
Journal of Geometry and Physics 62 (2012) 1397–1413

Contents lists available at SciVerse ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

An interpretation of some Hitchin Hamiltonians in terms of
isomonodromic deformation
Michael Lennox Wong ∗

School of Mathematics, Tata Institute of Fundamental Research 1, Homi Bhabha Road, Mumbai, Maharashtra 400 005, India

a r t i c l e i n f o

Article history:
Received 31 May 2011
Received in revised form 23 January 2012
Accepted 30 January 2012
Available online 16 February 2012

Keywords:
Isomonodromic deformation
Stokes phenomena
Meromorphic connections
Principal bundles

a b s t r a c t

This paper deals with moduli spaces of framed principal bundles with connections
with irregular singularities over a compact Riemann surface. These spaces have been
constructed by Boalch by means of an infinite-dimensional symplectic reduction. It is
proved that the symplectic structure induced from the Atiyah–Bott form agrees with the
one given in terms of hypercohomology. The main results of this paper adapt work of
Krichever and of Hurtubise to give an interpretation of some Hitchin Hamiltonians as
yielding Hamiltonian vector fields on moduli spaces of irregular connections that arise
from differences of isomonodromic flows defined in two different ways. This relies on a
realization of open sets in the moduli space of bundles as arising via Hecke modification of
a fixed bundle.

© 2012 Elsevier B.V. All rights reserved.

0. Introduction

The study of the isomonodromic deformations of connections on holomorphic bundles over Riemann surfaces has its
roots in Hilbert’s twenty-first problem, or the Riemann–Hilbert problem, which asks whether one can realize a given
representation of the fundamental group of a punctured surface as themonodromy of somemeromorphic connectionwhose
poles lie at the punctures. Since the fundamental group is unchanged aswe vary the locations of the punctures on the surface,
one may seek to determine the precise constraints on these movements ensure that the resulting monodromy remains
the same. This is the problem of isomonodromic deformation. For simple poles on CP1, the answers lie in Schlesinger’s
equations [1].

For higher order poles, simply defining the monodromy data is a delicate task (see [2–4]). Over CP1, the isomonodromy
equations were observed by Hitchin to define a (complex) Poisson manifold, which is symplectic over a dense open set [5].
The symplectic point of view has been further pursued by Boalch [3,6], who has described spaces of irregular connections
as infinite-dimensional symplectic reductions in the style of Atiyah and Bott [7]. Furthermore, using the theory of quasi-
Hamiltonian reduction developed by Alekseev et al. [8], he has shown that the space of monodromy data is endowed with
a natural symplectic structure, and that the map taking a generic compatibly framed connection to its monodromy data is
symplectic.

Krichever considered isomonodromic deformation for vector bundles and connections over Riemann surfaces of arbitrary
genus g [9]; in this case, the deformation parameters include themoduli of the punctured Riemann surface and the irregular
polar part of the connection. Using the Tjurin parametrization of the moduli space of vector bundles of rank n and degree
n(g −1)+n, he also represented the flows as non-autonomous Hamiltonian vector fields on themoduli space in the regular
singular case. Following this, Hurtubise extended this to bundles of arbitrary degree [10].

We begin with a review of the definition of the monodromy data for a meromorphic connection with a higher order
pole at the origin of the unit disc, that is, the Stokes data associated to the connection. While this is done in [4], certain
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aspects of the construction are used later so we give a short exposition for the sake of clarity. Section 2 describes various
moduli spaces of bundles with meromorphic connections over a fixed compact Riemann surface, with poles bounded by a
fixed divisor, and their symplectic reductions. As various authors have observed for Higgs bundles [11–13], and following
Hurtubise’s description for vector bundles [10], the relevant deformation spaces are given by the first hypercohomology of
an appropriate one-step complex; the associated Poisson and symplectic structures are also given in these terms. The spaces
constructed here will be the fibres of a bundle on which the isomonodromy connection will later be described.

The isomonodromy connection is constructed by showing that a connection is determined by itsmonodromy data, which
lie in a space independent of the holomorphic data of the modulus of the Riemann surface or the isomorphism class of the
bundle. Section 3 begins with a review of how the space of monodromy data is constructed. We cite Boalch’s results on the
construction of a symplectic form on this space and the fact that themonodromymap, which associates to a triple consisting
of a bundle, connection and a compatible framing its monodromy data, is symplectic. To make the link between Boalch’s
construction of the moduli spaces as infinite-dimensional symplectic reductions inheriting the Atiyah–Bott symplectic
form [6, Section 4] and the hypercohomology realization of the symplectic form given in the previous Section 2, we justify
why these forms agree.

The main results of the paper are given in the final section, but the story told there relies upon being able to realize
large open sets in the moduli space of principal bundles as Hecke modifications of a fixed bundle. Various cases where this
is possible were worked out in [14]; Section 4 gives a brief review of this, providing what is necessary for the subsequent
discussion.

Section 5 begins with a description of isomonodromic deformation as a local splitting of, or Ehresmann connection on,
a bundle over the space of deformation parameters consisting of the moduli of complex structures on a genus g surface
together with a divisor of poles, as well as the irregular part of a connection at the divisor. The fibres are the spaces of
generic compatibly framed connections with fixed irregular part, constructed in Section 2. The rest of the section describes
and proves the primary results of this paper. The main idea is as follows. Given a tangent vector to the base of the just
described bundle (i.e., a deformation of either the modulus of the punctured surface or the irregular part of the connection),
the isomonodromy connection produces a unique lift. Since we are thinking of the moduli of bundles as arising from
modifications of a fixed bundle, the isomonodromic deformation of the fixed bundle gives us a second lift. The difference
between these lifts is therefore tangent to the fibre, thus producing a vector field on a moduli space of connections over a
fixed Riemann surface and divisor. A function on this moduli space is then constructed using invariant polynomials, i.e. a
Hitchin Hamiltonian, which turns out to be a Hamiltonian for the vector field described above.

A first draft of the material appearing here was written as part of a doctoral thesis under the supervision of Jacques
Hurtubise. I thank him warmly for explaining many of the ideas that appear here. I am also grateful to Marco Gualtieri for
his interest in and several discussions on the subject and to Indranil Biswas for clarification on several points. Iwould also like
to thank Ronnie Sebastian for some troubleshooting help. Debt is also owed to the referee who caught several inaccuracies,
indicated the substance of Remark 5.11 and asked for some clarification in the final section. Finally, I acknowledge with
gratitude the support of the Fonds québécois de la recherche sur la nature et les technologies in the form of a Bourse de
recherche postdoctorale (B3) during the final stages of the preparation of this article.

1. Local monodromy

Let G be a semisimple complex algebraic groupwith Lie algebra g, let T ⊆ G be amaximal torus with Lie algebra t, and let
Φ be the associated root system with #Φ =: 2r . Let∆ ⊆ C be the unit disc with coordinate z and let P → ∆ be a principal
G-bundle, necessarily trivial, and let ∇ be a meromorphic connection in P with a pole only at the origin. In this section, we
will briefly review what one needs to obtain the monodromy data, also often referred to as Stokes data, associated to ∇ .
As mentioned in the introduction, the definition requires some care and is done by Boalch in [4, Section 2]. Since we are
unlikely to improve upon his exposition, we will describe only what is necessary for our discussion of moduli spaces and
refer the reader there for details of the construction.

We will assume that ∇ has a pole of order k ≥ 2 at 0. A framing of P at 0 is a choice of element s0 ∈ P0 in the fibre of P
above 0, which we may think of as a section of P over the single point 0. A triple (P, s0,∇) will be referred to as a framed
connection. Let s : ∆ → P be a section for which s(0) = s0. With respect to this section,∇ becomes a g-valuedmeromorphic
1-form, and we may consider the lowest order term in the Laurent series expansion:

A−k

zk
.

The term A−k ∈ g depends only on s0 and not on s.
A root α ∈ Φ may be thought of α as an element of t∗, so that ker α ⊆ t will be a hyperplane; recall that the set treg of

regular elements of t is defined to be the complement of all such hyperplanes:

treg := t \


α∈Φ

ker α.

A framed connection (P, s0,∇) is called compatibly framed if A−k ∈ t; it is called generic or non-resonant if A−k ∈ treg.
Suppose now that (P, s0,∇) is a generic compatibly framed connection with leading coefficient A−k ∈ treg. Then there is

a unique formal transformation (i.e. transformation in G(C[[z]]), so given by a power series which may not converge) whose



M.L. Wong / Journal of Geometry and Physics 62 (2012) 1397–1413 1399

leading term is the identity with respect to which the connection form is of the form

A0
:=


A−k

zk
+

A−(k−1)

zk−1
+ · · · +

A−2

z2
+
Λ

z


dz,

where Aj,Λ ∈ t,−k ≤ j ≤ −2. A0 is called the formal type of (P, s0,∇); the sum of the non-logarithmic terms,
i.e. A0

−Λ/z dz, is called the irregular type; andΛ is called the exponent of formal monodromy.
Two compatibly framed connections (P, s0,∇), (P ′, s′0,∇

′) are said to be isomorphic if there exists an isomorphism of
G-bundles ϕ : P → P ′ such that ϕ(s0) = s′0 and ϕ∗

∇
′
= ∇ . In this case, one is generic if and only if the other is, and if they

are generic, then they have the same formal type.
Consider the setH (A0) of isomorphism classes of generic compatibly framed connectionswith a fixed formal type A0. Let

B+, B−
⊆ G be opposite Borel subgroups containing T and letU+,U− be their unipotent radicals. Given a generic compatibly

framed connection (P, s0,∇) ∈ H (A0), there are overlapping sectors in the unit disc on each ofwhich fundamental solutions
for the connection (i.e. G-valued functions g for which the connection form is given by dg g−1) exist. To define the Stokes
data, one chooses an initial sector, as well as a branch of the logarithm function to specify an initial solution. On the overlaps
of the sectors, the solutions will differ by a constant element of G; these elements, the Stokes multipliers, will lie in U+ and
U− for alternate sectors as we go around the disc. We obtain a mapping

H (A0) → (U+
× U−)k−1,

called the irregular Riemann–Hilbert map.

Theorem 1.1 ([4, Theorem 2.8]). The irregular Riemann–Hilbert map is a bijection. In particular, H (A0) is isomorphic to an
affine space of dimension #Φ(k − 1) = 2r(k − 1).

2. Connections

In this section we will be working over a fixed compact Riemann surface X with a fixed effective divisor D of degree d.
We will write

D =

m
j=1

kjxj, Dred :=

m
j=1

xj,

with the xj distinct so that d =
m

j=1 kj, degDred = m.
We will let G, g, T , t,Φ be as in Section 1. By GD we will mean the group of G-valued functions on D (in the schematic

sense), so that GD = G(OD), that is, GD is the group of D-valued points of G. Similarly, the notation of gD will often be used.
We will typically think of elements of gD as polynomials in local coordinates at the support of D with coefficients in g.

2.1. Symplectic and Poisson structures and reductions

We consider pairs (P,∇), where P is a holomorphic principal G-bundle on X and ∇ is a meromorphic connection in P
whose poles are bounded by D. In the case where D is reduced, i.e. we are considering logarithmic connections, the relevant
moduli space can be constructed as in [15] (see also [16]); for arbitrary D, i.e. allowing for irregular poles, the only known
construction of the moduli space appears to be an analytic one by an infinite-dimensional symplectic reduction [3,6]. We
will denote by LX,G(ε,D) the moduli space of such pairs whose bundle is of topological type ε ∈ π1(G), abbreviating to
L (ε,D) if X and G are understood. For a pair (P,∇) ∈ L (ε,D), the deformation complex is

ad P
−∇·
−−→ ad P ⊗ K(D). (2.1)

That is, the space of infinitesimal deformations of (P,∇) is given by the first hypercohomology group of this complex
(cf. [11, Theorem 2.3], [13, Propositions 3.1.2, 3.1.3], [12, Proposition 7.1]):

H1(−∇·).

Since the Killing form on g is Ad-invariant, it gives a well-defined pairing between sections of ad P and so it follows that
t(−∇·) = ∇·. Hence the dual complex to (2.1) is

ad P(−D)
∇·
−→ ad P ⊗ K ,

then the diagram

ad P(−D) ∇· //

1

��

ad P ⊗ K

−1

��
ad P

−∇·

// ad P ⊗ K(D),

(2.2)
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the top row being the cotangent complex and the bottom the tangent complex, defines a Poisson structure on Lε,D
[12, Section 6,7]. The vanishing of the Schouten–Nijenhuis bracket, i.e. the Jacobi identity, can be proved as in [17, Section 5]
or [18, Section 6].

Wewill want to realize the spacesL (ε,D) slightly differently.Wewill consider triples (P, s,∇), where (P,∇) ∈ L (ε,D)
and s is a level structure of P over D, i.e. a section of P over D or, equivalently, a trivialization of P over D; the space of
such triples will be denoted P(ε,D). Since the space of infinitesimal deformations of a level structure (P, s) is given by
H1(X, ad P(−D)), the deformation complex for (P, s,∇) is

ad P(−D)
−∇·
−−→ ad P ⊗ K(D)

and its dual complex

ad P(−D)
∇·
−→ ad P ⊗ K(D).

Constructing a diagram as in (2.2), since this time we get an isomorphism of complexes, the resulting Poisson structure is
non-degenerate and we obtain a symplectic form on P(ε,D). Observe that

dimP(ε,D) = 2 dimG(g − 1 + d). (2.3)

The space P(ε,D) admits a free action of GD with g ∈ GD acting on the level structure by

g · (P, s,∇) = (P, s · g−1,∇),

and it is clear that we may make the identification

L (ε,D) = P(ε,D)/GD.

It follows that

dimL (ε,D) = dimP(ε,D)− dimGD = dimG

2(g − 1)+ d


. (2.4)

The reason for introducing the level structures is that the symplectic leaves are then easily identified using symplectic
reduction (cf. [12, Section 6.2]).

Proposition 2.5. The GD-action on P(ε,D) is Hamiltonian with moment map µ : P(ε,D) → g∗

D given by

(P, s,∇) → (s∇)pol.

Here, (s∇)pol is the Laurent polynomial of g-valued 1-forms we obtain by trivializing ∇ with respect to the section s. It
can be paired with an element of gD via the invariant bilinear form and taking residues, and hence yields an element of g∗

D.
Thus, the symplectic leaves of L (ε,D), which are the symplectic reductions of P(ε,D), consist of those pairs (P,∇) for

which the polar part of ∇ lies in a fixed coadjoint orbit in g∗

D. Again, without a trivialization, the polar part of ∇ is not well-
defined, but its coadjoint orbit is. If γ ⊆ g∗

D denotes a coadjoint orbit, then wewill denote the corresponding symplectic leaf
in L (ε,D) by L (ε,D)γ .

2.2. Irregular parts

We now consider the subgroup HD of GD consisting of elements whose leading term is the identity, i.e., the kernel of the
map GD = G(OD) → G(ODred). (This group is referred to as Bk in [3, Section 2] and as BD in [10, Section 4], but we use HD
so as not to give the impression that we are referring to a Borel subgroup.) The Lie algebra hD of HD will then be the kernel
of gD = g(OD) → g(ODred), so if we think of gD as polynomials in the local coordinate with coefficients in g, then hD is the
subalgebra of polynomials with zero constant term. Dually, if g∗

D is realized as Laurent polynomials with coefficients in g,
then h∗

D consists of those whose logarithmic term vanishes.
In parallel with Proposition 2.5, we have the following.

Proposition 2.6. The HD-action on P(ε,D) is Hamiltonian with moment map µ : P(ε,D) → h∗

D given by

(P, s,∇) → (s∇)irr

where (s∇)irr is the irregular component of the polar part of s∇ , i.e. it is (s∇)pol with the logarithmic term omitted.

Observe that the quotient L (ε,D)/HD is the set of triples (P, s,∇) where s is a trivialization of P|Dred , so that in a
neighbourhood of each xj ∈ suppD, we obtain a framed connection; we will denote this quotient by L (ε,D)cf. The
symplectic reductions L (ε,D)γcf arising from this action therefore consist of triples (P, s,∇), where s is a level structure
over Dred and for which the irregular polar part of ∇ lies in a fixed coadjoint HD-orbit γ ⊆ h∗

D.

2.3. Further reductions

Let W be the Weyl group associated to the root system Φ; it may be realized as W = NG(T )/T , where NG(T ) is the
normalizer of T in G. As in Section 1, r =

1
2#Φ will be the number of positive roots and l := rkG = dim T will be the rank
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of G so that dimG = 2r + l. Let TD := T (D) = T (OD) be the group of T -valued maps on D and tD := t(OD) its Lie algebra. Let
P(ε,D, T ) ⊆ P(ε,D) be the subspace consisting of triples (P, s,∇) for which (s∇)pol takes values in t and hence may be
considered as an element of t∗D and for which sred := s|Dred is a generic compatible framing as in Section 1.

For a fixed P and ∇ , it is not hard to see that any two level structures that give elements in P(ε,D, T )must differ by an
element of NG(T )D, the group of maps from D into NG(T ). So we get an NG(T )D-torsor; indeed, we may think of P(ε,D, T )
as a (left) NG(T )D-bundle over an open set in L (ε,D). Therefore, using (2.4),

dimP(ε,D, T ) = 2 dimG(g − 1)+ (dimG + l)d = 2

dimG(g − 1)+ (r + l)d


. (2.7)

Since TD ⊆ NG(T )D, it acts on P(ε,D, T ), and as before, we have the following.

Proposition 2.8. The TD-action on P(ε,D, T ) is Hamiltonian with moment map µ : P(ε,D, T ) → t∗D defined as

(P, s,∇) → (s∇)pol.

Let us consider the quotient,whichwewill denote asL (ε,D, T ), its symplectic leavesL (ε,D, T )η , andhow they compare
to those of P(ε,D). Elements of L (ε,D, T ) are triples (P, w,∇), where w is a class of level structure with (w∇)pol ∈ t∗D.
There is an induced map

L (ε,D, T ) = P(ε,D, T )/TD → P(ε,D)/GD = L (ε,D)
taking

(P, w,∇) → (P,∇).
From this expression, it is clear that the fibres are WD-torsors.

Since the coadjoint orbits in t∗D are singletons, a given symplectic leaf L (ε,D, T )η of the quotient L (ε,D, T ) consists of
those triples for which (w∇)pol = η ∈ t∗D is fixed (note that this is independent of the representative ofw). The preimage of
L (ε,D)γ ⊆ L (ε,D) consists of those (P, w,∇)with (w∇)pol ∈ γ ∩ t∗D. But this is the union of P(ε,D, T )η with η ∈ γ ∩ t∗D;
this intersection is precisely the WD-orbit of any one of its elements. Thus, the map

η∈γ∩t∗D

P(ε,D, T )η → L (ε,D)γ

is a covering and so an isomorphism on each P(ε,D, T )η .
Similarly, there is an (TD ∩ HD)-action and we record the following.

Proposition 2.9. The (TD ∩HD)-action on P(ε,D, T ) is Hamiltonian with moment mapµ : P(ε,D, T ) → (tD ∩ hD)
∗ given by

(P, s,∇) → (s∇)irr.

We may think of an element g ∈ NG(T )D ∩ HD as an NG(T )-valued function on D that is the identity on Dred. But this
means that the image of g must lie in the identity component of NG(T ), which is precisely T . This justifies the following.

Lemma 2.10. If NG(T )D = NG(T )(OD), then

NG(T )D ∩ HD = TD ∩ HD.

Corollary 2.11. If γ ⊆ h∗

D is a coadjoint HD-orbit, then γ ∩ (tD ∩ hD)
∗ consists of at most a single point.

From the lemma it follows that the induced map
L (ε,D, T )cf := P(ε,D, T )/(TD ∩ HD) = P(ε,D, T )/(NG(T )D ∩ HD) → P(ε,D)/HD

is an isomorphism onto its image, and that if η ∈ (tD ∩ hD)
∗ and γ is its HD-orbit in h∗

D, then the symplectic reductions can
be identified:

L (ε,D, T )ηcf = L (ε,D)γcf.

Mixing notation, we will write L (ε,D)ηcf for these spaces, for η ∈ (tD ∩ hD)
∗. Since dim(TD ∩ HD) = l(d − m), we have

dimL (ε,D)ηcf = 2

dimG(g − 1)+ rd + lm


. (2.12)

Remark 2.13. One will observe now that for η ∈ (tD ∩ hD)
∗, elements of L (ε,D)ηcf are triples (P, s,∇), where s is a generic

compatible framing for ∇ , and ∇ is of fixed irregular type at each point of suppD.

3. Global monodromy

For use in this section and the last, we will define a scheme L by

L :=

m
j=1

SpecC[z]/(zkj), (3.1)
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so that L is the disjoint union of the (kj − 1)th formal neighbourhoods of the origin in C for 1 ≤ j ≤ m. For now, we will
only use L as a way of denotingm points with fixed multiplicities k1, . . . , km, but it will play more of a role in Section 5.

3.1. The space of monodromy data

We define the manifold of monodromy data following Boalch [3, Section 3] as follows. For 1 ≤ j ≤ m, we setCj := G × (U+ × U−)
kj−1

× t,

where, in the case kj = 1, we replace t by the dense open set (though not Zariski open)

t′ := t \


α∈Φ

α−1(Z).

We see that

dim Cj = dimG + (dimG − l)(kj − 1)+ l = kj dimG − l(kj − 2).

We now consider the product

G2g
× C1 × · · · × Cm

and observe that it admits a G-action: in each factor Cj, g ∈ G acts by

g · (gj,Kj,Λj) = (gjg−1,Kj,Λj),

and in each factor of G2g , the action is by conjugation. If X 0
g,L refers to the submanifold of the product satisfying

[A1, B1] · · · [Ag , Bg ]g1 exp(2π iΛ1)g−1
1 · · · gm exp(2π iΛm)g−1

m = e, (3.2)

then the space of monodromy data is then defined to be

Xg,L := G \ X 0
g,L.

Its dimension is given by
m
j=1


dj dimG − l(kj − 2)


+ 2g dimG − 2 dimG = 2[dimG(g − 1)+ rd + lm].

Comparing with (2.12), we observe that this is precisely dimL (ε,D)ηcf.
Without delving into the theory of quasi-HamiltonianG-spaces and reductiondeveloped in [8],whichprovides a variation

of the well-known theory of symplectic reduction where the moment maps are G-valued, we give a brief and rough
explanation of how it gives a more geometric construction of Xg,L together with a holomorphic symplectic form. The
spaces G2

= G × G can be thought of as spaces of representations of the fundamental group of a punctured torus; they
are quasi-Hamiltonian G-spaces [8, Proposition 3.2]. Glueing tori together corresponds to what is known as the fusion
product [8, Section 6], so the data for representations of a genus g surfacewill come from a g-fold fusion productG2~· · ·~G2.
Boalch shows that the spaces Ci are quasi-Hamiltonian (G × T )-spaces [6, Theorem 5], so that the fusion product

G2 ~ · · · ~ G2 ~ C1 ~ · · · ~ Cm

is a quasi-Hamiltonian (G × Tm)-space, whose G-reduction is precisely Xg,L as described above. This has the following
consequence.

Theorem 3.3 ([6, Theorems 3,4,5]). The manifold Xg,L carries a holomorphic symplectic form.

3.2. The monodromy map

We return to the spaces L (ε,D)ηcf described at the end of Section 2.3. As pointed out in Remark 2.13, an element is
a triple (P, s,∇), where P is a G-bundle, s a trivialization over Dred, and ∇ a connection with poles bounded by D and
such that (s∇)pol = η ∈ (tD ∩ hD)

∗ is fixed. These spaces are precisely those constructed by Boalch via an infinite-
dimensional symplectic reduction [6, Definition 15, Theorem 9] (cf. [3, Section 4,5]), as such they are endowed with a
complex analytic symplectic form, which we will call the Atiyah–Bott form, as it is induced from a symplectic form on a
space of C∞ connections (cf. [7, Section 9]).

Section 1 indicated how to define monodromy data at each pole. There we saw that the data needed to define the
monodromy data of a meromorphic connection in the neighbourhood of a single pole was:

1. a choice of a coordinate z at the pole;
2. a choice of a generic compatible framing;
3. a choice of initial sector Sect1; and
4. a choice of branch of log z.
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At each xj ∈ suppD, s gives a generic compatible framing, but we will have to choose a coordinate zj centred at xj, a branch
of log zj and an initial sector Sectj1. If z

′

j is another such choice of coordinate with

z ′

j = zj + O(z
kj+1
j )

then the polar part of the expression of ∇ with respect to sxj is unchanged, so we need only choose an equivalence class of
such coordinates, which Krichever defines to be a kj-jet, denoted [zj]kj [9, Section 3].

We would now like to associate global monodromy data to a triple (P, s,∇). For global data, we would like to record the
monodromy over a set of ai- and bi-cycles, 1 ≤ i ≤ g , that do not intersect the poles, which we will now fix; we would also
like to see how the local solutions near the poles relate to each other. To make sense of this, we choose what Boalch calls a
set of ‘‘tentacles’’ [3, Definition 3.9]. This involves choices of the following data:

1. a base point y ∈ X \ D;
2. a point yj in the coordinate neighbourhood of xj so that it does not lie on an anti-Stokes direction; we may label the

sectors so that yj lies in Sectj1;
3. a branch of log zj, which we may continue analytically starting in Sectj1;
4. a path γj joining y to yj.

We do this in such a way that the γj do not intersect any of the ai- or bi-cycles. To see how and why this can be done, we can
cut X along the ai- and bi-cycles to obtain a 4g-gon with the poles in the interior. We may assume that y is the base point,
which corresponds to the vertices of the 4g-gon, and then we can choose non-intersecting γj from y to each yj. We remark
that the choice of tentacles includes a choice of initial sector near each pole as well as the branch of the logarithm there.
Therefore, given (P, s,∇), we require the data of a choice of kj-jet near each xj.

Finally, we define themonodromy data as follows. Since y is a regular point for the connection, there exists a fundamental
solution φ0 in a neighbourhood of y, unique up to a constant element of G. We parallel transport it along γj to yj; then if φj

1

is the canonical fundamental solution in Sectj1, we have

φ0 = φ
j
1gj

for some gj ∈ G. This gj is the data that goes into the G-component of Cj. The Stokes multipliers K j
1, . . . , K

j
2(kj−1) go into the

factor (U+ ×U−)
kj−1 and the exponent of formal monodromyΛj goes into the t-component. If Ai is the monodromy around

ai and Bi that around bi, then the G2g factor is

(A1, . . . , Ag , B1, . . . , Bg).

We therefore get a map L (ε,D)ηcf → C1 × · · · × Cm × G2g :

(P, s,∇) →


m
j=1

(gj, K
j
1, . . . , K

j
2kj−2,Λj), Ai, Bi


.

The image clearly consists of elements satisfying (3.2). To make things independent of the choice of fundamental solution
φ0 in a neighbourhood of y, we quotient out by G. This gives us a well-defined map

ν : L
η

ε,D,cf → Xg,L (3.4)

called themonodromy map.

Proposition 3.5. The monodromy map is a complex analytic symplectomorphism onto its image.

The proof follows that of Proposition 3.7 in [3] (cf. Lemma 3.2 in [9]). It is sufficient to see that it is an injective map
of complex manifolds of the same dimension. To check injectivity, if (P, t,∇), (P ′, t ′,∇ ′) have the same Stokes data, with
canonical fundamental solutions φj, φ

′

j in the Stokes sectors, then φ′

jφ
−1
j give isomorphisms on the sectors and agree on

overlaps. Furthermore, it is bounded, so extends to an isomorphism over the poles. The fact that the symplectic structure is
preserved follows from [6, Theorem 9].

3.3. Comparison of symplectic forms

The careful reader will have noticed that while we have described the symplectic form on L (ε,D)ηcf in terms of
hypercohomology, Boalch’s result stating that the monodromy map is symplectic (Proposition 3.5) uses the Atiyah–Bott
symplectic form. We now justify that these are the same.

Let us fix (P, s,∇) ∈ L (ε,D)ηcf and think about what a deformation should look like. The deformation of complex of
(P, s,∇) as an element of L (ε,D), i.e. we are not fixing the irregular part, is

ad P(−Dred)
−∇·
−−→ ad P ⊗ K(D).
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In terms of Čech representatives with respect to an open cover U = {Uα}, a deformation is an element

(τ , ν) ∈ Z1(U, ad P(−Dred))⊕ C0(U, ad P ⊗ K(D))

satisfying the hypercohomology cocycle condition:

− ∇ταβ = να − νβ . (3.6)

To stay within the symplectic leaf L (ε,D)ηcf, we wish to keep constant the irregular part of ∇ and we wish to vary the
logarithmic term of ∇ with respect to the framing s by elements of t. Therefore we wish to restrict ν to lie in the subsheaf
of ad P(Dred) such that the logarithmic term with respect to s lies in t. Let us denote this sheaf by ad P ⊗ K(Dred)

s,t
⊆

ad P ⊗ K(Dred). The condition (3.6) means that τ must lie in the preimage of ad P ⊗ K(Dred)
s,t under −∇·; let us denote this

preimage by ad P ⊗ K(−Dred)
s,t. Therefore the deformation complex should be

ad P(−Dred)
s,t −∇·

−−→ ad P ⊗ K(Dred)
s,t. (3.7)

Since we want to compare the hypercohomology form to one given by a symplectic reduction of C∞ objects, it makes
more sense to consider hypercohomology representatives in terms of a Dolbeault resolution. Since ∂ and ∇ anti-commute,
the relevant double complex is

C∞

ad P(−Dred)

s,t
 −(∂+[A,·]) //

−∂

��

C∞

ad P ⊗ K(Dred)

s,t


∂

��
Ω0,1


ad P(−Dred)

s,t


−(∂+[A,·])=−∇·

// Ω0,1

ad P ⊗ K(Dred)

s,t

.

(3.8)

The cocycle condition for

(τ , ν) ∈ Ω0,1ad P(−Dred)
s,t

⊕ C∞

ad P ⊗ K(D)s,t


,

is then

− ∇τ = ∂ν. (3.9)

In these terms, the symplectic form defined as in (2.2) will be given explicitly by

ωH

(τ1, ν1), (τ2, ν2)


=


X
κ(τ1, ν2)− κ(τ2, ν1),

where κ is the Killing form on g appropriately extended to ad P-valued forms.
The construction of L (ε,D)ηcf via an infinite-dimensional symplectic reduction can be described as follows. Consider P

as a C∞ bundle and let A (η) be the set of connections on P whose Taylor expansion with respect to a smooth trivialization
extending the compatible framing s is simply η, thought of as a Laurent polynomial (in fact, a polynomial in 1/z) with
values in t ⊆ g; let A (η)fl denote the subspace of A (η) consisting of flat connections. If ∇ ∈ A (η)fl, then ∇

0,1 is non-
singular everywhere and so defines a holomorphic structure on P . A holomorphic frame for this holomorphic structure can
be obtained by solving g−1(∂g) = ∇

0,1 (cf. [3, proof of Proposition 4.3]). With respect to such a frame, the meromorphic
connection is given by ∇

1,0 (the fact that it is meromorphic follows from flatness).
Fixing an arbitrary ∇ ∈ A (η), its tangent space is given by

T∇A (η) =


φ ∈ Ω1ad P(D)

 Li(φ) ∈ t
dz
z
, 1 ≤ i ≤ m


,

where Li(φ) denotes the Taylor expansion of φ at the pole xi with respect to a trivialization in which ∇ is represented by
η [6, Section 4]. On this space, the Atiyah–Bott form is given by

ωAB(φ, ψ) =


X
κ(φ,ψ).

The space A (η) is acted upon by the subgroup G1 of the C∞ gauge group of P whose Taylor expansion at any pole is the
identity. This action is Hamiltonianwithmomentmap given by the taking of the curvature of a connection. By definition, the
symplectic quotientL (ε,D)ηcf is then the quotientA (η)fl/G1. Therefore a deformation of (P, s,∇) ∈ L (ε,D)ηcf is represented
by an element of T∇A (η)fl. The condition for φ ∈ T∇A (η) to lie in T∇(η)fl is

0 = F∇+ϵφ = d(A + ϵφ)+ (A + ϵφ) ∧ (A + ϵφ) = F∇ + ϵ∇φ,

where A is a connection form representing ∇ . Thus,

T∇A (η)fl = {φ ∈ T∇A (η) | ∇φ = 0}.
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Let φ = φ1,0
+ φ0,1

∈ T∇A (η)fl be the decomposition into (1, 0) and (0, 1) parts; then choosing a holomorphic frame for
P so that A = A1,0, A0,1

= 0, we obtain

0 = dφ + [A, φ] = ∂φ0,1
+ ∂φ1,0

+ [A, φ0,1
] = ∇φ0,1

+ ∂φ1,0.

But note in this case that φ1,0 is a smooth section of ad P(Dred)
s,t. This relation shows φ0,1 is a (0, 1)-form with values in the

preimage of ad P(Dred)
s,t, and the relation itself is precisely that of (3.9). If Z1(−∇·)Dol denotes the space of hypercohomology

cocycles for a Dolbeault resolution of the deformation complex, then one has a map T∇A (η)fl → Z1(−∇·)Dol simply given
by

φ → (φ0,1, φ1,0).

The Lie algebra of G1 can be identified as the smooth sections of ad P whose Taylor series at D vanishes. If µ is such a
section, then the infinitesimal action ofµ at ∇ is readily computed to be −∇µ ∈ T∇(η)fl. Using (3.8), it is easy to verify that
under themap of the previous paragraph, the subspace of T∇A (η)fl generated by the infinitesimal actionmaps into the space
B1(−∇·)Dol of coboundaries. The induced map of the respective quotients is simply the identity map of T(P,s,∇)L (ε,D)

η

cf.
Using these identifications, we can simply check that

ωAB(φ, ψ) =


X
κ(φ0,1

+ φ1,0, ψ0,1
+ ψ1,0) =


X
κ(φ1,0, ψ0,1)− κ(ψ1,0, φ0,1)

= ωH

(φ0,1, φ1,0), (ψ0,1, ψ1,0)


noting that κ(φ0,1, ψ0,1) and κ(φ1,0, ψ1,0) are (0, 2)- and (2, 0)-forms, respectively.

Proposition 3.10. The Atiyah–Bott and hypercohomology symplectic forms, ωAB and ωH, on L (ε,D)ηcf agree.

Remark 3.11. The fact that the monodromymap is symplectic indicates that the symplectic structure on the moduli spaces
L (ε,D)ηcf is expressible in terms independent of the analytic data of the isomorphism class of the bundle, the connection
or even the complex structure of the Riemann surface. The hypercohomology perspective almost gives another way to see
this. We may consider the subsheaf ad P(−Dred)

s,t of ad P(−Dred)
s,t consisting of the constant sections, i.e., the kernel of ∇·.

There is thus an exact sequence

0 → ad P(−Dred)
s,t

→ ad P(−Dred)
s,t −∇·

−−→ ad P ⊗ K(Dred)
s,t. (3.12)

If this were exact at the right, then we would have a resolution of the locally constant sheaf ad P(−Dred)
s,t, and so

ad P(−Dred)
s,t //

��

0

��
ad P(−Dred)

s,t
−∇·

// ad P ⊗ K(Dred)
s,t

would be a quasi-isomorphism of complexes, in which case we would have

H1(−∇·) ∼= H1X, ad P(−Dred)
s,t.

But ad P(−Dred)
s,t is a local system, so essentially carries only the monodromy information of the connection. Furthermore,

the symplectic form should be recoverable from the cup product

H1ad P(−Dred)
s,t

⊗ H1ad P(−Dred)
s,t

→ H2ad P(−Dred)
s,t

⊗ ad P(−Dred)
s,t

followed by a pairing induced by the Killing form. However, it does not appear that (3.12) is right exact, for ad P ⊗K(Dred)
s,t

contains sections with a t-valued logarithmic term, but any polar term in the image of −∇· must be obtained as the bracket
with a t-valued form.

4. Families of bundles obtained by Hecke modifications

The constructions used in the next section depend on an ability to view open sets of the moduli space of bundles as
obtained via Hecke modification of a fixed bundle. We review what this means here. Further details can be found in [14].

Let Q be a holomorphic principal G-bundle over X . A Hecke modification of Q supported at x ∈ X consists of a G-bundle P
and an isomorphism

a : P|X0
∼
−→ Q |X0 ,

where X0 := X \ {x}. Let X1 ⊆ X be an open disc centred at X , and choose trivializations of P and Q over X1, and consider
the map of trivial bundles over X01 := X0 ∩ X1 with respect to these trivializations. This will yield a holomorphic map
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σ : X01 → G. We can also trivialize P and Q over X0 (any bundle with semisimple structure group is holomorphically trivial
over a non-compact Riemann surface); let us do this so that these trivializations correspond via the isomorphism a. Then if
g01 and h01 are the resulting transition functions for P and Q , respectively, we have the relationship

g01 = h01σ .

Essentially, the modification depends only on these maps σ up to a suitable equivalence relation. For σ conjugate to a fixed
cocharacterλ∨ of T ⊆ G, there are finite-dimensional spacesY(Q , λ∨) of equivalence classes of such σ , which in the absence
of more imaginative terminology, will be referred to as spaces of Hecke modifications. By introducing Hecke modifications
at various points in X , one obtains families of bundles, with parameter space a (symmetric) product of spaces of Hecke
modifications. The main result of [14] can be summed up in the following statement.

Proposition 4.1. If G is semisimple of adjoint type with root system A3, Cl or Dl (i.e. G = PGL(4), PSp(2l) or PSO(2l)) and if the
genus g is even, then one can obtain parametrizations of an open set in the moduli space of principal bundles with spaces of Hecke
modifications of the trivial bundle.

In the case where G is semisimple of adjoint type, if P arises from Q by Hecke modification, then there is a vector bundle
E = EPQ of rank dim G and an exact sequence

0 → ad P → EPQ → EPQ /ad P → 0, (4.2)

so that E/ad P is a torsion sheaf, supported precisely where the Hecke modifications are. The vector spaces H0(X, E/ad P)
may be identified with the space of infinitesimal deformations of the modification, with the connecting homomorphism

H0(X, E/ad P) → H1(X, ad P)

yielding the Kodaira–Spencer map for the family. Furthermore, there is also an inclusion of sheaves E∗
→ adQ , which is

again an isomorphism away from the support of the Hecke modifications, fitting into a commutative diagram

E∗ //

��

adQ

��
ad P // E.

(4.3)

(See [14, Section 3.2]; cf. [10, Section 2].)

5. Isomonodromic deformation

5.1. The space of deformation parameters and the isomonodromy connection

As mentioned in the introduction, isomonodromic deformation has its roots in the Riemann–Hilbert problem, in
determining the constraints on the movement of the poles of a connection to ensure the monodromy remains constant.
For CP1, these deformation parameters consist of the locations of the poles and the irregular polar part of the connection,
but for higher genus the complex structure of the surfaces themselvesmust also figure in [9, Section 4]; indeed, the complex
structures become monodromy parameters themselves.

Since our discussion concerns connections with poles of arbitrary order, we must consider the moduli space of curves
with punctures, or marked points, which keeps track of multiplicities. Recalling our definition of L (3.1), the relevant moduli
space will be denoted Mg,L and we now describe it. We observe that a closed immersion c : L → X carries the information
of both a divisor D (the schematic image of c) and a choice of jets (by choosing coordinates at the support of D which pull
back precisely to z ∈ C[z]/(zkj)). We thus let Mg,L be the space of pairs (X, c), where X is a compact Riemann surface of
genus g and c : L → X is a closed immersion whose image we will take to be a divisor D with a choice of jet of coordinates
at each point in its support.

We remark that the space of pairs (X,D), where D is a divisor isomorphic to L but without the information of a choice of
jet, is the quotient Mg,L/Aut L.

Recall that to define the monodromy data for a triple (P, s,∇), we fixed the irregular part of ∇ . Therefore our space
of deformation parameters will be Mg,L × (tL ∩ hL)

∗, where as before (tL ∩ hL)
∗ is realized as Laurent polynomials with

coefficients in t with terms of order at most −2.
Following [10, Section 5], define

Ug,L,ε,T := {(X, c, P, s,∇) : (X, c) ∈ Mg,L, (P, s,∇) ∈ PX (ε,D = c(L), T )}.

This carries a natural projection to the space of deformation parameters

Ug,L,ε,T → Mg,L × (tL ∩ hL)
∗

given by

(X, c, P, t,∇) →

X, c, c∗(s∇)pol


.
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Since c induces isomorphisms GL → GD, TL → TD,HL → HD, etc., Ug,L,ε,T admits an action of TL ∩ HL and since this is
abelian, the coadjoint action is trivial and hence the map above is invariant under this action, which then gives a projection

Ug,L,ε,T/(TL ∩ HL) → Mg,L × (tL ∩ hL)
∗. (5.1)

The elements of Ug,L,ε,T then consist of tuples (X, c, P, s,∇), where s is a generic compatible framing for ∇ over Dred.
Therefore the fibres of this map are precisely the symplectic spaces LX (ε,D)

η

cf of Section 2.3.
What remains to define the monodromy data is a choice of tentacles (Section 3.2). One can imagine that once this choice

is made, then by moving around in the space of deformation parameters Mg,L × (tL ∩ hL)
∗ phenomena such as y encircling

a point of D or one of the yj crossing over an anti-Stokes direction may occur, rendering the monodromy data computed
from our initial choice ill-defined; indeed, such occurrences would be equivalent to another choice of tentacles. However,
what we are concerned with is constructing isomonodromic deformations which are local on the base. For small changes
in the deformation parameters, these phenomena will not occur and so for a given element of Ug,L,ε,T/(TL ∩ HL), we can
fix such a choice and this choice will give us well-defined monodromy data in a neighbourhood of that point. Therefore, for
a sufficiently small neighbourhood U in Mg,L × (tL ∩ hL)

∗ we get an isomorphism from the bundle (5.1) to U × Xg,L, and
therefore isomonodromic deformation gives a local splitting of the bundle. This is known as the isomonodromy connection.

Since the monodromy maps are symplectic (Proposition 3.5), by composing the monodromy map for one fibre of (5.1)
with the inverse of another, we get a symplectic identification and hence the following statement.

Proposition 5.2. The isomonodromy connection is symplectic.

5.2. Constructing Hamiltonians

In this subsection, we follow closely the arguments used in [10, Section 6]. Given (P, s,∇) ∈ L (ε,D)ηcf lying in the bundle
(5.1), we may consider its (infinitesimal) isomonodromic deformation (P, t̃,∇)iso,v with respect to some tangent vector v
to the base Mg,L × (tL ∩ hL)

∗, which may be considered as an (infinitesimal) splitting of (5.1).
We wish to construct a second (infinitesimal) splitting of (5.1) as follows. We may consider P as obtained from a

fixed bundle Q by Hecke modifications as in Section 4. Fixing a connection ∇0 on Q with a single pole x0 away from
D and the support D0 of the Hecke modifications and a framing t0 of Q at x0, we may consider the isomonodromic
deformation (Q , t̃0,∇0)

iso,v of (Q , t0,∇0) in the analogous bundle (5.1). By ‘‘parallel transport’’ of the Hecke modifications
along (Q , t̃0,∇0)

iso,v , we get a bundleP and a framing t̃; considering a deformation of the connection ∇ which ‘‘preserves
the Heckemodifications’’ uniquely determines a deformation (P, t̃,∇) of (P, t,∇). These ideas will bemade precise in what
follows.

We thus obtain two deformations of (P, t,∇) in Uε,D,cf which lie above the tangent vector v to Mg,L × (tL ∩ hL)
∗, and

hence the differencemust be a tangent vector to the fibre L (ε,D)ηcf, which wemay recall 2.9 is symplectic. The result is that
this is the value of a Hamiltonian vector field on L (ε,D)ηcf at (P, t,∇).

5.2.1. Deformations in the modulus of the punctured Riemann surface
We will first consider a deformation of the modulus of the punctured curve c : L → X . The tangent space to Mg,L at

(X, c,D) is given byH1(X,T (−D)), whereT = TX is the tangent sheaf to X . Therefore a deformation is given by an element
µ ∈ H1(X,T (−D)), whichwewill realize as a cocycle (µαβ)with respect to an open covering described below.Wewill also
assume that the µαβ are supported near D. The deformed Riemann surfaceX =Xµ is a complex space over SpecC[ϵ]/(ϵ2)
such that there exists a Cartesian diagram

X //

��

X
��

SpecC // SpecC[ϵ]/(ϵ2).

(5.3)

Thus, X has the same underlying topological space as X , but over a coordinate patch Uα , it has structure sheaf OUα ⊗C
C[ϵ]/(ϵ2) = OUα ⊕ ϵOUα . On the overlaps Uαβ = Uα ∩ Uβ , the transition functions must also come with automorphisms of
OUαβ ⊕ εOUαβ which are given by C-derivations OUαβ → OUαβ , i.e. which in our case are the vector fields µαβ . So if ω is a
holomorphic k-form1 on X defined over Uαβ , then we will identify

ω(zβ) = ω(zα)+ ϵ Lµαβω(zα), (5.4)

where zα, zβ are coordinates on Uα,Uβ , respectively and Lµαβ denotes the operation of taking the Lie derivative in the
direction of µαβ . In particular, for a function f (i.e. a 0-form),

f (zβ) = f (zα)+ ϵdf (µαβ)(zα). (5.5)

1 Since we are on a Riemann surface, we will only have k = 0 or k = 1.
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An infinitesimal deformation of (P, t,∇) is a triple (P, t̃,∇) overX whose pullback to X along the upper horizontal map
in (5.3) is (P, t,∇). A principal bundleP overX with a framing t̃ over D is determined by a cocycle in G(O(Uαβ)+ ϵO(Uαβ))
which is the identity at D. By a connection∇ onP , we mean a relative connection over C[ϵ]/(ϵ2), so given by 1-forms (over
theUα) with values in g(C[ϵ]/(ϵ2)). With this, themonodromy data for can be taken andwill give a point inXg,L(C[ϵ]/(ϵ2)).

The (infinitesimal) isomonodromic deformation (cf. [19, Chapter 0, Definition 16.4]) of (P, t,∇) with respect to the
tangent vector µ will be an infinitesimal deformation (P, t̃,∇)iso,µ of (P, t,∇) whose monodromy data lies in the image
of

Xg,L(C) ↩→ Xg,L

C[ϵ]/(ϵ2)


.

Note that if (P, t̃,∇) is any lift of (P, t,∇), then one obtains the monodromy data for (P, t,∇) under the map

Xg,L

C[ϵ]/(ϵ2)


↩→ Xg,L(C)

whose composition with the preceding map is an isomorphism.
We now set the notation to explain the details of the constructions described above. We will let D =


kjxj be as in 2.3.

Let D0 = {yr}sr=1 be the support of the Hecke modifications and let x0 be the pole of ∇0. We will let U1j be a disc centred at
xj; U1jl ⊆ U1j will be the Stokes sectors at xj (the range for the index lwill depend on the number of anti-Stokes directions at
xj). Let U2r be a disc centred at yr and U3 a disc centred at x0. Assume that the U1j,U2r ,U3 are pairwise disjoint. If X1 is their
union, then X \ X1 is closed and hence compact and so may be covered by finitely many simply connected open sets U0i. We
will use α, β for any of these indices.
Isomonodromic deformation of (P, t,∇). The isomonodromic deformation, (P, t̃,∇)iso,µ, of a triple (P, t,∇)with respect to
µ ∈ H1(X,T (−D)) may be given as follows. In the open sets U1jl (the Stokes sectors), U2r ,U3,U0i – i.e. all the open sets
which do not intersection suppD and which are by definition simply connected – we may obtain ∇-constant trivializing
sections; for the U1jl, we may take the fundamental canonical solutions used in defining the Stokes data. We also choose
trivializations over the discs U1j which we may take to agree with the trivializations t|xj at xj. Then on all overlaps Uαβ on
which we have constant sections, the transition functions gαβ are constant and all of the monodromy data can be recovered
from these functions. Considering the gαβ as elements of G(O(Uαβ)), we may consider their image under the inclusion

G

O(Uαβ)


↩→ G


O(Uαβ)⊕ ϵO(Uαβ)


.

Clearly, this gives a cocycle which defines a lift to a G-bundleP onX which pulls back to P . The trivializations on the U1j

taken to first order at the xj give t̃ . Except on the U1j, the local connection formswill be zero; on the U1j we can take the same
forms to define ∇ .

Instead of ∇-constant trivializations, we may take ∇0-constant trivializations tα . These are trivializations of Q , but are
also trivializations for P away from D0. Denote the corresponding transition functions by hαβ , which will also be constant.
Where it makes sense, we may write tα = sα · kα for some G-valued functions kα; since the ∇-constant and ∇0-constant
trivializations will not coincide, in general, the kα will not be constant. With this, we may write

gαβ = kαhαβk−1
β ,

where the hαβ are the corresponding transition functions for Q . We will let Aα := t∗α∇ be the connection forms for ∇ with
respect to these trivializations. It then follows that

Aα = k−1
α dkα.

These relations hold overX as well, however, we should take note of (5.5), which tells us that

kβ(zβ) = kβ(zα)+ ϵdkβµαβ(zα) = kβ(zα) exp(ϵµαβAβ(zα)).

Therefore, the same bundle in the tα trivializations has transition functions (using the coordinate zα)

k−1
α gαβkβ exp(ϵµαβAβ) = hαβ exp(ϵµαβAβ).

Isomonodromic deformation of (Q , t0,∇0). The isomonodromic deformation, (Q , t̃0,∇0)
iso,µ, of (Q , t0,∇0) can, as above, be

described by taking∇0-constant trivializations ofQ which yield constant transition functions hαβ and then using those same
transition functions to define a bundleQ overX .

Whatwewant to do now is shift (P, t,∇) along, keeping ‘‘constant’’ the Heckemodificationswe used to construct P from
Q , i.e. obtain a bundleP which is obtained fromQ by introducing ‘‘the same’’ Hecke modifications. Since the modifications
are supported at D0 and we are assuming that the µαβ vanish there, keeping the modifications constant makes sense if we
keep the same trivializations (and transition functions).

Now, to obtain the deformation ∇ of ∇ , we will want deformations of the connection matrices Aα that preserve the
irregular part of ∇ near D and are holomorphic near D0. Therefore, we want ∇ to be represented by matrices

Aα + ϵaα
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where the aα are g-valued 1-forms representing sections of ad P⊗K(Dred). For this tomake sense as a connection, we require
the usual compatibility condition to hold. First, recall that (5.4) gives us

Aβ(zβ) = Aβ(zα)+ ϵLµαβAβ(zα).

The compatibility condition is then

Aα(zα)+ ϵaα(zα) = Ad hαβ

Aβ(zβ)+ ϵaβ(zβ)


= Ad hαβ


Aβ(zα)+ ϵ


LµαβAβ(zα)+ aβ(zα)


. (5.6)

We now explain what is meant by a ‘‘deformation of the connection ∇ which preserves the Hecke modifications’’, as
alluded to at the beginning of this section. Dualizing the map ad P → EPQ of (4.2) and tensoring with K(Dred), we obtain the
exact sequence

0 → E∗
⊗ K(Dred) → ad P ⊗ K(Dred) → ad P/E∗

⊗ K(Dred) → 0, (5.7)

where the last term is a torsion sheaf supported at D0. Since section of the last term essentially parametrize deformations
of the Hecke modifications, for the sections aα ∈ Γ (Uα, ad P ⊗ K(Dred)) to ‘‘preserve’’ the modifications, we require them
to lie in the kernel of ad P ⊗ K(Dred) → ad P/E∗

⊗ K(Dred); thus, we will think of them as sections of E∗
⊗ K(Dred).

We nowwant to prove their existence, i.e., that the aα ∈ Γ (Uα, E∗
⊗K(Dred)) yielding the∇ as suggested above actually

exist. Comparing the coefficient of ϵ on either side of (5.6), this is the same as showing that LµαβAβ define a coboundary in
ad P ⊗ K(Dred).

Observe that since Aβ is a meromorphic 1-form on a curve, dAβ = 0 and hence

LµαβAβ = dιµαβAβ = d(µαβAβ) = ∇0(µαβAβ),

the last since we are using ∇0-constant frames.
Now, the Aβ are sections of ad P⊗K(D) and theµαβ ofT (−D) so theµαβAβ give sections of ad P and∇0(µαβAβ) sections

of ad P ⊗ K (or more precisely ad P ⊗ K(mx0), where m is the order of the pole of ∇0 at x0, but since µαβ = 0 near x0, we
can ignore this). We are now thinking of ∇0(µαβAβ) as a representative of an element of H1(X, E∗

⊗ K) supported near D.
If ζ ∈ H0(X, E(−Dred)) = H1(X, E∗

⊗ K(Dred))
∗, we consider its pairing with ∇0(µαβAβ):

⟨∇0(µαβAβ), ζ ⟩ = ∂⟨µαβAβ , ζ ⟩ − ⟨µαβAβ ,∇0ζ ⟩.

Since we are choosing cocycle representatives near D, the pairing is given by taking residues at D. But ⟨µαβAβ , ζ ⟩ is a
(meromorphic) function defined near D, so ∂⟨µαβAβ , ζ ⟩ will have no residue. For the second term, we noted above that
µαβAβ has no poles at D, and ∇0ζ will likewise have no residue at D. Therefore

⟨∇0(µαβAβ), ζ ⟩ = 0

and since ζ ∈ H0(X, E) was arbitrary, it follows that LµαβAβ = ∇0(µαβAβ) is a coboundary, and the aα above exist as
claimed.

To recap, the isomonodromic deformation of (P, t,∇) gave a bundle with transition functions hαβ exp(ϵµαβAβ) and
connection 1-forms Aα . The ‘‘parallel transport’’ of the Hecke modifications and irregular part of ∇ yielding (P, t,∇) along
the isomonodromic deformation of (Q , t0,∇0) gives the bundle with transition functions hαβ and connection 1-forms
Aα + ϵaα as described above. Taking the difference gives a 1-cochain

(µαβAβ ,−aα) (5.8)

which satisfies

∇(µαβAβ) = d(µαβAβ)+ [Aβ , µαβAβ ] = d(µαβAβ) = Adh−1
αβaα − aβ ,

noting that [Aβ , µαβAβ ] = 0. This gives a cocycle in hypercohomology and hence defines a tangent vector to L (ε,D)ηcf.

Definition of the Hamiltonian. We now define a function Hµ on L (ε,D)ηcf as follows. We may consider ∇0 as a connection on
P with poles at D0. Suppose X0, X1 are as in Section 4 so that if h01 is the transition function for Q on X01, then g01 = h01σ is
the transition function for P , where σ is a G-valued function on X01. Then if B0, B1 are the connection matrices for ∇0, they
satisfy

B0 = Ad h01B1 − dh01 h−1
01 = Ad g01Ad σ−1B1 − dg01g−1

01 − Ad g01d(σ−1)σ .

Therefore, taking

A0 := B0, A1 := Ad σ−1B1 − d(σ−1)σ ,

these define a connection on P , which will have poles at D0 with order depending on σ and on the root system of G.
Therefore, we may think of ∇ − ∇0 as a section in H0(X, ad P ⊗ K(D + mD0)) for somem > 0 and hence

κ(∇ − ∇0,∇ − ∇0) ∈ H0(X, K 2(2D + 2mD0)).
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Since for (P, s,∇) ∈ L (ε,D)ηcf, the polar part is fixed, so is that of κ(∇ − ∇0,∇ − ∇0) at D. Let q0 ∈ H0(X, K 2(2D)) have
the same polar part and set

q := κ(∇ − ∇0,∇ − ∇0)− q0 ∈ H0(X, K 2(D + 2mD0)).

Since there is an exact sequence

H1(X,T (−D − 2mD0)) → H1(X,T (−D)) → 0

we can choose a lift µ̃αβ of µαβ and we define the function on the fibre L (ε,D)ηcf as

Hµ :=
1
2
ResD µ̃q, (5.9)

where again ResD means we are summing the residues over suppD, and noting that µ̃q ∈ H1(X, K). Since we are computing
the residue at D,Hµ is independent of the lift µ̃.

Our aim now is to show that the difference (5.8) in the isomonodromic splittings is precisely the Hamiltonian vector field
corresponding to Hµ.

Let us consider the open cover X0, X1 where X0 = X \ supp(D + D0) and X1 is a disjoint union of discs centred at the
points of supp(D + D0). We write XD, XD0 for the union of the discs centred at suppD, suppD0, respectively. Since we have
a covering by two open sets, if (s01, a0, a1), (t01, b0, b1) are two cocycles representing deformations of (P, t,∇), then the
symplectic form is given by

Ω

(s01, a0, a1), (t01, b0, b1)


= ResD+D0


κ(s01,Adg−1

01 b0 + b1)− κ(t01,Adg−1
01 a0 + a1)


.

We note that since X1 is a disjoint union of simply connected open sets, we may solve for ∇t ′01 = b1 and adjust t01 by t ′01
and thereby assume b1 = 0.

We choose a ∇-constant frame in XD0 and a ∇0-constant frame in XD. With this, the pairing of the difference in the
isomonodromic deformation (5.8) and the deformation (t01, b0, 0) is

Ω

(µ01A1, a0, a1), (t01, b0, 0)


= ResD+D0


κ(µ01A1,Adg−1

01 b0)− κ(t01,Adg−1
01 a0 + a1)


.

Since µ01 is supported near D and t01 is supported near D0, this is

ResD κ(µ01A1,Adg−1
01 b0)− ResD0 κ(t01, a0 + a1).

Since Adg−1
01 a0 = a1 + ∇(µ01A1), the second term is

ResD0


2κ(t01, a1)+ κ(t01∇(µ01A1))


.

But a1 lies in the image of

E∗
⊗ K(Dred) → ad P ⊗ K(Dred)

(which is the same as E∗
⊗K → ad P ⊗K since we are away from D), and since t01 is represented by sections of E, κ(t01, a1)

is holomorphic at D0, so the first term vanishes. The second term vanishes sinceµ01 is supported at D. Therefore the pairing
is given by

ResD κ(µ01A1,Adg−1
01 b0).

But using the fact that in a ∇0-constant trivialization near D,∇ − ∇0 = A1, and Hµ = ResDµ̃q, and the Leibniz rule, this is
precisely the expression for dHµ(t01, b0, 0).

Thus, we have proved the following.

Proposition 5.10. For (P, t,∇) ∈ L (ε,D)ηcf and a deformation in Mg,L given by µ ∈ H1(X,T (−D)), the difference between
the isomonodromic deformation of (P, t,∇) and its parallel transport along that of (Q , t0,∇0) is the value of the Hamiltonian
vector field corresponding to the function Hµ defined in (5.9) on L (ε,D)ηcf.

Remark 5.11. One will observe that the Hamiltonian defined here is defined in terms of the Killing form, which yields a
quadratic Hitchin Hamiltonian, up to a twist by a divisor. Since quadratic differentials can be thought of as cotangent vectors
to the moduli of compact Riemann surfaces, that the Hamiltonian should take such a formmakes sense considering that we
are lifting a deformation of Mg,L.

5.2.2. Deformations in the irregular part of the connection
In this subsection, we will assume that Q is trivial and ∇0 is the trivial connection. This does not limit us in terms of our

work so far, since in the cases where parametrizations of the moduli space were obtained in [14] (noted in Proposition 4.1),
Q was taken to be the trivial bundle.

We now consider the isomonodromic deformations induced by a deformation in the irregular part of the connection,
i.e. in (tL ∩ hL)

∗. We will assume that suppD = {x} is a single point and that ∇ has a pole of order k at x; accordingly, we
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will use D to denote the divisor k · x. We can recover the more general situation by considering sums of deformations. A
deformation of the irregular part of the connection is of the form dβ , where

β =

−1
j=−k+1

βjz j, (5.12)

is a Laurent polynomial in the coordinate z of order −k + 1 with values in t and no holomorphic part.
Here, we will let X := X ×C C[ϵ]/(ϵ2); this is the case when µ = 0 in (5.3). The (infinitesimal) isomonodromic

deformation of (P, t,∇) ∈ L (ε,D)ηcf with respect to dβ is an infinitesimal deformation (P, t̃,∇)iso,β for which the irregular
part of ∇ is η + ϵdβ .
Isomonodromic deformation of (P, t,∇). Let U1 be a coordinate disc centred at x. Since we are taking x to be distinct from
the pole of ∇0, we may take a ∇0-constant trivialization of Q over U1. Since we are also supposing x ∉ suppD0 (the support
of the Hecke modification of Q yielding P), P and Q may be assumed to be isomorphic over U1 and hence this ∇0-constant
trivialization also gives one of P , which may be taken to agree with the framing t|x. We will call this the 1-trivialization, and
let A1 be the connection form for ∇ with respect to it.

Over U1 (or passing to a smaller neighbourhood of x if necessary), there exist a holomorphic G-valued function T and a
meromorphic t-valued 1-form B such that

A1 = Ad T (B)− dT · T−1.

Thus, we may think of T as the change of the 1-trivialization needed to put ∇ in ‘‘diagonal’’ form. We will refer to this
trivialization as the B-trivialization. Since Stokes data are computed from the diagonal form, to obtain the isomonodromic
deformation, we want to take ∇ to have connection form

B + ϵdβ

in the B-trivialization. The expression (5.12) defines β as a t-valued function on U1; using the B-trivialization, we may
consider it as a section βB of ad P(D − Dred), and in this trivialization

(∇βB)B = dβ + [B, β] = dβ

since B, β commute as they are both t-valued. Therefore, ∇ has the expression (∇ + ϵ∇βB)B with respect to the
B-trivialization and henceA1 := A1 + ϵ(∇βB)1 = A1 + ϵAd T (dβ) = A1 + ϵAd T (∇βB)B

with respect to the 1-trivialization.
Now, we may choose the trivializing open cover of P so that on any open set Uα which intersects U1, a ∇0-constant

trivialization exists and hence the resulting transition functions (which are the same for P as for Q since we are away from
D0) are constant. We takeP to be given by g1α exp(ϵ(∇βB

α)), where the subscript α means that we are expressing things in
terms of the α-trivialization.

If Aα is the connection form for ∇ with respect to the α-trivialization, then on U1α , since the g1α are constant, we have

A1 = Ad g1α Aα.

If we setAα := Aα , then

Ad

g1α exp(ϵ(∇βB

α))
Aα − d


g1α exp(ϵ(∇βB

α))

exp(−ϵ(∇βB

α))g1α

= Ad g1α

Aα + ϵ


[βB
α, Aα] − dβB

α


= A1 + ϵ(∇βB)1,

which is the compatibility condition for the connection ∇ . Thus, we get a well-defined infinitesimal deformation (P, t̃,∇)
of (P, t,∇).

We want to see that the (P, t̃,∇) just constructed is in fact the isomonodromic deformation (P, t̃,∇)iso,β of (P, t,∇).
Observe that the connection only has a non-trivial deformation in U1. Since we can choose the a- and b-cycles to lie away
from U1, the monodromy along these cycles remains unchanged. Thus, we need only see that the Stokes data at x is also
unchanged. If U1l ⊆ U1 is a Stokes sector, then there exists a G-valued function Tl in U1l (the fundamental canonical solution)
such that

A1|U1l =: A1l = Ad Tl(Bpol)− dTlT−1
l .

The Stokes factors are given by T−1
l+1Tl (up to conjugation by an element of G). But now, if we setA1l := A1l + ϵ(∇βB)1l, thenA1l = Ad Tl(Bpol + ϵdβ)− dTlT−1

l ,

so it follows that ∇ has the same fundamental canonical solutions Tl and hence the same Stokes data as ∇ .
Isomonodromic deformation of (Q , t0,∇0). Since the deformation dβ does not change themonodromy data of (Q , t0,∇0), the
isomonodromic deformation (Q , t̃0,∇)iso,β is simply the pullback of (Q , t0,∇0) toX = X ×C C[ϵ]/(ϵ2) under the natural
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projectionX → X , so that it has the same transition functions, considered as functions in G(O(Uαβ)⊕ ϵO(Uαβ)). Since P is
obtained from Q via Hecke modification,P will be obtained from Q by the ‘‘same’’ Hecke modifications, and soP is simply
the pullback of P toX .

The deformed connection∇ onP must have local connection forms that satisfy the same compatibility conditions as for
∇ (since P andP have the same transition functions); such a deformation must therefore be a global one, i.e. the local forms
must patch together to give a global section of H0(X, ad P ⊗ K(D)).

As in (5.7), we have an exact sequence

0 → E∗
⊗ K(D) → ad P ⊗ K(D) → ad P/E∗

⊗ K(D) → 0.

As just mentioned, a deformation of ∇ will live in H0(X, ad P ⊗ K(D)). For it to also ‘‘preserve the Hecke modifications’’, we
will also want it to lie in the image of H0(X, E∗

⊗ K(D)) ↩→ H0(X, ad P ⊗ K(D)).
The deformation we want is one which agrees with ∇βB in a neighbourhood of x (recall that ∇βB is only defined near x).

We will think of ∇βB as a section in H0(X, E∗
⊗ K(D)|D) and consider the sequence

0 → E∗
⊗ K → E∗

⊗ K(D) → E∗
⊗ K(D)|D → 0.

It comes from a global deformation in H0(X, E∗
⊗ K(D)) precisely when its image in H1(X, E∗

⊗ K) = H0(X, E)∗ vanishes.
Using the map E∗

→ adQ from (4.3), we see that the above sequence in fact fits into a commutative diagram

0 // E∗
⊗ K //

��

E∗
⊗ K(D) //

��

E∗
⊗ K(D)|D //

��

0

0 // adQ ⊗ K // adQ ⊗ K(D) // adQ ⊗ K(D)|D // 0

whose long exact sequences yield a commutative square

H0(X, E∗
⊗ K(D)|D) //

��

H1(X, E∗
⊗ K)

��
H0(X, adQ ⊗ K(D)|D) // H1(X, adQ ⊗ K).

The first vertical arrow is an isomorphism because E∗
→ adQ is an isomorphism away from the support of the

Hecke modification D0, and we are assuming that D and D0 are disjoint. Furthermore, in [14, Section 4.1] it is seen that
H0(X, adQ ) → H0(X, E) is an isomorphism, and by Serre duality, the second vertical arrow is as well. Therefore, the image
of∇βB in H1(X, E∗

⊗K) vanishes if and only if its image in H1(X, adQ ⊗K) does. Since we are assuming Q , and hence adQ ,
to be trivial, the map

H0(X, adQ ⊗ K(D)|D) → H1(X, adQ ⊗ K)

simply takes a meromorphic g-valued differential to its residue. But since ∇βB is, by definition, the irregular part of a
connection, there is no residue. It follows that ∇βB comes from a global section a ∈ H0(X, E∗

⊗ K(D)) as claimed. We
will denote the restriction of a to Uα by aα; by construction, a1 has ∇βB as its irregular polar part.

The difference between these two isomonodromic deformations is now (in the ∇0-constant trivialization)

(βB, a0, a1 − ∇βB).

Let (t01, b0, b1 = 0) be an arbitrary deformation as before. Then the symplectic pairing is given by

ResD+D0


κ(βB, b0)− κ(t01, a0 + a1 − ∇βB)


.

We recall that t01 is supported near D0, and βB near D, so this simplifies to

ResD κ

βB, b0


− ResD0 κ(t01, a0). (5.13)

But since a0 is a section of E∗
⊗ K(D), near D0 wemay think of it as a section of E∗

⊗ K , and t01 is represented by sections of
E, so the second term is the residue of something holomorphic and hence vanishes.
Definition of the Hamiltonian. Given (P, t,∇) and the expression of ∇ as A with respect to a ∇0-constant trivialization, and
its ‘‘diagonalization’’ B, we define a function Hβ on L (ε,D)ηcf by

Hβ := Res κ(β, B), (5.14)

the residue being computed at the pole. We now show that the above deformation (5.13) is the value of the Hamiltonian
vector field corresponding to this function.

Consider the deformation (t01, b0, b1 = 0) above. The deformation in the connection near x is

A + ϵbi.
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Then we must have a corresponding deformation in B satisfying

A + ϵbi = Ad T

exp(ϵt)(B + ϵb̃i)


= Ad T


B + ϵ([t, B] + b̃i)


,

or

b̃i = Ad T−1(bi)− [t, B].

Therefore, we obtain

dHβ(t01, b0, 0) = Res κ(β,Ad T−1(b0)− [t, B]) = Res κ(Ad T (β), b0)+ κ([β, B], t)

= Res κ

Ad T (β), b0


.

This proves our claim and the following statement.

Proposition 5.15. For (P, t,∇) ∈ L (ε,D)ηcf, and a deformation in (tL ∩ hL)
∗ given by dβ ∈ (tL ∩ hL)

∗, the difference between
the isomonodromic deformation of (P, t,∇) and its parallel transport along the isomonodromic deformation of (Q ,∇0), being
the trivial bundle and the trivial connection, is the value of the Hamiltonian vector field corresponding to the function Hβ defined
in (5.14) on L (ε,D)ηcf.
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