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1. Introduction

A finite-dimensional algebra (A, -) over a field FF is called left-symmetric if it satisfies the identity
*x,y,2) = (y,x,2), forallx,y,z €A, (1)

where (x, y, z) denotes the associator (x,y,z) = (x-y) -z — x - (y - z). In this case, the commutator [x,y] = x-y —y - x
defines a bracket that makes A into a Lie algebra. We denote by G, this Lie algebra and call it the associated Lie algebra to A.
Conversely, if § is a Lie algebra endowed with a left-symmetric product satisfying the condition [x,y] = x -y — y - x, then
we say that this left-symmetric product is compatible with the Lie structure of §.

Let A be a left-symmetric algebra over a field F, and let L, and R, denote the left and right multiplications by the element
X € A, respectively.

The identity (1) is now equivalent to the formula

[Le. Ly] = Lixy), forallx,y € A, (2)

or, in other words, the linear map L : 4 — End(A) is a representation of Lie algebras.
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We notice that (1) is also equivalent to the formula

[Ls,Ry] = Rey — Ry o Ry, forallx,y € A. 3)
We say that A is a Novikov algebra if it satisfies the identity

x-y)-z=x-2)-y, forallx,y,z €A. (4)
In terms of left and right multiplications, (4) is equivalent to each of the following identities

[Re.Ry] =0, forallx,y €A, (5)

Lyy =Ryoly, forallx,yeA. (6)

Definition 1. A nondegenerate symmetric bilinear form (, ) on a Novikov algebra A is said to be invariant if (R,y, z) =
(y, Ryz), forallx,y,z € A.

For example, if we let A o denote the real vector space R¥ with zero multiplication and Frt10 = (€0, €1,...,€c:€i-€
=e¢;, i=0,...,k), then it is easy to verify that these are (associative) Novikov algebras, and that any invariant positive
definite symmetric bilinear form on A o or Fy11 ¢ is invariant.

Notice here that F; 1 ¢ is nothing but the left-symmetric algebra appearing in Example 4 of [ 1]. In particular, F; ¢ is nothing
but the field R.

The following theorem which is a result of Zelmanov (see [1, Proposition 4]) classifies the Novikov algebras provided
with an invariant positive definite symmetric bilinear form.

Theorem 2 ([1]). Let A be a real Novikov algebra provided with an invariant positive definite symmetric bilinear form. Then A is
an orthogonal direct sum of the form A = EB,l Ai, where each A; is isomorphic to either the algebra A o or the algebra Fy1 ¢, for
some integer k > 1. In particular, A is associative.

In light of this theorem, a natural question arises: What kind of Novikov algebras do we obtain if we replace the condition
“positive definite” with “Lorentzian” in the statement of the above theorem?
The purpose of this note is to answer this question by proving the following result.

Theorem 3. Let A be a real n-dimensional Novikov algebra provided with an invariant Lorentzian symmetric bilinear form. Then
A is isomorphic to an orthogonal direct sum of the form A = A, & A,, where A1 is an algebra in Table 1 and A, is a direct sum of
the algebras Ay o and Fi1,0.

Remark 4. It should be mentioned that, in Theorem 3, A; is a direct sum of the algebras Ay ¢ and Fy41,0 in the following
precise sense: in the case A is nontrivial, A; is the orthogonal direct sum of the algebras Ay o and Fi41,0. In that case, the
restriction of the Lorentzian symmetric bilinear form to any nontrivial factor Ay ¢ or Fy11,o is positive definite. In the case
A1 is trivial, A, is an orthogonal direct sum of the form A, = B; & B,, where Bj is a pseudo-orthogonal direct sum of two
degenerate factors of the algebras Ay o and Fy11 ¢ and A; is a direct sum of the algebras Ay o and Fi41 0.

Remark 5. By Theorem 2, a Novikov algebra equipped with an invariant positive definite symmetric bilinear form is
necessarily associative. On the contrary, by Theorem 3, a Novikov algebra equipped with an invariant Lorentzian symmetric
bilinear form need not be associative. We observe for instance that the algebras L., and LQ 41 are not associative.

Table 1
LSA Basis Non-zero products Lie algebra
k
Aro er, ..., e R
Az e1, e ej-e;p=e R?
52.1 e, ey e;-e=¢e gz
N3 e, e, €3 er-e =e; H3
N3 e, e, €3 ey e =¢€, e1-€ =é€3 H3
e1-e; =eq, e 6 =e
AZ.Z e1, e 1 1 1, €1 2 2 RZ
€y-€1 =26, -6 =—6€
Fis10 . R, ifk=0
. €, ..., e ej-epg=¢;, 0<i<k ’ .
k>0 0 k s TSt Guar, ifk > 1
Akt1.1 e;-e; =ey,
. €0, .-, e .
k>2 0 k eirep=e, 0<i<k Gt

(continued on next page)
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Table 1 (continued)

LSA Basis Non-zero products Lie algebra
R st Ul TEE
5:1;;1.31 €0, -0k 2 -':;:;?’0 <i<k Met1
R S S ST T
PSS e ETEmEUETO
ﬁk+1,m € - €g = €o,

4<m<k €0, ..., Ek ey-e, =¢e3, e3-6; = ey, Ne—m+1 ®R™

ej-eg=e, m<i<k

€ - €y = €p, € - €1 = €3,

L €, ..., € . L
k1 0 k eirep=e, 1<i<k k1
A € - €9 = €o, € - €1 = Aey, A
Ly €0y ..., € . Ly
ket 0xren Bk ei-ep=¢, 1<i<k k1

The structures of the Lie algebras appearing in Table 1 are explicitly described in Table 2.

Table 2
Lie algebra Basis Non-zero brackets
RK er, ..., e
H3 e, e, e3 [e1, e2] = e3
Gir1, k=1 €0, .- €k lei,eo]l =€, 1<i<k
[e1, e2] = e3,
. > )
Newt k23 vt ool e 1<i<k
3 k> 2 e e [e1, e2] = e,
ket B = Or oo Bk leieo]l =e;, 1<i<k
[er1,e0]l = €1 —e2,
>
Lo kz2 el e e 2 <i<k
A [er,eol = (1 —2)er, A #0,
> ;
Lic k22 ot oo e 2 <i<k

1.1. Self-adjoint operators of Lorentzian vector spaces

A Lorentzian vector space (V, (, )) is n-dimensional real vector space V endowed with a Lorentzian scalar product (, ),
that is, a nondegenerate symmetric bilinear form of index 1. This means one can find a basis {eq, ..., e,} of V such that
(e1,e1) = —1, (ej,e5) = 1for2 <i <n,and <ei, ej) = 0 otherwise. The simplest example for a Lorentzian vector space is
Minkowski space R : R" with scalar product (x, y) = —x1y1 + X2¥2 + - - - Xp¥n.

Let (V, (,)) be an n-dimensional real vector space. A non-zero vector X is called spacelike, timelike, or null if (X, X) >
0, < 0, or = 0, respectively. The zero vector is supposed to be spacelike. A subspace W C V is called nondegenerate,
degenerate, spacelike, or Lorentzian if the restriction (, ), of {, ) to W is nondegenerate, degenerate, positive definite, or
indefinite, respectively.

An endomorphism A of (V, (,)) is said to be self-adjoint if it satisfies (AX,Y) = (X, AY) forall X,Y € V. Self-adjoint
endomorphisms of a Lorentzian vector space are classified according to the following well known result (see for instance
[2, pp. 261-262]).

Lemma 6. Let A be a self-adjoint endomorphism of an n-dimensional Lorentzian vector space (V, {, )). Then, A has a matrix of
one of the following four forms:

(i) A= D,
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. a b
(11) A= (_b a) ®Dy—p, b # 0,
A0
(1”) A= (:tl )\’) ® Dy—2,

A 0 0
(iv)A:(O A 1>@Dn_3,

1 0 X
where Dy, denotes a diagonal matrix diag {11, ..., Ax}. In cases (i) and (ii), A is represented with respect to an orthonormal basis
{e1, ..., en} such that (e1,e;) = —1, (ej,e;) = 1, for 2 < i < n, and all other products are zeros. In cases (iii) and (iv), A is
represented with respect to a pseudo-orthonormal basis {eq, ..., e,} such that (e1, e;) = (e;,e;) = 1,for 3 <i < n, and all

other products are zeros.

1.2. Radicals of a Novikov algebra

The notion of radical of a left-symmetric algebra was firstly introduced by J.L. Koszul (see [3]). Given a left-symmetric
algebra A over a field F, one defines the radical R(A) of A to be the largest left ideal contained in the subset

I(A) ={aeA:tr(R,) =0}.

It turns out that R(A) is nothing but the largest complete left ideal of A. In general, the radical of an arbitrary left-symmetric
algebra is not a two-sided ideal (cf. [3]). As we will see below (see Proposition 7), the radical of a Novikov algebra over a
field of characteristic zero is a two-sided ideal.

Another important notion of radical is that of right radical. Let A be a left-symmetric algebra over a field F of characteristic
zero, and let I be a two-sided ideal of A. We say that I is right-nilpotent if there exists some fixed integer n > 1 such
that Ry, ---Rg, = O for all ¢; € I. It turns out that the largest right-nilpotent ideal need not exist for an arbitrary left-
symmetric algebra, because the sum of any two right-nilpotent ideals need not be right-nilpotent. In the special case of
Novikov algebras, it was shown in [1] that a Novikov algebra A has always a unique maximal right-nilpotent two-sided ideal
N(A), called the right radical of A. In the same paper, it was also shown that I(A) is a two-sided ideal that is right-nilpotent.
From these two facts, we can deduce the following:

Proposition 7 ([4]). Let A be a Novikov algebra over a field F of characteristic zero. Then, we have N(A) = R(A) = I(A).

We say that A is complete if R, is a nilpotent operator, for all x € A. In this context, if G is an n-dimensional simply
connected Lie group with Lie algebra g, then giving a compatible complete left-symmetric product on 4 can be interpreted
as giving a complete left-invariant affine connection on G or, equivalently, as giving a simply transitive affine action of G on
an n-dimensional vector space E. The following important fact is a direct consequence of Proposition 7.

Corollary 8. A Novikov algebra is right-nilpotent if and only if it is complete.

1.3. Extensions of left-symmetric algebras

In this section, we shall briefly discuss the problem of extension of a left-symmetric algebra by another left-symmetric
algebra. Suppose we are given a vector space A as an extension of a left-symmetric algebra K by another left-symmetric
algebra E. We want to define a left-symmetric structure on A in terms of the left-symmetric structures given on K and E. In
other words, we want to define a left-symmetric product on A for which E becomes a two-sided ideal in A such that A/E = K.
This is equivalent to let

0—-E—>A—->K—0

become a short exact sequence of left-symmetric algebras.

Theorem 9 ([5]). There exists a left-symmetric structure on A extending a left-symmetric algebra K by a left-symmetric algebra
E if and only if there exist two linear maps A, p : K — End(E) and a bilinear map w : K x K — E such that, forallx,y,z € K
and a, b € E, the following conditions are satisfied.

(i) Ax(@a-b) = xx(a) -b+a- i (b) — px(a) - b.

(il) px ([a, b]) = a- px(b) — b - px(a).
(iii) [AX, ky] = Mryl + Loy —o,x), Where Ly y)—w(,x) denotes the left multiplication in E by w (x, y) — o (¥, X).

(iv) [ y] = Pxy — Py © Px + Ruxy), Where R,y denotes the right multiplication in E by o (x, y).
(v) w(x V-2)—oW,x-2)+(@y,2) — Ay (@K%,2) —o(xy],2) — p; (@ (*,Y) —@ (,%) =0.

If the conditions of Theorem 9 are fulfilled, then the extended left-symmetric product on A = E x K is given by

(G,X) : (bay) = (ab"')‘x(b)"'py(a) +CU(X,y),X'y). (7)
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It is remarkable that if the left-symmetric product of E is trivial, then the conditions of Theorem 9 simplify to the following

three conditions:
(i) [Ax, Ay] = Ay, ie. A is a representation of Lie algebras,

(11) [}\x’ py] = Pxy — Py O Px-
(ii) 0o,y 2) —0 (1, X-2) + M (@ (¥, 2)) — Ay (0 (%, 2)) — 0 ([X,¥],2) — p; (0 (X,¥) — @ (¥, X)) = 0.

In this case, E becomes a K-bimodule and the extended product given in (7) simplifies too.

Recall that if K is a left-symmetric algebra and V is a vector space, then we say that V is a K-bimodule if there exist two
linear maps X, p : K — End(V) which satisfy the conditions (i) and (ii) stated above.

Let K be a left-symmetric algebra, and let V be a K-bimodule. Let I (K, V) be the space of all p-linear maps from K to V,
and define two coboundary operators 8; : L' (K, V) — 2 (K, V) and 8, : [? (K, V) — L3 (K, V) as follows: for a linear map
he L' (K, V) we set

d1h (x,y) = py (hx)) + Ax (h(y)) —h(x-y),
and for a bilinear map w € % (K, V) we set
520)("»%2) = (,l)(X,Y'Z) - C()(y,X'Z) +)"X (Cl)(y,z)) _)\y (a)(X,Z)) —(,()([X,y],z) — Pz (Cl)(X,y) —Cl)(y,x)).

It is straightforward to check that §, o §; = 0. Therefore, if we set qup (K, V) = ker §, and Bi,p (K,V) = Im§,, we can
define a notion of second cohomology for the actions A and p by simply setting qup (K,V) = Zf,p (K,V) /Bi,p (K, V).

As in the case of extensions of Lie algebras, we can prove that for given linear maps A, p : K — End(V), the equivalence
classes of extensions 0 — V — A — K — 0 of K by V are in one-to-one correspondence with the elements of the second
cohomology group H;. , (K, V).

1.4. Simple left-symmetric algebras

An algebra A over a field F is called simple if it has no proper two-sided ideal and A is not the zero algebra of dimension
1. Therefore, since A> = A - A is a two-sided ideal of A, we have A> = A in case A is simple.
In [1], the following results were proved.

Theorem 10 ([1]). A simple Novikov algebra A over a field IF of characteristic zero is isomorphic to F.

Proposition 11 ([1]). Let A be a Novikov algebra over a field of characteristic zero. Then, A can be decomposed into a direct sum
of ideals A = €D, A;, where each ideal A; is either right-nilpotent or A;/N (A;) is a field.

It is worth mentioning that when the field F is not algebraically closed, then simple Novikov algebras over IF of dimension
> 2 can exist. Here is an example of a two-dimensional simple Novikov algebra over R.

Example 12 (A Two-Dimensional Simple Novikov Algebra Over R). Over the field F = R or C, let us consider the two-
dimensional commutative associative algebra A, r defined by the following multiplication table: e; - e; = e, e; - e; =
e;-e; = e, e -e; = —ey. Being commutative, A, r is a Novikov algebra; and by setting ¢} = % (e1 +iey), e, = % (e; —iey),
we can easily see that A, ¢ is a direct sum of fields, that is A, ¢ = C @ C. However, it is not difficult to show that A, y is
simple.

Remark 13. It is worth pointing out that, in the example above, A, ¢ is nothing but the complexification of A; g. It follows
that the complexification of a simple left-symmetric algebra (even Novikov) need not be simple.

Anyway, the following theorem shows that A;  is the only simple Novikov algebra over R of dimension > 2.

Theorem 14 ([4]). A real simple Novikov algebra is isomorphic to either A, g or the field R.

As a consequence of this result, Proposition 11 can be stated in the following more precise form.

Proposition 15. A Novikov algebra over a field R can be decomposed into a direct sum of ideals A = €D, A;, where each ideal A;
is either right-nilpotent or A;/N (A;) is isomorphic to A, g or the field R.

Throughout this paper, we will use the notation A, ; in place of A, .
It is clear that a right-nilpotent algebra is necessarily complete. In the case of Novikov algebras, we have the following

Proposition 16 ([4]). A complete Novikov algebra over a field of characteristic zero cannot be simple.
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2. Proof of Theorem 3

From now on, A will be a Novikov real algebra equipped with an invariant Lorentzian symmetric bilinear form {, ).
According to Proposition 15, A can be decomposed into a direct sum of ideals A = P, A;, where each ideal 4; is either
complete (i.e., right-nilpotent) or A;/N (A;) is isomorphic to A, g or the field R. In what follows, for a fixed i, let (, )|, denote

the restriction of (, ) to A;.

2.1. The case of a complete ideal A;

Assume that A; is complete and n = dim A; > 2. Then, we have Ai2 = 0 by completeness of A;. We have to consider three
cases.

e Case 1. (, ),

" is positive definite.

In this case, being self-adjoint with respect to the positive definite scalar product (, )|, , a right multiplication Ry is
necessarily diagonalizable relative to an orthonormal basis of A;. Since Ry is nilpotent, it follows that R, = 0. This means that
A? = 0, that is, A; is isomorphic to Ay o.

e Case2.(,),, isdegenerate.

la;

. . — . . - . —1
In this case, write A; = Rey @ A;, where ey is a null vector (i.e,, {ep, &) = 0) and A; is spacelike, and let A;” denote the
orthogonal to A; in A. Note here that e; € P, ; Aj and

A" C Rey ® (@A,) .

J#

Lemma 17. With the notation above, forallx,y € Ajand z € @j i Aj, we have

(i) Rz = 0.
(ii) Reeo = 0.
(iii) Ry € As.

Proof. Assertion (i) follows from the fact that A; - A; = 0 for all i # j, given that A is a direct sum of ideals A = €, A;.
To prove (ii), we note that since A; is an ideal we have R,y € A; for allx € A; and y € A. It follows that (Ryeq, y) =
(eo, Ryy) = 0, that is, Ryep = 0 for all x € A;.

To prove (iii), we note that since A; is spacelike, then we may choose another null vector e; in Zil such that (eg, e1) = 1.
Since e1 € D, 44 then by (i), we have Rye; = 0. It follows that (Ryy,e;) = (y,Rce;) = O, for all x,y € A;. Since

Ry € A = Reg & A;, we deduce that R,y € A;. W
For x € A;, let Ry 5 denote the restriction of R, to A;. By assertion (iii) of Lemma 17, we have R, I, : A; — A;, and since R,
is a nilpotent self-adjoint operator and (, >‘Aﬂ- is positive definite, we deduce that R, = 0. It follows from this and assertion
(i) of Lemma 17 that A? = 0, that is, A; is isomorphic to Ay o.
e Case3.({, )lAi is indefinite.

In this case, being self-adjoint, the operator R, : A; — A; can take one of the four possible forms of Lemma 6, for all x € A;.

Let x € A;. Since R, is nilpotent, we deduce two thins. First, R, cannot admit complex eigenvalues, that is, it cannot take
form (ii) of Lemma 6. Second, R, = 0 if R, is diagonalizable, that is, it has the form (i) of Lemma 6.

If R, has the form (iii) of Lemma 6, then we easily deduce that R, simplifies to

0 O
Ry = (:l:] 0 @ 0,_3.
If R, has the form (iv) of Lemma 6, then we easily deduce that R, simplifies to

0 0 O
Ry,=10 0 1)])&0,_s.

1 0 0

Since A is Novikov, the operators R, should commute with each other. Since, as we can easily verify, the above matrices
do not commute, it follows that the operators R, are either all of the form

0 0
Ry = ()»(X) 0) ® 0,2, (8)
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or all of the form

0 0 0
Ry = ( 0 0 )»(X)> ® 0,3, 9
Ax) 0 0

for some real function A (x).
Assume first that Ry is of the form (8) for all x € A;. In this case, we get e; - x = A(x)e, and all other products are zeros.

It follows that there exists a basis eq, ..., e, of A; such that ey - e; = A;e,, with A; € R, and all other products are zeros. We
distinguish three cases.
If ., =--- = X, = 0, then the associated Lie algebra §; is isomorphic to R", and the structure of 4; is given by

e1-e1=XAey, AER,
and all other products are zeros. We deduce that A; is isomorphic to either A, g or Ay 1 @ Aq—2,0.
If 1, # O, then by setting e; = e; — %ez foralli > 4, we gete; - e, = 0 forall i > 4. It follows that the structure of 4; is
given by
e1-e1 = Aey, e -e; = Aey, withAq, Ay € Rand A, # 0,

and all other products are zeros. Again, by setting e] = <e1 — :—;’ez), we get e/ - e/ = 0.1t follows that A; is isomorphic to

1
A2
S @A z0=1{(€1,...,en:€1-€ =€),
and the associated Lie algebra g, is isomorphic to §, & R" 2,
If A, = 0and A;, # 0 for some iy > 3, say iy = 3 to simplify, then by setting e; = e; — }%63 foralli > 4, wegete;-e; =0
for alli > 4. It follows that the structure of A; is given by
e1 e =)\,1€2, €163 =)\262, With)\q,)\,z eRandAz 750,
and all other products are zeros. Again, by setting e] = e; —A1e;, we see that A; is isomorphic to N3 1 ®A,_3 o. The associated
Lie algebra §; is isomorphic to #3 @ R" 3.
Assume now that R, is of the form (9) for all x € A;. In this case, we get e, - x = A(x)es, e3 - X = A(x)eq, and all other
products are zeros. It follows that there exists a basis eq, ..., e, of A; such that e, - e; = Aje;, e3 - e; = Ajeq, with A; € R, and
all other products are zeros. By left-symmetry we have

(e2-€)-e—ey-(ej-e)=(e-e)- e —e-(e-€),
which yields
Ai(Aier +ei-e3) =ey-(e-e) + (e -e) - e

For i = 3, the above equality yields A3 = 0, and fori = 1 ori > 4 ityields A; = 0. It follows that there exists a basis
e, ..., e, of A; such that

e, - e; = Aes, es-e; = \ey, withA e R,
and all other products are zeros. We deduce that A; is isomorphic to either A, o or N3 » @An_3 0, and the associated Lie algebra
g is isomorphic to either R" or #3 @ R"3,

2.2. The case of a non-complete ideal A;

For a fixed i, assume that A; is non-complete and let {, )‘N @) denote the restriction of (, ) to N (4;), respectively. We can
1

analyze as we did in the complete case, but we prefer to proceed as follows. We know, by Proposition 15, that A;/N (4;) is
isomorphic to A, or the field R. Accordingly, we must consider two cases.

2.2.1. The case when A;/N (A;) is isomorphic to A,
In this case, we first claim that A; is necessarily Lorentzian (hence nondegenerate). This is a direct consequence of the
following lemma.

Lemma 18. Any invariant nondegenerate symmetric bilinear form on A, , is necessarily Lorentzian.

Proof. Recall that A, ; has abasis e, e; suchthate;-e; =ej,e1-e; =e;-e; = e, e,-e, = —eq,and let (, ) be an arbitrary
invariant nondegenerate symmetric bilinear form on A, ,. By invariance of (, ), we have (Re2 ey, el) = (ez, Re, el), which yields
(e2, e2) = — (eq, e1). It follows that the symmetric matrix of (, ) has the form

a b
M) = (b —a> ’

where a = (e, e1) and b = (e, ey). Its discriminant is det M, = — (a2 + bz) < 0, and therefore (, ) is Lorentzian. H
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Since N (A;) is a two-sided ideal of A;, we get a short exact sequence of left-symmetric algebras
00— N@A) > A —> A — 0.

Setting A; = N (A;) @ A, as a vector space, there exist two linear maps A, p : Ay > — End (N (A;)) and a bilinear map
 : Az X Az2 — N (A) such that the left-symmetric product of A; can be written as

xuw-@v)=&y+r0) + o0& +o@v),u-v), (10)
forallx,y € N(A;) andu, v € Az 5.
By the invariance of (, ), we have ((x, u) - (y, v), (z, w)) = ((x,u), (z, w) - (y, v)). Since the restriction of (, ) to both
N (A;) and A, , is nondegenerate, we can, without loss of generality, write ((x, u) , (¥, v)) = (x, ¥) + (u, v). Thus, the above
equality yields

(@) + 00 (¥) + 0 W, v),2) = (X, 2y ) + 0u(2) + @ (w, V). (11)

By substituting z = x and y = 0 into Eq. (11), it follows that w (u, v) = w (w, v) for all u, v, w € A, ,, from which we
deduce that w = 0. Again, by taking z = xin (11), we get A, (y) = A, (y) forally € N (4;) and u, v € A, 5, from which we
deduce that A = 0. Thus, the left-symmetric product (10) simplifies as follows:

(X,u)-(y,v):(X-y—}—pv(x),u-v), (]2)

forallx,y € N(A;) andu, v € Az 5.

Since N (A;) is complete (i.e., right nilpotent) and (, ) is positive definite, we deduce from what we have did previously

Ineay)
in the complete case that N (4;) = 0, that is, N (4;) is isomorphic to Ano-
Since A = 0 and w = 0, it follows that (iv) of Theorem 9 simplifies to
Pu-v = Py © Pu;
for all u, v € A, ,. In particular, we have

PE = Pers Do =—Pers  Pey © Pey = Pey © Pey = Pey- (13)

By the last identity of (13), p., and p., commute. It follows that they are simultaneously diagonalizable. Since they are

self-adjoint with respect to the positive definite scalar product (, )‘N ) there exists an orthonormal basises, . . ., e; of N (A;)
relative to which p,, = diag{As, ..., A,} and p, = diag {3, ..., pn}, where here n = dimA;.

From the first two identities of (13), we get AJ-Z + sz = 0forallj =3, ..., n. Consequently, we have p,, = p., = 0, that
is, p = 0. We deduce, using (12), that

I
A=Ay DA,

that is, A; is an orthogonal direct sum of the algebras A, » and A,_» o.

2.2.2. The case when A;/N(A;) is isomorphic to the field R

Unless otherwise stated, we will use the following notation throughout this subsubsection. We consider the field R as a
one-dimensional algebra over itself,and we let n = dim N (4;). In this case, we have a short exact sequence of left-symmetric
algebras

0—>N@A)— A —>R—DO0.

Setting A; = N (A;) @ R as a vector space, and letting 1 denote the unit element of the field R, we will adopt the notation
(x, a) to denote elements of A;. In particular, setting ey = (0, 1), we have ey = eg - 9. According to the above short exact
sequence, there exist two endomorphisms X, o : N (4) — N (4;) and a bilinear map  : R> — N (A)) such that the
left-symmetric product of A; can be written as

(*,a0)- (y,b) = (x-y+ar (y) + bp(x) + abw (1, 1) , ab), (14)
forallx,y € N (A;) and a, b € R. Consequently, we have ey = eg - e = (w (1, 1), 0) + eg, and we conclude that w = 0.
Now, to handle the present case, we have to consider three cases depending on the signature of (, ), .

The case when (, )|, is positive definite. In this case, (, ) is positive definite as well, and we can write ((x, a), (y, b)) =
1

(x,y) +abforallx,y € N(A;) anda,b € R.
By the invariance of (, ), we have ((x, a) - (¥, b), (z,¢)) = ((x,a), (z, ¢) - (y, b)). This latter equation, by virtue of (14),
yields the following equation

(ar(y) + bp (%), z) = (x, cA(y) + bp(X)) .

Now, we can proceed in the same way as we did in the case that A;/N (4;) is isomorphic to A, 5 to show that A = 0 and
p is self-adjoint. As a consequence, we conclude, by virtue of (iv) of Theorem 9, that p? = p.

INGap)
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On the other hand, since N (4;) is complete and the R, are self-adjoint with respect to the positive definite scalar product
(, )‘N(A_), we deduce as in the complete case that N (4;)? = 0, that is, N (4;) is isomorphic to An, 0. We also deduce that the

left-symmetric product of A; given by (14) reduces to
(x,a) - (v, b) = (bp(x), ab) . (15)

Since p is self-adjoint with respect to the positive definite scalar product {, ) then we may assume without loss

vy’
that there exists an orthonormal basis eq, .. ., €, of N (A;) with respect to which p = diag {4, ..., A,}. From the equation
p? = p, we deduce that Af = Ai(i.e, A; =0or 1) foralli =1, ..., n. Thus, without loss of generality, we may assume that
p = Idy, & 0,_,, for some integer m < n, where Id,, is the m x m identity matrix.

Setting e = (0, 1) and e; = (e;, 0) fori = 1, ..., n, and using (15), we get
ei-ep=¢, 0<i=<m,

and all other products are zeros. Thus, A; is isomorphic to Fpy1,0 D An—m—1.0-

We deduce that the Lie algebra g4, associated to A; has the property that [x, y] = ax + bx, for all x, y, where a and b
are real constants. According to [6], 4, contains a codimension one commutative ideal E and an element ey ¢ E such that
leg, x] = xforallx € E.

The case when (, )|, is Lorentzian and (, )‘N(A') is non-degenerate. In this case, we can write {(x, a) , (y, b)) = (x, y) + eab for
allx,y € N (A;)) and a, b € R, where ¢ = 1 or —1 according to whether the restriction of (, ) to N (4;) is indefinite or positive
definite, respectively.

On the other hand, in a similar fashion as we did in Case 1 of Section 2.1, we can deduce by the invariance of (, ) that
A = 0and p is self-adjoint. As a consequence, we conclude, by virtue of (iv) of Theorem 9, that

p2 = p. (16)
We have to consider three subcases.

e Subcase 2.1. (, ) is positive definite.

Ineay)

In this subcase, since N (A;) is complete and all R, are self-adjoint with respect to the positive definite scalar product
(, )‘N(A.), we deduce that N (A4))> = 0. Now, as we did in the case when (, )|, 1S positive definite, we can use (16) and

the fact that p is self-adjoint with respect to the positive definite scalar product (, )|N @) to prove that A; is isomorphic to
1

Fnt1,0 D An—m—-1.0-

e Subcase 2.2.(, ) is indefinite.

Ivcay)
In this subcase, since (, ) isindefinite, the operator o may not be diagonalizable although it is self-adjoint with respect

to(,)

Inay)
NGy However, with Eq. (16) in hand, we can show that p is indeed diagonalizable.

Claim 19. The operator p is diagonalizable.

Proof. According to Lemma 6, there are four possible forms for p.

If p is not diagonalizable and takes the form (ii) of Lemma 6 (i.e., p has a complex eigenvalue), then with the notation of
that lemma we get from Eq. (16) that a> — b?> = a,2ab = b,and A? = A;foralli = 1,...,n — 2. Obviously, the first two
equations are incompatible. Thus, this case cannot occur.

Similarly, we can show that the case when p is not diagonalizable and takes one of the forms (iii) or (iv) of Lemma 6
cannot occur too. M

By the above claim, p is diagonalizable. As in the case when (, )|, is positive definite, and by using (16), we may assume

without of generality that p = Id,, & 0,_p,, for some integer m < n. Setting N (A;) = V; & ker p, where V; = ker (p — Id),
we have dim V; = m and Py, = Idp,.
With the notation as at the beginning of Section 2.2.2, the left-symmetric product of A; given by (14) reduces to

(X,a)'(y,b):(X'Y+bp(x),ab)7 (17)

where p is here represented by some matrix of the form Id,;, & 0,_p,. Of course, the reduced form p = Id,, ® 0,_, is not
necessarily with respect to the basis ey, ..., e, above.
On the other hand, since N (4;) is complete and (, )‘N(A_) is Lorentzian, we deduce from what we obtained in Case 3 of
1

Section 2.1 that N (A;) is isomorphic to either AnA,O’ A2,1 D An—2,0, S, @ An—Z,O; N3,1 D An_gyo, or N3,2 D An_gyo. Accordingly,
we have five subsubcases to consider.

e Subsubcase 2.2.1. N (A;) is isomorphic to Ap o.

In a similar manner to the case when (, ), is positive definite, we can prove that A; is isomorphic to Fin11,0 ® An—m—1,0-
1
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e Subsubcase 2.2.2. N (A;) is isomorphic to A 1 @ An—2.0-

Recall, from Case 3 of Section 2.1, that the structure of A, 1 @ An_» o is initially given as follows. There exists a pseudo-
orthonormal basis ey, ..., e, of N (4;), with e; and e, null satisfying (e;, ;) = 1, and such thate; - e; = e, is the only
nonzero product. With notation as above, we claim that we have eithere;, e; € V;orey, e; ¢ V;; thatis ¢; = &;. For indeed,
if for example e; € V; and e, ¢ V;, then since p is self-adjoint and (e, e;) = 1we get 1 = (p (é1), €2) = (e1, p (€2)) =0,a
contradiction.

If we setey = (0, 1) and e; = (e;, 0) fori = 1, ..., n, then by using (17), we see that the structure of A; is given by

€p - €p = €y, e1-61 =ey, € - € = &€,

where ¢; = p (e;) = 0 or 1. Taking into account the above claim, we conclude that there are exactly two possible non-
isomorphic structures for A; which are given as follows.

1. There exists an integer m > 2 such that the multiplication table of A; is given by
e;-e; = ey, ei-ep=¢, 0<i<m
2. There exists an integer m > 3 such that the multiplication table of 4; is given by
eo - €9 = €y, er-ep = ey, ej-eg=¢, m<i<n-—1
In the first case, A; is isomorphic to Niy11.2 @ Apn—m—1,0. In the second case, A; is isomorphic to ﬁn,m. For both structures,

the associated Lie algebra §,, is isomorphic to a direct product of the form E @ Reg @ R¥, where E is a commutative ideal
such that [x, eg] = x forall x € E.

e Subsubcase 2.2.3. N (4;) is isomorphic to S, & An_2,0.

Recall, from Case 3 of Section 2.1, that the structure of S; @ A,_» ¢ is initially given as follows. There exist A1, A, € R,

with A, # 0, and a pseudo-orthonormal basis ey, . . ., €, of N (4;), with €; and €, null and satisfying (e;, ;) = 1, such that
e1-e; = Aey and e - e; = Aje; are the only nonzero products.
If we setey = (0, 1) and e; = (e;, 0) fori = 1, ..., n, then by using (17), we see that the structure of A; is given by
eo - €o = €y, e1-ep = Aey, er - ey = Aye, e - ey = &ie;,
with A1, X, € R, Ay #0,and &; = p (e;) = 0or 1.
By replacing e; with e} = i <61 - i—;e@), we gete) -e] = 0,e]-e; = e;,ande] -e = i (alel - %82€2> =

a (e — A—162 = ¢1€/, since, similar to Section 2.2.2 we can easily claim that we have eithere;, e; € V; orey, e, ¢ V;; that
Ao A 1

is €1 = &,. Accordingly, we conclude that there are exactly two possible non-isomorphic structures for A; which are given
as follows.

1. There exists an integer m > 2 such that the multiplication table of A; is given by
e1-e; = ey, eirepg=¢, 0<i<m.
2. There exists an integer m > 3 such that the multiplication table of 4; is given by
eo - €o = €y, er-e; = ey, ej-ep=¢, m=<i<n,
In the first case, A; is isomorphic to Sy41,2 @ An—m—1,0- In the second case, A; is isomorphic to I’\vlm+1,n. In both cases, the

associated Lie algebra 4, is isomorphic to a direct product of the form g, ® E ® Rey & R¥, where E is a commutative ideal
such that [x, eg] = x for all x € §, @ E in the case of the first structure (resp. x € E in the case of the second structure).

e Subsubcase 2.2.4. N (4;) is isomorphic to N3 1 @ Aq—3.0.

Recall, from Case 3 of Section 2.1, that the structure of N3 ; @ A,—_3,¢ is initially given as follows. There exist A1, A; € R,

with A; # 0, and a pseudo-orthonormal basis ey, . .., €, of N (4;), with €; and €, null and satisfying (e;, e;) = 1, such that
e1-e; = Ae; and e - e3 = Aje; are the only nonzero products.
If we setey = (0, 1) and e; = (e;, 0) fori = 1, ..., n, then by using (17), we see that the structure of A; is given by
e - €9 = €, er-e; = Aey, e1-e3 = Azey, e - ey = &ie;,

with A1, € R, Ay #0,ande; = 0or 1.

Claim 20. We have &1 = &, = &3.

Proof. Similar to Section 2.2.2 we can easily claim that we have either e;,e, € V;ore;, e, & V;; thatis &; = &,. On the
other hand, since the product on A4; is left-symmetry, we have (e1 - e3) - eg —e1 - (e3-eg) = (e3-e1) -eg —e3 - (e1-ey) =
0-ey — e1e3 - e = 0, from which we get e;A,6; = e3A;€;. Since A, # 0, we deduce thate; = ¢3. B
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Now, by replacing e; with e} = e; — %e3 and using the above claim, we easily verify that e} - e} = 0, ¢} - e3 = e,, and
e} -eg =¢e181 — %8363 = g1€}. We conclude that there are exactly two possible non-isomorphic structures for A; which are
given as follows.

1. There exists an integer m > 3 such that the multiplication table of 4; is given by
e1-e3 = ey, ejreg=¢, 0<i<m.
2. There exists an integer m > 4 such that the multiplication table of A; is given by
€ - ey = €, e -e3 =ey, ej-e=¢, m=<i=<n.
For both structures, the associated Lie algebra g, is isomorphic to a direct product of the form #3; ® E ®Req ® R¥, where

E is a commutative ideal such that [x, eg] = x for all x € #¢, @ E in the case of the first structure (resp. x € E in the case of
the second structure).

e Subsubcase 2.2.5. N (A;) is isomorphic to N3 ; @ Ap—_3,0.

Recall, from Case 3 of Section 2.1, that the structure of N3 ; @ A,—3,¢ is initially given as follows. There exists 0 # A € R,

and a pseudo-orthonormal basis ey, . . ., e, of N (4;), with e; and e, null and satisfying (e, e;) = 1, such thate, - e; = Aes
and e; - e, = Ae; are the only nonzero products.
If we seteg = (0, 1) and e; = (g;, 0) fori = 1, ..., n, then by using (17), we see that the structure of A; is given by
eg * €9 = e, e - ey = Aes, e3 - e; = Aeq, e - g = &iej,

withl € R,A # 0,and¢; =0or 1.

Claim 21. We have &1 = &, = €3.

Proof. Similar to Section 2.2.2 we can easily claim that we have either e;, e, € V;orey,e; & Vj; thatis e; = &;. On the
other hand, since the product on 4; is Novikov, we have (es3 - e;) - eg = (e3 - €g) - €3, from which we get 1 1e; = e3Ae;. Since
A #£ 0, we deduce thate; = ¢5. W

Now, by replacing e; with %ei for 1 < i < 3 and using the above claim, we conclude that there are exactly two possible
non-isomorphic structures for A; which are given as follows.

1. There exists an integer m > 3 such that the multiplication table of 4; is given by
ey - ey =es3, e3-e; =eq, ei-eg=¢, 0=<i=<m.
2. There exists an integer m > 4 such that the multiplication table of A; is given by
€€ =€y, ey-€=e€3  e3-€ =¢, ei-ep=¢€, m=i=<n
For both structures, the associated Lie algebra g, is isomorphic to a direct product of the form #; @ E @ Req ® R¥, where

E is a commutative ideal such that [x, eg] = x for all x € #¢, @ E in the case of the first structure (resp. x € E in the case of
the second structure).

The case when (, ), is Lorentzian and {, )|N(A_) is degenerate. To avoid confusion, we will omit the subscript i of A; and simply
1 1

write A. It is clear that we can write A = N (A) @ Re, for some null vector eq satisfying ey - e = eq. Furthermore, there exists
another null vector e; € N(A) such that (e, e;) = 1. Let V be the orthogonal complement of e; in N(A). Obviously, (, ), is
positive definite, so that we have the orthogonal decomposition A = N(A) @ span {eg, e;}. It follows that the scalar product
on A is given by

((x + aeq + aep) , (v + bes + Beg)) = (x,y) + ab +ap,

and since N(A)? = 0 (see Case 2 of Section 2.1), the left-symmetric product on A is given by

(x + aeq + aeg) - (v + ber + Beg) = ar (y + bey) + Bp (x + aeqy) + afeo, (18)
where herex,y € Vanda, b, @, 8 € R.
Lete,, ..., e, be an orthonormal basis of V, and let us set A (e;) = Z};l Aijej, p (e) = 2;7:1 pjejforalli, 1 <i < n.By

the invariance of (, ), we have
((ei + aer + aeo) - (e + ber + Beo) , ex + cer + yeo) = (e + aer + aeo, (ex + cer + yeo) - (e + ber + Beo)),
for all real numbers a, b, c, o, 8, y and integers i, j, k such that 2 < i, j, k < n. This yields
o (A + brw) + B (oi + apu) + aBc + By (pin + apir)
=y (Ni + bryi) + B (o + con) + Bya+af (pua + cpir) - (19)
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Fori =k, f = 0,and a = c, we see that (19) becomes (& — y) (Aji + bAli) = 0.Since « and y are arbitraries, we deduce
that A; = A4j = Oforall i, j > 2. Taking this into account, we see that, fori = k and a = ¢, (19) becomes

afa+ By (o1 +ap11) = Bya+ap (ok + api) -

By setting a = 0 in the above equation, we deduce that p;; = 0 for all i > 2; which when substituted once again in the
above equation yields py; = 1.
Now, by taking into consideration that A; = Ay; = p;; = Oforall i, j > 2, we get from (19) that

B (pik + apu) = B (ori + cp1i) ,
from which we deduce that pj = pi; and py, = 0 for all i, k > 2, given that a, ¢, and $ are arbitraries.

To summarize, we have shown that, relative to the basis ey, . . ., e,, we have
i o Am 10 --- 0
0 0
= : 0 e : B '
0 0

with B a symmetric matrix (i.e., B = B") which we can identify to p,. It follows that A;, = 0 and py, is self-adjoint with
respect to the positive definite scalar product (, )|, . Furthermore, when applied to B = pj,,, formula (iv) of Theorem 9 implies
that B> = B. Thus, without loss of generality, we can assume that p = Id,,, ® 0,_,, for some integer m < n. Since N(A)?> = 0,
then by virtue of (iv) of Theorem 9 we have [, p] + p?> = p. Applying this formula to e;, we deduce that A;; = 0 for all
i > m. Consequently, by applying formula (18), we conclude that there exists some integer m > 1 and real numbers A; for
which the structure of A is given by

€o-€ =€, e-e =€, e-e=~Ae;, 1=<i<m.
Accordingly, we have three cases to consider.

1. If &; = O for all §, then A is isomorphic to Fpnt1,0 @ An—m.o-
2. If xy = 0 and A;, # O for some i, then by replacing e; with e; = e; — A’\—,"e,-0 fori # ipand 2 < i < m, we easily get
1]
e -eg = e;and eg - ¢; = 0. Setting e] = e, and ), = X;,e;, and assuming without loss of generality that iy = 2, we
conclude that A is isomorphic to the algebra given by
eo - €9 = €y, € - €1 = ey, ej-eg=¢, 1=<i<m.
In this case, the associated Lie algebra §, is isomorphic to a direct product of the form E @ span {eg, e;} & R¥, with

le1, e0]l = e; —eyand E = spanf{ey, ..., e} is a commutative ideal such that [x, eg] = x for all x € E. In other words, G4
is isomorphic to F,q @ RV,

Remark 22. In dimension 3, we obtain the left-symmetric of type (C12) appearing in Table 4 of the classification of three-
dimensional Novikov algebras given in [7]. In this case, the associated Lie algebra is described by Lemma 4.10 of [6].

3. If A1 # 0, then by replacing e; with e; = ¢; — ¥e1 fori > 2, we easily get e} - o = e/ and ej - ] = 0. Thus, there exists
some real number A # O for which A is isomorphic to the algebra A; given by

eo - eg = €y, e - 1 = Aey, ej-eg=¢, 1<i<m

It is noticeable that we can easily check that A, is isomorphic to A, if and only if > = u.

The associated Lie algebra §,, to A; is isomorphic to a direct product of the form E @ span {eg, e1} & RK, with [eq, eg] =
(1—=2X)eq and E = span{e, ..., ey} is a commutative ideal such that [x, eg] = x for all x € E. In other words, §,, is
isomorphic to DC’}nH @R" ™1, In particular, in dimension 3, we see thatif . = 2 then G4, isisomorphic to the (unimodular)
Lie algebra of E (1, 1): the group of rigid motions of Minkowski 2-space.

The case when (, ), is degenerate and (, )‘N @) is positive definite. In this case, we can write A; = N (A;) @ Re, (orthogonal

direct sum), where e is a null vector satisfying ey - e = eg. The left-symmetric product of A; is given by formula (14), and
the scalar product on A; is given by: ((x, a), (v, b)) = (x,y) forallx,y € N (A;) anda, b € R.

Since the restriction of {, ) to N (A;) is positive definite, we conclude that N (4)?> = 0, = 0 and p is self-adjoint.
Furthermore, by virtue of (iv) of Theorem 9, we deduce that p?> = p. In fact, all these can be derived in a fashion similar to
what we did in Case 1 of Section 2.1.

Now, we can proceed as in the case when ¢, )|, is positive definite. First, without loss of generality, we deduce from the

la;
equation p? = p that p = Id,, @ 0,_n, for some integer m < n. Then, by using (15), we conclude that A; is isomorphic to
R"™™™ @ Fpt1.0-

The case when both (, )|, and {, )‘N(A‘) N

avoid confusion we will omit the subscript i of A; and simply write A. It is clear that we can write A = N(A) @ Re, (orthogonal

are degenerate. As in the case when (, ), is Lorentzian and ¢, ) is degenerate, to
1
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direct sum), where ey is a unit spacelike vector satisfying ey -eo = eq. Furthermore, we can write N(A) = V @Re; (orthogonal
direct sum), where ey is a null vector in N(A) such that (ep, e;) = 0 and V is a Euclidean (i, (,),, is positive definite)
subspace of N(A). Thus, we have the orthogonal decomposition A = V @& Re; @ Rey. It follows that the scalar product (which
is positive semi-definite) on A is given by

((x + aeq + aeg) , (v + bey + Beg)) = (x,y) + aB,

and since N(A)? = 0, the left-symmetric product on A is given by

(x +aeq +aeg) - (v + ber + Beo) = ah (y + ber) + Bp (x + aer) + afeo, (20)
where herex,y € Vanda, b, @, 8 € R.
Lete,, ..., e, be an orthonormal basis of V, and let us set nd A (¢;) = Z;':] Aijej, p (e) = ZJ'L] pjejforalli, 1 <i<n.

By the invariance of (, ), we have
((ei + aeq + creo) - (ej + beq + Beg) , ex + cer + yeo) = (e; + aeq + aveo, (ex + ceq + yeo) - (ej + ber + Beo)),

for all real numbers a, b, c, o, 8, y and integers i, j, k such that 2 < i, j, k < n. This yields

@ (A + baak) + B (i + apu) = v (A + brai) + B (o + cp1i) - (21)

Fori =k, f = 0,and a = c, we see that (21) becomes (& — y) (Aji + b)\.]i) = 0.Since « and y are arbitraries, we deduce
that 1; = A; = Ofor all i, j > 2. Taking this into account, we see that (21) becomes

B (pi + ap) = B (o + cpui)
from which we deduce that p; = pi; and py, = O forall i, k > 2, given that a, ¢, and g are arbitraries. Thus, we have shown

that A (e;) = Ajieq foralli > 1, p (e;) = pr1e1,and p () = Z]'?:] pijej foralli > 2.

Letnowe € @j>2 A; be anull vector such that {(e;, €) = 1. By the invariance of {, ) and the fact thate- (ej + be; + ﬂeo) =
0, we have B

((ei + aeq + creo) - (e + beq + Beg) , €) = (e; + aeq + ey, € - (ej + bey + Beg)) = 0,
for all real numbers a, b, @, 8 and integers i, j such that 2 < i, j < n. This yields
a (A1 + bri1) + B (oin +ap11) =0,

from which we deduce that A;; = A1 = p;j1 = p11 = 0. To summarize, we have shown that, relative to the basis ey, ..., e,,
we have A = 0 and
0O --- 0
p=1": B )
0

with Ban (n — 1)-square symmetric matrix (i.e., B = B') which we can identify to p, .
Furthermore, when applied to B = py,,, formula (iv) of Theorem 9 implies that B? = B. Thus, without loss of generality,
we can assume that

0 0
P=1" Idy,

0 On—m

for some integer m < n. Consequently, by applying formula (20), we see that there exists some integer m > 1 for which the
structure of A is given by

ei-e =¢e;, 0=<i=<n,

withe; = 1fori=00r2 <i <m,andg = 0fori=1orm+ 1 <i < n.We conclude that A is isomorphic to either A o
or Fm+1,0 ® An—m,O-
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