
Journal of Geometry and Physics 82 (2014) 132–144

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Novikov algebras carrying an invariant Lorentzian symmetric
bilinear form✩

M. Guediri ∗
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 12 November 2013
Accepted 15 April 2014
Available online 23 April 2014

MSC:
17A30
17B05
53C50

Keywords:
Novikov algebras
Extensions of left-symmetric algebras
Invariant bilinear forms

a b s t r a c t

In this note, we shall classify Novikov algebras that admit an invariant Lorentzian symmet-
ric bilinear form.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A finite-dimensional algebra (A, ·) over a field F is called left-symmetric if it satisfies the identity

(x, y, z) = (y, x, z) , for all x, y, z ∈ A, (1)

where (x, y, z) denotes the associator (x, y, z) = (x · y) · z − x · (y · z). In this case, the commutator [x, y] = x · y − y · x
defines a bracket that makes A into a Lie algebra. We denote by GA this Lie algebra and call it the associated Lie algebra to A.
Conversely, if G is a Lie algebra endowed with a left-symmetric product satisfying the condition [x, y] = x · y − y · x, then
we say that this left-symmetric product is compatiblewith the Lie structure of G.

Let A be a left-symmetric algebra over a field F, and let Lx and Rx denote the left and right multiplications by the element
x ∈ A, respectively.

The identity (1) is now equivalent to the formula
Lx, Ly


= L[x,y], for all x, y ∈ A, (2)

or, in other words, the linear map L : GA → End(A) is a representation of Lie algebras.
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We notice that (1) is also equivalent to the formula
Lx, Ry


= Rx·y − Ry ◦ Rx, for all x, y ∈ A. (3)

We say that A is a Novikov algebra if it satisfies the identity

(x · y) · z = (x · z) · y, for all x, y, z ∈ A. (4)

In terms of left and right multiplications, (4) is equivalent to each of the following identities
Rx, Ry


= 0, for all x, y ∈ A, (5)

Lx·y = Ry ◦ Lx, for all x, y ∈ A. (6)

Definition 1. A nondegenerate symmetric bilinear form ⟨, ⟩ on a Novikov algebra A is said to be invariant if ⟨Rxy, z⟩ =

⟨y, Rxz⟩, for all x, y, z ∈ A.

For example, if we let Ak,0 denote the real vector space Rk with zero multiplication and Fk+1,0 = ⟨e0, e1, . . . , ek : ei · e0
= ei, i = 0, . . . , k⟩, then it is easy to verify that these are (associative) Novikov algebras, and that any invariant positive
definite symmetric bilinear form on Ak,0 or Fk+1,0 is invariant.

Notice here that Fk+1,0 is nothing but the left-symmetric algebra appearing in Example 4 of [1]. In particular, F1,0 is nothing
but the field R.

The following theorem which is a result of Zelmanov (see [1, Proposition 4]) classifies the Novikov algebras provided
with an invariant positive definite symmetric bilinear form.

Theorem 2 ([1]). Let A be a real Novikov algebra provided with an invariant positive definite symmetric bilinear form. Then A is
an orthogonal direct sum of the form A =


⊥

i Ai, where each Ai is isomorphic to either the algebra Ak,0 or the algebra Fk+1,0, for
some integer k ≥ 1. In particular, A is associative.

In light of this theorem, a natural question arises:What kind of Novikov algebras dowe obtain if we replace the condition
‘‘positive definite’’ with ‘‘Lorentzian’’ in the statement of the above theorem?

The purpose of this note is to answer this question by proving the following result.

Theorem 3. Let A be a real n-dimensional Novikov algebra provided with an invariant Lorentzian symmetric bilinear form. Then
A is isomorphic to an orthogonal direct sum of the form A = A1 ⊕ A2, where A1 is an algebra in Table 1 and A2 is a direct sum of
the algebras Ak,0 and Fk+1,0.

Remark 4. It should be mentioned that, in Theorem 3, A2 is a direct sum of the algebras Ak,0 and Fk+1,0 in the following
precise sense: in the case A1 is nontrivial, A2 is the orthogonal direct sum of the algebras Ak,0 and Fk+1,0. In that case, the
restriction of the Lorentzian symmetric bilinear form to any nontrivial factor Ak,0 or Fk+1,0 is positive definite. In the case
A1 is trivial, A2 is an orthogonal direct sum of the form A2 = B1 ⊕ B2, where B1 is a pseudo-orthogonal direct sum of two
degenerate factors of the algebras Ak,0 and Fk+1,0 and A2 is a direct sum of the algebras Ak,0 and Fk+1,0.

Remark 5. By Theorem 2, a Novikov algebra equipped with an invariant positive definite symmetric bilinear form is
necessarily associative. On the contrary, by Theorem 3, a Novikov algebra equipped with an invariant Lorentzian symmetric
bilinear form need not be associative. We observe for instance that the algebras Lk+1 and Lλ

k+1 are not associative.

Table 1

LSA Basis Non-zero products Lie algebra

Ak,0 e1, . . . , ek Rk

A2,1 e1, e2 e1 · e1 = e2 R2

S2,1 e1, e2 e1 · e2 = e2 G2

N3,1 e1, e2, e3 e1 · e2 = e3 H3

N3,2 e1, e2, e3 e2 · e2 = e1, e1 · e2 = e3 H3

A2,2 e1, e2
e1 · e1 = e1, e1 · e2 = e2 R2
e2 · e1 = e2, e2 · e2 = −e1

Fk+1,0 e0, . . . , ek ei · e0 = ei, 0 ≤ i ≤ k R, if k = 0
k ≥ 0 Gk+1, if k ≥ 1

Ak+1,1 e0, . . . , ek
e1 · e1 = e2 , Gk+1k ≥ 2 ei · e0 = ei, 0 ≤ i ≤ k

(continued on next page)
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Table 1 (continued)

LSA Basis Non-zero products Lie algebra

Ak+1,m e0, . . . , ek
e0 · e0 = e0, e1 · e1 = e2 , Gk−m+1 ⊕ Rm

3 ≤ m ≤ k ei · e0 = ei, m ≤ i ≤ k

Nk+1,1 e0, . . . , ek
e1 · e3 = e2 , Nk+1k ≥ 3 ei · e0 = ei, 0 ≤ i ≤ k

Nk+1,m e0, . . . , ek
e0 · e0 = e0, e1 · e3 = e2 , Nk−m+1 ⊕ Rm

4 ≤ m ≤ k ei · e0 = ei, m ≤ i ≤ k

Sk+1,2 e0, . . . , ek
e1 · e2 = e2 , Sk+1k ≥ 2 ei · e0 = ei, 0 ≤ i ≤ k

Sk+1,m e0, . . . , ek
e0 · e0 = e0, e1 · e2 = e2 , Sk−m+1 ⊕ Rm

3 ≤ m ≤ k ei · e0 = ei, m ≤ i ≤ k

Nk+1,2 e0, . . . , ek
e2 · e2 = e3, e3 · e2 = e1 , Nk+1k ≥ 3 ei · e0 = ei, 0 ≤ i ≤ kNk+1,m

e0, . . . , ek
e0 · e0 = e0 ,

Nk−m+1 ⊕ Rm4 ≤ m ≤ k e2 · e2 = e3, e3 · e2 = e1 ,
ei · e0 = ei, m ≤ i ≤ k

Lk+1 e0, . . . , ek
e0 · e0 = e0, e0 · e1 = e2 , Lk+1ei · e0 = ei, 1 ≤ i ≤ k

Lλ
k+1 e0, . . . , ek

e0 · e0 = e0, e0 · e1 = λe1 , Lλ
k+1ei · e0 = ei, 1 ≤ i ≤ k

The structures of the Lie algebras appearing in Table 1 are explicitly described in Table 2.

Table 2

Lie algebra Basis Non-zero brackets

Rk e1, . . . , ek
H3 e1, e2, e3 [e1, e2] = e3
Gk+1, k ≥ 1 e0, . . . , ek [ei, e0] = ei, 1 ≤ i ≤ k

Nk+1, k ≥ 3 e0, . . . , ek
[e1, e2] = e3 ,
[ei, e0] = ei, 1 ≤ i ≤ k

Sk+1, k ≥ 2 e0, . . . , ek
[e1, e2] = e2 ,
[ei, e0] = ei, 1 ≤ i ≤ k

Lk+1, k ≥ 2 e0, . . . , ek
[e1, e0] = e1 − e2 ,
[ei, e0] = ei, 2 ≤ i ≤ k

Lλ
k+1, k ≥ 2 e0, . . . , ek

[e1, e0] = (1 − λ) e1, λ ≠ 0,
[ei, e0] = ei, 2 ≤ i ≤ k

1.1. Self-adjoint operators of Lorentzian vector spaces

A Lorentzian vector space (V , ⟨, ⟩) is n-dimensional real vector space V endowed with a Lorentzian scalar product ⟨, ⟩,
that is, a nondegenerate symmetric bilinear form of index 1. This means one can find a basis {e1, . . . , en} of V such that
⟨e1, e1⟩ = −1, ⟨ei, ei⟩ = 1 for 2 ≤ i ≤ n, and


ei, ej


= 0 otherwise. The simplest example for a Lorentzian vector space is

Minkowski space Rn
1 : Rn with scalar product ⟨x, y⟩ = −x1y1 + x2y2 + · · · xnyn.

Let (V , ⟨, ⟩) be an n-dimensional real vector space. A non-zero vector X is called spacelike, timelike, or null if ⟨X, X⟩ >
0, < 0, or = 0, respectively. The zero vector is supposed to be spacelike. A subspace W ⊆ V is called nondegenerate,
degenerate, spacelike, or Lorentzian if the restriction ⟨, ⟩|W of ⟨, ⟩ to W is nondegenerate, degenerate, positive definite, or
indefinite, respectively.

An endomorphism A of (V , ⟨, ⟩) is said to be self-adjoint if it satisfies ⟨AX, Y ⟩ = ⟨X, AY ⟩ for all X, Y ∈ V . Self-adjoint
endomorphisms of a Lorentzian vector space are classified according to the following well known result (see for instance
[2, pp. 261–262]).

Lemma 6. Let A be a self-adjoint endomorphism of an n-dimensional Lorentzian vector space (V , ⟨, ⟩). Then, A has a matrix of
one of the following four forms:

(i) A = Dn,
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(ii) A =


a b

−b a


⊕ Dn−2, b ≠ 0,

(iii) A =


λ 0

±1 λ


⊕ Dn−2,

(iv) A =


λ 0 0
0 λ 1
1 0 λ


⊕ Dn−3,

where Dk denotes a diagonal matrix diag {λ1, . . . , λk}. In cases (i) and (ii), A is represented with respect to an orthonormal basis
{e1, . . . , en} such that ⟨e1, e1⟩ = −1, ⟨ei, ei⟩ = 1, for 2 ≤ i ≤ n, and all other products are zeros. In cases (iii) and (iv), A is
represented with respect to a pseudo-orthonormal basis {e1, . . . , en} such that ⟨e1, e2⟩ = ⟨ei, ei⟩ = 1, for 3 ≤ i ≤ n, and all
other products are zeros.

1.2. Radicals of a Novikov algebra

The notion of radical of a left-symmetric algebra was firstly introduced by J.L. Koszul (see [3]). Given a left-symmetric
algebra A over a field F, one defines the radical R(A) of A to be the largest left ideal contained in the subset

I(A) = {a ∈ A : tr (Ra) = 0} .

It turns out thatR(A) is nothing but the largest complete left ideal ofA. In general, the radical of an arbitrary left-symmetric
algebra is not a two-sided ideal (cf. [3]). As we will see below (see Proposition 7), the radical of a Novikov algebra over a
field of characteristic zero is a two-sided ideal.

Another important notion of radical is that of right radical. Let A be a left-symmetric algebra over a fieldF of characteristic
zero, and let I be a two-sided ideal of A. We say that I is right-nilpotent if there exists some fixed integer n ≥ 1 such
that Ra1 · · · Ran = 0 for all ai ∈ I . It turns out that the largest right-nilpotent ideal need not exist for an arbitrary left-
symmetric algebra, because the sum of any two right-nilpotent ideals need not be right-nilpotent. In the special case of
Novikov algebras, it was shown in [1] that a Novikov algebra A has always a uniquemaximal right-nilpotent two-sided ideal
N(A), called the right radical of A. In the same paper, it was also shown that I(A) is a two-sided ideal that is right-nilpotent.
From these two facts, we can deduce the following:

Proposition 7 ([4]). Let A be a Novikov algebra over a field F of characteristic zero. Then, we have N(A) = R(A) = I(A).

We say that A is complete if Rx is a nilpotent operator, for all x ∈ A. In this context, if G is an n-dimensional simply
connected Lie group with Lie algebra G, then giving a compatible complete left-symmetric product on G can be interpreted
as giving a complete left-invariant affine connection on G or, equivalently, as giving a simply transitive affine action of G on
an n-dimensional vector space E. The following important fact is a direct consequence of Proposition 7.

Corollary 8. A Novikov algebra is right-nilpotent if and only if it is complete.

1.3. Extensions of left-symmetric algebras

In this section, we shall briefly discuss the problem of extension of a left-symmetric algebra by another left-symmetric
algebra. Suppose we are given a vector space A as an extension of a left-symmetric algebra K by another left-symmetric
algebra E. We want to define a left-symmetric structure on A in terms of the left-symmetric structures given on K and E. In
otherwords, wewant to define a left-symmetric product on A forwhich E becomes a two-sided ideal in A such that A/E ∼= K .
This is equivalent to let

0 → E → A → K → 0

become a short exact sequence of left-symmetric algebras.

Theorem 9 ([5]). There exists a left-symmetric structure on A extending a left-symmetric algebra K by a left-symmetric algebra
E if and only if there exist two linear maps λ, ρ : K → End(E) and a bilinear map ω : K × K → E such that, for all x, y, z ∈ K
and a, b ∈ E, the following conditions are satisfied.
(i) λx (a · b) = λx(a) · b + a · λx(b) − ρx(a) · b.
(ii) ρx ([a, b]) = a · ρx(b) − b · ρx(a).
(iii)


λx, λy


= λ[x,y] + Lω(x,y)−ω(y,x), where Lω(x,y)−ω(y,x) denotes the left multiplication in E by ω (x, y) − ω (y, x).

(iv)

λx, ρy


= ρx·y − ρy ◦ ρx + Rω(x,y), where Rω(x,y) denotes the right multiplication in E by ω (x, y).

(v) ω (x, y · z) − ω (y, x · z) + λx (ω (y, z)) − λy (ω (x, z)) − ω ([x, y] , z) − ρz (ω (x, y) − ω (y, x)) = 0.

If the conditions of Theorem 9 are fulfilled, then the extended left-symmetric product on A ∼= E × K is given by

(a, x) · (b, y) =

a · b + λx(b) + ρy(a) + ω (x, y) , x · y


. (7)
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It is remarkable that if the left-symmetric product of E is trivial, then the conditions of Theorem9 simplify to the following
three conditions:

(i)

λx, λy


= λ[x,y], i.e. λ is a representation of Lie algebras,

(ii)

λx, ρy


= ρx·y − ρy ◦ ρx.

(iii) ω (x, y · z) − ω (y, x · z) + λx (ω (y, z)) − λy (ω (x, z)) − ω ([x, y] , z) − ρz (ω (x, y) − ω (y, x)) = 0.

In this case, E becomes a K -bimodule and the extended product given in (7) simplifies too.
Recall that if K is a left-symmetric algebra and V is a vector space, then we say that V is a K -bimodule if there exist two

linear maps λ, ρ : K → End(V ) which satisfy the conditions (i) and (ii) stated above.
Let K be a left-symmetric algebra, and let V be a K -bimodule. Let Lp (K , V ) be the space of all p-linear maps from K to V ,

and define two coboundary operators δ1 : L1 (K , V ) → L2 (K , V ) and δ2 : L2 (K , V ) → L3 (K , V ) as follows: for a linear map
h ∈ L1 (K , V ) we set

δ1h (x, y) = ρy (h(x)) + λx (h(y)) − h (x · y) ,

and for a bilinear map ω ∈ L2 (K , V ) we set

δ2ω (x, y, z) = ω (x, y · z) − ω (y, x · z) + λx (ω (y, z)) − λy (ω (x, z)) − ω ([x, y] , z) − ρz (ω (x, y) − ω (y, x)) .

It is straightforward to check that δ2 ◦ δ1 = 0. Therefore, if we set Z2
λ,ρ (K , V ) = ker δ2 and B2

λ,ρ (K , V ) = Im δ1, we can
define a notion of second cohomology for the actions λ and ρ by simply setting H2

λ,ρ (K , V ) = Z2
λ,ρ (K , V ) /B2

λ,ρ (K , V ).
As in the case of extensions of Lie algebras, we can prove that for given linear maps λ, ρ : K → End(V ), the equivalence

classes of extensions 0 → V → A → K → 0 of K by V are in one-to-one correspondence with the elements of the second
cohomology group H2

λ,ρ (K , V ).

1.4. Simple left-symmetric algebras

An algebra A over a field F is called simple if it has no proper two-sided ideal and A is not the zero algebra of dimension
1. Therefore, since A2

= A · A is a two-sided ideal of A, we have A2
= A in case A is simple.

In [1], the following results were proved.

Theorem 10 ([1]). A simple Novikov algebra A over a field F of characteristic zero is isomorphic to F.

Proposition 11 ([1]). Let A be a Novikov algebra over a field of characteristic zero. Then, A can be decomposed into a direct sum
of ideals A =


i Ai, where each ideal Ai is either right-nilpotent or Ai/N (Ai) is a field.

It is worthmentioning that when the field F is not algebraically closed, then simple Novikov algebras over F of dimension
≥ 2 can exist. Here is an example of a two-dimensional simple Novikov algebra over R.

Example 12 (A Two-Dimensional Simple Novikov Algebra Over R). Over the field F = R or C, let us consider the two-
dimensional commutative associative algebra A2,F defined by the following multiplication table: e1 · e1 = e1, e1 · e2 =

e2 · e1 = e2, e2 · e2 = −e1. Being commutative, A2,F is a Novikov algebra; and by setting e′

1 =
1
2 (e1 + ie2) , e′

2 =
1
2 (e1 − ie2),

we can easily see that A2,C is a direct sum of fields, that is A2,C ∼= C ⊕ C. However, it is not difficult to show that A2,R is
simple.

Remark 13. It is worth pointing out that, in the example above, A2,C is nothing but the complexification of A2,R. It follows
that the complexification of a simple left-symmetric algebra (even Novikov) need not be simple.

Anyway, the following theorem shows that A2,R is the only simple Novikov algebra over R of dimension ≥ 2.

Theorem 14 ([4]). A real simple Novikov algebra is isomorphic to either A2,R or the field R.

As a consequence of this result, Proposition 11 can be stated in the following more precise form.

Proposition 15. A Novikov algebra over a field R can be decomposed into a direct sum of ideals A =


i Ai, where each ideal Ai
is either right-nilpotent or Ai/N (Ai) is isomorphic to A2,R or the field R.

Throughout this paper, we will use the notation A2,2 in place of A2,R.
It is clear that a right-nilpotent algebra is necessarily complete. In the case of Novikov algebras, we have the following

Proposition 16 ([4]). A complete Novikov algebra over a field of characteristic zero cannot be simple.
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2. Proof of Theorem 3

From now on, A will be a Novikov real algebra equipped with an invariant Lorentzian symmetric bilinear form ⟨, ⟩.
According to Proposition 15, A can be decomposed into a direct sum of ideals A =


i Ai, where each ideal Ai is either

complete (i.e., right-nilpotent) or Ai/N (Ai) is isomorphic to A2,R or the field R. In what follows, for a fixed i, let ⟨, ⟩|Ai
denote

the restriction of ⟨, ⟩ to Ai.

2.1. The case of a complete ideal Ai

Assume that Ai is complete and n = dim Ai ≥ 2. Then, we have A2
i = 0 by completeness of Ai. We have to consider three

cases.

• Case 1. ⟨, ⟩|Ai is positive definite.

In this case, being self-adjoint with respect to the positive definite scalar product ⟨, ⟩|Ai
, a right multiplication Rx is

necessarily diagonalizable relative to an orthonormal basis of Ai. Since Rx is nilpotent, it follows that Rx = 0. This means that
A2
i = 0, that is, Ai is isomorphic to An,0.

• Case 2. ⟨, ⟩|Ai is degenerate.

In this case, write Ai = Re0 ⊕ Ai, where e0 is a null vector (i.e., ⟨e0, e0⟩ = 0) and Ai is spacelike, and let A
⊥

i denote the
orthogonal to Ai in A. Note here that e1 ∈


j≠i Aj and

A
⊥

i ⊆ Re0 ⊕


j≠i

Aj


.

Lemma 17. With the notation above, for all x, y ∈ Ai and z ∈


j≠i Aj, we have

(i) Rxz = 0.
(ii) Rxe0 = 0.
(iii) Rxy ∈ Ai.

Proof. Assertion (i) follows from the fact that Ai · Aj = 0 for all i ≠ j, given that A is a direct sum of ideals A =


i Ai.
To prove (ii), we note that since Ai is an ideal we have Rxy ∈ Ai for all x ∈ Ai and y ∈ A. It follows that ⟨Rxe0, y⟩ =

⟨e0, Rxy⟩ = 0, that is, Rxe0 = 0 for all x ∈ Ai.
To prove (iii), we note that since Ai is spacelike, then we may choose another null vector e1 in A

⊥

i such that ⟨e0, e1⟩ = 1.
Since e1 ∈


j≠i Aj, then by (i), we have Rxe1 = 0. It follows that ⟨Rxy, e1⟩ = ⟨y, Rxe1⟩ = 0, for all x, y ∈ Ai. Since

Rxy ∈ Ai = Re0 ⊕ Ai, we deduce that Rxy ∈ Ai. �

For x ∈ Ai, let Rx |Ai
denote the restriction of Rx to Ai. By assertion (iii) of Lemma 17, we have Rx |Ai

: Ai → Ai, and since Rx

is a nilpotent self-adjoint operator and ⟨, ⟩|Ai
is positive definite, we deduce that Rx |Ai

= 0. It follows from this and assertion

(ii) of Lemma 17 that A2
i = 0, that is, Ai is isomorphic to An,0.

• Case 3. ⟨, ⟩|Ai is indefinite.

In this case, being self-adjoint, the operator Rx : Ai → Ai can take one of the four possible forms of Lemma 6, for all x ∈ Ai.
Let x ∈ Ai. Since Rx is nilpotent, we deduce two thins. First, Rx cannot admit complex eigenvalues, that is, it cannot take

form (ii) of Lemma 6. Second, Rx = 0 if Rx is diagonalizable, that is, it has the form (i) of Lemma 6.
If Rx has the form (iii) of Lemma 6, then we easily deduce that Rx simplifies to

Rx =


0 0

±1 0


⊕ 0n−2.

If Rx has the form (iv) of Lemma 6, then we easily deduce that Rx simplifies to

Rx =

0 0 0
0 0 1
1 0 0


⊕ 0n−3.

Since A is Novikov, the operators Rx should commute with each other. Since, as we can easily verify, the above matrices
do not commute, it follows that the operators Rx are either all of the form

Rx =


0 0

λ(x) 0


⊕ 0n−2, (8)
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or all of the form

Rx =

 0 0 0
0 0 λ(x)

λ(x) 0 0


⊕ 0n−3, (9)

for some real function λ(x).
Assume first that Rx is of the form (8) for all x ∈ Ai. In this case, we get e1 · x = λ(x)e2 and all other products are zeros.

It follows that there exists a basis e1, . . . , en of Ai such that e1 · ei = λie2, with λi ∈ R, and all other products are zeros. We
distinguish three cases.

If λ2 = · · · = λn = 0, then the associated Lie algebra Gi is isomorphic to Rn, and the structure of Ai is given by

e1 · e1 = λe2, λ ∈ R,

and all other products are zeros. We deduce that Ai is isomorphic to either An,0 or A2,1 ⊕ An−2,0.
If λ2 ≠ 0, then by setting e′

i = ei −
λi
λ2
e2 for all i ≥ 4, we get e1 · e′

i = 0 for all i ≥ 4. It follows that the structure of Ai is
given by

e1 · e1 = λ1e2, e1 · e2 = λ2e2, with λ1, λ2 ∈ R and λ2 ≠ 0,

and all other products are zeros. Again, by setting e′

1 =
1
λ2


e1 −

λi
λ2
e2

, we get e′

1 · e′

1 = 0. It follows that Ai is isomorphic to

S2 ⊕ An−2,0 = ⟨e1, . . . , en : e1 · e2 = e2⟩ ,

and the associated Lie algebra Gi is isomorphic to G2 ⊕ Rn−2.
If λ2 = 0 and λi0 ≠ 0 for some i0 ≥ 3, say i0 = 3 to simplify, then by setting e′

i = ei −
λi
λ3
e3 for all i ≥ 4, we get e1 · e′

i = 0
for all i ≥ 4. It follows that the structure of Ai is given by

e1 · e1 = λ1e2, e1 · e3 = λ2e2, with λ1, λ2 ∈ R and λ2 ≠ 0,

and all other products are zeros. Again, by setting e′

1 = e1−λ1e2, we see that Ai is isomorphic toN3,1⊕An−3,0. The associated
Lie algebra Gi is isomorphic to H3 ⊕ Rn−3.

Assume now that Rx is of the form (9) for all x ∈ Ai. In this case, we get e2 · x = λ(x)e3, e3 · x = λ(x)e1, and all other
products are zeros. It follows that there exists a basis e1, . . . , en of Ai such that e2 · ei = λie2, e3 · ei = λie1, with λi ∈ R, and
all other products are zeros. By left-symmetry we have

(e2 · ei) · ei − e2 · (ei · ei) = (ei · e2) · ei − ei · (e2 · ei) ,

which yields

λi (λie1 + ei · e3) = e2 · (ei · ei) + (ei · e2) · ei.

For i = 3, the above equality yields λ3 = 0, and for i = 1 or i ≥ 4 it yields λi = 0. It follows that there exists a basis
e1, . . . , en of Ai such that

e2 · e2 = λe3, e3 · e2 = λe1, with λ ∈ R,

and all other products are zeros.We deduce that Ai is isomorphic to either An,0 orN3,2⊕An−3,0, and the associated Lie algebra
Gi is isomorphic to either Rn or H3 ⊕ Rn−3.

2.2. The case of a non-complete ideal Ai

For a fixed i, assume that Ai is non-complete and let ⟨, ⟩|N(Ai)
denote the restriction of ⟨, ⟩ to N (Ai), respectively. We can

analyze as we did in the complete case, but we prefer to proceed as follows. We know, by Proposition 15, that Ai/N (Ai) is
isomorphic to A2,2 or the field R. Accordingly, we must consider two cases.

2.2.1. The case when Ai/N

Ai

is isomorphic to A2,2

In this case, we first claim that Ai is necessarily Lorentzian (hence nondegenerate). This is a direct consequence of the
following lemma.

Lemma 18. Any invariant nondegenerate symmetric bilinear form on A2,2 is necessarily Lorentzian.

Proof. Recall that A2,2 has a basis e1, e2 such that e1 · e1 = e1, e1 · e2 = e2 · e1 = e2, e2 · e2 = −e1, and let ⟨, ⟩ be an arbitrary
invariant nondegenerate symmetric bilinear form on A2,2. By invariance of ⟨, ⟩, we have


Re2e2, e1


=

e2, Re2e1


, which yields

⟨e2, e2⟩ = − ⟨e1, e1⟩. It follows that the symmetric matrix of ⟨, ⟩ has the form

M⟨,⟩ =


a b
b −a


,

where a = ⟨e1, e1⟩ and b = ⟨e1, e2⟩. Its discriminant is detM⟨,⟩ = −

a2 + b2


< 0, and therefore ⟨, ⟩ is Lorentzian. �
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Since N (Ai) is a two-sided ideal of Ai, we get a short exact sequence of left-symmetric algebras

0 → N (Ai) → Ai → A2,2 → 0.

Setting Ai = N (Ai) ⊕ A2,2 as a vector space, there exist two linear maps λ, ρ : A2,2 → End (N (Ai)) and a bilinear map
ω : A2,2 × A2,2 → N (Ai) such that the left-symmetric product of Ai can be written as

(x, u) · (y, v) = (x · y + λu(y) + ρv(x) + ω (u, v) , u · v) , (10)

for all x, y ∈ N (Ai) and u, v ∈ A2,2.
By the invariance of ⟨, ⟩, we have ⟨(x, u) · (y, v) , (z, w)⟩ = ⟨(x, u) , (z, w) · (y, v)⟩. Since the restriction of ⟨, ⟩ to both

N (Ai) and A2,2 is nondegenerate, we can, without loss of generality, write ⟨(x, u) , (y, v)⟩ = ⟨x, y⟩ + ⟨u, v⟩. Thus, the above
equality yields

⟨λu(y) + ρv(x) + ω (u, v) , z⟩ = ⟨x, λw (y) + ρv(z) + ω (w, v)⟩ . (11)

By substituting z = x and y = 0 into Eq. (11), it follows that ω (u, v) = ω (w, v) for all u, v, w ∈ A2,2, from which we
deduce that ω = 0. Again, by taking z = x in (11), we get λu(y) = λw(y) for all y ∈ N (Ai) and u, v ∈ A2,2, from which we
deduce that λ = 0. Thus, the left-symmetric product (10) simplifies as follows:

(x, u) · (y, v) = (x · y + ρv (x) , u · v) , (12)

for all x, y ∈ N (Ai) and u, v ∈ A2,2.
SinceN (Ai) is complete (i.e., right nilpotent) and ⟨, ⟩|N(Ai)

is positive definite,we deduce fromwhatwehave did previously

in the complete case that N (Ai)
2

= 0, that is, N (Ai) is isomorphic to An,0.
Since λ = 0 and ω = 0, it follows that (iv) of Theorem 9 simplifies to

ρu·v = ρv ◦ ρu,

for all u, v ∈ A2,2. In particular, we have

ρ2
e1 = ρe1 , ρ2

e2 = −ρe1 , ρe1 ◦ ρe2 = ρe2 ◦ ρe1 = ρe2 . (13)

By the last identity of (13), ρe1 and ρe2 commute. It follows that they are simultaneously diagonalizable. Since they are
self-adjoint with respect to the positive definite scalar product ⟨, ⟩|N(Ai)

, there exists an orthonormal basis e3, . . . , en ofN (Ai)

relative to which ρe1 = diag {λ3, . . . , λn} and ρe2 = diag {µ3, . . . , µn}, where here n = dim Ai.
From the first two identities of (13), we get λ2

j + µ2
j = 0 for all j = 3, . . . , n. Consequently, we have ρe1 = ρe2 = 0, that

is, ρ = 0. We deduce, using (12), that

Ai = A2,2
⊥

⊕ An−2,0,

that is, Ai is an orthogonal direct sum of the algebras A2,2 and An−2,0.

2.2.2. The case when Ai/N

Ai

is isomorphic to the field R

Unless otherwise stated, we will use the following notation throughout this subsubsection. We consider the field R as a
one-dimensional algebra over itself, andwe let n = dimN (Ai). In this case,we have a short exact sequence of left-symmetric
algebras

0 → N (Ai) → Ai → R → 0.

Setting Ai = N (Ai) ⊕ R as a vector space, and letting 1 denote the unit element of the field R, we will adopt the notation
(x, a) to denote elements of Ai. In particular, setting e0 = (0, 1), we have e0 = e0 · e0. According to the above short exact
sequence, there exist two endomorphisms λ, ρ : N (Ai) → N (Ai) and a bilinear map ω : R2

→ N (Ai) such that the
left-symmetric product of Ai can be written as

(x, a) · (y, b) = (x · y + aλ (y) + bρ(x) + abω (1, 1) , ab) , (14)

for all x, y ∈ N (Ai) and a, b ∈ R. Consequently, we have e0 = e0 · e0 = (ω (1, 1) , 0) + e0, and we conclude that ω = 0.
Now, to handle the present case, we have to consider three cases depending on the signature of ⟨, ⟩|Ai .

The case when ⟨, ⟩|Ai
is positive definite. In this case, ⟨, ⟩|N(Ai)

is positive definite as well, and we can write ⟨(x, a) , (y, b)⟩ =

⟨x, y⟩ + ab for all x, y ∈ N (Ai) and a, b ∈ R.
By the invariance of ⟨, ⟩, we have ⟨(x, a) · (y, b) , (z, c)⟩ = ⟨(x, a) , (z, c) · (y, b)⟩. This latter equation, by virtue of (14),

yields the following equation

⟨aλ(y) + bρ(x), z⟩ = ⟨x, cλ(y) + bρ(x)⟩ .

Now, we can proceed in the same way as we did in the case that Ai/N (Ai) is isomorphic to A2,2 to show that λ = 0 and
ρ is self-adjoint. As a consequence, we conclude, by virtue of (iv) of Theorem 9, that ρ2

= ρ.
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On the other hand, since N (Ai) is complete and the Rx are self-adjoint with respect to the positive definite scalar product
⟨, ⟩|N(Ai)

, we deduce as in the complete case that N (Ai)
2

= 0, that is, N (Ai) is isomorphic to An,0. We also deduce that the
left-symmetric product of Ai given by (14) reduces to

(x, a) · (y, b) = (bρ(x), ab) . (15)

Since ρ is self-adjoint with respect to the positive definite scalar product ⟨, ⟩|N(Ai)
, then we may assume without loss

that there exists an orthonormal basis e1, . . . , en of N (Ai) with respect to which ρ = diag {λ1, . . . , λn}. From the equation
ρ2

= ρ, we deduce that λ2
i = λi (i.e., λi = 0 or 1) for all i = 1, . . . , n. Thus, without loss of generality, we may assume that

ρ = Idm ⊕ 0n−m, for some integerm ≤ n, where Idm is them × m identity matrix.
Setting e0 = (0, 1) and ei = (ei, 0) for i = 1, . . . , n, and using (15), we get

ei · e0 = ei, 0 ≤ i ≤ m,

and all other products are zeros. Thus, Ai is isomorphic to Fm+1,0 ⊕ An−m−1,0.
We deduce that the Lie algebra GAi associated to Ai has the property that [x, y] = ax + bx, for all x, y, where a and b

are real constants. According to [6], GAi contains a codimension one commutative ideal E and an element e0 ∉ E such that
[e0, x] = x for all x ∈ E.
The case when ⟨, ⟩|Ai

is Lorentzian and ⟨, ⟩|N(Ai)
is non-degenerate. In this case, we can write ⟨(x, a) , (y, b)⟩ = ⟨x, y⟩ + εab for

all x, y ∈ N (Ai) and a, b ∈ R, where ε = 1 or−1 according to whether the restriction of ⟨, ⟩ to N (Ai) is indefinite or positive
definite, respectively.

On the other hand, in a similar fashion as we did in Case 1 of Section 2.1, we can deduce by the invariance of ⟨, ⟩ that
λ = 0 and ρ is self-adjoint. As a consequence, we conclude, by virtue of (iv) of Theorem 9, that

ρ2
= ρ. (16)

We have to consider three subcases.

• Subcase 2.1. ⟨, ⟩|N(Ai)
is positive definite.

In this subcase, since N (Ai) is complete and all Rx are self-adjoint with respect to the positive definite scalar product
⟨, ⟩|N(Ai)

, we deduce that N (Ai)
2

= 0. Now, as we did in the case when ⟨, ⟩|Ai
is positive definite, we can use (16) and

the fact that ρ is self-adjoint with respect to the positive definite scalar product ⟨, ⟩|N(Ai)
to prove that Ai is isomorphic to

Fm+1,0 ⊕ An−m−1,0.

• Subcase 2.2. ⟨, ⟩|N(Ai)
is indefinite.

In this subcase, since ⟨, ⟩|N(Ai)
is indefinite, the operatorρ maynot be diagonalizable although it is self-adjointwith respect

to ⟨, ⟩|N(Ai)
. However, with Eq. (16) in hand, we can show that ρ is indeed diagonalizable.

Claim 19. The operator ρ is diagonalizable.

Proof. According to Lemma 6, there are four possible forms for ρ.
If ρ is not diagonalizable and takes the form (ii) of Lemma 6 (i.e., ρ has a complex eigenvalue), then with the notation of

that lemma we get from Eq. (16) that a2 − b2 = a, 2ab = b, and λ2
i = λi for all i = 1, . . . , n − 2. Obviously, the first two

equations are incompatible. Thus, this case cannot occur.
Similarly, we can show that the case when ρ is not diagonalizable and takes one of the forms (iii) or (iv) of Lemma 6

cannot occur too. �

By the above claim, ρ is diagonalizable. As in the case when ⟨, ⟩|Ai
is positive definite, and by using (16), we may assume

without of generality that ρ = Idm ⊕ 0n−m, for some integer m ≤ n. Setting N (Ai) = Vi ⊕ ker ρ, where Vi = ker (ρ − Id),
we have dim Vi = m and ρ|Vi

= Idm.
With the notation as at the beginning of Section 2.2.2, the left-symmetric product of Ai given by (14) reduces to

(x, a) · (y, b) = (x · y + bρ (x) , ab) , (17)

where ρ is here represented by some matrix of the form Idm ⊕ 0n−m. Of course, the reduced form ρ = Idm ⊕ 0n−m is not
necessarily with respect to the basis e1, . . . , en above.

On the other hand, since N (Ai) is complete and ⟨, ⟩|N(Ai)
is Lorentzian, we deduce from what we obtained in Case 3 of

Section 2.1 that N (Ai) is isomorphic to either An,0, A2,1 ⊕ An−2,0, S2 ⊕ An−2,0,N3,1 ⊕ An−3,0, or N3,2 ⊕ An−3,0. Accordingly,
we have five subsubcases to consider.

• Subsubcase 2.2.1. N (Ai) is isomorphic to An,0.

In a similar manner to the case when ⟨, ⟩|Ai
is positive definite, we can prove that Ai is isomorphic to Fm+1,0 ⊕ An−m−1,0.
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• Subsubcase 2.2.2. N (Ai) is isomorphic to A2,1 ⊕ An−2,0.

Recall, from Case 3 of Section 2.1, that the structure of A2,1 ⊕ An−2,0 is initially given as follows. There exists a pseudo-
orthonormal basis e1, . . . , en of N (Ai), with e1 and e2 null satisfying ⟨e1, e2⟩ = 1, and such that e1 · e1 = e2 is the only
nonzero product. With notation as above, we claim that we have either e1, e2 ∈ Vi or e1, e2 ∉ Vi; that is ε1 = ε2. For indeed,
if for example e1 ∈ Vi and e2 ∉ Vi, then since ρ is self-adjoint and ⟨e1, e2⟩ = 1 we get 1 = ⟨ρ (e1) , e2⟩ = ⟨e1, ρ (e2)⟩ = 0, a
contradiction.

If we set e0 = (0, 1) and ei = (ei, 0) for i = 1, . . . , n, then by using (17), we see that the structure of Ai is given by

e0 · e0 = e0, e1 · e1 = e2, ei · e0 = εiei,

where εi = ρ (ei) = 0 or 1. Taking into account the above claim, we conclude that there are exactly two possible non-
isomorphic structures for Ai which are given as follows.

1. There exists an integerm ≥ 2 such that the multiplication table of Ai is given by

e1 · e1 = e2, ei · e0 = ei, 0 ≤ i ≤ m.

2. There exists an integerm ≥ 3 such that the multiplication table of Ai is given by

e0 · e0 = e0, e1 · e1 = e2, ei · e0 = ei, m ≤ i ≤ n − 1.

In the first case, Ai is isomorphic to Nm+1,2 ⊕ An−m−1,0. In the second case, Ai is isomorphic toNn,m. For both structures,
the associated Lie algebra GAi is isomorphic to a direct product of the form E ⊕ Re0 ⊕ Rk, where E is a commutative ideal
such that [x, e0] = x for all x ∈ E.

• Subsubcase 2.2.3. N (Ai) is isomorphic to S2 ⊕ An−2,0.

Recall, from Case 3 of Section 2.1, that the structure of S2 ⊕ An−2,0 is initially given as follows. There exist λ1, λ2 ∈ R,
with λ2 ≠ 0, and a pseudo-orthonormal basis e1, . . . , en of N (Ai), with e1 and e2 null and satisfying ⟨e1, e2⟩ = 1, such that
e1 · e1 = λ1e2 and e1 · e2 = λ2e2 are the only nonzero products.

If we set e0 = (0, 1) and ei = (ei, 0) for i = 1, . . . , n, then by using (17), we see that the structure of Ai is given by

e0 · e0 = e0, e1 · e1 = λ1e2, e1 · e2 = λ2e2, ei · e0 = εiei,

with λ1, λ2 ∈ R, λ2 ≠ 0, and εi = ρ (ei) = 0 or 1.
By replacing e1 with e′

1 =
1
λ2


e1 −

λ1
λ2
e2

, we get e′

1 · e′

1 = 0, e′

1 · e2 = e2, and e′

1 · e0 =
1
λ2


ε1e1 −

λ1
λ2

ε2e2


=

ε1
λ2


e1 −

λ1
λ2
e2


= ε1e′

1 since, similar to Section 2.2.2 we can easily claim that we have either e1, e2 ∈ Vi or e1, e2 ∉ Vi; that
is ε1 = ε2. Accordingly, we conclude that there are exactly two possible non-isomorphic structures for Ai which are given
as follows.

1. There exists an integerm ≥ 2 such that the multiplication table of Ai is given by

e1 · e2 = e2, ei · e0 = ei, 0 ≤ i ≤ m.

2. There exists an integerm ≥ 3 such that the multiplication table of Ai is given by

e0 · e0 = e0, e1 · e2 = e2, ei · e0 = ei, m ≤ i ≤ n.

In the first case, Ai is isomorphic to Sm+1,2 ⊕ An−m−1,0. In the second case, Ai is isomorphic toNm+1,n. In both cases, the
associated Lie algebra GAi is isomorphic to a direct product of the form G2 ⊕ E ⊕ Re0 ⊕ Rk, where E is a commutative ideal
such that [x, e0] = x for all x ∈ G2 ⊕ E in the case of the first structure (resp. x ∈ E in the case of the second structure).

• Subsubcase 2.2.4. N (Ai) is isomorphic to N3,1 ⊕ An−3,0.

Recall, from Case 3 of Section 2.1, that the structure of N3,1 ⊕ An−3,0 is initially given as follows. There exist λ1, λ2 ∈ R,
with λ2 ≠ 0, and a pseudo-orthonormal basis e1, . . . , en of N (Ai), with e1 and e2 null and satisfying ⟨e1, e2⟩ = 1, such that
e1 · e1 = λ1e2 and e1 · e3 = λ2e2 are the only nonzero products.

If we set e0 = (0, 1) and ei = (ei, 0) for i = 1, . . . , n, then by using (17), we see that the structure of Ai is given by

e0 · e0 = e0, e1 · e1 = λ1e2, e1 · e3 = λ2e2, ei · e0 = εiei,

with λ1, λ2 ∈ R, λ2 ≠ 0, and εi = 0 or 1.

Claim 20. We have ε1 = ε2 = ε3.

Proof. Similar to Section 2.2.2 we can easily claim that we have either e1, e2 ∈ Vi or e1, e2 ∉ Vi; that is ε1 = ε2. On the
other hand, since the product on Ai is left-symmetry, we have (e1 · e3) · e0 − e1 · (e3 · e0) = (e3 · e1) · e0 − e3 · (e1 · e0) =

0 · e0 − ε1e3 · e1 = 0, from which we get ε2λ2e2 = ε3λ2e2. Since λ2 ≠ 0, we deduce that ε2 = ε3. �
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Now, by replacing e1 with e′

1 = e1 −
λ1
λ2
e3 and using the above claim, we easily verify that e′

1 · e′

1 = 0, e′

1 · e3 = e2, and

e′

1 · e0 = ε1e1 −
λ1
λ2

ε3e3 = ε1e′

1. We conclude that there are exactly two possible non-isomorphic structures for Ai which are
given as follows.

1. There exists an integerm ≥ 3 such that the multiplication table of Ai is given by

e1 · e3 = e2, ei · e0 = ei, 0 ≤ i ≤ m.

2. There exists an integerm ≥ 4 such that the multiplication table of Ai is given by

e0 · e0 = e0, e1 · e3 = e2, ei · e0 = ei, m ≤ i ≤ n.

For both structures, the associated Lie algebra GAi is isomorphic to a direct product of the formH3 ⊕E⊕Re0 ⊕Rk, where
E is a commutative ideal such that [x, e0] = x for all x ∈ H2 ⊕ E in the case of the first structure (resp. x ∈ E in the case of
the second structure).

• Subsubcase 2.2.5. N (Ai) is isomorphic to N3,2 ⊕ An−3,0.

Recall, from Case 3 of Section 2.1, that the structure of N3,2 ⊕ An−3,0 is initially given as follows. There exists 0 ≠ λ ∈ R,
and a pseudo-orthonormal basis e1, . . . , en of N (Ai), with e1 and e2 null and satisfying ⟨e1, e2⟩ = 1, such that e2 · e2 = λe3
and e3 · e2 = λe1 are the only nonzero products.

If we set e0 = (0, 1) and ei = (ei, 0) for i = 1, . . . , n, then by using (17), we see that the structure of Ai is given by

e0 · e0 = e0, e2 · e2 = λe3, e3 · e2 = λe1, ei · e0 = εiei,

with λ ∈ R, λ ≠ 0, and εi = 0 or 1.

Claim 21. We have ε1 = ε2 = ε3.

Proof. Similar to Section 2.2.2 we can easily claim that we have either e1, e2 ∈ Vi or e1, e2 ∉ Vi; that is ε1 = ε2. On the
other hand, since the product on Ai is Novikov, we have (e3 · e2) · e0 = (e3 · e0) · e2, fromwhich we get ε1λe1 = ε3λe1. Since
λ ≠ 0, we deduce that ε1 = ε3. �

Now, by replacing ei with 1
λ
ei for 1 ≤ i ≤ 3 and using the above claim, we conclude that there are exactly two possible

non-isomorphic structures for Ai which are given as follows.

1. There exists an integerm ≥ 3 such that the multiplication table of Ai is given by

e2 · e2 = e3, e3 · e2 = e1, ei · e0 = ei, 0 ≤ i ≤ m.

2. There exists an integerm ≥ 4 such that the multiplication table of Ai is given by

e0 · e0 = e0, e2 · e2 = e3, e3 · e2 = e1, ei · e0 = ei, m ≤ i ≤ n.

For both structures, the associated Lie algebra GAi is isomorphic to a direct product of the formH3 ⊕E⊕Re0 ⊕Rk, where
E is a commutative ideal such that [x, e0] = x for all x ∈ H2 ⊕ E in the case of the first structure (resp. x ∈ E in the case of
the second structure).
The case when ⟨, ⟩|Ai

is Lorentzian and ⟨, ⟩|N(Ai)
is degenerate. To avoid confusion, we will omit the subscript i of Ai and simply

write A. It is clear that we can write A = N(A)⊕ Re0 for some null vector e0 satisfying e0 · e0 = e0. Furthermore, there exists
another null vector e1 ∈ N(A) such that ⟨e0, e1⟩ = 1. Let V be the orthogonal complement of e1 in N(A). Obviously, ⟨, ⟩|V is
positive definite, so that we have the orthogonal decomposition A = N(A) ⊕ span {e0, e1}. It follows that the scalar product
on A is given by

⟨(x + ae1 + αe0) , (y + be1 + βe0)⟩ = ⟨x, y⟩ + αb + aβ,

and since N(A)2 = 0 (see Case 2 of Section 2.1), the left-symmetric product on A is given by

(x + ae1 + αe0) · (y + be1 + βe0) = αλ (y + be1) + βρ (x + ae1) + αβe0, (18)

where here x, y ∈ V and a, b, α, β ∈ R.
Let e2, . . . , en be an orthonormal basis of V , and let us set λ (ei) =

n
j=1 λijej, ρ (ei) =

n
j=1 ρijej for all i, 1 ≤ i ≤ n. By

the invariance of ⟨, ⟩, we have
(ei + ae1 + αe0) ·


ej + be1 + βe0


, ek + ce1 + γ e0


=

ei + ae1 + αe0, (ek + ce1 + γ e0) ·


ej + be1 + βe0


,

for all real numbers a, b, c, α, β, γ and integers i, j, k such that 2 ≤ i, j, k ≤ n. This yields

α

λjk + bλ1k


+ β (ρik + aρ1k) + αβc + βγ (ρi1 + aρ11)

= γ

λji + bλ1i


+ β (ρki + cρ1i) + βγ a + αβ (ρk1 + cρ11) . (19)
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For i = k, β = 0, and a = c , we see that (19) becomes (α − γ )

λji + bλ1i


= 0. Since α and γ are arbitraries, we deduce

that λij = λ1j = 0 for all i, j ≥ 2. Taking this into account, we see that, for i = k and a = c , (19) becomes

αβa + βγ (ρi1 + aρ11) = βγ a + αβ (ρk1 + aρ11) .

By setting a = 0 in the above equation, we deduce that ρi1 = 0 for all i ≥ 2; which when substituted once again in the
above equation yields ρ11 = 1.

Now, by taking into consideration that λij = λ1j = ρi1 = 0 for all i, j ≥ 2, we get from (19) that

β (ρik + aρ1k) = β (ρki + cρ1i) ,

from which we deduce that ρik = ρki and ρ1k = 0 for all i, k ≥ 2, given that a, c , and β are arbitraries.
To summarize, we have shown that, relative to the basis e1, . . . , en, we have

λ =


λ11 · · · λn1
0
...
0

0

 , ρ =


1 0 · · · 0
0
...
0

B

 ,

with B a symmetric matrix (i.e., B = Bt ) which we can identify to ρ|V . It follows that λ|V = 0 and ρ|V is self-adjoint with
respect to the positive definite scalar product ⟨, ⟩|V . Furthermore, when applied to B = ρ|V , formula (iv) of Theorem9 implies
that B2

= B. Thus, without loss of generality, we can assume that ρ = Idm ⊕0n−m, for some integerm ≤ n. Since N(A)2 = 0,
then by virtue of (iv) of Theorem 9 we have [λ, ρ] + ρ2

= ρ. Applying this formula to ei, we deduce that λi1 = 0 for all
i > m. Consequently, by applying formula (18), we conclude that there exists some integer m ≥ 1 and real numbers λi for
which the structure of A is given by

e0 · e0 = e0, ei · e0 = ei, e0 · ei = λie1, 1 ≤ i ≤ m.

Accordingly, we have three cases to consider.

1. If λi = 0 for all i, then A is isomorphic to Fm+1,0 ⊕ An−m,0.
2. If λ1 = 0 and λi0 ≠ 0 for some i0, then by replacing ei with e′

i = ei −
λi
λi0

ei0 for i ≠ i0 and 2 ≤ i ≤ m, we easily get

e′

i · e0 = e′

i and e0 · e′

i = 0. Setting e′

1 = e2 and e′

2 = λi0e1, and assuming without loss of generality that i0 = 2, we
conclude that A is isomorphic to the algebra given by

e0 · e0 = e0, e0 · e1 = e2, ei · e0 = ei, 1 ≤ i ≤ m.

In this case, the associated Lie algebra GA is isomorphic to a direct product of the form E ⊕ span {e0, e1} ⊕ Rk, with
[e1, e0] = e1 − e2 and E = span {e2, . . . , em} is a commutative ideal such that [x, e0] = x for all x ∈ E. In other words, GA
is isomorphic to Fm+1 ⊕ Rn−m−1.

Remark 22. In dimension 3,we obtain the left-symmetric of type (C12) appearing in Table 4 of the classification of three-
dimensional Novikov algebras given in [7]. In this case, the associated Lie algebra is described by Lemma 4.10 of [6].

3. If λ1 ≠ 0, then by replacing ei with e′

i = ei −
λi
λ1
e1 for i ≥ 2, we easily get e′

i · e0 = e′

i and e0 · e′

i = 0. Thus, there exists
some real number λ ≠ 0 for which A is isomorphic to the algebra Aλ given by

e0 · e0 = e0, e0 · e1 = λe1, ei · e0 = ei, 1 ≤ i ≤ m.

It is noticeable that we can easily check that Aλ is isomorphic to Aµ if and only if λ = µ.
The associated Lie algebra GAλ

to Aλ is isomorphic to a direct product of the form E ⊕ span {e0, e1} ⊕ Rk, with [e1, e0] =

(1 − λ) e1 and E = span {e2, . . . , em} is a commutative ideal such that [x, e0] = x for all x ∈ E. In other words, GAλ
is

isomorphic toLλ
m+1 ⊕Rn−m−1. In particular, in dimension 3, we see that if λ = 2 then GA2 is isomorphic to the (unimodular)

Lie algebra of E (1, 1): the group of rigid motions of Minkowski 2-space.
The case when ⟨, ⟩|Ai

is degenerate and ⟨, ⟩|N(Ai)
is positive definite. In this case, we can write Ai = N (Ai) ⊕ Re0 (orthogonal

direct sum), where e0 is a null vector satisfying e0 · e0 = e0. The left-symmetric product of Ai is given by formula (14), and
the scalar product on Ai is given by: ⟨(x, a) , (y, b)⟩ = ⟨x, y⟩ for all x, y ∈ N (Ai) and a, b ∈ R.

Since the restriction of ⟨, ⟩ to N (Ai) is positive definite, we conclude that N (Ai)
2

= 0, λ = 0 and ρ is self-adjoint.
Furthermore, by virtue of (iv) of Theorem 9, we deduce that ρ2

= ρ. In fact, all these can be derived in a fashion similar to
what we did in Case 1 of Section 2.1.

Now, we can proceed as in the case when ⟨, ⟩|Ai
is positive definite. First, without loss of generality, we deduce from the

equation ρ2
= ρ that ρ = Idm ⊕ 0n−m, for some integer m ≤ n. Then, by using (15), we conclude that Ai is isomorphic to

Rn−m
⊕ Fm+1,0.

The case when both ⟨, ⟩|Ai
and ⟨, ⟩|N(Ai)

are degenerate. As in the case when ⟨, ⟩|Ai
is Lorentzian and ⟨, ⟩|N(Ai)

is degenerate, to
avoid confusionwewill omit the subscript i of Ai and simplywrite A. It is clear that we canwrite A = N(A)⊕Re0 (orthogonal
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direct sum), where e0 is a unit spacelike vector satisfying e0 ·e0 = e0. Furthermore, we canwriteN(A) = V⊕Re1 (orthogonal
direct sum), where e1 is a null vector in N(A) such that ⟨e0, e1⟩ = 0 and V is a Euclidean (i.e., ⟨, ⟩|V is positive definite)
subspace of N(A). Thus, we have the orthogonal decomposition A = V ⊕Re1 ⊕Re0. It follows that the scalar product (which
is positive semi-definite) on A is given by

⟨(x + ae1 + αe0) , (y + be1 + βe0)⟩ = ⟨x, y⟩ + aβ,

and since N(A)2 = 0, the left-symmetric product on A is given by

(x + ae1 + αe0) · (y + be1 + βe0) = αλ (y + be1) + βρ (x + ae1) + αβe0, (20)

where here x, y ∈ V and a, b, α, β ∈ R.
Let e2, . . . , en be an orthonormal basis of V , and let us set nd λ (ei) =

n
j=1 λijej, ρ (ei) =

n
j=1 ρijej for all i, 1 ≤ i ≤ n.

By the invariance of ⟨, ⟩, we have
(ei + ae1 + αe0) ·


ej + be1 + βe0


, ek + ce1 + γ e0


=

ei + ae1 + αe0, (ek + ce1 + γ e0) ·


ej + be1 + βe0


,

for all real numbers a, b, c, α, β, γ and integers i, j, k such that 2 ≤ i, j, k ≤ n. This yields

α

λjk + bλ1k


+ β (ρik + aρ1k) = γ


λji + bλ1i


+ β (ρki + cρ1i) . (21)

For i = k, β = 0, and a = c , we see that (21) becomes (α − γ )

λji + bλ1i


= 0. Since α and γ are arbitraries, we deduce

that λij = λ1j = 0 for all i, j ≥ 2. Taking this into account, we see that (21) becomes

β (ρik + aρ1k) = β (ρki + cρ1i) ,

fromwhich we deduce that ρik = ρki and ρ1k = 0 for all i, k ≥ 2, given that a, c , and β are arbitraries. Thus, we have shown
that λ (ei) = λi1e1 for all i ≥ 1, ρ (e1) = ρ11e1, and ρ (ei) =

n
j=1 ρijej for all i ≥ 2.

Let now e ∈


j≥2 Aj be a null vector such that ⟨e1, e⟩ = 1. By the invariance of ⟨, ⟩ and the fact that e ·

ej + be1 + βe0


=

0, we have
(ei + ae1 + αe0) ·


ej + be1 + βe0


, e

=

ei + ae1 + αe0, e ·


ej + be1 + βe0


= 0,

for all real numbers a, b, α, β and integers i, j such that 2 ≤ i, j ≤ n. This yields

α (λi1 + bλ11) + β (ρi1 + aρ11) = 0,

fromwhich we deduce that λi1 = λ11 = ρi1 = ρ11 = 0. To summarize, we have shown that, relative to the basis e1, . . . , en,
we have λ = 0 and

ρ =

0 · · · 0
...
0

B

 ,

with B an (n − 1)-square symmetric matrix (i.e., B = Bt ) which we can identify to ρ|V .
Furthermore, when applied to B = ρ|V , formula (iv) of Theorem 9 implies that B2

= B. Thus, without loss of generality,
we can assume that

ρ =

0 · · · 0
... Idm−1

...
0 · · · 0n−m


for some integerm ≤ n. Consequently, by applying formula (20), we see that there exists some integerm ≥ 1 for which the
structure of A is given by

ei · e0 = εiei, 0 ≤ i ≤ n,

with εi = 1 for i = 0 or 2 ≤ i ≤ m, and εi = 0 for i = 1 or m + 1 ≤ i ≤ n. We conclude that A is isomorphic to either An,0
or Fm+1,0 ⊕ An−m,0.
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