on M induces a canonical N-connection on TM.

Proof. We sketch a proof by defining the coefficients of N-connection

Ñ ij(x, y) =
∂G̃i

∂yj
(8)

where

G̃i =
1
4
g̃ ij
(
∂2L

∂yi∂xk
yk −

∂L

∂xj

)
=
1
4
g̃ ijg jkγ klmy

lym,

γ ilm =
1
2
g ih(∂mglh + ∂lgmh − ∂hglm), ∂h = ∂/∂xh,

(9)

with gah and g̃ij defined respectively by formulas (1) and (2). �

The N-adapted operators (4) and (5) defined by the N-connection coefficients (8) are denoted respectively ẽν = (ẽi, ea)
and ẽµ = (ei, ẽa).

2.2. Canonical linear connection and metric structures

The constructions will be performed on a vector bundle E providedwithN-connection structure.We shall emphasize the
special properties of a tangent bundle (TM, π,M)when the linear connection andmetric are inducedby a (semi) Riemannian
metric onM .

5 We shall use ‘‘boldface’’ symbols whenever necessary as emphasis for any space and/or geometrical objects equippedwith/adapted to anN-connection
structure, or for the coefficients computed with respect to N-adapted frames.
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Definition 2.2. Adistinguished connection (i.e., d-connection)D = (hD, vD) is a linear connection preserving under parallel
transport the nonholonomic decomposition (3).

The N-adapted components 0αβγ of a d-connection Dα = (eαcD) are defined by equations

Dαeβ = 0
γ

αβeγ , or 0
γ

αβ (u) =
(
Dαeβ

)
ceγ . (10)

The N-adapted splitting into h- and v-covariant derivatives is stated by

hD =
{
Dk =

(
Lijk, L

a
bk

)}
, and vD =

{
Dc =

(
C ijk, C

a
bc

)}
,

where, by definition, Lijk =
(
Dkej

)
cei, Labk = (Dkeb)cea, C ijc =

(
Dcej

)
cei, Cabc = (Dceb)cea. The components 0

γ

αβ =(
Lijk, L

a
bk, C

i
jc, C

a
bc

)
completely define a d-connection D on E.

The simplest way to perform N-adapted computations is to use differential forms. For instance, starting with the d-
connection 1-form,

0αβ = 0
α
βγ e

γ , (11)

with the coefficients defined with respect to N-elongated frames (5) and (4), the torsion of a d-connection,

T α + Deα = deα + Γ α
β ∧ eβ , (12)

is characterized by (N-adapted) d-torsion components,

T ijk = L
i
jk − L

i
kj, T ija = −T

i
aj = C

i
ja, T aji = �

a
ji,

T abi = −T
a
ib =

∂Nai
∂yb
− Labi, T abc = C

a
bc − C

a
cb.

(13)

For d-connection structures on TM , we have to identify indices in the form i � a, j � b, . . . and the components of N- and
d-connections, for instance, Nai � N

j
i and L

i
jk � L

a
bk, C

i
ja � C

b
ca � C

i
jk.

Definition 2.3. A distinguished metric (i.e., d-metric) on a vector bundle E is a nondegenerate second rank metric tensor
g = g ⊕N h, equivalently

g = gij(x, y) ei ⊗ ej + hab(x, y) ea ⊗ eb, (14)

adapted to the N-connection decomposition (3).

From the class of arbitrary d-connections D on V, one distinguishes those which are metric compatible (metrical)
satisfying the condition

Dg = 0 (15)

including all h- and v-projections Djgkl = 0, Dagkl = 0, Djhab = 0, Dah bc = 0. For d-metric structures on V ' TM , with
gij = hab, the condition of vanishing ‘‘nonmetricity’’ (15) transforms into

hD(g) = 0 and vD(h) = 0, (16)

i.e. Djgkl = 0 and Dagkl = 0.
For any metric structure g on a manifold, there is the unique metric compatible and torsionless Levi-Civita connection∇

for which ∇g = 0. This connection is not a d-connection because it does not preserve under parallelism the N-connection
splitting (3). One has to consider less constrained cases, admitting nonzero torsion coefficients, when a d-connection is
constructed canonically for a d-metric structure. A simple minimal metric compatible extension of∇ is that of canonical d-
connectionwith T ijk = 0 and T

a
bc = 0 but T

i
ja, T

a
ji and T

a
bi are not zero, see (13). The coefficient formulas for such connections

are given in Appendix, see (69) and related discussion.

Lemma 2.1. Any (semi) Riemannian metric g
ij
(x) on a manifold M induces a canonical d-metric structure on TM,

g̃ = g̃ij(x, y) ei ⊗ ej + g̃ij(x, y) ẽi ⊗ ẽj, (17)

where ẽi are elongated as in (5), but with Ñ ij given by (8).

Proof. This construction is trivial by lifting to the so-called Sasakimetric [27] but in our case using the coefficients g̃ij (2). �

Proposition 2.1. There exist canonical d-connections on TM induced by a (semi) Riemannian metric g
ij
(x) on M.

Proof. We can construct an example in explicit form by introducing g̃ij and g̃ab in formulas (70), see Appendix, in order to
compute the coefficients Γ̃ α

βγ = (L̃
i
jk, C̃

a
bc). �
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The above Lemma and Proposition establish the following result.

Theorem 2.3. Any (semi) Riemannian metric g
ij
(x) on M induces a nonholonomic (semi) Riemannian structure on TM.

Wenote that the induced Riemannian structure is nonholonomic because on TM there is a non-integrable distribution (3)
defining Ñ ij. The corresponding curvature curvature tensor R̃

α
βγ τ = {̃R

i
hjk, P̃

i
jka, S̃

a
bcd} is computed by substituting g̃ij, Ñ

i
j and

ẽk into formulas (75), from Appendix, for Γ̃ α
βγ = (L̃

i
jk, C̃

a
bc). Here one should be noted that the constructions on TM depend

on arbitrary vielbein coefficients e αα (x, y) in (1). We can restrict such coefficients in order to generate various particular
classes of (semi) Riemannian geometries on TM , for instance, in order to generate symmetric Riemannian spaces with
constant curvature, see Refs. [19,28,29].

Corollary 2.2. There are lifts of a (semi) Riemannian metric g
ij
(x) on M, dimM = n, generating a Riemannian structure on

TM with the curvature coefficients of the canonical d-connection coinciding (with respect to N-adapted bases) with those for a
Riemannian space of constant curvature of dimension n+ n.

Proof. For a given metric g
ij
(x) onM , we chose such coefficients e αα (x, y) =

{
eaa(x, y)

}
in (1) that

gab(x, y) = e
a
a (x, y) e

b
b (x, y)gab(x)

produces a vertical metric (2) of type

g̃ef =
1
2
∂2L

∂ye∂yf
=
1
2
∂2(e aa e

b
b y
ayb)

∂ye∂yf
gab(x) = g̊ef , (18)

where g̊ab is the metric of a symmetric Riemannian space (of constant curvature). Considering a prescribed g̊ab, we have to
integrate two times on ye in order to find any solution for e aa defining a frame structure in the vertical subspace. The next
step is to construct the d-metric g̊αβ = [ g̊ij, g̊ab] of type (17), in our case, with respect to a nonholonomic base elongated by˜̊N ij, generated by g ij(x) and g̃ef = g̊ab, like in (8) and (9). This defines a constant-curvature Riemannian space of dimension
n+ n. The coefficients of the canonical d-connection, which in this case coincide with those for the Levi-Civita connection,
and the coefficients of the Riemannian curvature can be computed respectively by putting g̃ef = g̊ab in formulas (70) and
(75), see Appendix. Finally, we note that the induced symmetric Riemannian space contains additional geometric structures
like the N-connection and anholonomy coefficientsW γ

αβ , see (7). �

There are various possibilities to generate on TM nonholonomic Riemannian structures from a given metric g
ij
(x) onM .

They result in different geometrical and physical models. In this work, we emphasize the possibility of generating spaces
with constant curvature because for such symmetric spaces one can derive a bi-Hamiltonian hierarchy of curve flows and
associated solitonic equations.

Example 2.1. The simplest examplewhere a Riemannian structurewith constantmatrix curvature coefficients is generated
on TM comes from a d-metric induced by g̃ij = δij, i.e.

g̃[E] = δije
i
⊗ ej + δij ẽi ⊗ ẽj, (19)

with ẽi given by Ñ ij as defined by g ij(x) onM .

It should benoted that themetric (19) is generically off-diagonalwith respect to a coordinate basis because, in general, the
anholonomy coefficients from (7) are not zero. This way, we model on TM a nonholonomic Euclidean space with vanishing
curvature coefficients of the canonical d-connection (it can be verified by putting respectively the constant coefficients of
metric (19) into formulas (70) and (75)).Wenote that the conditions of Theorem2.1 are not satisfied by the d-metric (19) (the
coefficients g̃ij = δij are not defined as in (2)), so we cannot associate a geometrical mechanics model for such constructions.
There is an important generalization:

Example 2.2. We can consider L as a hypersurface in TM for which the matrix ∂2L/∂ya∂yb (i.e. the Hessian, following
the analogy with Lagrange mechanics and field theory) is constant and nondegenerate. This states that g̃ij = const , which
produces vanishing curvature coefficients for the canonical d-connection induced by g

ij
(x) onM .

Finally, we note that a number of geometric ideas andmethods applied in this sectionwere considered in the approaches
to the geometry of nonholonomic spaces and generalized Finsler–Lagrange geometry elaborated by the schools of Vranceanu
and Miron and by Bejancu in Romania [30,31,2,3,23,24], see also Section 5. In these approaches it is possible to construct
geometricmodels withmetric compatible linear connections, which is important for developments connectedwithmodern
(non)commutative gravity and string theory [25,26]. For Finsler spaces with nontrivial nonmetricity, for instance, those
defined by the the Berwald and Chern connections [32], the resulting physical theories with local anisotropy fall outside of
the class of standard models.
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3. Curve flows and anholonomic constraints

We now formulate the geometry of curve flows adapted to the nonlinear connection structure.

3.1. N-adapted curve flows

Let us consider a vector bundle E = (E, π, F ,M), dim E = n + m (in the particular case, E = TM , we have m = n)
equipped with a d-metric g = [g, h] (14) and N-connection Nai (3) structures. A non-stretching curve γ (τ , l) on V, where
τ is a parameter and l is the arclength of the curve on V, is defined by an evolution d-vector Y = γτ and tangent d-vector
X = γl such that g(X,X) = 1. Such curves γ (τ , l) sweep out a two-dimensional surface in Tγ (τ ,l)V ⊂ TV.
We shall work with N-adapted bases (4) and (5) and the connection 1-form 0αβ = 0

α
βγ e

γ with the coefficients 0αβγ for
the canonical d-connection operator D (69) (see Appendix), acting in the form

DXeα = (Xc0 γ
α )eγ and DYeα = (Yc0 γ

α )eγ , (20)

where ‘‘c’’ denotes the interior product and the indices are lowered and raised respectively by the d-metric gαβ = [gij, hab]
and its inverse gαβ = [g ij, hab]. We note that DX = XαDα is the covariant derivation operator along curve γ (τ , l). It is
convenient to fix the N-adapted frame to be parallel to curve γ (l) adapted in the form

e1 + hX, for i = 1, and êi, where hg(hX, êi) = 0,

en+1 + vX, for a = n+ 1, and êa, where vg(vX, êa) = 0,
(21)

for î = 2, 3, . . . , n and â = n+ 2, n+ 3, . . . , n+m. For such frames, the covariant derivative of each ‘‘normal’’ d-vector eα̂
is parallel to the d-vectors adapted to γ (τ , l),

DXêi = −ρ̂ i(u)X and DhXhX = ρ̂ i(u)êi,

DXêa = −ρ â(u)X and DvXvX = ρ â(u)êa,
(22)

in terms of some coefficient functions ρ̂ i(u) and ρ â(u). The formulas (20) and (22) are distinguished into h- and v-
components for X = hX + vX and D = (hD, vD) for D = {Γ γ

αβ}, hD = {L
i
jk, L

a
bk} and vD = {C

i
jc, C

a
bc}. Along γ (l), we

can pull back differential forms in a parallel N-adapted form. For instance, 0αβX + Xc0αβ .
An algebraic characterization of parallel frames can be obtained if we perform a frame transformation preserving the

decomposition (3) to an orthonormal basis eα′ ,

eα → A α
′

α (u) eα′ , (23)

called an orthonormal d-basis, where the coefficients of the d-metric (14) are transformed into the Euclidean ones gα′β ′ =
δα′β ′ . In distinguished form, we obtain two skew matrices

0
i′j′
hX + hXc0

i′j′
= 2e[i

′ρj
′
]

hX and 0a
′b′
vX + vXc0

a′b′
= 2e[a

′ρb
′
]

vX

where

ei
′

hX + g(hX,e
i′) = [1, 0, . . . , 0︸ ︷︷ ︸

n−1

] and ea
′

vX + h(vX,e
a′) = [1, 0, . . . , 0︸ ︷︷ ︸

m−1

]

and

0
j′

hXi′ =

[
0 ρ j

′

−ρi′ 0[h]

]
and 0 b′

vXa′ =

[
0 ρb

′

−ρa′ 0[v]

]
with 0[h] and 0[v] being respectively (n− 1)× (n− 1) and (m− 1)× (m− 1)matrices. The above presented row-matrices
and skew-matrices show that locally an N-anholonomic manifold V of dimension n + m, with respect to distinguished
orthonormal frames, are characterized algebraically by pairs of unit vectors in Rn and Rm preserved respectively by the
SO(n− 1) and SO(m− 1) rotation subgroups of the local N-adapted frame structure group SO(n)⊕ SO(m). The connection
matrices 0 j′

hXi′ and 0 b′
vXa′ belong to the orthogonal complements of the corresponding Lie subalgebras and algebras,

so(n − 1) ⊂ so(n) and so(m − 1) ⊂ so(m). The torsion (12) and curvature (71) (see Appendix) tensors in orthonormal
component form with respect to (21) can be mapped into a distinguished orthonormal dual frame (23),

T α′ + DXeα
′

Y − DYeα
′

X + eβ
′

Y 0
α′

Xβ ′ − eβ
′

X 0
α′

Yβ ′ , (24)

and

Rα′

β ′(X, Y) = DYΓ
α′

Xβ ′ − DXΓ
α′

Yβ ′ + Γ
γ ′

Yβ ′Γ
α′

Xγ ′ − Γ
γ ′

Xβ ′Γ
α′

Yγ ′ , (25)



86 S.C. Anco, S.I. Vacaru / Journal of Geometry and Physics 59 (2009) 79–103

where eα′Y + g(Y, eα′) and Γ α′

Yβ ′ + YcΓ α′

β ′
= g(eα′ ,DYeβ ′) define respectively the N-adapted orthonormal frame row-

matrix and the canonical d-connection skew-matrix in the flow directions, where R α′

β ′
(X, Y) + g(eα′ , [DX,DY]eβ ′) is the

curvaturematrix. Both torsion and curvature components can be distinguished into h- and v-components like (13) and (72),
by considering N-adapted decompositions of type

g = [g, h], eβ ′ = (ej′ , eb′), eα
′

= (ei
′

, ea
′

), X = hX+ vX, D = (hD, vD).
Finally, we note that the matrices for torsion (24) and curvature (25) can be computed for any metric compatible linear
connection like the Levi-Civita and the canonical d-connection. For our purposes, we are interested to define a frame in
which the curvature tensor has constant coefficients and the torsion tensor vanishes.

3.2. Anholonomic bundles with constant matrix curvature

For vanishing N-connection curvature and torsion, we get a holonomic Riemannian manifold with constant curvature,
wherein the equations (24) and (25) directly encode a bi-Hamiltonian structure, see details in Refs. [13,14]. A larger class
of Riemannian manifolds for which the frame curvature matrix is constant consists of the symmetric spaces M = G/H
for compact semisimple Lie groups G ⊃ H (where H is required to be invariant under an involutive automorphism of G).
A complete classification and summary of main results for such spaces is given in Refs. [19,28]. Constancy of the frame
curvature matrix is a consequence of the fact that the Riemannian curvature and the metric tensors on the curved manifold
M = G/H are covariantly constant and G-invariant. In Ref. [17], a bi-Hamiltonian structure was shown to be encoded in
the frame equations analogous to (24) and (25) for the symmetric spaces M = G/SO(n) with H = SO(n) ⊃ O(n − 1).
All such spaces are exhausted by G = SO(n + 1), SU(n). The derivation of the bi-Hamiltonian structure exploited the
canonical soldering of the spaces G/SO(n) onto Klein geometries [29]. A similar derivation [33] holds for the Lie groups
G = SO(n + 1), SU(n) themselves when they are viewed as symmetric spaces in the standard manner [28]. A broad
generalization of this derivation to arbitrary Riemannian symmetric spaces, including arbitrary compact semisimple Lie
groups, has been obtained in Ref. [34].

3.2.1. Symmetric nonholonomic tangent bundles
We suppose that the base manifold is a constant-curvature symmetric space of the form M = hG/SO(n) with the

isotropy subgroup hH = SO(n) ⊃ O(n) and that the typical fiber space is likewise of the constant-curvature symmetric
form F = vG/SO(m) with the isotropy subgroup vH = SO(m) ⊃ O(m). This means (according to Cartan’s classification of
symmetric spaces [19]) that we have hG = SO(n + 1) and vG = SO(m + 1), which is general enough for a study of real
holonomic and nonholonomic manifolds and geometric mechanics models.6
Our aim is to solder in a canonical way (like in the N-connection geometry) the horizontal and vertical symmetric

Riemannian spaces of dimension n and m with a (total) symmetric Riemannian space V of dimension n + m, when
V = G/SO(n+m)with the isotropy group H = SO(n+m) ⊃ O(n+m) and G = SO(n+m+ 1). First, we note that the just
mentioned horizontal, vertical and total symmetric Riemannian spaces can be identified with respective Klein geometries.
For instance, the metric tensor hg = {g̊ij} onM is defined by the Cartan–Killing inner product 〈·, ·〉h on TxhG ' hg restricted
to the Lie algebra quotient spaces hp = hg/hh, with TxhH ' hh, where hg = hh ⊕ hp is stated such that there is an
involutive automorphism of hG leaving hH fixed, i.e. [hh, hp] ⊆ hp and [hp, hp] ⊆ hh. In a similar form, we can define the
inner products and Lie algebras: vg = {h̊ab} is given by restriction of 〈·, ·〉v on TyvG ' vg to vp = vg/vh with TyvH ' vh,
vg = vh⊕ vp, where

[vh, vp] ⊆ vp, [vp, vp] ⊆ vh; (26)
likewise g = {g̊αβ} is given by restriction of 〈·, ·〉g on T(x,y)G ' g to p = g/h, with T(x,y)H ' h, g = h⊕ pwhere

[h, p] ⊆ p, [p, p] ⊆ h.

We parametrize the metric structure with constant coefficients on V = G/SO(n+m) in the form
g̊ = g̊αβduα ⊗ duβ ,

where uα are local coordinates and

g̊αβ =
[
g̊ij + N̊ai N

b
j h̊ab N̊ej h̊ae

N̊ei h̊be h̊ab

]
(27)

where trivial, constant, N-connection coefficients N̊ej = h̊
ebg̊jb are defined in terms of any given coefficients h̊eb and g̊jb,

i.e. from the inversemetrics coefficients defined respectively by themetric on hG = SO(n+1) and by themetric coefficients
out of (n× n)- and (m×m)-terms of the metric g̊αβ . As a result, we define an equivalent d-metric structure of type (14)

g̊ = g̊ij ei ⊗ ej + h̊abe̊a ⊗ e̊b,

ei = dxi, e̊a = dya + N̊ei dx
i,

(28)

6 It is necessary to consider hG = SU(n) and vG = SU(m) for geometric models involving spinor and gauge fields.
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defining a trivial (n + m)-splitting g̊ = g̊ ⊕N̊ h̊ because all nonholonomy coefficients W̊
γ

αβ and N-connection curvature
coefficients �̊aij are zero. In a more general form, we can consider any covariant coordinate transforms of (28) preserving the
(n+ m)-splitting resulting in anyW γ

αβ = 0 (7) and�
a
ij = 0 (6). We denote such trivial N-anholonomic Riemannian spaces

as V̊ = [hG = SO(n+1), vG = SO(m+1), N̊ei ]. It can be considered that such trivially N-anholonomic group spaces possess
a Lie d-algebra symmetry soN̊(n+m) + so(n)⊕ so(m).
The simplest generalization for a vector bundle E̊ is to consider nonholonomic distributions on V = G/SO(n + m)

defined locally by arbitrary N-connection coefficients Nai (x, y) with nonvanishingW
γ

αβ and �
a
ij but with constant d-metric

coefficients when

g = g̊ij ei ⊗ ej + h̊ab ea ⊗ eb,

ei = dxi, ea = dya + Nai (x, y)dx
i.

(29)

This metric is very similar to (19) but with the coefficients g̊ij and h̊ab induced by the corresponding Lie d-algebra structure
soN̊(n + m). Such spaces transform into N-anholonomic Riemann–Cartan manifolds V̊N = [hG = SO(n + 1), vG =
SO(m + 1),Nei ] with nontrivial N-connection curvature and induced d-torsion coefficients of the canonical d-connection
(see formulas (13) computed for constant d-metric coefficients and the canonical d-connection coefficients in (69)). One
has zero curvature for the canonical d-connection (in general, such spaces are curved ones with generically off-diagonal
metric (29) and nonzero curvature tensor for the Levi-Civita connection).7 This allows us to classify the N-anholonomic
manifolds (and vector bundles) as having the same group and algebraic properties as pairs of symmetric Riemannian spaces
of dimension n andm but nonholonomically soldered to the symmetric Riemannian space of dimension n+m. With respect
to N-adapted orthonormal bases (23), with distinguished h- and v-subspaces, we obtain the same inner products and group
and Lie algebra spaces as in (26).
The classification of N-anholonomic vector bundles is almost similar to that for symmetric Riemannian spaces if we

consider that n = m and try to model tangent bundles of such spaces, provided with N-connection structure. For
instance, we can take a (semi) Riemannian structure with the N-connection induced by a absolute energy structure like
in (8) and with the canonical d-connection structure (69), for g̃ef = g̊ab (18). A straightforward computation of the
canonical d-connection coefficients8 and of d-curvatures for ◦g̃ij and ◦Ñ ij proves that the nonholonomic Riemannianmanifold
(M = SO(n+ 1)/SO(n), ◦L) possess constant both zero canonical d-connection curvature and torsion but with induced
nontrivialN-connection curvature ◦�̃ijk. Such spaces, being tangent to symmetric Riemannian spaces, are classified similarly
to the Riemannian ones with constant matrix curvature, see (26) for n = m, but possessing a nonholonomic structure
induced by generating function ◦L.

3.2.2. N-anholonomic Klein spaces
The bi-Hamiltonian and solitonic constructions in Refs. [34,17,14,21] are based on soldering Riemannian symmetric-

space geometries onto Klein geometries [29]. For theN-anholonomic spaces of dimension n+n, with constant d-curvatures,
similar constructions will hold but we have to adapt them to the N-connection structure.
There are two Hamiltonian variables given by the principal normals hν and vν, respectively, in the horizontal and vertical

subspaces, defined by the canonical d-connection D = (hD, vD), see formulas (21) and (22),
hν + DhXhX = ν̂ iêi and

vν + DvXvX = ν âêa.

This normal d-vector v = (hν, vν), with components of type να = (ν i, νa) = (ν1, ν̂ i, νn+1, ν â), is defined with respect
to the tangent direction of curve γ . There is also the principal normal d-vector $ = (h$, v$) with components of type
$ α
= ($ i,$ a) = ($ 1,$ î,$ n+1,$ â) defined with respect to the flow direction, with
h$ + DhYhX = $ îêi,

v$ + DvYvX = $ âêa,
representing a Hamiltonian d-covector field. We can consider that the normal part of the flow d-vector

h⊥ + Y⊥ = ĥiêi + ĥ
aêa

represents a Hamiltonian d-vector field. For such configurations, we can consider parallel N-adapted frames eα′ = (ei′ , ea′)
when the h-variables ν î′ ,$ î′ , hî′ are respectively encoded in the top row of the horizontal canonical d-connection matrices
0

j′

hXi′ and 0 j′

hYi′ and in the row matrix
(
ei′Y
)
⊥

+ ei′Y − g‖e
i′
X where g‖ + g(hY,hX) is the tangential h-part of the flow

d-vector. A similar encoding holds for v-variables ν â′ ,$ â′ , hâ′ in the top row of the vertical canonical d-connectionmatrices
0 b
′

vXa′ and 0
b′
vYa′ and in the row matrix

(
ea′Y
)
⊥

+ ea′Y − h‖ ea′X where h‖ + h(vY, vX) is the tangential v-part of the flow

d-vector. In an abbreviated notation, we shall write vα′ and$ α′ where the primed Greek indices α′, β ′, . . .will denote both

7 With constant values for the d-metric coefficients we get zero coefficients for the canonical d-connection which then yields vanishing curvature
coefficients (72).
8 On tangent bundles, such d-connections can be defined to be torsionless.
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N-adapted and then orthonormalized components of geometric objects (like d-vectors, d-covectors, d-tensors, d-groups, d-
algebras, d-matrices) admitting further decompositions into h- and v-components defined as non-integrable distributions
of such objects.
With respect to N-adapted orthonormal frames, the geometry of N-anholonomic manifolds is defined algebraically, on

their tangent bundles, by pairs of horizontal and vertical Klein spaces (see [29] for a summary of Klein geometry, and for
bi-Hamiltonian soliton constructions, see [34,14]). The N-connection structure induces an N-anholonomic Klein geometry
stated by two left–invariant hg- and vg-valued Maurer–Cartan forms on the Lie d-group G = (hG, vG) that are identified
with the zero–curvature canonical d-connection 1-form G0 = {G0α

′

β ′
}, via

G0α
′

β ′ =
G0α

′

β ′γ ′e
γ ′
=
hGLi

′

j′k′e
k′
+

vGC i
′

j′k′e
k′ .

For the case of a trivial N-connection structure in vector bundles with the base and typical fiber spaces being symmetric
Riemannian spaces, we identify hGLi

′

j′k′ and
vGC i

′

j′k′ with the coefficients of the Cartan connections
hGL and vGC , respectively,

for the hG and vG, both with vanishing curvatures. We have

d G0+
1
2
[
G0, , G0] = 0

and, respectively, for h- and v-components, dhGL + 1
2 [
hGL, hGL] = 0 and dvGC + 1

2 [
vGC, vGC] = 0, where d denotes the total

derivative on the d-group manifold G = hG ⊕ vG or its restrictions on hG or vG.We can consider that G0 defines the so-
called Cartan d-connection for non-integrable N-connection structures (see details and supersymmetric/noncommutative
developments in [25,26]).
The Cartan d-connection determines an N-anholonomic Riemannian geometric structure on the nonholonomic bundle

E̊ = [hG = SO(n+ 1), vG = SO(m+ 1),Nei ],

derived through the following decomposition of the Lie d-algebra g = hg ⊕ vg. For the horizontal splitting, we have
hg = so(n) ⊕ hp, with [hp, hp] ⊂ so(n) and, for the vertical splitting, we have [so(n), hp] ⊂ hp; for the vertical splitting,
vg = so(m) ⊕ vp, with [vp, vp] ⊂ so(m) and [so(m), vp] ⊂ vp. When n = m, any canonical d-objects (N-connection,
d-metric, d-connection, etc.) derived from (29) using the Cartan d-connection agree with ones determined by the canonical
d-connection (70) on a tangent bundle.
It is useful to consider a quotient space with distinguished structure group VN = G/SO(n) ⊕ SO(m) regarding G as a

principal (SO(n)⊕ SO(m))-bundle over E̊, which is an N-anholonomic bundle. In this case, we can always fix a local section
of this bundle and pull-back G0 to give a (hg⊕ vg)-valued 1-form g0 in a point u ∈ E̊. Any change of local sections define
SO(n)⊕SO(m) gauge transformations of the canonical d-connection g0 all preserving the nonholonomic decomposition (3).
There are involutive automorphisms hσ = ±1 and vσ = ±1, respectively, of hg and vg, defined that so(n) (or so(m)) is

the eigenspace hσ = +1 (or vσ = +1) and hp (or vp) is the eigenspace hσ = −1 (or vσ = −1). By means of an N-adapted
decomposition relative to these eigenspaces, the symmetric part of the canonical d-connection

0 +
1
2
(g0+ σ (g0)) ,

defines a (so(n)⊕ so(m))-valued d-connection 1-form, with respective h- and v-splitting L + 12
(
hgL+ hσ

(
hgL
))
and

C + 12 (
vgC+ hσ(vgC)). Likewise the antisymmetric part

e +
1
2
(g0− σ (g0)) ,

defines a (hp⊕ vp)-valued N-adapted coframe for the Cartan–Killing inner product 〈·, ·〉p on TuG ' hg ⊕ vg restricted
to TuVN ' p, with respective h- and v-splitting he + 1

2

(
hgL− hσ

(
hgL
))
and ve + 12 (

vgC − hσ(vgC)). This inner product,
distinguished into h- and v-components, provides a d-metric structure of type g = [g, h] (14), where g = 〈he⊗ he〉hp and
h = 〈ve⊗ ve〉vp on VN = G/SO(n)⊕ SO(m).
We generate a G-invariant d-derivative Dwhose restriction to the tangent space TVN for any N-anholonomic curve flow

γ (τ , l) in VN = G/SO(n)⊕ SO(m) is defined via

DXe = [e, γlc0] and DYe = [e, γτc0] , (30)

which have h- and v-decompositions. The derivatives DX and DY are equivalent to those considered in (20) and obey the
Cartan structure equations (24) and (25). For canonical d-connections, a large class of N-anholonomic spaces of dimension
n = m, the d-torsions are zero and the d-curvatures have constant coefficients.
Let eα′ = (ei′ , ea′) be an N-adapted orthonormal coframe being identified with the (hp⊕ vp)-valued coframe e in a fixed

orthonormal basis for p = hp ⊕ vp ⊂ hg ⊕ vg. Considering the kernel/ cokernel of Lie algebra multiplications in the h-
and v-subspaces, respectively, [ehX, ·]hg and [evX, ·]vg, we can decompose the coframes into parallel and perpendicular parts
with respect to eX. We write

e = (eC = heC + veC , eC⊥ = heC⊥ + veC⊥),
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for p(=hp⊕ vp)-valued mutually orthogonal d-vectors eC and eC⊥ , satisfying the conditions [eX, eC ]g = 0 and
[
eX, eC⊥

]
g
6=

0; such conditions can be stated in h- and v-component form, respectively, [heX, heC ]hg = 0,
[
heX, heC⊥

]
hg 6= 0 and

[veX, veC ]vg = 0,
[
veX, veC⊥

]
vg
6= 0. Then we have the algebraic decompositions

TuVN ' p = hp⊕ vp = g = hg⊕ vg/so(n)⊕ so(m)
and

p = pC ⊕pC⊥ = (hpC ⊕ vpC )⊕
(
hpC⊥ ⊕ vpC⊥

)
,

with p‖ ⊆ pC and pC⊥ ⊆ p⊥, where
[
p‖, pC

]
= 0, 〈pC⊥ , pC 〉 = 0, but

[
p‖, pC⊥

]
6= 0 (i.e. pC is the centralizer of eX in

p = hp⊕ vp ⊂ hg⊕ vg); in h- and v-components, thus hp‖ ⊆ hpC and hpC⊥ ⊆ hp⊥, where
[
hp‖, hpC

]
= 0, 〈hpC⊥ , hpC 〉 = 0,

but
[
hp‖, hpC⊥

]
6= 0 (i.e. hpC is the centralizer of ehX in hp ⊂ hg) and vp‖ ⊆ vpC and vpC⊥ ⊆ vp⊥, where

[
vp‖, vpC

]
= 0,

〈vpC⊥ , vpC 〉 = 0, but
[
vp‖, vpC⊥

]
6= 0 (i.e. vpC is the centralizer of evX in vp ⊂ vg). Using the canonical d-connection

derivative DX of a d-covector algebraically perpendicular (or parallel) to eX, we get a new d-vector which is algebraically
parallel (or perpendicular) to eX, i.e. DXeC ∈ pC⊥ (or DXeC⊥ ∈ pC ) in h- and v-components such formulas are written
DhXheC ∈ hpC⊥ (or DhXheC⊥ ∈ hpC ) and DvXveC ∈ vpC⊥ (or DvXveC⊥ ∈ vpC ). All such d-algebraic relations can be written in
N-anholonomic manifolds and canonical d-connection settings, for instance, using certain relations of type

DX(eα
′

)C = vα
′

β ′(e
β ′)C⊥ and DX(eα

′

)C⊥ = −v
α′

β ′(e
β ′)C ,

for some antisymmetric d-tensors vα′β ′ = −vβ ′α′ . Note we will get an N-adapted (SO(n)⊕ SO(m))-parallel frame defining
a generalization of the concept of Riemannian parallel frame [14] on N-adapted manifolds whenever pC is larger than p‖.
Substituting eα′ = (ei

′

, ea′) into the last formulas and considering h- and v-components, we define SO(n)-parallel and
SO(m)-parallel frames (for simplicity we omit these formulas when the Greek letter indices are split into Latin letter h- and
v-indices).
The final conclusion of this section is that the Cartan structure equations on hypersurfaces swept out by nonholonomic

curve flows on N-anholonomic spaces with constant matrix curvature for the canonical d-connection geometrically encode
separate O(n− 1)- and O(m− 1)-invariant (respectively, horizontal and vertical) bi-Hamiltonian operators, whenever the
N-connection freedom of the d-group action SO(n) ⊕ SO(m) on e and 0 is used to fix them to be an N-adapted parallel
coframe and its associated canonical d-connection 1-form, related to the canonical covariant derivative on N-anholonomic
manifolds.

4. Anholonomic bi-Hamiltonian structures and vector soliton equations

Introducing N-adapted orthonormal bases, for N-anholonomic spaces of dimension n + n, with constant curvatures of
the canonical d-connection, we will be able to derive bi-Hamiltonian and vector soliton structures similarly to the case of
symmetric Riemannian spaces (see Refs. [21,17,34]).

4.1. Basic equations for N-anholonomic curve flows

In this section, we shall prove the results for the h-components of certain N-anholonomic manifolds with constant d-
curvature and then duplicate the formulas for the v-components omitting similar details.
There is an isomorphism between the real space so(n) and the Lie algebra of n × n skew-symmetric matrices. This

yields an isomorphism between hp ' Rn and the tangent spaces TxM = so(n + 1)/so(n) of the Riemannian manifold
M = SO(n+ 1)/SO(n) as described by the following canonical decomposition

hg = so(n+ 1) ⊃ hp ∈
[
0 hp
−hpT h0

]
for h0 ∈ hh = so(n)

with hp = {pi′} ∈ Rn being the h-component of the d-vector p = (pi′ , pa′) and hpT denoting the transposition of the row
hp. The Cartan–Killing inner product on hp is given by

hp·hp =
〈[

0 hp
−hpT h0

]
,

[
0 hp
−hpT h0

]〉
+
1
2
tr

{[
0 hp
−hpT h0

]T [ 0 hp
−hpT h0

]}
,

where tr denotes the trace of the corresponding product of matrices. This product identifies canonically hp ' Rn with its
dual hp∗ ' Rn. In a similar fashion, we can define the Cartan–Killing inner product vp · vpwhere

vg = so(m+ 1) ⊃ vp ∈
[
0 vp
−vpT v0

]
for v0 ∈ vh = so(m)

with vp = {pa′} ∈ Rm being the v-component of the d-vector p = (pi
′

pa
′

). In general, in the tangent bundle of an N-
anholonomic manifold, we can consider the Cartan–Killing N-adapted inner product p · p = hp · hp+ vp · vp.
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Following the introduced Cartan–Killing parametrizations, we analyze the flow γ (τ , l) of a non-stretching curve in
VN = G/SO(n)⊕ SO(m). Let us introduce a coframe e ∈ T ∗γ VN⊗ (hp⊕ vp), which is an N-adapted (SO(n)⊕ SO(m))-parallel
covector frame along γ , and its associated canonical d-connection 1-form 0 ∈ T ∗γ VN ⊗ (so(n)⊕ so(m)). Such d-objects are
respectively parametrized:

eX = ehX + evX,

for

ehX = γhXche =

[
0 (1,

−→
0 )

−(1,
−→
0 )T h0

]
and

evX = γvXcve =

[
0 (1,

←−
0 )

−(1,
←−
0 )T v0

]
,

where we write (1,
−→
0 ) ∈ Rn,

−→
0 ∈ Rn−1 and (1,

←−
0 ) ∈ Rm,

←−
0 ∈ Rm−1;

0 = [0hX,0vX] ,

with

0hX = γhXcL =

[
0 (0,

−→
0 )

−(0,
−→
0 )T L

]
∈ so(n+ 1),

where

L =
[
0 −→v

−
−→v
T h0

]
∈ so(n), −→v ∈ Rn−1, h0 ∈ so(n− 1),

and also

0vX = γvXcC =

[
0 (0,

←−
0 )

−(0,
←−
0 )T C

]
∈ so(m+ 1),

where

C =
[
0 ←−v

−
←−v
T

v0

]
∈ so(m), ←−v ∈ Rm−1, v0 ∈so(m− 1).

The above parametrizations involve no loss of generality, because they can be achieved by the available gauge freedom
using SO(n) and SO(m) rotations on the N-adapted coframe and canonical d-connection 1-form, distinguished in h- and
v-components.
We introduce decompositions of horizontal SO(n+ 1)/SO(n)matrices

hp 3
[
0 hp
−hpT h0

]
=

 0
(
hp‖,
−→
0
)

−

(
hp‖,
−→
0
)T

h0

+ [ 0
(
0, h−→p ⊥

)
−
(
0, h−→p ⊥

)T
h0

]
,

into tangential and normal parts relative to ehX via corresponding decompositions of h-vectors hp = (hp‖, h
−→p ⊥) ∈ Rn

relative to
(
1,
−→
0
)
, when hp‖ is identifiedwith hpC and h

−→p ⊥ is identifiedwith hp⊥ = hpC⊥ . In a similar form,we decompose
vertical SO(m+ 1)/SO(m)matrices

vp 3

[
0 vp
−vpT v0

]
=

 0
(
vp‖,
←−
0
)

−

(
vp‖,
←−
0
)T

v0

+ [ 0
(
0, v←−p ⊥

)
−
(
0, v←−p ⊥

)T
v0

]
,

into tangential and normal parts relative to evX via corresponding decompositions of h-vectors vp = (vp‖, v
←−p ⊥) ∈ Rm

relative to
(
1,
←−
0
)
, when vp‖ is identified with vpC and v

←−p ⊥ is identified with vp⊥ = vpC⊥ .
There are analogous matrix decompositions relative to the flow direction. In the h-direction, we parametrize

ehY = γτ che =

[
0

(
he‖, h

−→e ⊥
)

−
(
he‖, h

−→e ⊥
)T

h0

]
,
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when ehY ∈ hp,
(
he‖, h

−→e ⊥
)
∈ Rn and h−→e ⊥ ∈ Rn−1, and

0hY = γhYcL =

[
0 (0,

−→
0 )

−(0,
−→
0 )T h$τ

]
∈ so(n+ 1), (31)

where

h$τ =

[
0 −→$

−
−→$
T h2

]
∈ so(n), −→$ ∈ Rn−1, h2 ∈ so(n− 1).

In the v-direction, we parametrize

evY = γτ cve =

[
0

(
ve‖, v

←−e ⊥
)

−
(
ve‖, v

←−e ⊥
)T

v0

]
,

when evY ∈ vp,
(
ve‖, v

←−e ⊥
)
∈ Rm and v←−e ⊥ ∈ Rm−1, and

0vY = γvYcC =

[
0 (0,

←−
0 )

−(0,
←−
0 )T v$τ

]
∈ so(m+ 1),

where

v$τ =

[
0 ←−$

−
←−$
T

v2

]
∈ so(m), ←−$ ∈ Rm−1, v2 ∈ so(m− 1).

The components he‖ and h
−→e ⊥ correspond to the decomposition

ehY = hg(γτ , γl)ehX + (γτ )⊥che⊥
into tangential and normal parts relative to ehX. In a similar form, one considers ve‖ and v

←−e ⊥ corresponding to the
decomposition

evY = vg(γτ , γl)evX + (γτ )⊥cve⊥.
Using the above stated matrix parametrizations, we get

[ehX, ehY] = −
[
0 0
0 he⊥

]
∈ so(n+ 1), with

he⊥ =
[

0 h−→e ⊥
−(h−→e ⊥)T h0

]
∈ so(n);

[0hY, ehY] = −
[

0
(
0,−→$

)
−
(
0,−→$

)T 0

]
∈ hp⊥;

[0hX, ehY] = −

[
0

(
−
−→v · h−→e ⊥, he‖−→v

)
−
(
−
−→v · h−→e ⊥, he‖−→v

)T
h0

]
∈ hp;

(32)

and

[evX, evY] = −
[
0 0
0 ve⊥

]
∈ so(m+ 1), with

ve⊥ =
[

0 v
−→e ⊥

−(v
−→e ⊥)T v0

]
∈ so(m);

[0vY, evY] = −
[

0
(
0,←−$

)
−
(
0,←−$

)T 0

]
∈ vp⊥;

[0vX, evY] = −

[
0

(
−
←−v · v

←−e ⊥, ve‖←−v
)

−
(
−
←−v · v

←−e ⊥, ve‖←−v
)T

v0

]
∈ vp.

(33)

We can use formulas (32) and (33) in order to write the structure equations (24) and (25) in terms of N-adapted frames
and connection 1-forms soldered to the Klein geometry of N-anholonomic spaces using the relations (30). One obtains
respectively the G-invariant N-adapted torsion and curvature generated by the canonical d-connection,

T(γτ , γl) = (DXγτ − DYγl)ce = DXeY − DYeX + [0X, eY]− [0Y, eX] (34)

and

R(γτ , γl)e = [DX,DY] e = DX0Y − DY0X + [0X,0Y] (35)
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where eX + γlce,eY + γτ ce,0X + γlc0 and 0Y + γτc0. The formulas (34) and (35)are respectively equivalent to (13)
and (72). In general, T(γτ , γl) 6= 0 and R(γτ , γl)e cannot be defined to have constant matrix coefficients with respect to
an N-adapted basis. For N-anholonomic spaces with dimensions n = m, we have T(γτ , γl) = 0 and R(γτ , γl)e defined by
constant, or vanishing, d-curvature coefficients (see discussions related to formulas (75) and (70)). For such cases, we can
consider the h- and v-components of (34) and (35) in a similar manner as for symmetric Riemannian spaces but with the
canonical d-connection instead of the Levi-Civita one. One obtains, respectively,

0 = (DhXγτ − DhYγl)che
= DhXehY − DhYehX + [LhX, ehY]− [LhY, ehX] ;

0 = (DvXγτ − DvYγl)cve
= DvXevY − DvYevX + [CvX, evY]− [CvY, evX] ,

(36)

and
hR(γτ , γl)he = [DhX,DhY] he = DhXLhY − DhYLhX + [LhX, LhY]
vR(γτ , γl)ve = [DvX,DvY] ve = DvXCvY − DvYCvX + [CvX, CvY] .

(37)

Following N-adapted curve flow parametrizations (32) and (33), the Eqs. (36) and (37) are written

0 = DhXhe‖ +−→v · h
−→e ⊥, 0 = DvXve‖ +←−v · v

←−e ⊥, ;

0 = −→$ − he‖−→v + DhXh
−→e ⊥, 0 =←−$ − ve‖←−v + DvXv

←−e ⊥;
(38)

and

DhX−→$ − DhY−→v +−→v ch2 = h
−→e ⊥, DvX←−$ − DvY←−v +←−v cv2 = v

←−e ⊥;

DhXh2−−→v ⊗−→$ +−→$ ⊗−→v = 0, DvXv2−←−v ⊗←−$ +←−$ ⊗←−v = 0.
(39)

The tensor products and interior products are defined in the form: for the h-components, ⊗ denotes the outer product of

pairs of vectors (1 × n row matrices), producing n × nmatrices
−→
A ⊗
−→
B =

−→
A
T−→
B , and c denotes multiplication of n × n

matrices on vectors (1× n rowmatrices), such that
−→
A c

(
−→
B ⊗
−→
C
)
=

(
−→
A ·
−→
B
)
−→
C which is the transpose of the standard

matrix product on column vectors. Likewise, for the v-components, we just change n→ m and
−→
A →

←−
A . For the sequel,∧

will denote the skew product of vectors
−→
A ∧
−→
B =
−→
A ⊗
−→
B −
−→
B ⊗
−→
A .

The variables e‖ and 2, written in h- and v-components, can be expressed in terms of the variables −→v ,−→$ , h
−→e ⊥ and

←−v ,←−$ , v
←−e ⊥ (see respectively the first two equations in (38) and the last two equations in (39)) by

he‖ = −D−1hX (
−→v · h−→e ⊥), ve‖ = −D−1vX (

←−v · v
←−e ⊥),

and
h2 = D−1hX

(
−→v ⊗−→$ −−→$ ⊗−→v

)
, v2 = D−1vX

(
←−v ⊗←−$ −←−$ ⊗←−v

)
.

Substituting these expressions, correspondingly, in the last two equations in (38) and in the first two equations in (39), we
express

−→$ = −DhXh
−→e ⊥ − D−1hX (

−→v · h−→e ⊥)−→v , ←−$ = −DvXv
←−e ⊥ − D−1vX (

←−v · v
←−e ⊥)←−v ,

contained in the h- and v-flow equations respectively on −→v and←−v , considered as evolution equations via DhY−→v = −→v τ

and DhY←−v =←−v τ ,

−→v τ = DhX−→$ −−→v cD−1hX
(
−→v ⊗−→$ −−→$ ⊗−→v

)
−
−→
R h−→e ⊥,

←−v τ = DvX←−$ −←−v cD−1vX
(
←−v ⊗←−$ −←−$ ⊗←−v

)
−
←−
S v←−e ⊥,

(40)

where the scalar curvatures of the canonical d-connection,
−→
R and

←−
S are defined by formulas (74) in Appendix. For

symmetric Riemannian spaces like SO(n+1)/SO(n) ' Sn,
−→
R is just the scalar curvature χ = 1, see [17]. OnN-anholonomic

manifolds under consideration, the values
−→
R and

←−
S are constrained by be certain zero or nonzero constants.

The above presented considerations lead to a proof of the following main results.

Lemma 4.1. On N-anholonomic spaces with constant-curvature matrix coefficients for the canonical d-connection, there are N-
adapted Hamiltonian symplectic operators,

hJ = DhX + D−1hX
(
−→v ·
)
−→v and vJ = DvX + D−1vX

(
←−v ·
)
←−v , (41)

and cosymplectic operators

hH + DhX +−→v cD−1hX
(
−→v ∧

)
and vH + DvX +←−v cD−1vX

(
←−v ∧

)
. (42)
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The properties of operators (41) and (42) are defined by

Theorem 4.1. The d-operators J = (hJ, vJ) and H = (hH, vH) are respectively (O(n− 1),O(m− 1))-invariant
Hamiltonian symplectic and cosymplectic operators with respect to the flow variables

(
−→v ,←−v

)
. Consequently the curve flow

equations on N-anholonomicmanifolds with constant d-connection curvature have a Hamiltonian form: the h –flows are given by

−→v τ = hH
(
−→$
)
−
−→
R h−→e ⊥ = hR

(
h−→e ⊥

)
−
−→
R h−→e ⊥, −→$ = hJ

(
h−→e ⊥

)
; (43)

the v-flows are given by

←−v τ = vH
(
←−$
)
−
←−
S v←−e ⊥ = vR

(
v
←−e ⊥

)
−
←−
S v←−e ⊥, ←−$ = vJ

(
v
←−e ⊥

)
, (44)

where the hereditary recursion d-operator has the respective h- and v-components

hR = hH ◦ hJ and vR = vH ◦ vJ. (45)

Proof. Details in the case of holonomic structures are given in Ref. [13] and generalized to arbitrary gauge groups in [34].
For the present case, the main additional considerations consist of soldering certain classes of generalized Lagrange spaces
with (O(n− 1),O(m− 1))-gauge symmetry onto the Klein geometry of N-anholonomic spaces. �

4.2. bi-Hamiltonian anholonomic curve flows and solitonic hierarchies

Following the usual solitonic techniques, see details in Refs. [17,35], the recursion h-operator from (45),

hR = DhX
(
DhX + D−1hX

(
−→v ·
)
−→v
)
+
−→v cD−1hX

(
−→v ∧ DhX

)
= D2hX + |DhX|

2
+ D−1hX

(
−→v ·
)
−→v l −

−→v cD−1hX (
−→v l∧), (46)

generates a horizontal hierarchy of commuting Hamiltonian vector fields h−→e (k)
⊥
starting from h−→e (0)

⊥
=
−→v l given by the

infinitesimal generator of l-translations in terms of arclength l along the curve.
A vertical hierarchy of commuting vector fields v←−e (k)

⊥
starting from v

←−e (0)
⊥
=
←−v l is generated by the recursion v-

operator

vR = DvX
(
DvX + D−1vX

(
←−v ·
)
←−v
)
+
←−v cD−1vX

(
←−v ∧ DvX

)
= D2vX + |DvX|

2
+ D−1vX

(
←−v ·
)
←−v l −

←−v cD−1vX (
←−v l∧). (47)

There are related hierarchies, generated by adjoint operators R∗ = (hR∗, vR∗), of involutive variational h-covector
fields −→$ (k)

= δ
(
hH(k)

)
/δ−→v in terms of Hamiltonians hH = hH(k)(−→v ,−→v l,−→v 2l, . . .) starting from −→$

(0)
=
−→v ,

hH(0) = 1
2 |
−→v |2 and of involutive variational v-covector fields←−$ (k)

= δ
(
vH(k)

)
/δ←−v in terms of Hamiltonians vH =

vH(k)(←−v ,←−v l,←−v 2l, . . .) starting from ←−$
(0)
=
←−v , vH(0) = 1

2 |
←−v |2. The relations between hierarchies are established

correspondingly by formulas

h−→e (k)
⊥
= hH

(
−→$

(k)
,−→$

(k+1)
)
= hJ

(
h−→e (k)

⊥

)
and

v
←−e (k)
⊥
= vH

(
←−$

(k)
,←−$

(k+1)
)
= vJ

(
v
←−e (k)
⊥

)
,

where k = 0, 1, 2, . . .. All hierarchies (horizontal, vertical and their adjoint ones) have a typical mKdV scaling symmetry,
for instance, l→ λl and−→v → λ−1−→v under which the values h−→e (k)

⊥
and hH(k) have scaling weight 2+ 2k, while−→$ (k) has

scaling weight 1+ 2k.
The above presented considerations prove

Corollary 4.1. The recursion d-operator (45) gives rise to N-adapted hierarchies of distinguished horizontal and vertical
commuting bi-Hamiltonian flows, respectively, on −→v and←−v that are given by O(n − 1)- and O(m − 1)-invariant d-vector
evolution equations,

−→v τ = h
−→e (k+1)
⊥
−
−→
R h−→e (k)

⊥
= hH

(
δ
(
hH(k,

−→
R )
)
/δ−→v

)
= (hJ)−1

(
δ
(
hH(k+1,

−→
R )
)
/δ−→v

)
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with horizontal Hamiltonians hH(k+1,
−→
R )
= hH(k+1,

−→
R )
−
−→
R hH(k,

−→
R ) and

←−v τ = v
←−e (k+1)
⊥
−
←−
S v←−e (k)

⊥
= vH

(
δ
(
vH(k,

←−
S )
)
/δ←−v

)
= (vJ)−1

(
δ
(
vH(k+1,

←−
S )
)
/δ←−v

)
with vertical Hamiltonians vH(k+1,

←−
S )
= vH(k+1,

←−
S )
−
←−
S vH(k,

←−
S ), for k = 0, 1, 2, . . .. The d-operatorsH and J are N-adapted

andmutually compatible, fromwhich one can construct an alternative (explicit) Hamiltonian d-operator Q = H◦J◦H = R◦H .

4.2.1. Formulation of the main theorem
The main goal of this paper is to prove that for any regular Lagrange system we can define naturally an N-adapted bi-

Hamiltonian hierarchy of flows inducing anholonomic solitonic configurations.

Theorem 4.2. For any anholonomic vector bundle with prescribed d-metric structure, there is a hierarchy of bi-Hamiltonian N-
adapted flows of curves γ (τ , l) = [hγ (τ , l), vγ (τ , l)] described by geometric nonholonomic map equations. 0 flows are defined
as convective (traveling wave) maps

(hγ )τ = (hγ )hX and (vγ )τ = (vγ )vX . (48)

The+1 flows are defined by non-stretching mKdV maps

− (hγ )τ = D2hX (hγ )hX +
3
2

∣∣DhX (hγ )hX∣∣2hg (hγ )hX ,
− (vγ )τ = D2vX (vγ )vX +

3
2

∣∣DvX (vγ )vX∣∣2vg (vγ )vX , (49)

and the +2, . . . flows as higher order analogs. Finally, there are −1 flows are defined by the kernels of recursion operators (46)
and (47) inducing non-stretching wave maps

DhY (hγ )hX = 0 and DvY (vγ )vX = 0. (50)

We carry out the proof in the next Section 4.2.2.

Remark 4.1. Counterparts of N-adapted bi-Hamiltonian hierarchies and related solitonic equations in Theorem 4.2 can be
constructed for SU(n) ⊕ SU(m)/SO(n) ⊕ SO(m) as done in Ref. [14] for Riemannian symmetric spaces SU(n)/SO(n). Such
results may be very relevant in modern quantum/(non)commutative gravity.

Indeed, constructions similar to Theorem 4.2 can be carried out in gravity models with nontrivial torsion and
nonholonomic structure and related geometry of noncommutative/ superspaces and anholonomic spinors. Finally, it should
be emphasized that a number of exact solutions in gravity [25,26] can be nonholonomically deformed in order to generate
nonholonomic hierarchies of gravitational solitons of type (48) and (49) or (50), which will be considered in further
publications.

4.2.2. Proof of the main theorem
Weprovide a proof of Theorem4.2 for the horizontal flows. The approach is based on themethodprovided in Refs. [14,17],

but in this proof the Levi-Civita connection on symmetric Riemannian spaces is replaced by the horizontal components of the
canonical d-connection in a generalized Lagrange space with constant d-curvature coefficients. The vertical constructions
are similar.
One obtains a vector mKdV equation up to a convective term (which can be absorbed by redefinition of coordinates)

defining the+1 flow for h−→e ⊥ = −→v l,

−→v τ =
−→v 3l +

3
2
|
−→v |2 −

−→
R −→v l,

when the+(k+1) flow gives a vector mKdV equation of higher order 3+2k on−→v and there is a 0 h-flow−→v τ =
−→v l arising

from h−→e ⊥ = 0 and h
−→e ‖ = 1 belonging outside the hierarchy generated by hR. Such flows correspond to N-adapted

horizontal motions of the curve γ (τ , l) = [hγ (τ , l), vγ (τ , l)] given by

(hγ )τ = f
(
(hγ )hX ,DhX (hγ )hX ,D

2
hX (hγ )hX , . . .

)
subject to the non-stretching condition | (hγ )hX |hg = 1, where the equation of motion is derived from the identifications

(hγ )τ ←→ ehY, DhX (hγ )hX ←→ DhXehX = [LhX, ehX]
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and so on, which maps the constructions from the tangent space of the curve to the space hp. For such identifications we
have

[LhX, ehX] = −
[

0
(
0,−→v

)
−
(
0,−→v

)T h0

]
∈ hp,

[LhX, [LhX, ehX]] = −

 0
(
|
−→v |2,

−→
0
)

−

(
|
−→v |2,

−→
0
)T

h0


and so on, see similar calculus in (32). At the next step, noting for the+1 h-flow that

h−→e ⊥ = −→v l and h−→e ‖ = −D−1hX
(
−→v · −→v l

)
= −

1
2
|
−→v |2,

we compute

ehY =

[
0

(
he‖, h

−→e ⊥
)

−
(
he‖, h

−→e ⊥
)T

h0

]

= −
1
2
|
−→v |2

 0
(
1,
−→
0
)

−

(
0,
−→
0
)T

h0

+ [ 0
(
0,−→v hX

)
−
(
0,−→v hX

)T h0

]

= DhX [LhX, ehX]+
1
2
[LhX, [LhX, ehX]]

= −DhX [LhX, ehX]−
3
2
|
−→v |2ehX.

From the above presented identifications related to the first and second terms, it follows that

|
−→v |2 = 〈[LhX, ehX] , [LhX, ehX]〉hp ←→ hg

(
DhX (hγ )hX ,DhX (hγ )hX

)
=
∣∣DhX (hγ )hX∣∣2hg ,

and we can identifyDhX [LhX, ehX] with D2hX (hγ )hX and write

−ehY ←→ D2hX (hγ )hX +
3
2

∣∣DhX (hγ )hX∣∣2hg (hγ )hX
which is just the first Eq. (49) in the Theorem 4.2 defining a non-stretching mKdV map h-equation induced by the h-part of
the canonical d-connection.
Using the adjoint representation ad (·) acting in the Lie algebra hg = hp⊕ so(n), with

ad ([LhX, ehX]) ehX =

 0
(
0,
−→
0
)

−

(
0,
−→
0
)T

−→v

 ∈ so(n+ 1),

where

−→v = −
[
0 −→v

−
−→v
T h0

∈ so(n)
]
,

we note (applying ad ([LhX, ehX]) again)

ad ([LhX, ehX])2 ehX = −|−→v |2

 0
(
1,
−→
0
)

−

(
1,
−→
0
)T

0

 = −|−→v |2ehX.
Hence Eq. (49) can be represented in alternative form

− (hγ )τ = D2hX (hγ )hX −
3
2
−→
R
−1
ad
(
DhX (hγ )hX

)2
(hγ )hX ,

which is more convenient for analysis of higher order flows on −→v subjected to higher-order geometric partial differential
equations. Here we note that the 0 flow on −→v corresponds to just a convective (linear traveling h-wave but subjected to
certain nonholonomic constraints) map equation (48).
Now we consider a −1 flow contained in the h-hierarchy derived from the property that h−→e ⊥ is annihilated by the h-

operator hJ and mapped into hR(h−→e ⊥) = 0. This mean that hJ(h
−→e ⊥) = −→$ = 0. Such properties together with (31) and
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Eqs. (40) imply Lτ = 0 and hence hDτehX = [Lτ , ehX] = 0 for hDτ = hDτ + [Lτ , ·]. We obtain the equation of motion for
the h-component of curve, hγ (τ , l), following the correspondences DhY ←→ hDτ and hγl ←→ ehX,

DhY (hγ (τ , l)) = 0,
which is just the first equation in (50).
Finally, we note that the formulas for the v-components, stated by Theorem 4.2 can be derived in a similar form

by respective substitution in the above proof of the h-operators and h-variables into v-ones, for instance, hγ → vγ ,
h−→e ⊥ → v

←−e ⊥,−→v →←−v ,−→$ →←−$ ,DhX → DvX, DhY → DvY, L→ C,
−→
R →

←−
S , hD → vD , hR→ vR, hJ→ vJ.

4.3. Nonholonomic mKdV and SG hierarchies

We present explicit constructions when solitonic hierarchies are derived following the conditions of Theorem 4.2.
The h-flow and v-flow equations resulting from (50) are

−→v τ = −
−→
R h−→e ⊥ and ←−v τ = −

←−
S v←−e ⊥, (51)

when, respectively,

0 = −→$ = −DhXh
−→e ⊥ + he‖−→v , DhXhe‖ = h

−→e ⊥ · −→v
and

0 =←−$ = −DvXv
←−e ⊥ + ve‖←−v , DvXve‖ = v

←−e ⊥ · ←−v .
The d-flow equations possess horizontal and vertical conservation laws

DhX
(
(he‖)2 + |h

−→e ⊥|2
)
= 0,

for (he‖)2 + |h
−→e ⊥|2 = 〈heτ , heτ 〉hp = | (hγ )τ |2hg, and

DvY
(
(ve‖)2 + |v

←−e ⊥|2
)
= 0,

for (ve‖)2 + |v
←−e ⊥|2 = 〈veτ , veτ 〉vp = | (vγ )τ |2vg. This corresponds to

DhX| (hγ )τ |
2
hg = 0 and DvX| (vγ )τ |

2
vg = 0.

(The problem of formulating conservation laws on N-anholonomic spaces – in particular, on nonholonomic vector bundles
– is analyzed in Ref. [26]. In general, such laws are more sophisticated than those on (semi) Riemannian spaces because of
nonholonomic constraints resulting in non-symmetric Ricci tensors and different types of identities. But for the geometries
modeled for dimensions n = mwith canonical d-connections, we get similar h- and v-components of the conservation law
equations as on symmetric Riemannian spaces.)
Without loss of generality we can rescale conformally the variable τ in order to get | (hγ )τ |

2
hg = 1 and (perhaps by a

different rescaling) | (vγ )τ |
2
vg = 1, so that

(he‖)2 + |h
−→e ⊥|2 = 1 and (ve‖)2 + |v

←−e ⊥|2 = 1.

In this case, we can express he‖ and h
−→e ⊥ in terms of −→v and its derivatives and, similarly, we can express ve‖ and v

←−e ⊥
in terms of←−v and its derivatives, which follows from (51). The N-adapted wave map equations describing the −1 flows
reduce to a system of two independent nonlocal evolution equations for the h- and v-components,

−→v τ = −D−1hX

(√
−→
R
2
− |
−→v τ |

2−→v

)
and ←−v τ = −D−1vX

(√
←−
S
2
− |
←−v τ |

2←−v

)
.

For N-anholonomic spaces of constant scalar d-curvatures, we can rescale the equations on τ to the case when the terms
−→
R
2
,
←−
S
2
= 1, and the evolution equations transform into a system of hyperbolic d-vector equations,

DhX(−→v τ ) = −

√
1− |−→v τ |

2−→v and DvX(←−v τ ) = −

√
1− |←−v τ |

2←−v , (52)

where DhX = ∂hl and DvX = ∂vl are usual partial derivatives, respectively, along hl and vl with −→v τ and←−v τ considered as
scalar functions for the covariant derivatives DhX and DvX defined by the canonical d-connection. It also follows that h

−→e ⊥
and v←−e ⊥ obey corresponding vector sine-Gordon (SG) equations(√

(1− |h−→e ⊥|2)−1∂hl(h
−→e ⊥)

)
τ

= −h−→e ⊥ (53)

and (√
(1− |v←−e ⊥|2)−1∂vl(v

←−e ⊥)
)
τ

= −v
←−e ⊥. (54)
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The above presented formulas and Corollary 4.1 imply

Theorem 4.3. The recursion d-operator R = (hR, hR) (45) generates two hierarchies of vector mKdV symmetries: the first one
is horizontal (see (46)),

−→v
(0)
τ =

−→v hl,
−→v

(1)
τ = hR(

−→v hl) =
−→v 3hl +

3
2
|
−→v |2−→v hl,

−→v
(2)
τ = hR

2(−→v hl) =
−→v 5hl +

5
2

(
|
−→v |2−→v 2hl

)
hl +

5
2

(
(|−→v |2)hlhl + |

−→v hl|
2
+
3
4
|
−→v |4

)
−→v hl −

1
2
|
−→v hl|

2−→v ,

and so on,

(55)

with all such flows commuting with the−1 flow

(−→v τ )
−1
= h−→e ⊥ (56)

associated to the vector SG equation (53); the second one is vertical (see (47)),

←−v
(0)
τ =

←−v vl,
←−v

(1)
τ = vR(

←−v vl) =
←−v 3vl +

3
2
|
←−v |2←−v vl,

←−v
(2)
τ = vR

2(←−v vl) =
←−v 5vl +

5
2

(
|
←−v |2←−v 2vl

)
vl +

5
2

(
(|←−v |2)vl vl + |

←−v vl|
2
+
3
4
|
←−v |4

)
←−v vl −

1
2
|
←−v vl|

2←−v ,

and so on,

(57)

with all such flows commuting with the−1 flow

(←−v τ )
−1
= v
←−e ⊥ (58)

associated to the vector SG equation (54).

Furthermore, the adjoint d-operatorR∗ = J ◦H generates a horizontal hierarchy of Hamiltonians,

hH(0) =
1
2
|
−→v |2, hH(1) = −

1
2
|
−→v hl|

2
+
1
8
|
−→v |4,

hH(2) =
1
2
|
−→v 2hl|

2
−
3
4
|
−→v |2|−→v hl|

2
−
1
2

(
−→v · −→v hl

)
+
1
16
|
−→v |6,

and so on,

(59)

and vertical hierarchy of Hamiltonians

vH(0) =
1
2
|
←−v |2, vH(1) = −

1
2
|
←−v vl|

2
+
1
8
|
←−v |4,

vH(2) =
1
2
|
←−v 2vl|

2
−
3
4
|
←−v |2|←−v vl|

2
−
1
2

(
←−v · ←−v vl

)
+
1
16
|
←−v |6,

and so on,

(60)

all of which are conserved densities for respective horizontal and vertical −1 flows and determining higher conservation
laws for the corresponding hyperbolic equations (53) and (54).
The above presented horizontal equations (53), (55), (56) and (59) and of vertical equations (54), (57), (58) and (60) have

similar mKdV scaling symmetries but with distinct parameters λh and λv because, in general, there are two independent
scalar curvatures

−→
R and

←−
S , see (74). The horizontal scaling symmetries are hl→ λhhl,−→v → (λh)

−1−→v and τ → (λh)
1+2k ,

for k = −1, 0, 1, 2, . . .., and likewise for the vertical scaling symmetries.
Finally, we consider again Remark 4.1 stating that similar results (proved in Section 4) can be derived for unitary

groups with complex variables. The generated bi-Hamiltonian horizontal and vertical hierarchies and solitonic equations
will be different from those defined for real orthogonal groups; for holonomic spaces this is demonstrated in Ref. [14].
This distinguishes substantially the models of gauge gravity with structure groups like the unitary one from those with
orthogonal groups.

5. Applications in geometric mechanics, Finsler geometry and gravity

Here we consider some interesting examples when the data defining fundamental geometric structures in mechanics
and Finsler geometry, or exact solutions in gravity, can be transformed into solitonic hierarchies. The possibility to describe
gravitational and electromagnetic interactions by mechanical models, and vice versa, will be investigated.
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5.1. Geometric mechanics and Finsler geometry

A differentiable Lagrangian L(x, y), i.e. a fundamental Lagrange function, is defined by a map L : (x, y) ∈ TM → L(x, y) ∈
Rof classC∞ on T̃M = TM 8{0} and continuous on thenull section0 : M → TM ofπ . A regular Lagrangianhas nondegenerate
Hessian

(L)gij(x, y) =
1
2
∂2L(x, y)
∂yi∂yj

(61)

when rank
∣∣gij∣∣ = n on T̃M .

Definition 5.1. A Lagrange space is a pair Ln = [M, L(x, y)] with (L)gij being of fixed signature over V = T̃M .

The notion of Lagrange space was introduced by Kern [1] and elaborated in details by R. Miron’s school, see Refs. [2,3,37],
as a natural extension of Finsler geometry [38,23,39,23] (see also Refs. [26,40], on Lagrange–Finsler super/noncommutative
geometry). Straightforward calculations (on nonholonomicmanifolds they are reviewed in Refs. [26]) establish the following
results:
1. The Euler–Lagrange equations

d
dτ

(
∂L
∂yi

)
−
∂L
∂xi
= 0

where yi = dxi
dτ for x

i(τ ) depending on parameter τ , are equivalent to the ‘‘nonlinear’’ geodesic equations

d2xi

dτ 2
+ 2Gi

(
xk,
dxj

dτ

)
= 0

defining paths of a canonical semispray

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi

where

2Gi(x, y) =
1
2
(L)g ij

(
∂2L
∂yi∂xk

yk −
∂L
∂xi

)
with (L)g ij being inverse to (61).

2. There exists on V ' T̃M a canonical N-connection

(L)N ij =
∂Gi(x, y)
∂yi

(62)

defined by the fundamental Lagrange function L(x, y), which prescribes nonholonomic frame structures of type (4) and
(5), (L)eν = (ei, ea) and (L)eµ = (ei, ea).

3. There is a canonical metric structure
(L)g = gij(x, y)ei ⊗ ej + gij(x, y)ei ⊗ ej (63)

constructed as a Sasaki type lift fromM for gij(x, y).
4. There is a unique metrical and, in this case, torsionless canonical d-connection (L)D = (hD, vD) with the nontrivial
coefficients with respect to (L)eν and (L)eµ parametrized respectively Γ α

βγ = (L
i
jk, C

a
bc), for

Lijk =
1
2
g ih(ekgjh + ejgkh − ehg jk),

C ijk =
1
2
g ih(ekgjh + ebgkh − eeg bc)

(64)

defining the generalized Christoffel symbols, where (for simplicity, we omitted the left up labels (L) forN-adapted bases).
The connection (L)D is metric compatible and torsionless, see an outline of main definitions and formulas in the next
subsection and Appendix.

We conclude that any regular Lagrangemechanics can be geometrized as a nonholonomic Riemannmanifold V equipped
with canonical N-connection (62) and adapted d-connection (64) and d-metric structures (63) all induced by a L(x, y). In
some approaches to Finsler geometry and generalizations [32], one consider nontrivial non-metric structures. For instance,
the so-called Chern d-connection ChD is also a minimal extension of the Levi-Civita connection when hChD(g) = 0 but
vChD(h) 6= 0, see formulas (16). Such generalized Riemann–Finsler spaces can be modeled on nonholonomic metric-affine
manifolds, with nonmetricity, see detailed discussions in [26,2,3,24]. We note that the N-connection is induced by the
semispray configurations subjected to generalizednonlinear geodesic equations equivalent to the Euler–Lagrange equations.
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An N-connection structure transforms a Riemannian space into a nonholonomic one with preferred honholonomic frame
structure of type (4) and (5).

Remark 5.1. Any Finsler geometry with a fundamental Finsler function F(x, y), being homogeneous of type F(x, λy) =
λF(x, y), for nonzero λ ∈ R, may be considered as a particular case of Lagrange geometry when L = F 2. We shall apply the
methods of Finsler geometry in this work.9

For applications in optics of nonhomogeneous media and gravity (see, for instance, Refs. [3,26,41,25]) one considers
metric forms of type gij ∼ eλ(x,y)(L)gij(x, y) which cannot be derived explicitly from a mechanical Lagrangian. In the so-
called generalized Lagrange geometry one considers Sasaki type metrics (63) with certain general coefficients both for the
d-metric and N-connection and canonical d-connection, i.e. when (L)gij →

[
gij(x, y), hab(x, y)

]
, and (L)N ij → N ij (x, y). We

shall use the term (generalized) Lagrange–Finsler geometry for all such geometries modeled on tangent bundles or on
arbitrary N-anholonomic manifold V. In original form, such spaces were called generalized Lagrange spaces and denoted
GLn = (M, gij(x, y)), see [2,3].

5.2. Analogous models and Lagrange–Finsler geometry

For a regular Lagrangian L(x, y) and corresponding Euler–Lagrange equations it is possible to construct canonically a
generalized Finsler geometry on tangent bundle [1–3]. In our approach, such constructions follow from the Theorem 2.1 if
instead of gαβ(x) there are considered the metric components

gij(x, y) =
1
2
∂2L(x, y)
∂y i∂y j

, (65)

introduced in (1) for e αα (x, y) = δ
α
α . For arbitrary given gij(x, y) and e

α
α (x, y) on TM , defining a d-metric (17), we can compute

the correspondingN-connection (8) and canonical d-connection coefficients (69). In general, the coefficients of d-curvatures
(75) are not constant and we are not able to generate solitonic hierarchies. In order to solve the problem we have to choose
eαα(x, y) so that the equations

∂2L(x, y)
∂y a∂yb

= 2g̊abeaa(x, y)e
b
b(x, y)

are satisfied (similarly to (18), for given L and g̊ab), resulting in constant-curvature coefficients with respect to N-
adapted bases. This allows us to define DL

hX and DL
vX from formulas (48), (49) or (50), as pairs of h- and v-operators with

‘‘nonholonomic mixture’’ (cf. Theorem 4.2).

Corollary 5.1. Any regular Lagrangian L(x, y) induces a hierarchy of bi-Hamiltonian N-adapted flows of curves described by
geometric nonholonomic (solitonic) map equations.

We can describe equivalently any regular Lagrange mechanics in terms of solitonic equations, their solutions and
symmetries.

Remark 5.2. Considering L(x, y) = F 2(x, y), where the homogeneous F(x, λy) = λF(x, y) is a fundamental Finsler metric
function (see, for instance, [3]), we can encode in solitonic constructions all data for a Finsler geometry.

Here it should be noted that there were elaborated alternative approaches when gravitational effects are modeled in
continuous and discrete media, see review [36], but they do not allow one to generate the Einstein equations starting
from a Lagrangian in a mechanical models like in [1–3], or from a distribution on a nonholonomic manifold [30,31,24,26].
In our approach, for a d-metric (17) induced by (65) (introduced in (1)), we can prove a geometric mechanical analog of
Theorem 2.3:

Theorem 5.1. Any regular Lagrangian L(x, y) and frame structure eαα(x, y) define a nonholonomic (semi) Riemannian geometry
on TM.

This way we can model various gravitational effects by certain mechanical configurations.

Corollary 5.2. A regular Lagrangian L(x, y) and frame structure e αα (x, y) on TM model a vacuum gravity configuration with
effective metric g̃αβ = [g̃ij, g̃ij] (17) if the corresponding canonical d-connection (69) has vanishing Ricci d-tensor (73).

We conclude that for a fixed Lagrangian L(x, y)we can define frame structures e αα (x, y) on TM inducing Einstein spaces
or curved spaces with constant-curvature coefficients (computed with respect to certain N-adapted basis).

9 In another direction, there is a proof [32] that any Lagrange fundamental function L can be modeled as a singular case in a certain class of Finsler
geometries of extra dimension. Nevertheless the concept of Lagrangian is a very important geometrical and physical one and we shall distinguish the cases
when we model a Lagrange or a Finsler geometry: A physical or mechanical model with a Lagrangian is not only a ‘‘singular’’ case for a Finsler geometry
but reflects a proper set of geometric objects and structures with possible new concepts in physical theories.
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Definition 5.2. A geometric model defined by data En+m = [gij(xk, yc), gab(xk, yc),Nai (x
k, yc)] is N-anholonomically

equivalent to another one given by data Ẽn+m = [̃gij(xk, yc), g̃ab(xk, yc), Ñai (x
k, yc)] if for the same splitting n + m with

ẽα → eα there are nontrivial polarizations [ηij(xk, yc), ηab(xk, yc), ηai (x
k, yc)] for which gαβ = ηαβ g̃αβ and Nai = η

a
i Ñ
a
i .

In general, the physical and geometric properties of two such N-anholonomically related spaces En+m and Ẽn+m are very
different. Nevertheless, we are able to compute the coefficients of geometrical and physical objects, define symmetries,
conservation laws and fundamental equations on a space from similar values of another one if the polarizations are stated
in explicit form. In some particular cases, we can consider that En+m is defined by the data with constant-curvature
coefficients with respect to an N-adapted basis (or an exact solution of the Einstein equations) but Ẽn+m is related to a
regular Lagrange/Finsler geometry.

5.3. Modeling field interactions in Lagrange–Finsler geometry

Let us consider a regular Lagrangian

L(x, y) = m0aij(x)y
iyj + e0Ai(x)y

i, (66)
wherem0, e0 are constants,Ai(x) is a vector field and aij(x) = aij(x) is a second rank symmetric tensor. Themetric coefficients
(65) are gij = m0aij(x) and their frame transforms (1) are given by

g̃ab(x, y) = e
a
a (x, y)e

b
b (x, y)gab(x) = m0aab(x, y), (67)

where aab = e
a
a e

b
b aab. For simplicity, we consider frame transforms to local bases eα = (ei, ea) when ea = e

a
a ∂/∂y a are

holonomic vectors but ei = e
i
i ∂/∂x

i will be defined by an N-connection like in (4). We compute (see Theorem 2.1 and
formula (8))

G̃i =
1
2
gΓ ijky

jyk +
1
m0
aij gF jkyk,

where gΓ ijk are Christoffel symbols of the tensor g̃ab constructed by using derivatives ∂/∂x
i, gF jk =

e0
4 (
gDkAj − gDjAk)with

the covariant derivative gDj defined by gΓ ijk, and

Ñ ij(x, y) =
gΓ ijky

k
−
gF jk. (68)

The N-connection curvature (6) is
�aik = y

b gRabjk − 2
gD[k gF ai],

where gRabjk is the curvature tensor of the Levi-Civita connection for gab(x), computedwith respect to a usual coordinate base
and then nonholonomically transformed by eaa(x, y).
For m0 = mc and e0 = 2e/m, where m and e are respectively the mass and electric charge of a point particle and c is

the light speed, the Lagrangian (66) describes the dynamics of a point electrically charged particle in a curved background
space M with metric aij(x). The formula (67) states a class of nonholonomic deformations of the metric on M to TM . We
can treat gF jk as an effective electro-magnetic tensor field on TM . The auto-parallel curves uα(τ ) = [xi(τ ), yi(τ ) = dxi/τ ],
parametrized by a scalar variable τ , adapted to Ñ ij(x, y) (68), are

dya

dτ
+
gΓ abc(x, y)y

byc = gF ab (x, y)y
b.

The nonholonomic Riemannian mechanical model of L(x, y) is completely defined by a d-metric (17) with coefficients (67),

g̃ = m0aij(x, y) ei ⊗ ej +m0aij(x, y)ẽi ⊗ ẽj,

where ẽi are elongated by Ñ ij from (68). From Corollary 5.2, we have:

Conclusion 5.1. Any solution of the Einstein–Maxwell equations given by gravitational field aij(x) and electromagnetic potential
Ai(x) is N-anholonomically equivalent to a mechanical model with regular Lagrangian (66) and associated nonholonomic
geometry on TM with induced d-metric g̃ and N-connection structure Ñ ij.

If the frame coefficients e aa are chosen to yield constant d-curvatures coefficients, we get a particular statement of the
main Theorem 4.2:

Corollary 5.3. The Einstein–Maxwell gravity equations contain solitonic solutions that can be modeled as a hierarchy of bi-
Hamiltonian N-adapted flows of curves.

In a similar form, we can derive spinor–solitonic nonholonomic hierarchies for Einstein–Dirac equations if we consider
unitary groups and distinguished Clifford structures [26].
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6. Conclusion

In this paper, it has been shown that the geometry of regular Lagrange mechanics and generalized Lagrange–Finsler
spaces can be encoded in nonholonomic hierarchies of bi-Hamiltonian structures and related solitonic equations derived
for curve flows. Although the constructions are performed in explicit form for a special class of generalized Lagrange spaces
with constantmatrix curvature coefficients computedwith respect to canonical nonholonomic frames (induced by Lagrange
or Finsler metric fundamental functions), the importance of the resulting geometric nonlinear analysis of such physical
systems is beyond doubt for further applications in classical and quantum field theory. This remarkable generality appears
naturally for all types of models of gravitational, gauge and spinor interactions, geometrized in terms of vector/spinor
bundles, in supersymmetric and/or (non) commutative variants when nonholonomic frames and generalized linear and
nonlinear connections are introduced into consideration.
If the gauge group structure of vector bundles and nonholonomic manifolds is defined by an orthogonal group H =

SO(n)⊕ SO(m) acting on the base/horizontal and typical fiber/vertical subspaces with, say, respective dimensions of n and
m, then these subspaces will be Riemannian symmetric spaces G/H whose geometric properties are determined by the Lie
groups G = SO(n)⊕ SO(m) and G = SU(n)⊕ SU(m). This structure can be formulated equivalently in terms of geometric
objects defined on pairs of Klein geometries. The bi-Hamiltonian solitonic hierarchies are generated naturally by recursion
operators associatedwith the horizontal and vertical flows of curves on such spaces, with these flows (of SG andmKdV type)
being geometrically described by wave maps and mKdV analogs of Schrödinger maps.
In the case of holonomic manifolds, the construction of bi-Hamiltonian curve flows, soliton equations, and geometric

PDEmaps has recently been generalized in Ref. [34] to all Riemannian symmetric manifoldsM = G/H including all compact
semisimple Lie groups K = G/H as given by G = K ×K and H = diag G. This generalizationmakes it possible to studymore
general field models, such as quaternionic and octonian systems.
Considering arbitrary curved spaces and mechanical or field systems, it is not clear if any bi-Hamiltonian structures and

solitonic equations can be derived from curve flows. The answer seems to be negative because arbitrary curved spaces do not
possess constant matrix curvatures with respect to certain orthonormalized frames which is crucial for encoding recursion
operators and associated solitonic hierarchies.10 Nevertheless, the results proved in our work provide a new geometric
method of solitonic encoding of data for quite general types of curved spaces and nonlinear physical theories. This follows
from the fact that we can always nonholonomically deform a curved space having nonconstant curvature given by the
distinguished linear connection into a similar space for which this curvature becomes constant.
Our approach employs certain methods elaborated in Finsler and Lagrange geometry when the geometric objects are

adapted to nonholonomic distributions on vector/tangent bundles, or (in general) on nonholonomicmanifolds. This accounts
for existence of the canonical nonlinear connection (defined as non-integral distributions into conventional horizontal and
vertical subspaces, and associated nonholonomic frames), metric and linear connection structures all derived from a regular
Lagrange (in particular, Finsler) metric function and/or by moving frames and generically off-diagonal metrics in gravity
theories. Of course, such spaces are not generally defined to have constant linear connection curvatures and vanishing
torsions to which the curve-flow solitonic generation techniques cannot applied.
We proved that for a very large class of regular Lagrangians and the so-called generalized Lagrange space metrics,

there can be nonholonomic deformations of geometric objects to equivalent ones on generalized Lagrange configurations,
for instance, with constant Hessian for the so-called absolute energy function. The curvature matrix, with respect to the
correspondingly adapted (to the canonical connection structure) frames, can be defined with constant, even vanishing,
coefficients. For such configurations,we can apply the formermethods elaborated for symmetric Riemannian spaces in order
to generate curve-flow solitonic hierarchies. Here should be noted that such special classes of nonholonomic manifolds
are equipped with generic off-diagonal metrics and possess nontrivial curvature for the Levi-Civita connection. They are
characterized additionally by nontrivial nonlinear connection curvature and nonzero anholonomy coefficients for preferred
frame structures, and anholonomically induced torsion even their curvature of the canonical distinguished connection is
zero.
The utility of the method of anholonomic frames with associated nonlinear connection structures is that we can

work with respect to such frames and correspondingly canonical metrics as defined on horizontal/ vertical pairs of
symmetric Riemannian spaceswhosemetric and linear connection structure is soldered from an underlying Klein geometry.
In this regard, the bi-Hamiltonian solitonic hierarchies are generated as nonholonomic distributions of horizontal and
vertical moving equations and conservation laws, containing all information for a regular Lagrangian and corresponding
Euler–Lagrange equations.
We note that curve-flow solitonic hierarchies can be constructed in a similar manner, for instance, for Einstein–

Yang–Mills–Dirac equations, derived following the anholonomic frame method, in noncommutative generalizations of
gravity and geometry and possible quantum models based on nonholonomic Lagrange–Fedosov manifolds. During a long
term review of this paper, a series of new important curve-flow solitonic results were obtained. For instance, the results of
[22] were generalized in [42] for arbitrary Einstein and (pseudo) Riemannian metrics for which alternative d-connections

10 A series of recent works [42–47] provide a number of generalizations and examples when solitonic hierarchies can be derived for arbitrary Einstein,
Riemann–Cartan and Larange–Finsler spaces, their Ricci flow evolutions and/or quantum deformations.



102 S.C. Anco, S.I. Vacaru / Journal of Geometry and Physics 59 (2009) 79–103

(to the Levi-Civita one) were defined. It was proven that suchmetric compatible d-connections with constant-curvature and
Ricci d-tensor coefficients, with respect to certain N-adapted basis, can be constructed. All constructions can be redefined
equivalently for the Levi-Civita connection (because all connections under consideration are completely defined by ametric
structure).
Finally, we conclude that solitonic hierarchies and the bi-Hamilton and N-connection formalisms happen to very

efficient in the theory of nonholonomic Ricci flows and evolution of physically valuable nonlinear gravitational wave
solutions [43–45] and Fedosov quantization of Einstein and Lagrange–Finsler spaces [46,47]. So, the results of this paper can
be naturally generalized for arbitrary classical and quantum (commutative and noncommutative of type [25]) nonholonomic
gravitational interactions, generalized Lagrange–Finsler systems and their Ricci flow evolutions (see also review [48]). In
general, we can encode the information on such field/mechanical/evolutionmodels into corresponding solitonic hierarchies
and, inversely, to extract certain nonlinear interaction and/or evolution models from systems of solitonic equations.
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Appendix. Some local formulas

This Appendix outlines some local results from geometry of nonlinear connections (see Refs. [2,3,25,26] for proofs and
details). There are two types of preferred linear connections uniquely determined by a generic off-diagonal metric structure
with n+m splitting, see g = g ⊕N h (14):
1. The Levi-Civita connection∇ = {Γ α

βγ } is by definition torsionless,T = 0, and satisfies themetric compatibility condition,
∇g = 0.

2. The canonical d-connection 0̂γαβ =
(̂
Lijk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc

)
is alsometric compatible, i.e. D̂g = 0, but the torsion vanishes only

on h- and v-subspaces, i.e. T̂ ijk = 0 and T̂
a
bc = 0, for certain nontrivial values of T̂

i
ja, T̂

a
bi, T̂

a
ji. For simplicity, we omit hats

on symbols and write Lijk instead of L̂
i
jk, T

i
ja instead of T̂

i
ja and so on, but preserve the general symbols D̂ and 0̂

γ

αβ .

By a straightforward calculus with respect to N-adapted frames (4) and (5), one can verify that the requested properties
for D̂ on E are satisfied if

Lijk =
1
2
g ir(ekgjr + ejgkr − erg jk),

Labk = eb(N
a
k )+

1
2
hac(ekh bc − hdc ebNdk − hdb ecN

d
k ),

C ijc =
1
2
g ikecg jk, Cabc =

1
2
had(echbd + echcd − edh bc).

(69)

For E = TM , the canonical d-connection D̃ = (hD̃, vD̃) can be defined in a torsionless form11 with the coefficients
Γ α
βγ = (L

i
jk, L

a
bc),

Lijk =
1
2
g ih(ekgjh + ejgkh − ehg jk),

Cabc =
1
2
hae(echbe + ebhce − eeh bc).

(70)

The curvature of a d-connection D,

Rα
β + DΓ αβ = d0

α
β − 0

γ

β ∧ 0
α
γ , (71)

splits into six types of N-adapted components with respect to (4) and (5),

Rαβγ δ =
(
Rihjk, R

a
bjk, P

i
hja, P

c
bja, S

i
jbc, S

a
bdc

)
,

Rihjk = ekLihj − ejLihk + L
m
hjL
i
mk − L

m
hkL
i
mj − C

i
ha�

a
kj,

Rabjk = ekLabj − ejLabk + L
c
bjL
a
ck − L

c
bkL
a
cj − C

a
bc�

c
kj,

P ijka = eaL
i
jk − DkC

i
ja + C

i
jbT
b
ka, Pcbka = eaL

c
bk − DkC

c
ba + C

c
bdT

c
ka,

S ijbc = ecC
i
jb − ebC

i
jc + C

h
jbC
i
hc − C

h
jcC
i
hb,

Sabcd = edC
a
bc − ecC

a
bd + C

e
bcC

a
ed − C

e
bdC

a
ec .

(72)

11 Namely where the d-connection has the same coefficients as the Levi-Civita connection with respect to N-elongated bases (4) and (5).
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Contracting respectively the components, Rαβ + Rταβτ , one computes the h–v-components of the Ricci d-tensor (there
are four N-adapted components)

Rij + Rkijk, Ria + −Pkika, Rai + Pbaib, Sab + Scabc . (73)

The scalar curvature is defined by contracting the Ricci d-tensor with the inverse metric gαβ ,
←→
R + gαβRαβ = g ijRij + habSab =

−→
R +
←−
S . (74)

If E = TM , there are only three classes of d-curvatures,

Rihjk = ekLihj − ejLihk + L
m
hjL
i
mk − L

m
hkL
i
mj − C

i
ha�

a
kj,

P ijka = eaL
i
jk − DkC ija + C

i
jbT
b
ka,

Sabcd = edC
a
bc − ecC

a
bd + C

e
bcC

a
ed − C

e
bdC

a
ec,

(75)

where all indices a, b, . . . , i, j, . . . run over the same values and, for instance, C ebc → C ijk, etc.
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