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We give a survey of our recent work (Boyer and Tønnesen-Friedman (2013) [50,51,30],
Boyer and Tønnesen-Friedman (2014) [33,29,36]) describing amethodwhich combines the
Sasaki join construction of Boyer et al. (2007) [31] with the admissible Kähler construction
of Apostolov et al. (2006, 2004, 2008) [26,27,14,25] to obtain new extremal and new
constant scalar curvature Sasaki metrics, including Sasaki–Einstein metrics. The constant
scalar curvature Sasaki metrics also provide explicit solutions to the CR Yamabe problem.
In this regardwe give examples of the lack of uniqueness when the Yamabe invariant λ(M)
is positive.
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1. Introduction

It is a distinct honor and privilege to dedicate this survey of our recent work to our good friend and colleague, Paul
Gauduchon. Paul’s influence on our work is absolutely apparent and cannot be overestimated. But his influence actually
goes much deeper than our recent work, as he has had a very important influence on both of our careers.

In the mid nineteen eighties when the first author was making the transition from mathematical physics to pure
mathematics, he was directed to the work of Paul Gauduchon by E. Calabi. Two of Paul’s papers, [1,2], subsequently played
a seminal role in the first author’s work on the geometry of 4-manifolds [3–5]. The first author met Paul Gauduchon in
1990 at the Summer AMS Institute on Differential Geometry in UCLA. A few years later we spent time together at the Erwin
Schrodinger Institute in Vienna, and became good friends.

The second author first met Paul Gauduchon during the spring of 2001 at a conference in Denmark. It was then that she
first heard about the exciting program of Hamiltonian 2-forms that put existing Kähler metric constructions in a whole new
light. Paul generously invited her to spend a week at École Polytechique during the summer of 2001 and it was here that
her collaboration and friendship with him, Vestislav Apostlov, and David Calderbank had its beginning. It is impossible to
overstate just howmuch she appreciates having been a part of this program of research and she is acutely aware of the fact
that many of her subsequent opportunities in research have been due to this collaboration. It is typical for Paul to reach out
to young researchers and help them on their way. He is without a doubt one of the friendliest, most inspiring, and most
generous leading differential geometers of our time.
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2. Preliminaries on Kählerian and Sasakian geometry

Kählerian and Sasakian geometry are sister geometries; one (Kählerian) lives in even dimensions and the other (Sasakian)
lives in odd dimensions. Furthermore, their relation to other important geometries is similar. Kähler geometry is a substruc-
ture of both complex and symplectic geometry; whereas, Sasakian geometry is a substructure of CR and contact geometry.
And both are examples of Riemannian geometry.

A Kähler manifold is a symplectic manifold (N, ω) which is also a complex manifold such that the complex structure
tensor J and symplectic form ω satisfy the conditions that ω(X, JY ) is positive definite and ω(JX, JY ) = ω(X, Y ) for any
vector fields X, Y . We also can define a Kähler orbifold for which we refer to Chapter 4 of [6] for the precise definition. The
symmetric form ω(X, JY ) is a Riemannian metric on N called the Kähler metric.

A Sasaki manifold is a contact manifold (M, η) with contact bundle D = ker η which is also a strictly pseudoconvex
CR manifold (D, J) satisfying dη(JX, JY ) = dη(X, Y ) for all sections of D and whose Reeb vector field ξ is an infinitesimal
CR automorphism. So the Lie algebra of infinitesimal automorphisms of a Sasakian structure is at least one dimensional. If
we extend the transverse complex structure J to an endomorphism of the tangent bundle TM by setting Φ = J on D and
Φξ = 0, the symmetric form defined for all vector fields X, Y by g(X, Y ) = dη(X,ΦY )+ η(X)η(Y ) is a Riemannian metric
on M called the Sasaki metric for which ξ is Killing vector field. Note that dη ◦ (1× Φ) is a sub-Riemannian Kähler metric,
called the transverse metric and denoted by gT . It is also called a pseudohermitian metric in the CR literature.

When M is a Sasaki manifold and all the Reeb orbits are closed, the Reeb field ξ generates a locally free circle action
whose quotient is a Kähler orbifold, actually a projective algebraic orbifold. In this case ξ (or the Sasakian structure) is
called quasi-regular. When the action is free ξ is regular and the quotient is a Kähler manifold. This construction, known as
the Boothby–Wang construction [7,8], can be inverted as follows. Given a Kähler orbifold with integral cohomology class
[ω] ∈ H2

orb(N,Z), we choose a connection 1-form η on the total spaceM of the S1 orbibundle over N . Then (M, η) is a Sasaki
manifold. Notice that a scale transformation or homothety of the transverse Kähler metric, gT

→ agT for a ∈ R+ induces
the transverse homothety g → ag + (a2 − a)η⊗η of the Sasaki metric, giving a one parameter family of new Sasaki metrics.

Even in the irregular case when there are non-closed Reeb orbits and no reasonable global quotient, the local quotients
of the local submersions are Kähler. Hence, a Sasaki manifold has a transverse (to the flow of Reeb field) Kählerian structure.

2.1. Extremal metrics

The notion of extremal Kähler metrics was introduced as a variational problem by Calabi in [9] and studied in greater
depth in [10]. The most effective functional is probably the L2-norm of scalar curvature, viz.

E(ω) =


M
s2dµ, (1)

where s is the scalar curvature and dµ is the volume form of the Kähler metric corresponding to the Kähler form ω. The
variation is taken over the set of all Kähler metrics within a fixed Kähler class [ω]. Calabi showed that the critical points
of the functional E are precisely the Kähler metrics such that the gradient vector field J grad s is holomorphic. A recent and
detailed account is given in the forthcoming book [11].

On the Sasakian level extremalmetrics were developed in [12]. The procedure is quite analogous again using the L2-norm
of scalar curvature sg of the Sasaki metric g , viz.

E(g) =


M
s2gdµg , (2)

where now the variation is taken over all Sasaki metrics associated to the basic cohomology class [dηB] ∈ H2
B (Fξ ). Again the

critical points are precisely those Sasaki metrics such that the gradient vector field J gradg sg is transversely holomorphic.
Since the scalar curvature sg is related to the transverse scalar curvature sTg of the transverse Kähler metric by sg = sTg − 2n,
a Sasaki metric is extremal (CSC) if and only if its transverse Kähler metric is extremal (CSC).

2.2. The Sasaki cone and bouquets

Like the space of Kähler metrics belonging to a fixed cohomology class, the space of Sasaki metrics belonging to a fixed
isotopy class of contact structure is infinite dimensional [6]. However, the space of Sasakian structures belonging to a fixed
strictly pseudoconvex CR structure (D, J) has finite dimensions. It is called the unreduced Sasaki cone and is defined as
follows. Fix a maximal torus T in the CR automorphism group Cr(D, J) of a Sasakian manifold (M, η) and let t(D, J) denote
the Lie algebra of T . Then the unreduced Sasaki cone is defined by

t+(D, J) = {ξ ′
∈ t(D, J) | η(ξ ′) > 0}. (3)

Then the reduced Sasaki cone is defined by κ(D, J) = t+(D, J)/W(D, J) where W(D, J) is the Weyl group of Cr(D, J). The
reduced Sasaki cone κ(D, J) can be thought of as the moduli space of Sasakian structures whose underlying CR structure is
(D, J). We shall often suppress the CR notation (D, J)when it is understood from the context.



C.P. Boyer, C.W. Tønnesen-Friedman / Journal of Geometry and Physics ( ) – 3

Now for each strictly pseudoconvex CR structure (D, J) there is a unique conjugacy class of maximal tori in Cr(D, J). This
in turn defines a conjugacy class CT (D) of tori in the contactomorphismgroupCon(D)whichmay ormay not bemaximal.We
thus recall [13] the map Q that associates to any transverse almost complex structure J that is compatible with the contact
structure D, a conjugacy class of tori in Con(D), namely the unique conjugacy class of maximal tori in CR(D, J) ⊂ Con(D).
Then two compatible transverse almost complex structures J, J ′ are T -equivalent ifQ(J) = Q(J ′). A Sasaki bouquet is defined
by

B|A|(D) =


α∈A

κ(D, Jα) (4)

where the union is taken over one representative of each T -equivalence class in a preassigned subset A of T -equivalence
classes of transverse (almost) complex structures. Here |A| denotes the cardinality of A.

3. The admissible construction

The admissible construction of Kähler metrics, which we have utilized to obtain our results, may be viewed as a special
case of the construction of Kähler metrics admitting a so-called Hamiltonian 2-form. This term was introduced by V.
Apostolov, D. Calderbank, and P. Gauduchon in [14]. We will here give a very brief overview/history of this topic.

Let (S, J, ω, g) be a Kähler manifold of real dimension 2m. Recall [14] that on (S, J, ω, g) a Hamiltonian 2-form is a
J-invariant 2-form φ that satisfies the differential equation

2∇Xφ = d trφ ∧ (JX)♭ − dc trφ ∧ X ♭ (5)

for any vector field X . Here X ♭ indicates the 1-form dual to X , and trφ is the trace with respect to the Kähler form ω, i.e.
trφ = g(φ, ω) where g is the Kähler metric. Note that if φ is a Hamiltonian 2-form, then so is φa,b = aφ + bω for any
constants a, b ∈ R.

Hamiltonian 2-forms occur naturally for Weakly-Bochner-flat (WBF) Kähler metrics as follows. A WBF Kähler metric is
defined to be a Kähler metric whose Bochner tensor (which is part of the curvature tensor) is co-closed. By using the
differential Bianchi identity one can see that this condition is equivalent (for m ≥ 2) to the condition that ρ +

s
2(m+1) ω

is a Hamiltonian 2-form, where ρ is the Ricci form and s is the scalar curvature. WBF Kähler metrics are in particular
extremal Kähler metrics and they are generalization of Bochner-flat Kähler metrics, studied by Bryant [15], and products of
Kähler–Einsteinmetrics. Note that form = 2,WBF Kählermetrics and Bochner-flat Kählermetrics are calledWeakly Selfdual
Kähler metrics [16] and Selfdual Kähler metrics respectively.

A Hamiltonian 2-form φ induces an isometric Hamiltonian l-torus action on S for some 0 ≤ l ≤ m. This follows
from [14]where the Kähler formω is used to identifyφwith aHermitian endomorphism. They then consider the elementary
symmetric functions σ1, . . . , σn of its n eigenvalues. The Hamiltonian vector fields Ki = J grad σi are Killing with respect
to the Kähler metric g . Moreover the Poisson brackets {σi, σj} all vanish and so, in particular the vector fields K1, . . . , Km
commute. In the case where K1, . . . , Km are independent, we have that (S, J, ω, g) is toric. In fact, it is a very special kind
of toric, namely orthotoric [14]. In general, it is proved in [14] that there exists a number 0 ≤ l ≤ m such that the span of
K1, . . . , Km is everywhere at most l-dimensional and, on an open dense set S0, K1, . . . , Kl are linearly independent. Now l is
called the order of φ.

Using the Pedersen–Poon ansatz for Kähler metrics with a local isometric Hamiltonian l-torus action [17], a local clas-
sification of Kähler metrics admitting a Hamiltonian 2-form was then obtained in [14]. This local classification then gave a
specialized ansatz that e.g. would simplify the PDE system equivalent to the extremal Kähler metric condition to a much
more amenable ODE system. Previously this specialized ansatz had been successfully assumed by many authors ([10,18,17,
19–24], to name a few—with apologies to anyone we left out) in order to produce examples of Kähler metrics with special
geometric properties. However, to see that this assumptionwas naturally given in the form of the existence of a Hamiltonian
2-form, was indeed a spectacular observation in [14]. In particular, as a consequence it became clear that this specialization
was not only useful, but also necessary in the case of WBF metric constructions.

The natural continuation of [14] was to move from a local to a global classification of Kähler metrics admitting a
Hamiltonian 2-form. This was done in [25], and hence, a blueprint for the construction of not only local but global (compact)
examples of Kähler metrics with various geometric properties was established.

3.1. Kähler admissibility and ruled manifolds

We will focus on a special case in the l = 1 case, which according to [26,27] would be called something like admissible
with no blow-downs and only one piece in the base. For simplicity we will abuse this terminology a bit and simply refer to our
case as admissible.

Assume that n ∈ Z \ {0} and (N, ωN , gN) is a compact Kähler structure with CSC Kähler metric gN . Then (ωNn , gNn) :=

(2nπωN , 2nπgN) satisfies that (gNn , ωNn) or (−gNn ,−ωNn) is a Kähler structure (depending on the sign of n). In either case,
we let (±gNn ,±ωNn) refer to the Kähler structure. We denote the real dimension of N by 2dN and write the scalar curvature
of ±gNn as ±2dNnsNn . (So, if e.g. −gNn is a Kähler structure with positive scalar curvature, sNn would be negative.)
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Now for a holomorphic line bundle Ln → N such that c1(Ln) = [ωNn/2π ]. The total space of the projectivization
Sn = P(1⊕ Ln) is called admissible. On these manifolds, Kähler metrics admitting a Hamiltonian 2-form of order one can be
constructed in such a way that the natural fiberwise S1-action is induced by the Hamiltonian vector field arising from the
Hamiltonian 2-form [26,27]. These metrics, as well as the Kähler classes of their Kähler forms, are also called admissible.

In the casewhereN is a Riemann surface, the entire Kähler cone consist of admissible Kähler classes but in general the set
of admissible Kähler classes constitutes a subcone of the Kähler cone. Up to scale, an admissible Kähler classΩr is determined
by a real number r of the same sign as gNn and satisfying 0 < |r| < 1. More specifically

Ωr = [ωNn ]/r + 2πPD[D1 + D2], (6)

where PD denotes the Poincaré dual and the divisorsD1 andD2 are given by the zero section 1⊕0 and infinity section 0⊕Ln,
respectively. Consider the circle action on Sn induced by the natural circle action on Ln. It extends to a holomorphicC∗ action.
The open and dense set Sn0 ⊂ Sn of stable pointswith respect to the latter action has the structure of a principal circle bundle
over the stable quotient. The Hermitian norm on the fibers induces, via a Legendre transform, a function z : Sn0 → (−1, 1)
whose extension to Sn consists of the criticalmanifolds z−1(1) = P(1⊕0) and z−1(−1) = P(0⊕Ln). Letting θ be a connection
one form for the Hermitian metric on Sn0, with curvature dθ = ωNn , an admissible Kähler metric and form are given up to
scale by the respective formulas

g =
1 + rz

r
gNn +

dz2

Θ(z)
+Θ(z)θ2, ω =

1 + rz
r

ωNn + dz ∧ θ, (7)

valid on Sn0. Here Θ is a smooth function with domain containing (−1, 1) and r , is a real number of the same sign as gNn
and satisfying 0 < |r| < 1. The function z is the moment map on Sn for the circle action, decomposing Sn into the free orbits
Sn0 = z−1((−1, 1)) and the special orbits D1 = z−1(1) and D2 = z−1(−1). Here generally the ruled manifold Sn has an
added orbifold structure given by the log pair (Sn,∆)where∆ is the branch divisor

∆ =


1 −

1
m1


D1 +


1 −

1
m2


D2, (8)

with ramification indices m1,m2. Moreover, the function Θ must satisfy certain boundary conditions. This data associated
with (Sn,∆)will be called admissible data, and the functionΘ is called an admissible momentum profile. We summarize by

Proposition 3.1. Given admissible data any choice of smooth functionΘ(z) such that

Θ(z) > 0, −1 < z < 1,
Θ(±1) = 0,
Θ ′(−1) = 2/m2 Θ ′(1) = −2/m1,

determines an admissible metric in the corresponding admissible Kähler class.

As follows from [14] we now have the following useful proposition.

Proposition 3.2. Given admissible data and a smooth function Θ(z) = F(z)/(1 + rz)dN satisfying the conditions of Proposi-
tion 3.1, the admissible metric associated withΘ(z) is extremal if and only if

F ′′(z) = (1 + rz)dN−1(2dN sNn r + (αz + β)(1 + rz)), (9)

where α and β are constants.

The ODE (9) together with the endpoint conditions of Proposition 3.1 determines a unique solution Fr(z). We call this the
extremal polynomial forΩr. The positivity condition of Proposition 3.1 follows automatically if we assume that (N, ωN , gN)
has non-negative scalar curvature, but in general it may or may not hold.

In the trivial orbifold case, the following stronger theorem has been established:

Theorem 3.3 ([26]). Let Sn be any admissiblemanifold andΩr be any admissible Kähler class onM. Then,Ωr contains an extremal
Kähler metric if and only if the extremal polynomial Fr(z) is (strictly) positive on (−1, 1). In that case, there is an admissible
extremal Kähler metric inΩr.

Unfortunately we are still lacking a generalization of this theorem to the orbifold case where (m1,m2) ≠ (1, 1). Of
course, the ‘if’ part holds in the orbifold case as well; however, in themanifold case the ‘only if’ part relies on the uniqueness
theorem of Chen and Tian [28] which is still unknown for orbifolds.

Notice from (9) that the degree of Fr(z) is at most dN + 3. In fact, if the degree of Fr(z) is dN + 2 or less, then Fr(z) is
automatically (strictly) positive on (−1, 1) and from [14] we have that Fr(z) defines an admissible CSC Kähler metric inΩr.
This results in the following convenient fact
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Proposition 3.4 ([29]). The existence of an admissible CSC Kähler metric inΩr on the log pair (Sn,∆) is equivalent to

2sNn


(1 + r)dN+1

− (1 − r)dN+1


r(dN + 1)
−

k

(1 + r)dN+2

− (1 − r)dN+2


r2(dN + 1)(dN + 2)
+ 2c = 0, (10)

where

c =
2


1 − r2

dN (m2(1 − r)+ m1(1 + r)− 2m1m2sNn)

m1m2

(1 + r)dN+1 − (1 − r)dN+1

 (11)

and

k =
2(dN + 1)r


m2(1 + r)dN (1 + m1sNn)− m1(1 − r)dN (−1 + m2sNn)


m1m2


(1 + r)dN+1 − (1 − r)dN+1

 . (12)

Likewise, using the Kähler–Einstein criterion from [14], one can establish the following.

Proposition 3.5 ([30]). The existence of an admissible Kähler–Einstein metric in Ωr on the log pair (Sn,∆) is equivalent to
(N, ωN , gN) being positive Kähler–Einstein with Fano index IN (hence sNn = IN/n),

2rIN/n = (1 + r)/m2 + (1 − r)/m1, (13)

and  1

−1
((1 − z)/m2 − (1 + z)/m1) (1 + rz)dN dz = 0. (14)

Remark 3.6. A similar statement (see Section 5.2 of [30]) provides the criterion for the existence of admissible Kähler Ricci
solitons.

4. The Sasaki join and admissible Sasakian structures

Our method involves the Sasaki join of a regular (2p + 1)-dimensional Sasakian manifold M with the weighted Sasaki
3-sphere S3w where the weight vectorw = (w1, w2) has relatively prime componentswi ∈ Z+ that are ordered asw1 ≥ w2.
We shall also assume thatM has a regular Sasaki metric with constant scalar curvature, and that l = (l1, l2) has components
li that are positive integers satisfying the admissibility condition

gcd(l2, l1w1w2) = 1. (15)
The join [31] is then constructed from the following commutative diagram

M × S3w
↘ πLπ2 Ml,w

↙ π1
N × CP1

[w]

(16)

where the π2 is the product of the standard Sasakian projections πM : M−−→N and S3w−−→CP1
[w]. The circle projection

πL is generated by the vector field

Ll,w =
1
2l1
ξ1 −

1
2l2
ξw, (17)

and its quotient manifold Ml,w, which is called the (l1, l2)-join of M and S3w and denoted by Ml,w = M ⋆l1,l2 S
3
w, has a

naturally induced quasi-regular Sasakian structure Sl,w with contact 1-form ηl1,l2,w. It is reducible in the sense that both
the transverse metric gT and the contact bundle Dl1,l2,w = ker ηl1,l2,w split as direct sums. Since the CR-structure (Dl1,l2,w, J)
is the horizontal lift of the complex structure on N × CP1

[w], this splits as well. The choice ofw determines the transverse
complex structure J .

4.1. Thew-Sasaki cone

Let t1, tw denote the Lie algebras of the maximal tori in the Sasakian automorphism group of the Sasakian structures on
M, S3w, respectively. Then the unreduced Sasaki cone of the joinMl,w is defined by

t+l,w = {R ∈ (t1 ⊕ tw)/{Ll,w} | ηl,w(R) > 0} (18)
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where {Ll,w} is the Lie algebra generated by the vector field Ll,w. Choosing an R ∈ t+l,w corresponds to choosing a different
contact form, namely ηl,w

ηl,w(R)
, in the underlying strictly pseudoconvex CR structure. In this case the functions ηl,w(R) are

spanned by the Killing potentials, that is, the components of the moment map associated to the Hamiltonian vector fields.
Note that t+l,w is a subcone of the infinite dimensional Reeb cone R(D) consisting of the Reeb vector fields associated to any
contact form within the contact structure [32].

Actually, our method only makes use of the so-called w-subcone whose representatives lie in the 2-dimensional Lie
subalgebra tw. Such elements can be described as follows: let {H1,H2} denote the standard basis for tw. Then the subcone
t+w , called the w-Sasaki cone, is the set of elements of the form v1H1 + v2H2 with v1, v2 > 0. We think of the Sasaki cone
t+l,w as the local moduli space of Sasakian structures associated to the CR structure (Dl1,l2,w, J). However, here we are only
concerned with thew-subcone.

4.2. Deformations in thew-Sasaki cone

Here we briefly describe how to obtain new Sasakian structures by deforming in the Sasaki cone. We choose the Reeb
vector field in t+w defined by ξv = v1H1 + v2H2 where v1, v2 ∈ Z+ are relatively prime. We refer to [33,30,29] for details.
When we deform to an arbitrary quasi-regular Reeb field in the w-Sasaki cone, we obtain instead of the product T 2 action
of diagram (16) the T 2 action given by

(x, u; z1, z2) → (x, eil2θu; ei(v1φ−l1w1θ)z1, ei(v2φ−l1w2θ)z2), (19)

where (x, u) denote bundle coordinates on M and (z1, z2) ∈ C2 satisfy |z1|2 + |z2|2 = 1. The quotient of M × S3 by this T 2

action is a complex Kähler orbifold Bl1,l2,v,w which can be identified with the ruled orbifold (Sn,∆) described in Section 3.1,
where∆ is the branch divisor of Eq. (8). Here the ramification indices satisfymi = vi

l2
s = vim and s = gcd(|w1v2−w2v1|, l2)

and n = l1

w1v2−w2v1

s


. The fiber of the orbifold (Sn,∆) is the orbifold CP[v1, v2]/Zm. We can divide this T 2 action into two

S1 actions, namely, the first S1 action is that generated by the vector field (17), and the second that generated by the Reeb
vector field ξv ∈ t+w with v1, v2 relatively prime positive integers. This gives rise to the commutative diagram

M × S3w
↘πB Ml,w

↙ πv
Bl1,l2,v,w

(20)

where πB and πv are the obvious projections.
Each w-Sasaki cone has a unique ray, called almost regular, obtained by setting v = (v1, v2) = (1, 1). In this case the

fiber of the orbibundle is CP1/Zm, and if s = l2 the Reeb vector field is regular in which case there is no branch divisor and
(Sn,∅) has a trivial orbifold structure. Note that in the latter case l2 must divide w1 − w2. Hence, for l2 = 1 every w-Sasaki
cone has a unique regular ray of Reeb vector fields.

The induced Kähler class on Bl1,l2,v,w = (Sn,∆) can now be determined to be a multiple of the admissible classΩr from
(6), where r =

w1v2−w2v1
w1v2+w2v1

[29]. Therefore the constructions of admissible Kähler metrics produces quasi-regular Sasaki met-
rics in thew-cone of the joinsMl,w. Moreover these constructions can be extended to the irregular case as well. We refer to
the paper [29] for the details.

5. The topology of the joins

Here we discuss some general results concerning the topology of the joins Ml,w. Of course, as we shall see we can say
much more in certain specific cases. First we easily see from the long exact homotopy sequence of the S1-bundle πL of
Diagram (16) that

Lemma 5.1. Let Ml,w be as described above. Then
(1) The natural map π1(M)−−−→π1(Ml,w) is surjective. In particular, if M is simply connected so is Ml,w.
(2) If M is simply connected, then π2(Ml,w) ≈ π2(M)⊕ Z.
(3) For i ≥ 3, we have πi(Ml,w) ≈ πi(M)⊕ πi(S3).

5.1. The contact structure

The first Chern class of the complex vector bundle Dl1,l2,w is an important contact invariant. For our joins we have

c1(Dl1,l2,w) = π∗

Mc1(N)− l1|w|γ , (21)
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where γ is a generator in H2(Ml,w,Z). We are particularly interested in a special case. Let ωN denote the Kähler form on N .
We say that the class [ωN ] is quasi-monotone if c1(N) = IN [ωN ] for some integer IN . Here IN is the Fano index when IN is
positive (the monotone case) and the canonical index when it is negative. We also allow the case IN = 0. So when [ωN ] is
quasi-monotone we have

c1(Dl1,l2,w) = (l2IN − l1|w|)γ . (22)

Of course, from this one can extract a topological invariant, namely, the second Stiefel–Whitney classw2(Ml,w)which is
the mod 2 reduction of c1(Dl1,l2,w). In the quasi-monotone case we have

w2(Ml,w) ≡ (l2IN − l1|w|) mod 2. (23)

5.2. Computing the cohomology ring

More importantly there is a method, used in [34,8] (see also Section 7.6.2 of [6]) for computing the cohomology ring of
Ml,w. Since there are orbifolds involved it is convenient to work with related fibrations involving classifying spaces instead
of those of Diagram (16). We thus have the commutative diagram of fibrations

M × S3w −−−−→ Ml,w −−−−→ BS1=


ψ

M × S3w −−−−→ N × BCP1
[w] −−−−→ BS1 × BS1

(24)

where BG is the classifying space of a group G or Haefliger’s classifying space [35] of an orbifold if G is an orbifold. Note that
the lower fibration is a product of fibrations. Then using

Lemma 5.2. For w1 andw2 relatively prime positive integers we have

Hr
orb(CP

1
[w],Z) = Hr(BCP1

[w],Z) =


Z for r = 0, 2,
Zw1w2 for r > 2 even,
0 for r odd

together with Diagram (24) and standard arguments we obtain

Algorithm 5.3. Given the differentials in the spectral sequence of the fibration

M−−→N−−→BS1,

one can use the commutative diagram (24) to compute the cohomology ring of the join manifoldMl,w.

A case of particular interest occurs by taking M = S2p+1 with p > 1 [36]. The case p = 1 behaves topologically different
and is treated in Section 7.1.

Theorem 5.4. In each odd dimension 2p + 3 > 5 there exist countably infinite simply connected toric contact manifolds Ml,w
= S2p+1 ⋆l1,l2 S

3
w of Reeb type depending on 4 positive integers l1, l2, w1, w2 satisfying gcd(l2, l1wi) = gcd(w1, w2) = 1, and

with integral cohomology ring

H∗(Ml,w,Z) ≈ Z[x, y]/(w1w2l21x
2, xp+1, x2y, y2)

where x, y are classes of degree 2 and 2p + 1, respectively. Furthermore, with l1, w1, w2 fixed there are a finite number of
diffeomorphism types with the given cohomology ring. Hence, in each such dimension there exist simply connected smooth
manifolds with countably infinite toric contact structures of Reeb type that are inequivalent as contact structures.

6. The main results

In this section we collect the main general results that come from the construction of Section 4. More can be said in the
special case of dimension 5 and we will present our results on S3-bundles over Riemann surfaces in Section 7. Our general
results which appear in [30,29,36] prove the existence of extremal and constant scalar curvature Sasaki metrics by applying
the admissible construction of Section 3 to the join construction of Section 4.

Remark 6.1. Whenever, in the following, we state that a Sasaki structure is Einstein, is a Ricci soliton, is extremal, or has
constant scalar curvature, we mean that there is a Sasaki structure in the same isotopy class with such property.

6.1. Constant scalar curvature Sasaki metrics

Our main results on constant scalar curvature were given in [29]:



8 C.P. Boyer, C.W. Tønnesen-Friedman / Journal of Geometry and Physics ( ) –

Theorem 6.2. Let Ml,w be the S3w-join with a regular Sasaki manifold M which is an S1-bundle over a compact Kähler manifold
N with constant scalar curvature. Then for each vector w = (w1, w2) ∈ Z+

× Z+ with relatively prime components satisfying
w1 > w2 there exists a Reeb vector field ξv in the 2-dimensional w-Sasaki cone on Ml,w such that the corresponding ray of
Sasakian structures Sa = (a−1ξv, aηv,Φ, ga) has constant scalar curvature. Suppose that in addition the scalar curvature of N
satisfies sN ≥ 0, then the w-Sasaki cone is exhausted by extremal Sasaki metrics. Moreover, if the scalar curvature of N satisfies
sN > 0, then for sufficiently large l2 there are at least three CSC rays in thew-Sasaki cone of the join Ml,w.

Most often the CSC Sasaki metrics belong to irregular Sasakian structures.
Generally, it seems difficult to say anything about the diffeomorphism types of Ml,w. However, when M is an odd

dimensional sphere we can say a bit more. Combining Theorems 5.4 and 6.2 we obtain:

Theorem 6.3. The contact structures of Theorem 5.4 admit a p+2 dimensional cone of Sasakian structures with a ray of constant
scalar curvature Sasaki metrics and for l2 large enough they admit at least 3 such rays. Moreover, for l1, w1, w2 fixed, there are
a finite number of diffeomorphism types; hence, in each odd dimension 2p + 3 > 5 there are smooth manifolds with a countably
infinite number of inequivalent contact structures each having at least 3 rays of CSC Sasaki metrics.

It is interesting to note the relation with the CR Yamabe problem [37] which proves the existence of a ‘pseudohermitian’
metric of constantWebster scalar curvature for any strictly pseudoconvex CR structure1 (D, J).When (D, J) is the underlying
CR structure of a Sasaki metric, the pseudohermitian metric is precisely the transverse Kähler metric gT , and the Webster
scalar curvature is precisely the scalar curvature sT of gT . The CR Yamabe problem has an important invariant, the so-called
CR Yamabe invariant λ(M). We refer to [37] for its definition and properties. Suffice it here to say that if M is not an odd
dimensional sphere, λ(M) is attained by some contact form in the contact structure with constantWebster scalar curvature.
Moreover, if λ(M) satisfies λ(M) ≤ 0, the constant scalar curvature solution is unique up to transverse homothety. So for
Sasaki structures with λ(M) ≤ 0 the CSC ray is not only unique in the Sasaki cone, but in the entire infinite dimensional
Reeb cone. However, generally the transverse homothety class of CSC metrics is not unique. Our results give examples of
Sasakian structures that exhibit this lack of uniqueness for the CR Yamabe problem, and they occur in the two-dimensional
subcone t+w . When w ≠ (1, 1) there are an infinite number of CR structures with three CSC rays which are inequivalent
under CR automorphisms.

6.2. Sasaki–Einstein metrics

For Sasaki–Einstein manifolds we have [30]

Theorem 6.4. Let Ml,w be the S3w-join with a regular Sasaki manifold M which is an S1-bundle over a compact positive Kähler–
Einstein manifold N with a primitive Kähler class [ωN ] ∈ H2(N,Z). Assume that the relatively prime positive integers (l1, l2) are
the relative Fano indices given explicitly by

l1 =
IN

gcd(w1 + w2, IN)
, l2 =

w1 + w2

gcd(w1 + w2, IN)
,

where IN denotes the Fano index of N. Then for each vector w = (w1, w2) ∈ Z+
×Z+ with relatively prime components satisfying

w1 > w2 there exists a Reeb vector field ξv in the 2-dimensional w-Sasaki cone on Ml,w such that the corresponding Sasakian
structure S = (ξv, ηv,Φ, g) is Sasaki–Einstein. Furthermore, the Sasaki–Einstein metric is unique up to transverse holomorphic
transformations. Additionally (up to isotopy) the Sasakian structure associated to every single ray, ξv, in the w-Sasaki cone is a
Sasaki–Ricci soliton as well as extremal.

These Sasaki–Einstein metrics were obtained earlier by physicists in [38,39] by a different method, and they are most
often irregular. A special case of particular interest are the Y p,q structures on S2 × S3 which are discussed further in
Example 7.6 below. The uniqueness statement in the theorem follows from [40] which proves transverse uniqueness, up to
transverse holomorphic transformations, then using [41] which proves uniqueness in the Sasaki cone.

6.3. Extremal Sasaki metrics

As far as general extremal Sasaki metrics are concerned we have

Theorem 6.5. Let Ml,w be the S3w-join with a regular Sasaki manifold M which is an S1-bundle over a compact Kähler manifold
N with constant scalar curvature sN ≥ 0. Then the w-Sasaki cone is exhausted by extremal Sasaki metrics.

In particular, if the Kähler manifold N has no Hamiltonian vector fields, then the w-Sasaki cone is the entire Sasaki
cone in which case the entire Sasaki cone is exhausted by extremal Sasaki metrics. A particular example is when N is

1 A strictly pseudoconvex CR structure is a particular case of a contact structure.
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an algebraic K3 surface in which case there are many choices of complex structures and many choices of line bundles.
In all cases M = 21#(S2 × S3). It is interesting to contemplate the possible diffeomorphism types of the 7-manifolds
Ml,w = 21#(S2 × S3) ⋆l1,l2 S

3
w.

When sN < 0 there can be obstructions to the existence of extremal Sasaki metrics as we shall see explicitly in the next
section.

7. Sasakian geometry of S3-bundles over Riemann surfaces

Much can be saidwhendimR N = 2, that iswhenN is a Riemann surfaceΣg of genus g . In this case there is a classification,
and eachΣg admits a constant scalar curvature Kähler metric. It is well known that there are exactly two such bundles up to
diffeomorphism, the trivial bundleΣg×S3 and thenon-trivial bundleΣg×̃S3. Although there are some important differences
when the Riemann surface has genus g = 0, we first describe the properties they have in common. We should, however,
note that historically the two cases were treated separately. An important difference that we should mention is that for
g > 0 we must have l2 = 1 in order to have an S3-bundle over a Riemann surface. It is precisely in this case that there are
similarities between the g = 0 and g ≠ 0 cases. When g > 0 the case l2 > 1 was studied in [42].

7.1. Genus g = 0

Toric contact structures of Reeb type, hence Sasakian, on S3-bundles over S2 were studied extensively in [43–47] among
others. In this case the Sasaki cone has dimension three. We also emphasize at this stage that the admissibility condition
(15) must hold. The following is a restatement of Theorem 2 of [47].

Theorem 7.1. The contact structures Dl1,l2,w and Dl′1,l2,w
′ are contactomorphic if the following conditions hold

l1|w| = l′1|w
′
|, gcd(l2, l1(w1 − w2)) = gcd(l2, l′1(w

′

1 − w′

2)).

Notice that when l2 = 1 we have (which was missed in [47]).

Corollary 7.2. The contact structures Dl1,1,w and Dl′1,1,w
′ are contactomorphic if and only if l1|w| = l′1|w

′
|, i.e. if and only their

first Chern classes are equal.

There is another result that follows from Theorem 7.1 together with Theorems 4.2 and 4.82 of [47]. First, wemention that
the Reeb vector fields in these theorems are almost regular, and then we recall that part (2) of these theorems says that the
orbifold structure of (Sn,∆) is trivial if and only if l2 dividesw1 − w2. This implies

Corollary 7.3. If any w-cone of a bouquet has a regular Reeb field then allw-cones of the bouquet have a regular Reeb field.

We call a bouquet with a regular Reeb vector field a regular bouquet. There are many regular bouquets in S3-bundles over
S2. For examples of regular bouquets see Section 3 of [48].

The phenomenon of the existence of multiple CSC rays in the Sasaki cone on S3-bundles over S2 was discovered by
Legendre [46]. Here we give a bound for the existence of multiple CSC rays in thew-Sasaki subcone.

Proposition 7.4. Consider the toric contact structure Dl1,l2,w withw ≠ (1, 1) on an S3-bundle over S2. If the inequality

2l2 > 16l1w1 − 5l1w2

holds, then there are at least three CSC Sasaki metrics in thew-Sasaki subcone.
Proof. The proof follows from the analysis of Example 6.7 in [36]. �

Whenw = (1, 1) there can also be multiple CSC rays, but two of them are equivalent under the action of theWeyl group
of the CR automorphism group. In this case our bound for multiple rays is 2l2 > 11l1.

Example 7.5. Our first example is a 4-bouquet on S2 × S3 when l2 = 1. In this case the orbifold structure is trivial, viz.
(S2m,∅)where S2m is an even Hirzebruch surface withm =

1
2 l1(w1 − w2). So this is a regular bouquet.

4-bouquet on S2 × S3

m l1 w
0 4 (1, 1)
1 1 (5, 3)
2 2 (3, 1)
3 1 (7, 1)

However, the 4-bouquet does not persist for arbitrary l2. First, we need to satisfy the admissibility condition (15). Thus,
to satisfy condition (15) for all 4 contact structures we need gcd(l2, 210) = 1 in which case l2 cannot divide w1 − w2. So

2 There is a typo in part (2) of Theorem 4.8 of [47]. 2k − j + 1 should be 2k − 2j + 1.
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if we choose such an l2 ≠ 1 we see that the three members with m = 1, 2, 3 form a non-regular 3-bouquet which cannot
include m = 0. So for such an l2 > 1 the 3-bouquet has only non-trivial orbifold quotients, (S2m,∆) for m = 1, 2, 3 where
the ramification index of both divisors is l2 for all three quotients. Furthermore, by Theorem 6.2 for l2 sufficiently large, there
exist 3 CSC rays in each of the 3 Sasaki cones of the bouquet. In all cases the contact structure D is determined by l2 since
its first Chern class is c1(D) = 2l2 − 8. In all cases the symplectic form on the base orbifold is σ0 + 4σF where σ0, σF are the
standard area forms on the base S2 and fiber S2, respectively.

From Proposition 7.4 we see that if we choose l2 > 53 all three members of the 3-bouquet will have three CSC Sasaki
metrics.

Example 7.6. This case was treated in [45,47,30]. It is the Y p,q manifolds diffeomorphic to S2 × S3 discovered in [38], where
p and q are relatively prime integers satisfying 1 ≤ q < p. The relation between the pair (p, q) and our notation is l2 = p
and l1w = (p + q, p − q). Applying Theorem 7.1 to the Y p,q’s we see that Y p,q is contactomorphic to Y p′,q′

if p′
= p and

gcd(p′, 2q′) = gcd(p, 2q). But since p and q are relatively prime we conclude that Y p′,q′

is contactomorphic to Y p,q if p = p′.
So if for each integer p > 1 we let φ(p) denote the Euler phi function, that is, the number of positive integers q that are less
than p and relatively prime to p, then there is a φ(p)-bouquetBφ(p) of Sasaki cones on S2 ×S3 such that each Sasaki cone has
a unique Reeb vector field with a Sasaki–Einsteinmetric in itsw subcone. Uniqueness follows from [49]. Also for each Sasaki
cone each element of thew subcone has, up to contact isotopy, both an extremal Sasaki metric and a Sasaki–Ricci soliton.

7.2. Genus g > 0

The existence of CSC Sasaki metrics follows from Theorem 6.2; however, this case was studied in detail earlier in
[50,33,51]. In particular, when g > 0 there is a unique ray of admissible constant scalar curvature Sasaki metrics in each
2-dimensional Sasaki cone. But also in this case the bouquet phenomenon occurs.

Before stating our general theorem, we revisit Example 7.5:

Example 7.7 (Example 7.5 Revisited).When g > 0wemust take l2 = 1 to obtainΣg ×S3 [42], and for this casewe recapture
the 4-bouquet of Example 7.5 for all genera g .

More generally we have

Theorem 7.8. Let M be the total space of an S3-bundle over a Riemann surface Σg of genus g > 0. Then for each k ∈ Z+

the 5-manifold M admits a contact structure Dk of Sasaki type consisting of k 2-dimensional Sasaki cones κ(Dk, Jm) labeled by
m = 0, . . . , k − 1 each of which admits a unique ray of Sasaki metrics of constant scalar curvature such that the transverse
Kähler structure admits a Hamiltonian 2-form. Moreover, if M is the trivial bundleΣg × S3, there is a k + 1-bouquet Bk+1(Dk),
consisting of k 2-dimensional Sasaki cones and one 1-dimensional Sasaki cone on each contact structure Dk.

The k 2-dimensional Sasaki cones onΣg × S3 are inequivalent as S1-equivariant contact structures. The 2-tori associated
to the w-Sasaki cones belong to distinct conjugacy classes of maximal tori in the contactomorphism group Con(Dk). This is
shown by computing equivariant Gromov–Witten invariants.

We know that for g ≤ 4 the entire 2-dimensionalw-cones are exhausted by extremal Sasaki metrics; however, there are
also some non-existence results in this case as in [23].

Theorem 7.9. For any choice of genus g = 20, 21, . . . there exists at least one choice of (k,m)with m = 1, . . . , k−1 such that
the regular ray in the Sasaki cone κ(Dk, Jm) admits no extremal representative.
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