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a b s t r a c t

Li and Zhang (2014) studied affine hypersurfaces of Rn+1 with parallel difference tensor
relative to the affine α-connection ∇

(α), and characterized the generalized Cayley hyper-
surfaces by K n−1

≠ 0 and ∇
(α)K = 0 for some nonzero constant α, where the affine

α-connection ∇
(α) of information geometry was introduced on affine hypersurface. In

this paper, by a slightly different method we continue to study affine hypersurfaces with
∇

(α)K = 0, if α = 0 we further assume that the Pick invariant vanishes and affine metric
is of constant sectional curvature. It is proved that they are either hyperquadrics or im-
proper affine hypersphere with flat indefinite affine metric, the latter can be locally given
as a graph of a polynomial of at most degree n + 1 with constant Hessian determinant. In
particular, if the affinemetric is definite, Lorentzian, or its negative index is 2, we complete
the classification of such hypersurfaces.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In classical affine differential geometry, one of the most attracting results is the Pick–Berwald theorem, stating that the
induced affine connection ∇ of a non-degenerate hypersurface coincides with the Levi-Civita connection ∇ of affine metric
h, or equivalently cubic form C := ∇h vanishes, if and only if it is a non-degenerate hyperquadric. This theorem has been
generalized in many directions. In particular, affine hypersurfaces with parallel cubic form have been studied in various
settings for more than twenty years, and their classification is an important problem in affine differential geometry.

On the one hand, one can consider affine hypersurfaces whose cubic form is parallel relative to the affine connection,
i.e., ∇C = 0. The non-degenerate affine hypersurface satisfying ∇C = 0 is either a hyperquadric or a graph immersion of a
polynomial of degree 3. In the latter, the immersion must be an improper affine hypersphere, and the graph function is of
constant Hessian determinant [1,2]. Such hypersurfaces with dimension n ≤ 5 have been classified in [3,2,4,5], respectively.
Finally, by the so-called ‘‘method of algorithmic sequence of coordinate changes’’ Gigena [6] determined the classification
for all dimensions.

On the other hand, parallelism of the cubic form can also be considered with respect to the connection ∇ . Affine hyper-
surfaces satisfying ∇C = 0, or equivalently the difference tensor K := ∇ − ∇ satisfying ∇K = 0, are locally homogeneous
affine hypersphere [7,8]. Moreover, the classification of such hypersurfaces for low dimension is obtained in [9,8,10–13].
Recently, Z. Hu, et al. [14,15] classified the hypersurfaces for all dimensions when the affine metric is definite or Lorentzian.
Under additional condition such hypersurfaces had been considered in [16], and there also appear similar researches [17,18]
in centroaffine differential geometry.
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Moreover, another class of affine hypersurface is obtained when the condition ∇K = 0 is imposed. Non-degenerate
affine hypersurfaceswith this property have been studied in [19]. It is proved that they are either hyperquadrics or improper
affine hyperspheres. In the latter case the affine metric is flat, the difference tensor is nilpotent, i.e., Km

= 0 for somem > 1,
[KX , KY ] = 0 for all vector fields X, Y and the graph function is given by a polynomial of degree m + 1. In particular, the
classifications form = 2, n − 1, nwere obtained.

Recently, the authors in [20] studied the affine hypersurfaces with ∇
(α)K = 0, and characterized the generalized Cayley

hypersurfaces by K n−1
≠ 0 and ∇

(α)K = 0 for some nonzero constant α. There, for each α ∈ R a torsion-free connection
∇

(α) is introduced on affine hypersurface by

∇
(α)

:= (1 − α)∇ + α∇, (1.1)

which coincides with the affine α-connection of information geometry (cf. [21]), thus we call ∇(α) the affine α-connection of
affine hypersurface.

The generalized Cayley hypersurface, constructed byM. Eastwood and V. Ezhov in [22], is awhole family of homogeneous
affine hypersurfaces with a parameter α. It is a graph immersion of a polynomial xn+1 = Φ(x1, . . . , xn; α) of degree (n+ 1)
in affine space Rn+1, where

Φ(x1, . . . , xn; α) =

n+1
k=2

(−1)k

k!

k−3
i=0

[(1 − α)i + 2]


j1+···+jk=n+1
xj1 · · · xjk , (1.2)

and (x1, . . . , xn+1) are the standard coordinates of Rn+1. This is the Cayley surface (cf. [3]) when n = 2 and the Cayley
hypersurface (cf. (1) of [22]) when α = 0. They are improper affine hyperspheres with flat affine metric and [KX , KY ] = 0
for all X, Y (cf. [20]), and the vanishing of affine invariant ∇

(α)K can be seen as a criteria for distinguishing the generalized
Cayley hypersurfaces.

In this paper, by a slightly different method from [20] we continue to study affine hypersurfaces with ∇
(α)K = 0. Up to

a sign of affine normal, assume that the negative index s of affine metric satisfies n − 2s ≥ 0, we can state our main results
as follows.

Main Theorem. Let M be a non-degenerate affine hypersurface of Rn+1 satisfying ∇
(α)K = 0. If α = 0we further assume that

the Pick invariant vanishes and affine metric is of constant sectional curvature.
Then either M is a hyperquadric, i.e., K = 0, or K ≠ 0 and M is an improper affine hypersphere with flat indefinite affine metric.
In the latter case, there exists an integer m : 2 ≤ m ≤ min {2s+ 1, n} such that Km

= 0 and Km−1
≠ 0, M is locally given as the

graph of a polynomial of degree m + 1 with constant Hessian determinant. In particular,

(i) If M is locally strongly convex, then M is locally affine equivalent to a locally strongly convex hyperquadric.
(ii) If the affine metric is Lorentzian, i.e., s = 1, then M is locally affine equivalent to either a Lorentzian hyperquadric or one of

the graph immersions:

xn+1 = x1x2 −
1
3x

3
1 +

1
2

n
i=3

x2i ,

xn+1 = Φ(x1, x2, x3; α) +
1
2

n
i=4

x2i .

(iii) If the negative index of affine metric is 2, i.e., s = 2, then n ≥ 4, M is locally affine equivalent to either a corresponding
hyperquadric or one of the graph immersions:

xn+1 = −Φ(x1, x2, x3; α) +
1
2

n
i=4

x2i ,

xn+1 = Φ(x1, x2, x3; α) + Φ(x4, x5, x6; α) +
1
2

n
i=7

x2i ,

xn+1 = Φ(x1, . . . , xm; α) +
1
2

n
i=m+1

x2i , m ∈ {4, 5},

xn+1 = Φ(x1, . . . , xm; α) −
1
2x

2
m+1 +

1
2

n
i=m+2

x2i , m ∈ {2, 3},

xn+1 = Φ(x1, . . . , xm; α) + xm+1xm+2 −
1
3x

3
m+1 +

1
2

n
i=m+3

x2i , m ∈ {2, 3},

xn+1 = x1x2 −
1
3x

3
1 + εx3x4 − εx1x23 −

a
3x

3
3 +

1
2

n
i=5

x2i ,
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xn+1 = Φ(x1, x2, x3; α) + εx4x5 − εx1x24 −
a
3x

3
4 − βx24x6 +

(3−α)β2

12 x44 +
1
2

n
i=6

x2i ,

xn+1 = Φ(x1, x2, x3; α) + x4x6 +
1
2x

2
5 − 2x1x4x5 − x2x24 − bx24x5 − γ x24x7

−
a
3x

3
4 +

3−α
2 x21x

2
4 +

(3−α)b
3 x1x34 +

(3−α)(b2+γ 2)
12 x44 +

1
2

n
i=7

x2i ,

where ε = ±1, a, b, β, γ are constant, and β = 0 if n = 5, γ = 0 if n = 6.
Here (x1, . . . , xn+1) are the standard coordinates of Rn+1, and Φ is given by (1.2).

Remark 1.1. ∇
(α)K = 0 generalizes the previous parallelism of K . Note that ∇K = 0 and ∇K = 0 correspond to α = 0 and

α = 1, respectively. Hence our results extend and develop the results of [14,19].

Remark 1.2. The hypersurfaces of theMain Theorem are affine hyperspherewith constant sectional curvature and zero Pick
invariant. Closely related to this, Vrancken [23] has classified affine hypersphereswith constant sectional curvature and non-
vanishing Pick invariant, and Vrancken–Li–Simon [24] classified locally strongly convex affine hyperspheres with constant
sectional curvature. In this sense, we find some new classes of affine hyperspheres with constant sectional curvature and
zero Pick invariant.

Remark 1.3. Note that the compositions of improper affine hyperspheres—revisited (cf. Sect. 5 of [25]), using as building
blocks either the generalized Cayley hypersurfaces or hyperquadric, are locally homogeneous and also satisfy ∇

(α)K = 0,
whose characterization and its application to the present subject will be considered in the forthcoming paper. Furthermore,
we conjecture that affine hypersurfaces with ∇

(α)K = 0 are locally homogeneous, which based on above, Remark 4.3 and
the facts: Affine hypersurfaces with ∇K = 0 are locally homogeneous [8]. From the viewpoint of the complete unimodular
Hessian algebra Y. Choi and K. Chang in [26] conjecture that affine hypersurfaces with ∇K = 0 are locally homogeneous.

Remark 1.4. Note that affine hypersurface M equipped with the structure (M, h, ∇(α), ∇(−α)) for α ≠ 0 is a statistical
manifold. Moreover, if the affine α-connection ∇

(α) is of constant curvature, it follows from the main results of T. Kurose
[27] that there exist two affine immersions (M, ∇(α)) and (M, ∇(−α)) with the same affine metric h, which are related to
each other by the Legendre transformation or conormal transformation.

This paper is organized as follows. In Section 2, we introduce the theory of local equiaffine hypersurfaces, and some
definitions and properties related to ∇

(α) and K . In Section 3, we construct the canonical basis on the hypersurfaces
with commutable difference tensor. In Section 4, by the key Lemma 4.1 and the canonical basis we complete the partial
classification. As its corollary, Main Theorem immediately follows.

2. Preliminaries

Webriefly recall the theory of local equiaffine hypersurfaces in [28,29]. LetRn+1 be the standard (n+1)-dimensional real
affine space, i.e., Rn+1 endowed with the standard flat connection D and its parallel volume form, given by the determinant.
Let F : M ↩→ Rn+1 be an oriented hypersurface, and ξ be any transversal vector field on M , i.e., TpRn+1

= TpM⊕ span{ξp},
∀ p ∈ M . For any tangent vector fields X, Y , X1, . . . , Xn, we write

DXF∗(Y ) = F∗(∇XY ) + h(X, Y )ξ , (2.1)
θ(X1, . . . , Xn) = det(F∗(X1), . . . , F∗(Xn), ξ), (2.2)

thus defining a torsion-free affine connection ∇ , a symmetric bilinear form h, and a volume element θ on M . M is said to
be non-degenerate if h is non-degenerate (this condition is independent of the choice of the transversal vector field). IfM is
non-degenerate, up to sign there exists a unique choice of transversal vector field such that ∇θ = 0 and θ = wh, where wh
is the metric volume element induced by h. This special transversal vector field ξ , called the affine normal, induces the affine
connection ∇ and a pseudo-Riemannian metric h on M . We call h the affine metric, or Berwald–Blaschke metric and C := ∇h
the cubic form. Equipped with such affine structure,M is called affine hypersurface, or Blaschke hypersurface.

The condition ∇θ = 0 shows that DXξ is tangent to M for all X . Hence we can define a (1, 1)-type tensor S on M , called
the affine shape operator, by

DXξ = −F∗(SX), (2.3)
and the affine mean curvature by H =

1
n trace S. The hypersurface M is called an affine hypersphere if S = H id, then one

easily proves that H = const if n ≥ 2. M is called a proper affine hypersphere if H ≠ 0 and an improper affine hypersphere if
H = 0. For an improper affine hypersphere the affine normal ξ is constant.

By the notations in the introduction, the difference tensor K , related to cubic form C by
C(X, Y , Z) = −2h(K(X, Y ), Z), (2.4)

is a symmetric (1, 2)-tensor, and satisfies the apolarity condition tr KZ = 0, and h(K(X, Y ), Z) is totally symmetric for all
X, Y and Z .
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Denote by R andR the curvature tensors of ∇ and ∇ , respectively. Then we have the Gauss equations

R(X, Y )Z = h(Y , Z)SX − h(X, Z)SY ,R(X, Y )Z =
1
2


h(Y , Z)SX − h(X, Z)SY + h(SY , Z)X − h(SX, Z)Y


− [KX , KY ]Z, (2.5)

and the Codazzi equation

(∇XK)(Y , Z) − (∇YK)(X, Z) =
1
2


h(Y , Z)SX − h(X, Z)SY − h(SY , Z)X + h(SX, Z)Y


,

where (∇XK)(Y , Z) = ∇X (K(Y , Z)) − K(∇XY , Z) − K(Y , ∇XZ). Contracting the Gauss equation (2.5) twice we have

χ = H + J, (2.6)

where J =
1

n(n−1)h(K , K) is the Pick invariant and χ is the normalized scalar curvature of h. For an affine hypersphere with
constant sectional curvature and J = 0, then χ = H and (2.5) reduces toR(X, Y )Z = H


h(Y , Z)X − h(X, Z)Y


, (2.7)

[KX , KY ]Z = 0. (2.8)

We prepare the following definitions and lemmas.

Definition 2.1 (cf. Definition 2.1 of [20]). On affine hypersurface M , for each α ∈ R we can define a torsion-free connection
by ∇

(α)
:= (1 − α)∇ + α∇ , called the affine α-connection ofM , and its curvature tensor R(α) by

R(α)(X, Y ) := [∇
(α)
X , ∇

(α)
Y ] − ∇

(α)
[X,Y ]

.

Then, by KX = ∇X − ∇X we see that (1 − α)KXY = ∇XY − ∇
(α)
X Y and

R(α)(X, Y )Z = (1 − α)R(X, Y )Z + αR(X, Y )Z + α(α − 1)[KX , KY ]Z

=
1+α
2 [h(Y , Z)SX − h(X, Z)SY ] +

1−α
2 [h(SY , Z)X − h(SX, Z)Y ] + (α2

− 1)[KX , KY ]Z . (2.9)

Moreover, (2.4) shows

(∇
(α)
X h)(Y , Z) = −2αh(K(X, Y ), Z), (2.10)

and (cf. (7) of [7] and (3.1) of [19])

h((∇XK)(Y , Z),W ) = −
1
2 (

∇XC)(Y , Z,W ),

h((∇XK)(Y , Z),W ) = −
1
2 (∇XC)(Y , Z,W ) + 2h(KXKYZ,W ).

Combining this with Definition 2.1 we can check that

h((∇(α)
X K)(Y , Z),W ) = −

1
2
(∇

(α)
X C)(Y , Z,W ) + 2αh(KXKYZ,W ). (2.11)

Definition 2.2 (cf. Remark 3.3 of [19]). For any nonnegative integer k, we can define a (1, k + 1)-tensor field K k onM by

K k(X1, . . . , Xk+1) = KX1 · · · KXkXk+1

for any X1, . . . , Xk+1. If [KX , KY ] = 0 for all X and Y , we call the difference tensor is commutable, then K k is totally symmetric.
Hence K k vanishes identically if and only if (Kv)

kv = 0 for all vectors v. Denote by m the smallest number such that the
symmetric tensor Km is identically zero at the point p. Then for any tangent vector v at p, we have (Kv)

mv = 0 and there
exists a tangent vector u at p such that h((Ku)

m−1u, u) ≠ 0.

Lemma 2.1 (cf. Lemma 3.3 of [19]). If [KY , KZ ] = 0 for all Y and Z, then KX is nilpotent for each X. In particular, (KX )
n

= 0.

Lemma 2.2 (cf. Proposition 3.1 of [30]). Let M be a non-degenerate affine hypersurface with constant sectional curvature and∇K = 0. Then either M is a hyperquadric, i.e., K = 0, or K ≠ 0 and M is an affine hypersphere with flat affine metric.

Lemma 2.3 (cf. Lemma 4.1 of [20], see also Lemma 3.2 of [19] for α = 1). If ∇
(α)K = 0 for some nonzero constant α, and K ≠ 0,

then M is an improper affine hypersphere with flat affine metric. Moreover, M is ∇
(α)-flat.
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Definition 2.3 (cf. Lemma 4.2 of [19]). A nonzero vector v is called a null vector if h(v, v) = 0. Define the null space N ⊂ TpM
by

h(x, y) = 0, ∀ x, y ∈ N,

then the null space is a linear subspace of TpM , whose maximal dimension is s. If dimN = s and a null vector v satisfies
h(v, u) = 0, ∀ u ∈ N , then v ∈ N .

For a non-degenerate affine hypersurface M , up to a sign of affine normal ξ if necessary, we always assume that the
negative index s of affine metric h satisfies n − 2s ≥ 0. Denote by I(V ) the negative index of a non-degenerate subspace V
of TpM , and δ the standard Kronecker delta. We follow above conventions and definitions in the rest of this paper.

3. Affine hypersurfaces with commutable difference tensor

Let M be a non-degenerate affine hypersurface with commutable difference tensor. In this section we will construct a
canonical basis on the hypersurface for some special values ofm, defined in Definition 2.2. First we prove the following two
lemmas.

Lemma 3.1. If [KX , KY ] = 0 for all X and Y , then

∇
(α)K = ∇K + (1 − α)K 2. (3.1)

Proof. From ∇
(α)
X Y = ∇XY − (1 − α)KXY and the assumption, we see that

(∇
(α)
X K)(Y , Z) = ∇

(α)
X K(Y , Z) − K(∇

(α)
X Y , Z) − K(Y , ∇

(α)
X Z)

= ∇XK(Y , Z) − K(∇XY , Z) − K(Y , ∇XZ) + (1 − α)[KY , KX ]Z + (1 − α)KZKXY
= (∇XK)(Y , Z) + (1 − α)K 2(X, Y , Z). �

Lemma 3.2. If [KX , KY ] = 0 for all X and Y , then K 2s+1
= 0.

Proof. By Lemma 2.1, Definition 2.2 and its index, it is sufficient to provem ≤ 2s+1 for 2s+1 < n. Otherwise, we suppose
that 2s + 1 < m ≤ n. Then there exists a tangent vector u such that h((Ku)

m−1u, u) ≠ 0, and define

x1 = (Ku)
m−1u, x2 = (Ku)

m−2u, . . . ,
xs = (Ku)

m−su, xs+1 = (Ku)
m−s−1u.

Then (Ku)
ℓxℓ = 0 but (Ku)

ixℓ ≠ 0 for i < ℓ ≤ s + 1. It follows that x1, . . . , xs+1 are linearly independent vectors. By 0 ≤

m − 2ℓ < m − ℓ − i we further obtain

h(xℓ, xℓ) = h((Ku)
m−ℓu, (Ku)

m−ℓu) = h((Ku)
mu, (Ku)

m−2ℓu) = 0,
h(xi, xℓ) = h((Ku)

m−iu, (Ku)
m−ℓu) = h((Ku)

mu, (Ku)
m−ℓ−iu) = 0.

Hence, span{x1, . . . , xs+1} is an (s + 1)-dimensional null space. This contradicts that the maximal dimension of null space
is s. �

It follows from Lemmas 2.1 and 3.2 that the integer m satisfies 1 ≤ m ≤ min{2s + 1, n}. Next, we construct m linearly
independent vectors with a canonical represent of (h, K), namely

Lemma 3.3. There exist a subspace V ⊂ TpM spanned by m linearly independent vectors {y1, . . . , ym} such that

Kyiyj =


yi+j, i + j ≤ m,
0, otherwise, h(yi, yj) =


ϵ, i + j = m + 1,
0, otherwise, (3.2)

where ϵ = 1 if h(y1, ym) > 0 or m is even; otherwise ϵ = −1.

Proof. By Definition 2.2 there exists a vector u such that h((Ku)
m−1u, u) ≠ 0. Define

y1 = u, yi = (Ku)
i−1u, i ≤ m,

then ym ≠ 0. Since (Ku)
m−iyi = ym, (Ku)

jyi = 0 for i + j ≥ m + 1, we see that y1, . . . , ym are linearly independent vectors,
and

h(yi, yj) =


αi+j−1, i + j ≤ m + 1,
0, i + j > m + 1, (3.3)

where αi := h(y1, yi) for i ≤ m. We have chosen u such that αm ≠ 0.
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Let β be an arbitrary real number, and x1 = y1 + βy2, xj = Kx1xj−1 for j ≤ m, then

x2 = y2 + 2βy3 + · · · , x3 = y3 + 3βy4 + · · · , . . . ,

xm−1 = ym−1 + (m − 1)βym, xm = ym.

Hence h(x1, xm−1) = h(y1, ym−1) + mβαm. By choosing β appropriately, we assume that αm−1 = 0.
Next we assume that there existm vectors y1, . . . , ym such that αm ≠ 0 and αm−1 = · · · = αm−i = 0 for some i > 0. Put

again x1 = y1 + βy2+i, xj = Kx1xj−1 for j ≤ m. From

x2 = y2 + 2βy3+i + · · · , x3 = y3 + 3βy4+i + · · · , . . . ,
xm−j = ym−j + (m − j)βym−j+i+1 + · · · , . . . ,
xm−i−1 = ym−i−1 + (k − i − 1)βym,
xm−i = ym−i, . . . , xm = ym,

we see that
h(x1, xm) = h(y1, ym) = αm ≠ 0,
h(x1, xm−j) = h(y1, ym−j) = αm−j = 0, 1 ≤ j ≤ i,
h(x1, xm−i−1) = h(y1, ym−i−1) + (m − i)βαm.

Hence, we also assume that αm−i−1 = 0 by choosing β appropriately.
Continuing this process we have the vectors y1, . . . , ym satisfying αm ≠ 0 and α1 = · · · = αm−1 = 0. Then, by re-scaling

the null vector y1 if necessary, wemay assume thatαm = h(y1, (Ky1)
m−1y1) = 1 ifαm > 0 orm is even; otherwise,αm = −1.

Hence, from Kyiyj = (Ky1)
i+j−1y1 and (3.3) we complete the proof. �

Remark 3.1. Lemma 3.3 is similar to Dillen and Vrancken’s Lemma 6.1 in [19], where the conclusion is obtained under the
conditions ∇K = 0 and K n−1

≠ 0.

Note that the complement subspace V⊥ of V in TpM is non-degenerate, thus (V⊥, h) is an indefinite scalar product space,
we will use the following

Proposition 3.1 (cf. pp. 260–261 of [31]). Let W = Rn
ν be an n-dimensional vector space with indefinite scalar product ⟨·, ·⟩ of

negative index ν . Then a linear operator P on W is self-adjoint if and only if W can be expressed as a direct sum of irreducible
subspaces Wk that are mutually orthogonal (hence non-degenerate) and P-invariant, and each P |Wk

has a matrix representation
of the form either

T1 :


µ
1 µ 0

. . .
. . .

0 1 µ
1 µ


relative to a basis e1, . . . , er of Vk with all scalar products zero except ⟨ei, ej⟩ = ε = ±1 if i + j = r + 1, or

T2 :



a b
−b a 0
1 0 a b
0 1 −b a

1 0 a b
0 1 −b a

. . .

0 1 0 a b
0 1 −b a


(b ≠ 0)

relative to a basis u1, v1, . . . , ud, vd of Wk with all scalar products zero except ⟨ui, uj⟩ = −⟨vi, vj⟩ = 1 if i + j = d + 1. Here
r, ε and d depend on Wk.

Remark 3.2. Applying Proposition 3.1 and its notations for the symmetric operatorKy1 on (V⊥, h), we see thatKy1 on (V⊥, h)
has only the direct sum representation of type T1 with µ = 0. In fact, by (Ky1)

n
= 0 and

Ky1er = µer ,

Ky1(ud +
√

−1vd) = (a +
√

−1b)(ud +
√

−1vd),

we see that µ = 0 in T1, and a = b = 0 in T2. In the latter we get a contradiction.
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Remark 3.3. For the direct sum TpM = V ⊕ V⊥ relative to h, if K(v, w) = 0 holds for all v ∈ V , w ∈ V⊥, the subspace
(V⊥, h, K) satisfies (2.8) and the apolarity condition. Let m1 be the smallest positive integer such that Km1 |V⊥ ≡ 0 at p. On
(V⊥, h, K), by Lemmas 2.1 and 3.2 there hold

1 ≤ m1 ≤ min{m, n − m, 2I(V⊥) + 1}.

Using Lemma 3.3 for V⊥, we see that there exist m + m1 linearly independent vectors y1, . . . , ym, z1, . . . , zm1 on TpM such
that h(yi, zk) = 0, K(yi, zk) = 0 for all i, k, moreover,

Kyiyj =


yi+j, i + j ≤ m,
0, otherwise, h(yi, yj) =


ϵ, i + j = m + 1,
0, otherwise,

where ϵ = 1 if h(y1, ym) > 0 or m is even, otherwise ϵ = −1; and

Kzkzℓ =


zk+ℓ, k + ℓ ≤ m1,
0, otherwise, h(zk, zℓ) =


ϵ1, k + ℓ = m1 + 1,
0, otherwise,

where ϵ1 = 1 if h(z1, zm) > 0 orm1 is even, otherwise ϵ1 = −1.

By Lemma 3.3 the m-dimensional subspace V satisfies ⌊
m
2 ⌋ ≤ I(V ) ≤ ⌈

m
2 ⌉. According to that (V⊥, h) is positive definite

or Lorentzian we will choose the canonical basis of TpM .

3.1. (V⊥, h) is positive definite

By Lemma 3.3, I(V⊥) = 0, or equivalently I(V ) = s holds if and only ifm is one of the three cases:

m = min{2s + 1, n}, m = 2s with ϵ = 1; m = 2s − 1 with ϵ = −1. (3.4)

Then we can choose a canonical basis of TpM as follows.

Lemma 3.4. If (V⊥, h) is positive definite, there exists a basis {y1, . . . , yn} of TpM such that

Kyiyj =


yi+j, i + j ≤ m,
0, otherwise, h(yi, yj) =


ϵ, i + j = m + 1,
δ
j
i, i, j ≥ m + 1,
0, otherwise,

(3.5)

where ϵ = ±1 is determined by (3.4).

Proof. The case m = n has been proved in Lemma 4.2 of [20] and Lemma 3.2 of [30]. Hence, we are enough to prove the
conclusion form < n.

Let y1, . . . , ym be the basis of V as stated in Lemma 3.3, thus

Kyiyj =


yi+j, i + j ≤ m,
0, otherwise, h(yi, yj) =


ϵ, i + j = m + 1,
0, otherwise. (3.6)

We claim ϵ = 1 for m = 2s + 1 or m = 2s, and ϵ = −1 for m = 2s − 1. In fact, for m = 2s + 1, if h(ys+1, ys+1) < 0, then
(3.2) shows that I(V ) = s + 1, which gives a contradiction, thus ϵ = 1 for m = 2s + 1. Note that I(V ) = s and dim V = m,
by Lemma 3.3 we easily see that ϵ = 1 form = 2s, and ϵ = −1 form = 2s − 1.

Since (V⊥, h) is positive definite, we choose an orthonormal basis {ym+1, . . . , yn} of V⊥ such that the second equation of
(3.5) holds. Further, Eq. (3.6) shows thatV is aKy1-invariant subspace, so isV

⊥. Note thatKy1 is nilpotent,we getK(y1, w) = 0
for w ∈ V⊥. Therefore,

K(yi, w) = K((Ky1)
i−1y1, w) = (Ky1)

i−1Ky1w = 0, ∀ i ≤ m,

which shows that K(v, w) = 0 for w ∈ V⊥, v ∈ V .
On the other hand, for any fixed vector w ∈ V⊥, the operator Kw satisfies Kwv = 0 for all v ∈ V , hence V is its invariant

subspace, and so is V⊥. Since Kw is nilpotent and (V⊥, h) is positive definite, this implies that Kww′
= 0 for w′

∈ V⊥. We
can summarize from the above that Kyiyj = 0 when either i or j ≥ m+1. Together with (3.6) we easily get the first equation
of (3.5). Lemma 3.4 has been proved. �
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3.2. (V⊥, h) is Lorentzian

By Lemma 3.3, I(V⊥) = 1, or equivalently I(V ) = s − 1 holds if and only ifm is one of the three cases:
m = 2s − 1, m = 2s − 2 with ϵ = 1; m = 2s − 3 with ϵ = −1. (3.7)

By Proposition 3.1 and Remark 3.2 the symmetric operator Ky1 on (V⊥, h) has only three representations:

I : O, II :


0 0 0
1 0

. . .

0 0

 , III :


0 0 0
1 0 0
0 1 0

. . .

0

 ,

where O is the n−m order matrix, and three canonical bases of (V⊥, h) have been chosen according to Proposition 3.1. Next
we will choose a canonical basis of (V⊥, h) for the three cases, respectively.

Case I: K(y1, w) = 0 for all w ∈ V⊥. We easily obtain that K(v, w) = 0 for all v ∈ V , w ∈ V⊥. By Remark 3.3 and
Lemma 3.4 we can choose a canonical basis of (V⊥, h) as follows.

Lemma 3.5. If (V⊥, h) is Lorentzian, for Case I there exist an integer m1 satisfying Km1 |V⊥ = 0, Km1−1
|V⊥ ≠ 0with 1 ≤ m1 ≤

min{m, n − m, 3} and a basis {z1, . . . , zn−m} of (V⊥, h) such that K(zk, yi) = 0, h(zk, yi) = 0 and

Kzkzℓ =


zk+ℓ, k + ℓ ≤ m1,
0, otherwise, h(zk, zℓ) =

ε, k + ℓ = m1 + 1,
δℓ
k , k, ℓ ≥ m1 + 1,
0, otherwise,

(3.8)

where ε = −1 for m1 = 1, otherwise ε = 1.

Case II: There exists a basis {z1, . . . , zn−m} of (V⊥, h) such that

Kyizk =


z2, i = k = 1,
0, otherwise, h(zk, zℓ) =

ε = ±1, k + ℓ = 3,
δℓ
k , k, ℓ ≥ 3,
0, otherwise,

(3.9)

where (3.2) has been used. Then K(z2, zi) = 0 for all i > 1. For the positive subspaceU := span{z3, . . . , zn−m}, we can choose
an orthonormal basis of U , still denoted by {z3, . . . , zn−m}, such that h(Kz1zk, zℓ) = λℓδ

ℓ
k for all k, ℓ ≥ 3. Set Ak

ij = h(Kzizj, zk),
there holds

Kz1z1 = ϵεym + εA2
11z1 + εA1

11z2 +

n−m
ℓ=3

Aℓ
11zℓ,

thus K(z1, z2) = Ky1Kz1z1 = εA2
11z2, it follows from the nilpotency of Kz1 that K(z1, z2) = 0. Further, Kz1zℓ = εAℓ

11z2 + λℓzℓ,
and (Kz1)

nzℓ = εAℓ
11λ

n−1
ℓ z2 + λn

ℓzℓ for ℓ > 2. Again the nilpotency of Kz1 shows that λℓ = 0. Now, we can rechoose an

orthonormal basis {z ′

3, . . . , z
′
n−m} of U such that z ′

3 = β−1 n−m
ℓ=3 Aℓ

11zℓ if β :=

n−m
ℓ=3 (Aℓ

11)
2 ≠ 0. Then summing above we

see that
Kz1z1 = ϵεym + εA1

11z2 + βz ′

3, Kz2 ≡ 0,
Kz1z

′

4 = · · · = Kz1z
′

n−m = 0, Kz1z
′

3 = εβz2.
By 0 = Kz1Kz1z

′

3 = Kz′3
Kz1z1 = βKz′3

z ′

3, we divide Case II into two subcases:

II-1: β = 0; II-2: β ≠ 0.
For case II-1, we easily see that (U, h) is a kernel subspace of all operators Kv with v ∈ U⊥. Hence the positive definite

subspace (U, h) is an invariant subspace of Ku for all u ∈ U , then the nilpotency of Ku shows that Kxy = 0 for all x, y ∈ U .
For case II-2, we have Kz′3

z ′

3 = 0 and Kz1Kz1z1 = εβ2z2 ≠ 0, thusm ≥ 3. Since (U, h) is positive definite and is an invariant
subspace of Kz′3

, the nilpotency of Kz′3
shows that Kz′3

u = 0 for all u ∈ U . As before, we see that (U, h) is an invariant subspace
of all operators Ku with u ∈ U , then the nilpotency of Ku again shows that Kxy = 0 for all x, y ∈ U .

Note that β = 0 if m = 2 orm = n − 2. Summing above we have proved the following

Lemma 3.6. If (V⊥, h) is Lorentzian, for Case IIwe see that m ≥ 2, n ≥ m+2 and there exists a basis {z1, . . . , zn−m} of (V⊥, h)
such that there hold (3.9) with h(zk, yi) = 0 for all i, k, and

Kz1z1 = ϵεym + εaz2 + βz3, Kz1z3 = εβz2,
Kz1z4 = · · · = Kz1zn−m = 0, Kz2 ≡ 0,
K(zi, zj) = 0, ∀ i, j ≥ 3,

(3.10)

where ε = ±1, ϵ = ±1 is determined by (3.7), and a, β are constant, β = 0 if m = 2 or m = n − 2.
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Case III: There exists a basis {z1, . . . , zn−m} of (V⊥, h) such that

Kyizk =

z2, i = k = 1,
z3, i + k = 3,
0, otherwise,

h(zk, zℓ) =

1, k + ℓ = 4,
δℓ
k , k, ℓ ≥ 4,
0, otherwise,

(3.11)

where (3.2) has been used. Note that m ≥ 3 by the definition of m, and Kz2zk = Kz3zk = 0 for all k > 2. As before, we can
choose an orthonormal basis of the positive subspace Ū spanned by {z4, . . . , zn−m}, still denoted by {z3, . . . , zn−m}, such that
h(Kz1zk, zℓ) = 0 for all k, ℓ ≥ 4. Set Ak

ij = h(Kzizj, zk), then

Kz1z1 = ϵym−1 + A3
11z1 + A2

11z2 + A1
11z3 +

n−m
ℓ=4

Aℓ
11zℓ,

Kz1z2 = Ky1Kz1z1 = ϵym + A3
11z2 + A2

11z3,

Kz1z3 = Kz2z2 = Ky1Kz1z2 = A3
11z3,

Kz1zℓ = Aℓ
11z3, ℓ = 4, . . . , n − m.

Then the nilpotency of Kz1 shows that A3
11 = 0. Now, we can rechoose an orthonormal basis {z ′

4, . . . , z
′
n−m} of Ū such that

z ′

4 = γ −1 n−m
ℓ=4 Aℓ

11zℓ if γ :=

n−m
ℓ=4 (Aℓ

11)
2 ≠ 0. Hence,

Kz1z1 = ϵym−1 + A2
11z2 + A1

11z3 + γ z ′

4, Kz3 ≡ 0, Kz2z2 = 0,

Kz1z2 = ϵym + A2
11z3, Kz1z

′

j = 0, j ≥ 5,

Kz1z
′

4 = γ z3, Kz2z
′

k = 0, k ≥ 4.

By 0 = Kz1Kz1z
′

4 = Kz′4
Kz1z1 = γKz′4

z ′

4, we divide Case III into two subcases:

III-1: γ = 0; III-2: γ ≠ 0.

For case III-1, we easily see that (Ū, h) is a kernel subspace of all operators Kv with v ∈ Ū⊥. Since (Ū, h) is positive and
is an invariant subspace of Ku for all u ∈ Ū , then the nilpotency of Ku shows that Kxy = 0 for all x, y ∈ Ū .

For case III-2, we have Kz′4
z ′

4 = 0. Since (Ū, h) is positive definite and is an invariant subspace of Kz′4
, the nilpotency of

Kz′4
shows that Kz′4

u = 0 for all u ∈ Ū . Similarly, (Ū, h) is an invariant subspace of all operators Ku with u ∈ Ū , then the
nilpotency of Ku again shows that Kxy = 0 for all x, y ∈ Ū . Summing above we have proved the following

Lemma 3.7. If (V⊥, h) is Lorentzian, for Case IIIwe see that m ≥ 3, n ≥ m+3 and there exists a basis {z1, . . . , zn−m} of (V⊥, h)
such that there hold (3.11) with h(zk, yi) = 0, and

Kz1z1 = ϵym−1 + bz2 + az3 + γ z4, Kz3 ≡ 0,
Kz1z2 = ϵym + bz3, Kz1zi = 0, i ≥ 5,
Kz1z4 = γ z3, Kz2zj = 0, j ≥ 2,
K(zk, zℓ) = 0, k, ℓ = 4, . . . , n − m,

(3.12)

where a, b, γ are constant, ϵ = ±1 is determined by (3.7), and γ = 0 if n = m + 3.

4. Affine hypersurfaces with ∇(α)K = 0

In this section, we pay our attention to the hypersurfaces with ∇
(α)K = 0. Assume that F : M ↩→ Rn+1 is a non-

degenerate affine hypersurface satisfying ∇
(α)K = 0. If α = 0 we further assume that J = 0 and affine metric is of constant

sectional curvature. It follows from (2.6), Lemmas 2.2 and 2.3 that either M is a hyperquadric, i.e., K = 0, or K ≠ 0 and M
is an improper affine hypersphere with flat indefinite affine metric and J = 0. Moreover, for the latter there hold (2.8) and
R(α)

= 0. From above we can prove

Lemma 4.1. Let M be the hypersurface above. Then for any positive integer k,

∇
kh(X1, . . . , Xk+2) = (−1)k

k−1
i=0

[(1 − α)i + 2]h(KX1 · · · KXkXk+1, Xk+2),

where X1, . . . , Xk+2 are tangent vector fields.
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Proof. From (2.4) we see that the lemma is true for k = 1 or K = 0. Assume K ≠ 0. By induction we suppose that the
lemma is satisfied for all values for 1 ≤ k ≤ r − 1. Since M is ∇

(α)-flat, we can obtain a local frame field {X1, . . . , Xn} such
that ∇

(α)
Xi

Xj = 0. Together with ∇
(α)K = 0 and Definition 2.1, we easily get

∇
(α)
X1

(KX2 · · · KXrXr+1) = 0, ∇XiYj = (1 − α)KXiYj.

Combining this with (2.10) and the assumption we see that

∇
rh(X1, . . . , Xr+2) = X1(∇

r−1h)(X2, . . . , Xr+2) − (∇r−1h)(∇X1X2, . . . , Xr+2)

− · · · − (∇r−1h)(X2, . . . ,∇X1Xr+2)

= (−1)r−1
r−2
i=0

[(1 − α)i + 2]X1h(KX2 · · · KXrXr+1, Xr+2)

+ (−1)r
r−2
i=0

[(1 − α)i + 2](1 − α)(r + 1)h(KX1 · · · KXrXr+1, Xr+2)

=

(∇

(α)
X1

h)(KX2 · · · KXrXr+1, Xr+2) − (1 − α)(r + 1)h(KX1 · · · KXrXr+1, Xr+2)


× (−1)r−1
r−2
i=0

[(1 − α)i + 2]

= (−1)r
r−2
i=0

[(1 − α)i + 2][(1 − α)(r − 1) + 2]h(KX1 · · · KXrXr+1, Xr+2)

= (−1)r
r−1
i=0

[(1 − α)i + 2]h(KX1 · · · KXrXr+1, Xr+2).

Hence the lemma is true for k = r . Lemma 4.1 has been proved. �

Remark 4.1. Note that Lemma 4.1 reduces to Lemma 3.4 of [19] when α = 1.

Fromnowon,we consider the caseK ≠ 0. ThenM has the commutable difference tensor, thuswehave all the conclusions
of Section 3. By Definition 2.2 let m be the smallest integer such that the symmetric tensor Km is identically zero at a point
p, then 2 ≤ m ≤ min{2s + 1, n}.

Proof of Main Theorem. As shown above,M is an improper affine hyperspherewith flat affinemetric and J = 0. Lemma 4.1
further shows that ∇

mh = 0 but ∇
m−1h ≠ 0. By Proposition 2 of [1] we see that M is locally affine equivalent to the graph

immersion of a polynomial function of degreem + 1 with constant Hessian determinant.
SinceM is∇-flat, we can extend a given basis {e1, . . . , en} to∇-parallel coordinates (x1, . . . , xn). Then the position vector

F satisfies

∂2F
∂xi∂xj

= h


∂

∂xi
,

∂

∂xj


ξ . (4.1)

After an affine transformation, we may assume that {F∗(
∂

∂x1
)(0), . . . , F∗(

∂
∂xn

)(0), ξ} is the standard basis of Rn+1 and F(0)
= 0.With these initial conditions, Eq. (4.1) can be solved, and one obtains thatM is locally given in the standard coordinates
by xn+1 = f (x1, . . . , xn), where f is the function determined by

∂2f
∂xi∂xj

= h


∂

∂xi
,

∂

∂xj


(4.2)

with the initial conditions ∂ f
∂xi

(0) = 0 and f (0) = 0. By ∇ ∂
∂xi

∂
∂xj

= 0 and Lemma 4.1, for any integer k ≥ 2 (4.2) further gives

that

∂kf
∂xi1 . . . ∂xik

= (∇k−2h)


∂

∂xi1
, . . . ,

∂

∂xik



= (−1)k
k−3
i=0

[(1 − α)i + 2]h

K k−2


∂

∂xi1
, . . . ,

∂

∂xik−1


,

∂

∂xik


. (4.3)
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Finally, using the Taylor expansion, ∇mh = 0 and ∂
∂xi

(0) = ei, we can obtain

f =

m+1
k=2

1
k!

n
i1,...,ik=1

∂kf
∂xi1 . . . ∂xik

(0)xi1 · · · xik

=

m+1
k=2

(−1)k

k−3
i=0

[(1 − α)i + 2]

k!

n
i1,...,ik=1

h(K k−2(ei1 , . . . , eik−1), eik)xi1 · · · xik . (4.4)

Note that the function Φ(x1, . . . , xn; α) of (1.2) can be rewritten as

Φ(x1, . . . , xn; α) =

n+1
k=2

(−1)k
k−3
i=0

[(1 − α)i + 2]


i1+2i2+···+nin=n+1
i1+···+in=k

xi11 · · · xinn
i1!i2! · · · in!

. (4.5)

According to the canonical basis on the hypersurfaces of Section 3, by (4.4) we next show the partial classification of the
hypersurfaces considered. As their corollary, Main Theorem easily follows.

First, form = 2 we get the following

Proposition 4.1. Let M be the affine hypersurface of Main Theorem with m = 2. Then there exists a positive integer r with
2r ≤ n such that M is locally affine equivalent to the graph immersion of the polynomial function

xn+1 =

r
i=1

yiwi +
1
2

n−2r
k=1

ϵku2
k −

1
3

r
i,j,ℓ=1

Aℓ
ijwiwjwℓ,

where Aℓ
ij (i, j, ℓ ∈ {1, . . . , r}) are totally symmetric constants, ϵk = ±1 and (y1, . . . , yr , w1, . . . , wr , u1, . . . , un−2r , xn+1) are

the standard coordinates of Rn+1. The converse is also true.

Proof. From m = 2 and (3.1) it follows that ∇
(α)K = ∇K = 0. Now, Proposition 3.1 immediately follows from the classifi-

cation of affine hypersurfaces with ∇K = 0 and K 2
= 0 (cf. Theorem 4.3 of [19]). �

Remark 4.2 (cf. Remark 4.2 of [19]). In Proposition 4.1, r is the dimension of null subspace span{Kxy|x, y ∈ TpM}, thus
0 < r ≤ s. In particular, if n = 2 then r = 1 andM is the Cayley surface described by

x3 = v1w1 −
1
3w

3
1.

If n = 3, then r = 1 and we have the hypersurface

x4 = v1w1 +
1
2ϵ1u

2
1 −

1
3w

3
1.

Finally, if n = 4 then either r = 1 or r = 2. By the classification of homogeneous polynomials of degree 3 in 2 variables, we
get the following hypersurfaces:

x5 = v1w1 +
1
2 (ϵ1u

2
1 + ϵ2u2

2) −
1
3w

3
1,

x5 = v1w1 + v2w2 −
1
3 (w

3
1 + w3

2),

x5 = v1w1 + v2w2 −
1
3w1w

2
2,

x5 = v1w1 + v2w2 −
1
3w1w2(w1 + w2).

Note that the m-dimensional non-degenerate subspace V ⊂ TpM , defined in Lemma 3.3, satisfies ⌊
m
2 ⌋ ≤ I(V ) ≤ ⌈

m
2 ⌉. If

(V⊥, h) is positive definite, i.e.,m = min{2s + 1, n}, m = 2s, orm = 2s − 1 with I(V ) = s, we have the following

Proposition 4.2. Let M be the affine hypersurface of Main Theoremwith m ≥ 2. If m = min{2s+1, n}, m = 2s, or m = 2s−1
with I(V ) = s, then M is locally affine equivalent to the graph immersion of the function

xn+1 = ϵΦ(x1, . . . , xm; α) +
1
2

n
j=m+1

x2j ,

whereΦ(x1, . . . , xm; α) is given by (1.2), (x1, . . . , xn+1) are the standard coordinates of Rn+1, and ϵ = 1 for m =min {2s+1, n}
or m = 2s, ϵ = −1 for m = 2s − 1.
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Proof. By Lemma 3.4 there exists a basis {e1, . . . , en} of TpM such that

Keiej =


ei+j, i + j ≤ m,
0, otherwise, h(ei, ej) =


ϵ, i + j = m + 1,
δ
j
i, i, j ≥ m + 1,
0, otherwise,

(4.6)

where ϵ = ±1 is determined by (3.4). SinceM is∇-flat, we can extend the above basis to∇-parallel coordinates (x1, . . . , xn).
Using the method as above we see that M is locally given by a polynomial function xn+1 = f (x1, . . . , xn) of degree m + 1,
where f is determined by (4.4), where ei =

∂
∂xi

(0). By the initial conditions (4.6) it follows from (4.4) that

f = ϵΦ(x1, . . . , xm; α) +
1
2

n
j=m+1

x2j ,

where Φ(x1, . . . , xm; α) is given by (1.2) or (4.5). �

Remark 4.3. When m = n, Proposition 4.2 (resp. α = 0, α = 1) reduces to the main result of [20] (resp. Main Theorem
of [30], Theorem 6.2 of [19]), while the method here based on (4.4) is more direct. The method implies that affine hyper-
surfaces with ∇

(α)K = 0 are completely determined by the properties of (h, K) at a point, thus we conjecture that such
hypersurfaces are locally homogeneous.

Next, if (V⊥, h) is Lorentzian, i.e., m = 2s − 1, m = 2s − 2 or m = 2s − 3 with I(V ) = s − 1, there exist three distinct
cases as in Section 3.2.

For Case I, by Lemmas 3.3 and 3.5 there exist an integerm1 satisfying 1 ≤ m1 ≤ min{m, n−m, 3} and a basis {y1, . . . , ym,
z1, . . . , zn−m} of TpM such that there hold (3.2) and (3.8) with K(zk, yi) = 0, h(zk, yi) = 0 for all k, i. Similar to the proof of
Proposition 4.2, by (4.4) and the above basis corresponding tom1 = 1, 2, 3 we can obtain the following

Proposition 4.3. Let M be the affine hypersurface of Main Theorem with m ≥ 2. If m = 2s − 1, m = 2s − 2, or m = 2s − 3
with I(V ) = s − 1, for Case I M is locally affine equivalent to one of the graph immersions of the three functions

xn+1 = ϵΦ(x1, . . . , xm; α) −
1
2x

2
m+1 +

1
2

n
i=m+2

x2i ,

xn+1 = ϵΦ(x1, . . . , xm; α) + xm+1xm+2 −
1
3x

3
m+1 +

1
2

n
i=m+3

x2i , 4 ≤ m + 2 ≤ n,

xn+1 = ϵΦ(x1, . . . , xm; α) + Φ(xm+1, xm+2, xm+3; α) +
1
2

n
i=m+4

x2i , 6 ≤ m + 3 ≤ n,

where (x1, . . . , xn+1) are the standard coordinates of Rn+1, and ϵ = 1 for m = 2s− 1 or m = 2s− 2, ϵ = −1 for m = 2s− 3.

For Case II, by Lemmas 3.3 and 3.6 there exists a basis {y1, . . . , ym, z1, . . . , zn−m} of TpM such that there hold (3.2), (3.9)
and (3.10) with h(zk, yi) = 0 for all i, k. Similar to Proposition 4.2, we can extend the above basis to local ∇-parallel coor-
dinates {x1, . . . , xn}, and p has coordinates 0. As before M is locally given by a polynomial function xn+1 = f (x1, . . . , xn),
where f is determined by (4.4) and the initial conditions {y1, . . . , ym, z1, . . . , zn−m}. Then we easily obtain

f = ϵΦ(x1, . . . , xm; α) + εxm+1xm+2 − εx1x2m+1 −
a
3x

3
m+1

− βx2m+1xm+3 +
3−α
12 β2x4m+1 +

1
2

n
i=m+3

x2i , (4.7)

where ε = ±1, and ϵ = ±1 is determined by (3.7). Now, we have proved for Case II the following

Proposition 4.4. Let M be the affine hypersurface of Main Theoremwith m ≥ 2. If m = 2s−1, m = 2s−2, or m = 2s−3with
I(V ) = s − 1, for Case II we see that n ≥ m + 2 and M is locally affine equivalent to the graph immersion of the function (4.7),
where a, β are constant, and β = 0 if m = 2 or m = n − 2.

For Case III, by Lemmas 3.3 and 3.7 there exists a basis {y1, . . . , ym, z1, . . . , zn−m} of TpM such that there hold (3.2), (3.11)
and (3.12) with h(zk, yi) = 0 for all i, k. Similar to Proposition 4.2, we can extend the above basis to local ∇-parallel coordi-
nates {x1, . . . , xn}, and p has coordinates 0. By the previous method we see thatM is locally given by a polynomial function
xn+1 = f (x1, . . . , xn), where f is determined by (4.4) and the initial conditions {y1, . . . , ym, z1, . . . , zn−m}. Then we easily
obtain

f = ϵΦ(x1, . . . , xm; α) + xm+1xm+3 +
1
2x

2
m+2 − 2x1xm+1xm+2 − x2x2m+1
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− bx2m+1xm+2 − γ x2m+1xm+4 −
a
3x

3
m+1 +

3−α
2 x21x

2
m+1 +

(3−α)b
3 x1x3m+1

+
(3−α)(b2+γ 2)

12 x4m+1 +
1
2

n
i=m+4

x2i , (4.8)

where ϵ = ±1 is determined by (3.7). Now, we have proved for Case III the following

Proposition 4.5. Let M be the affine hypersurface of Main Theorem with m ≥ 2. If m = 2s − 1, m = 2s − 2, or m = 2s − 3
with I(V ) = s − 1, for Case III we see that m ≥ 3, n ≥ m + 3 and M is locally affine equivalent to the graph immersion of the
function (4.8), where a, b, γ are constant, and γ = 0 if n = m + 3.

If M is locally strongly convex, i.e., s = 0, then the vanishing Pick invariant shows that M is a locally strongly convex
hyperquadric. Taking s = 1, 2 in Propositions 4.2–4.5 respectively, we see that the remaining part of Main Theorem imme-
diately follows. �
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