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a b s t r a c t

In this paper, we study the Bach flow which is defined as

∂

∂t
gij = −Bij

where Bij is the Bach tensor. Among other things, we study the solitons to the Bach flow.
We also study the Bach flow on a four-dimensional Lie group, in which we study the
convergence of the Bach flow.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In an n-dimensional Riemannian manifold (Mn, g), n ≥ 4, the Bach tensor, introduced by Bach in [1], is defined as

Bij =
1

n − 3
∇k∇lWikjl +

1
n − 2

RklWikjl. (1.1)

Hereafter, we use the Einstein summation convention: we sum over the repeat indices. Hence, (1.1) should be read as

Bij =
1

n − 3

n∑
k,j=1

∇k∇lWikjl +
1

n − 2

n∑
k,j=1

RklWikjl.

Here

Wikjl = Rikjl −
1

n − 2
(Rijgkl + Rklgij − Rilgkj − Rkjgil)

+
R

(n − 1)(n − 2)
(gijgkl − gilgkj)

(1.2)

is the Weyl tensor, Rikjl is the Riemann curvature tensor, Rij is the Ricci curvature tensor, and R is the scalar curvature of the
metric g . It is easy to see that if (Mn, g) is either locally conformally flat (i.e. Wikjl = 0) or Einstein, then (Mn, g) is Bach-flat:
Bij = 0. See Proposition 2.2 when g is Einstein.
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The case when n = 4 is the most interesting, as it is well known that (see [2]) on any compact 4-manifold (M4, g),
Bach-flat metrics are precisely the critical point of the conformally invariant functional on the space of metrics,

W(g) =

∫
M

|W |
2
gdVg

whereW denotes the Weyl tensor of g . Moreover, if (M4, g) is either half conformally flat (i.e. self-dual or anti-self-dual) or
locally conformal to an Einstein manifold, then its Bach tensor vanishes.

A geometric flowwhichwas defined using the Bach tensor has been introduced in [3]: the Bach flow is defined as follows:
∂

∂t
gij = −Bij. (1.3)

In [3], Das and Kar studied the Bach flow on some product manifolds equipped with the product metric.
In this paper, we study the Bach flow more generally. After collecting some properties of the Bach flow in Section 2, we

study in Section 3 the solitons to the Bach flow. In particular, we prove that any compact soliton to the Bach flow must be
Bach-flat. See Theorems 3.1 and 3.2. Finally, in Section 4, we study the Bach flow on a four-dimensional Lie groups, in which
we consider the convergence of the Bach flow.

2. Some properties of Bach flow

In this section, we collect some properties of Bach flow. Along the Bach flow (1.3), we have
∂

∂t
dVg =

1
2
g ijBijdVg = 0, (2.1)

since the Bach tensor is trace-free. Therefore, we have the following:

Proposition 2.1. The Bach flow (1.3) preserves the volume of M.

Note that the Bach flow does not preserve the conformal structure in general. Indeed, the Bach flow preserves the
conformal structure only if the initial metric is Bach flat. To see this, note that if g̃ = e2ug , then

B̃ij = e−2uBij (2.2)

where B̃ij and Bij are the Bach tensors of g̃ and g respectively. Therefore, if g̃ = e2ug is the solution of the Bach flow, we have

2e2u
∂u
∂t

gij = e−2uBij (2.3)

by (1.3) and (2.2). Taking trace of both sides in (2.3), we get
∂u
∂t

= 0 (2.4)

since the Bach tensor is trace-free by the definition in (1.1). It follows from (2.4) that ∂
∂t g̃ij = 0, which implies that B̃ij = 0

for all t ≥ 0. In particular, the initial metric is Bach flat.
The following proposition is well-known.

Proposition 2.2. If g is Einstein, then g must be Bach flat.

To be self-contained, we give the proof here.

Proof of Proposition 2.2. If g is Einstein, then

Rij =
R
n
gij. (2.5)

In particular, the scalar curvature Rmust be constant since n ≥ 4. It follows from (2.5) that Weyl tensor can be rewritten as

Wikjl = Rikjl −
1

n − 2
(Rijgkl + Rklgij − Rilgkj − Rkjgil)

+
R

(n − 1)(n − 2)
(gijgkl − gilgkj)

= Rikjl −
R

n(n − 1)
(gijgkl − gilgkj).

(2.6)

It follows from (1.2) and (2.5) that

RklWikjl =
R
n
gklWikjl = 0. (2.7)
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Therefore, it follows from (2.6) and (2.7) that the Bach tensor can be rewritten as

Bij =
1

n − 3
∇k∇lWikjl +

1
n − 2

RklWikjl

=
1

n − 3
∇k∇l

(
Rikjl −

R
n(n − 1)

(gijgkl − gilgkj)
)

=
1

n − 3
∇k∇lRikjl.

(2.8)

It follows from Bianchi identity that

∇lRikjl = −∇iRkljl − ∇kRlijl

= −∇iRkljl + ∇kRiljl

= −∇iRkj + ∇kRij

= −∇i

(R
n
gkj
)

+ ∇k

(R
n
gij
)

= 0

(2.9)

where the second last equality follows from (2.5). Now the result follows from (2.8) and (2.9). □

Therefore, the Bach flow does not preserve the Einstein condition in general. Indeed, the Bach flow preserves the Einstein
condition only if the initial metric is Bach flat. To see this, we note that, by Proposition 2.2, if g is the solution of the Bach
flow (1.3) and is Einstein for all t ≥ 0, then g must be Bach flat for all t ≥ 0.

Next we derive the evolution equation of the Ricci curvature tensor and the scalar curvature along the Bach flow.

Lemma 2.3. Along the Bach flow (1.3), the Ricci curvature tensor of g satisfies the following evolution equation:

∂

∂t
Rij =

1
2

(
∆gBij − ∇k∇iBjk − ∇k∇jBik

)
.

Proof. Note that (see the proof of Lemma 2.3 in [4])

∂

∂t
Rij = ∇k

( ∂

∂t
Γ k
ij

)
− ∇i

( ∂

∂t
Γ k
kj

)
=

1
2

[
−∆g

( ∂

∂t
gij
)

− ∇i∇j

(
gkl ∂

∂t
gkl
)

+ ∇k∇i

( ∂

∂t
gjk
)

+ ∇k∇j

( ∂

∂t
gik
)]

.

Combining this with (1.3) and using the fact that the Bach tensor is trace-free, we get the result. □

Lemma 2.4. Along the Bach flow (1.3), the scalar curvature of g satisfies the following evolution equation:

∂

∂t
R = RijBij − ∇j∇iBij.

Proof. Since R = g ijRij where (g ij) is the inverse of (gij), the result follows from Lemma 2.3 and

∂

∂t
g ij

= Bij

by (1.3). □

By Lemma 5.1 in [5], we have

∇jBij =
n − 4

(n − 2)2
CijkRjk (2.10)

where Cijk is the Cotton tensor defined by

Cijk = ∇iRjk − ∇jRik −
1

2(n − 1)
(gjk∇iR − gik∇jR).

Especially, in dimension four, the Bach tensor is divergence-free, i.e.

∇iBij = 0.

Combining this with Lemmas 2.3 and 2.4, we have
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Corollary 2.5. In dimension four, the scalar curvature of g satisfies the following evolution equations along the Bach flow (1.3):

∂

∂t
R = RijBij.

To conclude this section, we note that the short time existence was known for the flow
∂

∂t
gij = Bij +

1
12

∆gR gij

in dimension 4 (see [6]). It would be interesting to see if one can prove the short time existence of the Bach flow (1.3) by
following the argument in [6]. See also [7] and [8].

3. Soliton to the Bach flow

In this section, we study the soliton to the Bach flow. Soliton is a self-similar solution to geometric flow. More precisely,
given a Riemannian manifold (M, g0), g(t) is the soliton of the geometric flow

∂

∂t
g(t) = F (g(t)) with g(0) = g0, (3.1)

if

g(t) = σ (t)ϕ∗

t (g0) (3.2)

is a solution to (3.1), where σ is a function depending only on t with σ (0) = 1 and ϕt is a family of diffeomorphisms of M
such that ϕ0 = idM . For the Ricci flow

∂

∂t
gij = −2Rij,

the Ricci soliton takes the form:

Rij = cgij + (LXg)ij.

To derive this, one can take the derivative of (3.2) with respect to t and evaluate it at t = 0. Ricci soliton has been studied
extensively for the last few decades. See [9–12] and references therein for results related to Ricci soliton.

Similar to the Ricci soliton, soliton to the Bach flow is given by

Bij = cgij + (LXg)ij. (3.3)

Here L denotes the Lie derivative. If the vector field X is gradient, i.e. X = ∇g f for some smooth function f on M , then (3.3)
becomes the gradient soliton:

Bij = cgij + ∇i∇jf . (3.4)

We have the following:

Theorem 3.1. Any compact gradient soliton (3.4) to the Bach flow (1.3)must be Bach-flat.

Proof. By the definition (1.1), the Bach tensor is trace-free. Hence, taking trace of both sides of (3.4), we get

0 = cn + ∆f . (3.5)

Integrating (3.5) overM , we get cnVol(M, g) = 0, which implies that

c = 0. (3.6)

It follows from (3.5) and (3.6) that f is a harmonic function. Since any harmonic function on a compact manifoldM must be
constant, we deduce from (3.4) and (3.6) that Bij = 0, i.e. (M, gij) is Bach-flat. This proves the assertion. □

More generally, we have the following:

Theorem 3.2. Let (M, gij, X) be a 4-dimensional compact soliton (3.3) to the Bach flow (1.3). Then (M, gj)must be Bach-flat and
X is a Killing vector field.

Proof. Our proof is inspired by the proof in [13]. Note that if φ is a symmetric (0, 2)-tensor field, then

⟨Lξg, φ⟩ = 2 div(iξφ) − 2(divφ)(ξ ) (3.7)
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for any vector field ξ on M . Here iξφ is the 1-form given by iξφ(·) = φ(ξ, ·). Taking divergence in (3.3) and by the fact that
the Bach tensor (1.1) is divergence-free in dimension four, we have

div(LXg) = −c div(g) = 0. (3.8)

Next, put φ = LXg and ξ = X in (3.7), we obtain

∥LXg∥
2

= 2 div(iXLXg) − 2 div(LXg)(X) = 2 div(iXLXg) (3.9)

by (3.8). Integrating (3.9) overM , we get∫
M

∥LXg∥
2

= 2
∫
M
div(iXLXg) = 0,

which implies that LXg = 0 and hence X is Killing. Furthermore, by (3.3) and the fact that the Bach tensor is trace-free, the
constant c must vanish in (3.3). Hence, (M, gij) is Bach-flat. This proves the assertion. □

Following the proof of Theorem 3.1, we have the following corollary for the noncompact case.

Corollary 3.3. Let (M, gij, f ) be a noncompact gradient soliton (3.4) to the Bach flow such that M has nonnegative sectional
curvature and the gradient of f satisfying∫

M
|∇g f |

n
n−1 < ∞,

then (M, gij)must be Bach-flat.

Proof. Taking trace of (3.4), again we get (3.5). If c ≥ 0, then it follows from (3.5) that −f is a subharmonic function; and
if c < 0, then it follows from (3.5) that f is a subharmonic function. In either case, we can conclude that f is a constant
function by Corollary 2’ in [14], which says that ifM is an n-dimensional complete noncompact Riemannian of nonnegative
sectional curvature, then no nonconstant C2 subharmonic function u has its gradient∇gu satisfying

∫
M |∇gu|

n
n−1 < ∞. Since

f is constant, we have c = 0. Hence, it follows from (3.4) that Bij = 0, i.e. (M, gij) is Bach-flat. This proves the assertion. □

We also have the following result for the four-dimensional gradient soliton to the Bach flow.

Theorem 3.4. Let (M, gij, f ) be a four-dimensional gradient soliton (3.4) to the Bach flow such that M has positive or negative
Ricci curvature, then (M, gij) must be Bach-flat.

Proof. Applying ∇j to (3.4) and using (2.10), we get

n − 4
(n − 2)2

CjikRik = ∇iBij = ∇i∇i∇jf = ∇j∆f + Rjk∇kf .

Combining this with (3.5), we get

n − 4
(n − 2)2

CjikRik = Rjk∇kf .

Especially, if n = 4, we have

Rjk∇kf = 0 (3.10)

In particular, if the Ricci curvature tensor is positive definite or negative definite, then we can conclude from (3.10) that
f is constant. By (3.5), we have c = 0. Hence, it follows from (3.4) that Bij = 0, i.e. (M, gij) is Bach-flat. This proves the
assertion. □

In the noncompact case, the following result shows the existence of non-trivial gradient solitons to the Bach flow.

Theorem 3.5. Suppose (R2, g0) is the 2-dimensional Euclidean space equipped with the flat metric g0, (S2, g1) is the 2-
dimensional sphere equippedwith the standardmetric g1. The product manifoldR2

×S2 equippedwith the product metric g0
×g1

is a non-trivial gradient soliton to the Bach flow with c = −
1
12 in (3.4), for any function f = f (x, y) in R2 of the form

f (x, y) =
1
12

(x2 + y2) + C (3.11)

where C is a constant.
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Proof. Suppose that (M, gM ) and (N, gN ) are two-dimensional Riemannian manifolds. We are going to use the Greek letter
µ, ν, α to represent the indices of M and the English letter i, j, k to represent the indices of N . Then the Bach tensor of the
product manifoldM × N equipped with the product metric gM

× gN splits as follows: (see Eqs. (10) and (11) in [3])

Bµν =
1
3
∇µ∇νRgM −

1
3
gM
µν

[
∇α∇αRgM −

1
2
∇k∇kRgN +

1
4

(
(RgM )2 − (RgN )

2
)]

in M,

Bij =
1
3
∇i∇jRgN −

1
3
gN
ij

[
∇k∇kRgN −

1
2
∇α∇αRgM +

1
4

(
(RgN )

2
− (RgM )2

)]
in N.

(3.12)

Here RgM and RgN are the scalar curvatures of gM and gN respectively. Since the scalar curvatures of g0 and g1 are given by
Rg0 = 0 and Rg1 = 1 respectively, it follows from (3.12) that

Bµν =
1
12

g0
µν in R2,

Bij = −
1
12

g1
ij in S2.

(3.13)

Combining (3.13) with the equation of the gradient soliton of the Bach flow (3.4), we obtain

1
12

g0
µν = cg0

µν + ∇µ∇ν f in R2,

−
1
12

g1
ij = cg1

ij + ∇i∇jf in S2.
(3.14)

Therefore, if c = −
1
12 and f depends only onR2, then the second equation in (3.14) is satisfied. On the other hand, if c = −

1
12 ,

then the first equation in (3.14) implies that

1
6
g0
µν = ∇µ∇ν f in R2,

which implies that f = f (x, y) is a function in R2 satisfying

fxx = fyy =
1
6
and fxy = 0.

Solving these, we conclude that

f (x, y) =
1
12

(x2 + y2) + C

for some constant C . This proves the assertion. □

In fact, we have the following:

Theorem3.6. All the nontrivial gradient solitons (3.4) to the Bach flow of the product manifoldR2
×S2 equippedwith the product

metric g0
× g1 must be in the form of (3.11).

Proof. To see this, we can follow the proof of Theorem 3.5 to obtain (3.14). Taking trace of the second equation in (3.14), we
get

∆g1 f = −2c −
1
6
in S2. (3.15)

If c ≥ −1/12, then f is superharmonic by (3.15); and if c ≤ −1/12, then f is subharmonic by (3.15). In either case, since S2
is compact, f must be a constant function on S2. This implies that f is a function depending only on R2 and c = −1/12 by
(3.15). Now we can follow the remaining part of the proof of Theorem 3.5 to conclude that f must be in the form of (3.11).
This proved the assertion. □

Suppose (H2, g−1) is the 2-dimensional hyperbolic space equipped with the standard metric g−1. Following the proof of
Theorem 3.5, we can also prove the following:

Theorem 3.7. The product manifold R2
× H2 equipped with the product metric g0

× g−1 is a non-trivial gradient soliton to the
Bach flow with c = −

1
12 in (3.4), for any function f = f (x, y) in R2 of the form

f (x, y) =
1
12

(x2 + y2) + C

where C is a constant.
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Proof. Since the scalar curvatures of g0 and g−1 are given by Rg0 = 0 and Rg−1 = −1 respectively, it follows from (3.12) that

Bµν =
1
12

g0
µν in R2,

Bij = −
1
12

g−1
ij in H2.

Combining these with the equation of the gradient soliton of the Bach flow (3.4), we obtain

1
12

g0
µν = cg0

µν + ∇µ∇ν f in R2,

−
1
12

g−1
ij = cg−1

ij + ∇i∇jf in H2.

(3.16)

Now we can follow the remaining part of the proof of Theorem 3.5 to get the result. □

In fact, we can classify the gradient solitons to the Bach flow of the product manifold R2
×H2 equipped with the product

metric g0
× g−1. To this end, we can follow the proof of Theorem 3.7 to obtain (3.16). It follows from (3.16) that f = f1 + f2

where f1 and f2 are functions depending only on R2 and H2 respectively. On the other hand, f1 and f2 satisfy

1
12

g0
µν = cg0

µν + ∇µ∇ν f1 in R2,

−
1
12

g−1
ij = cg−1

ij + ∇i∇jf2 in H2.

(3.17)

If we denote the coordinates of R2 by (x1, x2), then it follows from the first equation of (3.17) that

∂2f1
∂x21

=
∂2f1
∂x22

=
1
12

− c and
∂2f1

∂x1∂x2
= 0. (3.18)

It follows from ∂2f1
∂x1∂x2

= 0 that f1(x1, x2) = h1(x1)+h2(x2). Combining this with the first equation in (3.18), we conclude that
h1 and h2 are quadratic functions in x1 and x2 respectively. That is,

f1(x1, x2) =

( 1
24

−
c
2

)
(x21 + x22) + C1x1 + C2x2 + C

for some constants C1, C2, and C . On the other hand, if we denote the coordinates of H2 by (w1, w2), i.e. H2
= {(w1, w2) ∈

R2
|w2 > 0}, then the metric g−1 is given by

g−1
ij =

δij

(w2)2
. (3.19)

Using the formula, we can compute the Christoffel symbols of g−1:

Γ 1
11 = Γ 2

12 = Γ 2
21 = Γ 1

22 = 0, Γ 1
12 = Γ 1

21 = Γ 2
22 = −

1
w2

, Γ 2
11 =

1
w2

.

This implies that

∇1∇1f2 =
∂2f2
∂w2

1
− Γ 2

11
∂ f2
∂w2

=
∂2f2
∂w2

1
−

1
w2

∂ f2
∂w2

,

∇1∇2f2 =
∂2f2

∂w1∂w2
− Γ 1

12
∂ f2
∂w1

=
∂2f2

∂w1∂w2
+

1
w2

∂ f2
∂w1

,

∇2∇2f2 =
∂2f2
∂w2

2
− Γ 2

22
∂ f2
∂w2

=
∂2f2
∂w2

2
+

1
w2

∂ f2
∂w2

.

(3.20)

Combining (3.19), (3.20), and the second equation of (3.17), we obtain

∂2f2
∂w2

1
−

1
w2

∂ f2
∂w2

+

( 1
12

+ c
) 1

w2
2

= 0,

∂2f2
∂w1∂w2

+
1
w2

∂ f2
∂w1

= 0,

∂2f2
∂w2

2
+

1
w2

∂ f2
∂w2

+

( 1
12

+ c
) 1

w2
2

= 0.

(3.21)
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Since
∂

∂w1

(
∂ f2
∂w2

+
1
w2

f2

)
=

∂2f2
∂w1∂w2

+
1
w2

∂ f2
∂w1

= 0,

by the second equation of (3.21), the function ∂ f2
∂w2

+
1

w2
f2 depends only on w2. That is,

∂ f2
∂w2

+
1
w2

f2 = h(w2)

for some function h. Differentiate it with respect to w2, we get

∂2f2
∂w2

2
+

1
w2

∂ f2
∂w2

−
1
w2

2
f2 = h′(w2).

Combining this with the third equation of (3.21), we obtain

−

( 1
12

+ c
) 1

w2
2

−
1
w2

2
f2 = h′(w2).

From this, we see that f2 depends only on w2. In particular, we have ∂2f2
∂w2

1
= 0. Hence, it follows from the first equation of

(3.21) that

−
1
w2

∂ f2
∂w2

+

( 1
12

+ c
) 1

w2
2

= 0.

Solving it, we obtain

f2(w1, w2) =

( 1
12

+ c
)
logw2.

Combining all these, we have the following:

Theorem 3.8. All the gradient solitons (3.4) to the Bach flow of the product manifold R2
× H2 equipped with the product metric

g0
× g−1 must be in the form

f (x1, x2, w1, w2) =

( 1
24

−
c
2

)
(x21 + x22) + C1x1 + C2x2 +

( 1
12

+ c
)
logw2 + C

for (x1, x2) ∈ R2 and (w1, w2) ∈ H2, where C1, C2, and C are constants.

4. A Lie group in four dimension

In [15], Isenberg–Jackson–Lu considered the Ricci flow on locally homogeneous closed 4-manifolds. In particular, they
studied the Ricci flow on 4-dimensional unimodular Lie groups.

In this section, we consider the Bach flow on a four-dimensional Lie group, which is the class U1[1, 1, 1] appeared in
section A2. of [15].

Let θi be the frame of 1-forms dual to Xi. Assume that the solution to the Bach flow takes the form

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2 + D(t)(θ4)2 (4.1)

with the initial condition

g(0) = λ1(θ1)2 + λ2(θ2)2 + λ3(θ3)2 + λ4(θ4)2. (4.2)

Then X̄1 =
1

√
A
X1, X̄2 =

1
√
B
X2, X̄3 =

1
√
C
X3, X̄4 =

1
√
D
X4 is an orthonormal frame with respect to the metric g = g(t). Let

W = w1X̄1 + w2X̄2 + w3X̄3 + w4X̄4. Then the Ricci curvature tensor of g is given by (see P.355 in [15]):

Ric(W ,W ) = 0 · w2
1 + 0 · w2

2 + 0 · w2
3 −

2(k2 + k + 1)
D

w2
4 .

In particular, we have

Ric(X̄i, X̄i) = 0 for 1 ≤ i ≤ 3 and Ric(X̄4, X̄4) = −
(2k2 + k + 1)

D
. (4.3)

In four dimension, the Bach tensor can be written as (see P.304 in [16] or see P.411 in [17]):

Bij = ∇p∇jRip −
1
2
∇p∇pRij +

1
3
RRij − RpiRpj +

1
12

(
3

4∑
r,s=1

(Rrs)2 − R2

)
δij. (4.4)
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It follows from (4.4) that the Bach tensor is diagonal if the Ricci tensor of the left-invariant metric is diagonal. Moreover, it
follows from (4.3) and (4.4) that

B̄ii =
2(k2 + k + 1)2

3D2 for 1 ≤ i ≤ 3 and B̄44 = −
2(k2 + k + 1)2

D2 (4.5)

where B̄ii is the Bach tensor with respect to X̄i. This implies that the Bach flow is equivalent to

dA
dt

= −
2(k2 + k + 1)2A

3D2 ,
dB
dt

= −
2(k2 + k + 1)2B

3D2 ,

dC
dt

= −
2(k2 + k + 1)2C

3D2 , and
dD
dt

=
2(k2 + k + 1)2

D
.

It follows that

D2
= λ4 + 4(k2 + k + 1)2t. (4.6)

Hence, we have

dA
dt

= −
2(k2 + k + 1)2A

3D2 = −
2(k2 + k + 1)2A

3(λ4 + 4(k2 + k + 1)2t)
which gives

A = λ1

(
1 +

4(k2 + k + 1)2

λ4
t
)−

1
6

. (4.7)

Similarly, we get

B = λ2

(
1 +

4(k2 + k + 1)2

λ4
t
)−

1
6

and C = λ3

(
1 +

4(k2 + k + 1)2

λ4
t
)−

1
6

. (4.8)

Next, we compute the curvature decay of g(t). The sectional curvatures of g(t) are given by (see P.356 in [15])

K (X1, X2) = −
k
D

, K (X1, X3) =
k + 1
D

, K (X2, X3) =
k(k + 1)

D
,

K (X1, X4) = −
1
D

, K (X2, X4) = −
k2

D
, K (X3, X4) = −

(k + 1)2

D
.

(4.9)

These curvatures of the solution g(t) decay at the rate 1/
√
t . Pick a point p ∈ M . Combining (4.6)–(4.9), we can conclude

that the solution (M, g(t), p) of the Bach flow collapses to a line the pointed Gromov–Hausdorff topology.
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