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a b s t r a c t

We establish two versions of the fusion procedure for the walled Brauer algebras. In
each of them, a complete system of primitive pairwise orthogonal idempotents for the
walled Brauer algebra is constructed by consecutive evaluations of a rational function
in several variables on contents of standard walled tableaux.
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1. Introduction

The main interest in the walled Brauer algebra Br,s(δ) is related to its role of the centralizer of the diagonal action of
the group GL(V ) on the mixed tensor space V⊗r

⊗ (V ∗)⊗s, see [1,15,19,27]. As the centralizer, the walled Brauer algebra
acts irreducibly on the space of multiplicities in the decomposition of the tensor product V⊗r

⊗ (V ∗)⊗s into a sum of
GL(V )-irreducibles, so we need to understand well the basis in every irreducible representation of the algebra Br,s(δ). A
fusion procedure gives a construction of the maximal family of pairwise orthogonal minimal idempotents in the algebra,
and therefore, provides a way to understand bases in the irreducible representations of the algebra Br,s(δ).

The fusion procedure (for the symmetric group) originates in the work of Jucys [13], see also the subsequent
works [4,7,17]. A simplified version of the fusion procedure for the symmetric group involving the consecutive evaluations
was suggested by Molev in [16]. Later the analogues of this simplified fusion procedure were suggested for the Hecke
algebra [8], for the Brauer algebra [8,9], for the complex reflection groups of type G(m, 1, n), for the cyclotomic Hecke
algebras [22,23], for the cyclotomic Brauer algebras [6], for the Birman–Murakami–Wenzl algebras [10]. In [24] the fusion
procedure was applied for the calculation of weights of certain Markov traces on the cyclotomic Hecke algebras.

The walled Brauer algebras form a tower which is an important ingredient of our presentation. The first r floors of the
tower reproduce the tower of the symmetric groups. Essentially new effects start to appear at the (r + 1)st floor, after
crossing the wall.

In this work we develop the fusion procedure, in the spirit of [16], for the walled Brauer algebra. That is, we exhibit a
‘universal’ rational function with values in the walled Brauer algebra whose consecutive evaluations at the contents of the
appropriately generalized ‘walled tableaux’ give a complete system of primitive idempotents. This function is a product
of a prefactor zT , which is a usual rational function, and a universal rational function Ψr,s, see Section 3 for details. We
find the minimal collection zeT of factors in zT such that the consecutive evaluations of the product zeTΨr,s are finite. To
describe the function zeT we adapt the notion of ‘exponents’ introduced in [8] for the full Brauer algebra to the situation
of the walled Brauer algebra. For the walled Brauer algebra the exponents take a simpler form than for the full Brauer
algebra; the exponents are expressed in terms of the Laplacian of a function which counts the lengths of the diagonals in
diagrams. We exhibit a version of the fusion procedure which depends on a free parameter.
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2. Walled Brauer algebra

2.1. Definition

Let r and s be non-negative integers. We denote by pur,s and pdr,s two sets, each consisting of r + s points aligned
horizontally on the plane; the points in the set pdr,s are placed under the points in the set pur,s. The left r points in the sets
pur,s and pdr,s we denote by au and ad, the right s points — by bu and bd. The left points are separated by the wall from the
right points. A walled (r, s)-diagram d is a bijection between the sets au∪bd and ad∪bu. In particular the number of walled
(r, s)-diagrams is equal to (r + s)!. A walled (r, s)-diagram is visualized by placing the edges between the corresponding
points of au ∪ bd and ad ∪ bu.

Let δ be a complex parameter. The walled Brauer algebra Br,s(δ) is defined as the C-linear span of the walled
(r, s)-diagrams with the multiplication defined as follows. The product of two diagrams Υ1 and Υ2 is determined by
placing Υ1 above Υ2 and identifying the vertices of the bottom row of Υ1 with the corresponding vertices in the top row
of Υ2. Let ℓ be the number of closed loops so obtained. The product Υ1Υ2 is given by δℓ times the resulting diagram with
loops omitted.

Let si, 1 ⩽ i < r or r < i < r + s, and d denote the following walled (r, s)-diagrams (the vertical dotted line represents
the wall):

. . .

. . .

. . .

. . .

. . .

. . .

1 i i + 1 r r + 1 r + s

, i = 1, . . . , r − 1si :=

. . .

. . .

. . .

. . .

. . .

. . .

1 i + 1ir + 1r r + s

, i = r + 1, . . . , r + s − 1si :=

. . .

. . .

. . .

. . .

1 r r + 1 r + s

d :=

The walled Brauer algebra Br,s(δ) is generated by the elements si, 1 ⩽ i < r or r < i < r + s, and d, with the defining
relations, see, e.g., [2,14],

s2i = 1 , d2 = δd ,
sisi+1si = si+1sisi+1 ,

sisj = sjsi if |i − j| > 1 ,
dsr±1d = d and dsi = sid if i ̸= r ± 1 ,

dsr+1sr−1dsr−1 = dsr+1sr−1dsr+1 ,

sr−1dsr+1sr−1d = sr+1dsr+1sr−1d .

The algebra Br,s(δ) admits an anti-automorphism ι, which acts as identity on the generators,

ι(si) = si , ι(d) = d , ι(xy) = ι(y)ι(x) . (2.1)

The subalgebra, generated by the elements si, 1 ⩽ i < r , of the algebra Br,s(δ) is isomorphic to the group ring C[Sr ] of
the symmetric group; the subalgebra, generated by the elements si, r < i < r + s, is isomorphic to the group ring C[Ss].

It is known, see [5], Theorem 6.3, that the walled Brauer algebra Br,s(δ) is semisimple if and only if one of the following
conditions holds:

r = 0 or s = 0,
δ /∈ Z,
|δ| > r + s − 2,
δ = 0 and (r, s) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)}.
In the sequel we always assume that δ is generic, that is, the walled Brauer algebra is semisimple.
Let Ak be the subalgebra in the algebra Br,s(δ) generated by the walled (r, s)-diagrams non-trivial only at the first k

sites of the sets pur,s and pdr,s (that is, to the right of the kth site the diagram has only vertical segments). For k ⩽ r , the
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algebra Ak is isomorphic to Bk,0(δ) ∼= C[Sk] while for r < k ⩽ r + s the algebra Ak is isomorphic to Br,k−r (δ). The algebras
Ak, 0 ⩽ k ⩽ r + s, form an ascending chain of algebras

C ≡ A0 ⊂ A1 ⊂ · · · ⊂ Ar+s ≡ Br,s(δ) . (2.2)

The Bratteli diagram for this chain plays an important role in the representation theory of the walled Brauer algebras and,
in particular, in our fusion procedures.

If r = 0 or s = 0 the algebra Br,s(δ) is the group algebra of the symmetric group, for which the fusion procedure is
well established, so we shall always assume that both r and s are different from 0.

To shorten the formulation of our results it is convenient to introduce the following function on the set {1, . . . , r + s}

ε(j) :=

{
0 if j ⩽ r ,
1 if j > r . (2.3)

2.2. Jucys–Murphy elements

The Jucys–Murphy elements for the walled Brauer algebras are adapted to the chain (2.2).
Let si,k where 1 ⩽ i < k ⩽ r or r + 1 ⩽ i < k ⩽ r + s and di,k where 1 ⩽ i ⩽ r < k ⩽ r + s denote the following walled

(r, s)-diagrams:
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1 i k r r + 1 r + s

,si,k :=

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1 kir + 1r r + s

,si,k :=

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1 i r r + 1 k r + s

.di,k :=

In particular, si = si,i+1, 1 ⩽ i < r or r < i < r + s, d = dr,r+1.
In terms of generators, the elements si,k and di,k can be written as

si,k = sisi+1 · · · sk−2sk−1sk−2 · · · si+1si ,
di,k = sisi+1 · · · sr−1sk−1sk−2 · · · sr+1dsr+1 · · · sk−2sk−1sr−1 · · · si+1si .

The Jucys–Murphy elements for the walled Brauer algebra are, see [2,14,26],

xk :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k−1∑
i=1

si,k if 1 ⩽ k ⩽ r ,

−

r∑
i=1

di,k +

k−1∑
i=r+1

si,k + δ if k ⩾ r + 1 .

One checks that the element xk commutes with any element of the subalgebra Ak−1, in the notation (2.2) for the tower.
This implies that the elements x1, . . . , xr+s of Br,s(δ) pairwise commute.

Moreover, it follows from the representation theory of the walled Brauer algebras that the subalgebra generated by
the elements x1, . . . , xr+s is a maximal commutative subalgebra of the algebra Br,s(δ).

We note that the walled Brauer algebra Br,s(δ) is naturally a subalgebra of the Brauer algebra Br+s(δ). Interestingly,
the Jucys–Murphy elements for the walled Brauer algebra are obtained by omitting in the Jucys–Murphy elements for the
Brauer algebra the summands corresponding to the diagrams which do not exist in the walled Brauer algebra.
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2.3. Representations

We will identify each partition γ with its diagram so that if the parts of γ are γ1, γ2, . . . , γ1 ⩾ γ2 ⩾ . . . , then the
corresponding diagram is a left-justified array of rows of boxes containing γ1 boxes in the top row, γ2 boxes in the second
row, etc. The box in the row i and column j will be denoted by (i, j).

We let

A(γ ) be the set of all addable cells

and

R(γ ) the set of all removable cells

of the diagram γ .
A bipartitionΛ is a pair of partitionsΛ = (λL, λR). Let D be the set of all bipartitions. For each integer 0 ⩽ f ⩽ min(r, s),

let

Dr,s(f ) := {Λ ∈ D: |λL| = r − f , |λR| = s − f } ,

where |λ| denotes the sum of the parts of λ, and

Dr,s :=

min(r,s)⋃
f=0

Dr,s(f ) .

The irreducible representations of the walled Brauer algebra Br,s(δ) are indexed by the elements of the set Dr,s, see [5],
Theorem 2.7. We shall denote by VΛ the representation corresponding to a bipartition Λ ∈ Dr,s.

The branching rules for the ascending chain (2.2) are simple. Fig. 1 shows the Bratteli diagram for the chain on the
example of the walled Brauer algebra B2,2(δ).

Fig. 1. Bratteli diagram.

2.4. A basis in VΛ

The following construction is given in [14]. Let Λ = (λL, λR) be a bipartition. A standard walled Λ-tableau is a sequence
T = (Λ(0), . . . ,Λ(r+s)) of bipartitions such that Λ(0)

= (∅,∅), Λ(r+s)
= Λ and for each t = 1, . . . , r + s the bipartition

Λ(t) is obtained from Λ(t−1) by

• adding a box to the first diagram in the bipartition when 1 ⩽ t ⩽ r;
• adding a box to the second diagram or removing a box from the first diagram when r + 1 ⩽ t ⩽ r + s.

Thus, T represents a path in the Bratteli diagram of the algebra Br,s(δ).
We say that r + s is the length of T . We write U ↗ T if the standard walled tableau U of length r + s − 1 is obtained

by removing the last entry Λ(r+s) from the sequence T .
We shall denote by TΛ the set of all standard walled Λ-tableaux.
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As always, in the situation when the branching rules for a Bratteli diagram are simple, a path T ∈ TΛ defines a one-
dimensional subspace VT in the space VΛ. Choose an arbitrary non-zero vector vT ∈ VT . The set {vT }, T ∈ TΛ, is a basis of
the space VΛ.

To each standard walled tableau T we attach its sequence of contents (c1(T ), . . . , cr+s(T )), where

• if 1 ⩽ t ⩽ r and Λ(t) is obtained from Λ(t−1) by adding a box (i, j) to the first diagram in the bipartition then

ct (T ) := j − i , (2.4)

• if t ⩾ r + 1 and Λ(t) is obtained from Λ(t−1) by removing a box (i, j) from the first diagram then

ct (T ) := −(j − i) , (2.5)

• and, if t ⩾ r + 1 and Λ(t) is obtained from Λ(t−1) by adding a box (i, j) to the second diagram then

ct (T ) := (j − i) + δ . (2.6)

It is convenient to decorate the Bratteli diagram, writing at each edge of the path T the corresponding content, as
shown below on our example of the algebra B2,2(δ).

Fig. 2. Paths and contents.

Clearly, a path T can be reconstructed from its sequence of contents.
We encode the sequence T of bipartitions in the following way. We first associate to the sequence T three Young

diagrams λ′(T ), ν(T ) and λ′′(T ) such that ν(T ) ⊆ λ′(T ). The diagram λ′(T ) := λ
(r)
L is the left diagram in the bipartition

Λ(r). The diagram ν(T ) := λ
(r+s)
L is the left final diagram and the diagram λ′′(T ) := λ

(r+s)
R is the right final diagram in the

bipartition Λ(r+s). We call

DT := [λ′(T ), ν(T ), λ′′(T )]

the triple diagram corresponding to the path T .
Next, we fill the boxes of the diagrams λ′(T ), λ′′(T ) and the set-theoretical difference λ′(T ) \ ν(T ). Exactly as for the

symmetric group, the boxes of the diagram λ′(T ) are filled with numbers 1, . . . , r , representing the order in which the
boxes were added in the sequence (λ(0)L , . . . , λ

(r)
L ). The boxes of the union

(
λ′(T ) \ ν(T )

)
⊔ λ′′(T ) are filled with numbers

r +1, . . . , r + s in the order in which the boxes were removed or added in the sequence (Λ(r+1), . . . ,Λ(r+s)). The resulting
filling we call the standard triple tableau WT corresponding to the path T .

It is straightforward to see that the correspondence between the set of all paths and the set of all standard triple
tableaux is one to one.

We visualize the standard walled tableau by putting the numbers corresponding to the filling of λ′(T ) in the upper left
corner of boxes and the numbers corresponding to the filling of λ′(T ) \ ν(T ) in the lower right corners. This should be
clear in the following example of a path for the algebra B3,5(δ).

Example 1. For the sequence T[(
∅,∅

)
,
(
,∅

)
,
(

,∅
)
,
(

,∅
)
,
(

,
)
,
(

,
)
,
(
,

)
,
(
,

)
,
(
,

)]
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the corresponding triple diagram is [(2, 1), (1), (2, 1)] and the standard triple tableau WT is[
1 2

6
3
7

, 4 5
8

]
.

The contents of boxes in the sets λ′(T ), λ′(T ) \ ν(T ) and λ′′(T ) are calculated according to the formulas (2.4)–(2.6)
respectively. The content of the box occupied by the number j in the standard triple diagram corresponding to a path T
will be denoted by cj(T ).

Let T = (Λ(0), . . . ,Λ(r+s)), Λ(r+s)
= Λ, be a standard walled Λ-tableau. The vector vT is the common eigenvector for

the Jucys–Murphy elements xj, j = 1, . . . , r + s, and the eigenvalues are precisely the contents,

xjvT = cj(T )vT , j = 1, . . . , r + s .

We recall some standard facts valid in the situation when the branching rules are simple and the vectors vT are common
eigenvectors of a set of elements generating a maximal commutative subalgebra.

Since the vectors vT , T ∈ TΛ, form a basis in VΛ, we have the complete set {ET } of primitive idempotents in Mat(VΛ);
the operator ET is the projector on the one-dimensional subspace VT along the subspace of codimension one spanned by
the vectors vT ′ , T ′

∈ TΛ\{T }. The primitive idempotent ET , corresponding to the vector vT , satisfies

xt ET = ET xt = ct (T )ET , t = 1, . . . , r + s . (2.7)

Consider the standard walled tableau U = (Λ(0), . . . ,Λ(r+s−1)); recall that we assume that s > 0. Let α ∈ R
(
ν(U)

)
⊔

A
(
λ′′(U)

)
be the box of WT occupied by the number r + s. By construction, we have

ET = EU
(xr+s − a1) . . . (xr+s − aℓ)

(cr+s(T ) − a1) . . . (cr+s(T ) − aℓ)
,

where a1, . . . , aℓ are the contents of all boxes in
(
R
(
ν(U)

)
⊔ A

(
λ′′(U)

))
\ {α}.

The elements {ET } for T a standard walled Λ-tableau, Λ ∈ Dr,s, form a complete set of pairwise orthogonal primitive
idempotents for Br,s(δ).

We have also the following relation:

ET = EU
u − cr+s

u − xr+s

⏐⏐⏐
u=cr+s

, (2.8)

where u is a complex variable. Indeed, the actions of the right and left hand sides of (2.8) on the vectors vW , W ∈ TΛ,
coincide.

Remark 2. The walled Brauer algebras resemble the symmetric groups in certain aspects (like the dimension, the length
generating function for words [3]) so it is natural to expect that the representation theory of the tower of the walled
Brauer algebras can be built in the frame of the inductive approach of Okounkov–Vershik to the representation theory of
the symmetric groups [25], see also [11] for the Hecke algebras, [12] for the Birman–Murakami–Wenzl algebras and [20,21]
for the cyclotomic algebras.

2.5. Spectral parameters

Denote, for i ̸= j,

si,j(u) := 1 −
si,j
u

if ε(i) + ε(j) is even ,

di,j(u) := 1 −
di,j
u

if ε(i) + ε(j) is odd ,

where the function ε is defined by (2.3). Let wi,j(u) be, depending on ε(i)+ε(j), either si,j(u) or di,j(u). If the indices i, j, k, l
are pairwise distinct then

wi,j(u)wk,l(v) = wk,l(v)wi,j(u) .

We have

si,j(u)si,j(−u) =
u2

− 1
u2 , (2.9)

and

di,j(u)di,j(δ − u) = 1 . (2.10)
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The functions si,j(u) satisfy the Yang–Baxter equation with the spectral parameter

si,j(u)si,k(u + v)sj,k(v) = sj,k(v)si,k(u + v)si,j(u) , (2.11)

with pairwise distinct indices i, j, k.
Additionally, we have (i ̸= j ̸= k ̸= i)

dj,i(u)dk,i(u − v)sj,k(v) = sj,k(v)dk,i(u − v)dj,i(u) , (2.12)

and

di,j(u)si,k(δ − u − v)dk,j(v) = dk,j(v)si,k(δ − u − v)di,j(u) . (2.13)

Remark 3. Eqs. (2.11)–(2.13) can be elegantly written in a uniform manner. Let

w̃i,j(u) :=

{
si,j(u) if ε(i) + ε(j) is even ,
di,j(δ/2 − u) if ε(i) + ε(j) is odd .

Then

w̃i,j(u)w̃i,k(u + v)w̃j,k(v) = w̃j,k(v)w̃i,k(u + v)w̃i,j(u)

whenever i ̸= j ̸= k ̸= i.

3. Main results

The main result of this paper is the construction of the complete set {ET }, see (2.7), of pairwise orthogonal primitive
idempotents for the walled Brauer algebra Br,s(δ).

3.1. Fusion procedure

The original fusion procedure for the Brauer algebra was given in [8]. In this section we formulate its analogue for the
walled Brauer algebra. The proof is in Section 4.1.

In what follows we let

n = r + s .

Consider the rational function, in variables u1, . . . , un, with values in the walled Brauer algebra Br,s(δ):

Ψr,s := Dr,s Sr S̊s , (3.14)

where

Dr,s :=

∏
1⩽i⩽r

r+1⩽j⩽n

di,j(ui + uj)

and

Sr :=

∏
1⩽i<j⩽r

si,j(ui − uj) , S̊s :=

∏
r+1⩽i<j⩽n

si,j(ui − uj) . (3.15)

The products in the definitions of Dr,s, Sr and S̊s are calculated in the lexicographical order on the pairs (i, j) (that is,
(i1, j1) precedes (i2, j2) if i1 < i2 or i1 = i2 and j1 < j2).

Let T = (Λ(0), . . . ,Λ(n)), Λ(n)
= Λ ∈ Dr,s, be a standard walled Λ-tableau describing a path in the Bratteli diagram for

the walled Brauer algebra Br,s(δ). We define the rational function in the variables u1, . . . , un:

zT :=

n∏
i=1

ui − ci
ui − δ ε(i)

×

∏
1⩽j<i⩽r

or
r<j<i⩽n

(ui − uj)2

(ui − uj)2 − 1
, (3.16)

where the function ε is defined by (2.3), and for brevity we denoted ci = ci(T ), i = 1, . . . , n.
Set

ΨT (u1, . . . , un) := zT · Ψr,s . (3.17)

Theorem 4. The primitive idempotent ET , corresponding to the standard walled Λ-tableau T , is found by the consecutive
evaluations

ET = ΨT (u1, . . . , un)
⏐⏐u1=c1

⏐⏐u2=c2 · · ·
⏐⏐un=cn .
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Example 5. For r = s = 2, let T be the standard walled tableau corresponding to the contents sequence (0,−1, 1, 0),
see Fig. 2. We have

Ψ2,2(0, u2, u3, u4) =

(
1 −

d1,3
u3

)(
1 −

d1,4
u4

)(
1 −

d
u2 + u3

)(
1 −

d2,4
u2 + u4

)
×

(
1 +

s1
u2

)(
1 −

s3
u3 − u4

)
.

This expression has singularities at u3 = −u2 or u4 = 0. However in the process of the consecutive evaluations of the
product of Ψ2,2(u1, u2, u3, u4) with the prefactor zT the singularities cancel and we find

ET =
1

2δ(δ − 1)
(1 − s1) · ds1s3d · (1 − s1) .

Remark 6. The function∏
1⩽i<j⩽n

di,j(ui + uj) ×

∏
1⩽i<j⩽n

si,j(ui − uj) (3.18)

for the Brauer algebra Bn(δ) was suggested in [18]. Note that the function Ψr,s, defined in (3.14), can be obtained
by dropping, in the expression (3.18), factors corresponding to the diagrams which do not exist in the walled Brauer
algebra. Thus the function Ψr,s makes sense in the Brauer algebra Bn(δ) and the consecutive evaluations of the product
zT · Ψr,s give rise to certain idempotents of the Brauer algebra Bn(δ). It would be interesting to understand the
representation-theoretic/combinatorial meaning of these idempotents.

3.1.1. Reformulation of Theorem 4
As we already stressed, we are interested in the fusion procedure only after the wall crossing so we shall accordingly

change the notation. A standard walled Λ-tableau T = (Λ(0), . . . ,Λ(r+s)), Λ(r+s)
= Λ, will be denoted by T =

(Tr ,Λ(r+1), . . . ,Λ(r+s)) where Tr = (Λ(0), . . . ,Λ(r)) is the standard Young tableau of shape λ′(T ). We fix the tableau T
till the end of Section and set ci = ci(T ).

For j such that r + s ⩾ j > r let

d
↓

j := dr,j(ur + uj)dr−1,j(ur−1 + uj) · · · d1,j(u1 + uj)

and

d̊
↓

j := d
↓

j

⏐⏐u1=c1 · · ·
⏐⏐ur=cr = dr,j(cr + uj)dr−1,j(cr−1 + uj) . . . d1,j(c1 + uj) .

The symbol ˚ (it appeared already in (3.14)) over a letter signifies that we are dealing with a rational function which
depends on the variables ur+1, . . . , un only.

With the help of the equalities (2.12), see Section 4.1, one finds

Dr,s Sr = Sr d
↓

r+1d
↓

r+2 . . . d
↓

n .

The fusion procedure of [16] for the symmetric group says that the primitive idempotent ETr corresponding to the
standard tableau Tr of the symmetric group Sr is obtained by the consecutive evaluations

ETr =

⎛⎝ r∏
i=1

ui − ci
ui

×

∏
1⩽j<i⩽r

(ui − uj)2

(ui − uj)2 − 1
· Sr

⎞⎠⏐⏐⏐⏐
u1=c1

· · ·

⏐⏐⏐⏐
ur=cr

.

The part of the prefactor zT , see (3.16), which corresponds to the after-wall tail (. . . ,Λ(r+1), . . . ,Λ(r+s)) of the tableau T ,
is the rational function in the variables ur+1, . . . , un:

z̊T :=

n∏
i=1

ui − ci
ui − δ

×

∏
r<j<i⩽n

(ui − uj)2

(ui − uj)2 − 1
.

Let now

Ψ̊n;Tr (ur+1, . . . , un) := ETr d̊
↓

r+1d̊
↓

r+2 . . . d̊
↓

n S̊s

and

Ψ̊T (ur+1, . . . , un) := z̊T · Ψ̊n;Tr (ur+1, . . . , un) .

We reformulate Theorem 4 in the following way: the idempotent ET is found by the consecutive evaluations

ET = Ψ̊T (ur+1, . . . , un)
⏐⏐ur+1=cr+1 · · ·

⏐⏐un=cn .
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3.2. Exponents

The function ΨT whose consecutive evaluations give the primitive idempotents, has two parts: the function zT , defined
in (3.16) and the function Ψr,s, defined in (3.14). The consecutive evaluations of the function Ψr,s itself may lead to a zero
or infinite result. The presence of the prefactor zT cures this undesirable effect. One can locate the minimal collection of
the factors in zT which are needed to provide a finite result. In [8], Isaev and Molev introduced the ‘exponents’ which
control such factors for the Brauer algebra. In this Section we adapt the exponents to the situation of the walled Brauer
algebra. The exponents for the walled Brauer algebra have simpler form than for the full Brauer algebra.

We need a general definition. Fix a Young diagram γ . We denote by gγ (k) the number of cells on the kth diagonal of
γ . We shall define a function ϑγ :Z → {−1, 0, 1} by the following rules.

• If, adding to γ the
(
gγ (k) + 1

)
st cell to the kth diagonal, we obtain a Young diagram then we set ϑγ (k) = −1.

• If, removing from γ the gγ (k)st cell on the kth diagonal, we obtain a Young diagram then we set ϑγ (k) = 1.
• Otherwise, ϑγ (k) = 0.

Let T = (Λ(0), . . . ,Λ(n)) be a standard walled tableau. We will define the exponents pt (T ), t = 1, . . . , n. If Λ(t) is
obtained from Λ(t−1) by adding a box to the first or second diagram in the bipartition then we let pt (T ) = 0. Assume now
that Λ(t) is obtained from Λ(t−1) by removing a box α = (i, j) from the first diagram in the bipartition. In particular, at
this moment the wall is already crossed so the diagram λ′(T ) is defined. The exponents of T are defined by

pt (T ) := ϑλ′(T )(i − j) . (3.19)

We introduce now the rational function

zeT :=

n∏
i=r+1

(ui − ci)pi(T ) .

Proposition 7. In the notation of Section 3.1, the consecutive evaluations of the function

zeT · Ψr,s

are finite.
If pi(T ) ̸= 0 then the factor (ui − ci)pi(T ) is present in zT . The consecutive evaluations of the product zT/zeT (of all other

factors) are finite.

Note that before crossing the wall the exponents are equal to zero. This follows from the fusion procedure for the
symmetric group [16], see also [8].

The proof of Proposition 7 is in Section 4.2.

3.3. Second fusion procedure

Our second fusion procedure resembles the fusion procedure of [9] for the Brauer algebra.

Modified baxterized elements. Let h be an indeterminate. It will be convenient to use also the following modified functions:

s′i,j(u; h) := 1 +
si,j

u − h
if ε(i) + ε(j) is even ,

d′

i,j(u; h) := 1 +
di,j

u + h − δ
if ε(i) + ε(j) is odd .

In virtue of the equalities (2.11), we have

s′i,j(u; h)s
′

i,k(u − v; h)sj,k(v) = sj,k(v)s′i,k(u − v; h)s′i,j(u; h) ,

in virtue of the equalities (2.12),

d′

j,i(v; h)d
′

k,i(u + v; h)sj,k(u) = sj,k(u)d′

k,i(u + v; h)d′

j,i(v; h) ,

and, in virtue of the equalities (2.13),

di,j(u)s′i,k(u − v; h)d′

k,j(v; h) = d′

k,j(v; h)s
′

i,k(u − v; h)di,j(u) .

In the sequel we omit the symbol h in the notation for brevity.
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Second fusion procedure. We shall formulate the results in the notation of Section 3.1.1.
We define several more rational functions, in variables ur+1, . . . , un, with values in the algebra Br,s(δ). First, for j such

that r + s ⩾ j > r let

d̊
′
↑

j := d′

1,j(c1 − uj)d′

2,j(c2 − uj) · · · d′

r,j(cr − uj) .

Next, let

År,s := d̊
↓

r+1d̊
↓

r+2 · · · d̊↓

n , Å′

r,s := d̊
′
↑

r+1d̊
′
↑

r+2 · · · d̊
′
↑

n .

Finally, let

Ψ̊n;Tr ,h(ur+1, . . . , un) := ETr Å
′
r,s S̊

′
s År,s S̊s ,

˚̃Ψ n;Tr ,h(ur+1, . . . , un) := ETr År,s S̊
′
s Å

′
r,s S̊s ,

where S̊s is defined in (3.15) and

S̊′

s :=

∏
r+1⩽i<j⩽r+s

s′i,j(ui + uj) .

The prefactor z̊T we replace with the following rational function in the variables ur+1, . . . , un:

z̊T ;h :=

n∏
i=r+1

(ui − ci)(ui − h + δ)
(ui − δ)(ui + ci − h)

×

∏
r<j<i⩽n

(ui − uj)2

(ui − uj)2 − 1
. (3.20)

Set

Ψ̊T ;h(ur+1, . . . , un) := z̊T ;h · Ψ̊n;Tr ,h(ur+1, . . . , un) ,
˚̃Ψ T ;h(ur+1, . . . , un) := z̊T ;h ·

˚̃Ψ n;Tr ,h(ur+1, . . . , un) .

Proposition 8. The primitive idempotent ET , corresponding to the standard walled Λ-tableau T , is found by any of the
consecutive evaluations

ET = Ψ̊T ;h(ur+1, . . . , un)
⏐⏐ur+1=cr+1 · · ·

⏐⏐un=cn (3.21)

or

ET =
˚̃Ψ T ;h(ur+1, . . . , un)

⏐⏐ur+1=cr+1 · · ·
⏐⏐un=cn . (3.22)

Remark 9. The fusion procedure of Theorem 4 is the limit, as h tends to infinity, of the second fusion procedure, given
in Proposition 8.

4. Proofs

4.1. Proof of Theorem 4

We repeat that we assume that s > 0 because before crossing the wall our formulas reproduce the formulas for the
symmetric groups from [16].

We shall often write di,j(u, v) and si,j(u, v) instead of di,j(u + v) and si,j(u − v).
We rewrite the function Ψr,s, defined by (3.14), in the form adapted to the consecutive evaluations. Let

ψn := dr,n(ur , un) · · · d1,n(u1, un) · sr+1,n(ur+1, un) . . . sn−1,n(un−1, un) . (4.23)

Lemma 10. We have

Ψr,s = Ψr,s−1 · ψn .

Proof. Clearly, Dr,s = Dr,s−1 · d1,n(u1, un) · · · dr,n(ur , un). The Yang–Baxter equations (2.12) imply the identity

d1,n(u1, un) · · · dr,n(ur , un) · Sr = Sr · dr,n(ur , un) · · · d1,n(u1, un) .

The well-known equality S̊s = S̊s−1 · sr+1,n(ur+1, un) . . . sn−1,n(un−1, un) and the commutativity relation

dr,n(ur , un) · · · d1,n(u1, un) · S̊s−1 = S̊s−1 · dr,n(ur , un) · · · d1,n(u1, un) ,

complete the proof. ■
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We first analyse what happens when we cross the wall.

Lemma 11. Let U be a standard walled tableau for the algebra Br,0(δ), that is, for the symmetric group Sr . The following
identity holds in the walled Brauer algebra Br,1(δ):

EU · d1,r+1(w − c1) · · · dr,r+1(w − cr ) =
w − δ + xr+1

w
· EU , (4.24)

where ci = ci(U), i = 1, . . . , r .

Proof. The proof is by induction in r . The induction base, for the algebra B1,1(δ), is straightforward.
Let W ↗ U . By the recursive construction of the primitive idempotents for the symmetric group in [16] (which is

exactly the ‘before the wall’ part of our formula), we have

EU = b(v) EW · s1,r (c1, v) . . . sr−1,r (cr−1, v)|v=cr

with some rational function b(v); its precise expression is not important at the moment. Let ξ = s1,r (c1, v) . . . sr−1,r
(cr−1, v). The Yang–Baxter equations (2.12) imply that

ξ · d1,r+1(w − c1) · · · dr−1,r+1(w − cr−1) · dr,r+1(w − v)
= dr,r+1(w − v) · d1,r+1(w − c1) · · · dr−1,r+1(w − cr−1) · ξ .

Since

EW dr,r+1(w − v) = dr,r+1(w − v) EW ,

we can write the left hand side of (4.24) in the form

b(v)dr,r+1(w − v) EW · d1,r+1(w − c1) · · · dr−1,r+1(w − cr−1) · ξ |v=cr .

The diagrams with the vertical line connecting the rth upper and lower points linearly span the subalgebra A in Br,1(δ),
isomorphic to Br−1,1(δ). Thus we can use the induction hypothesis and write

EW · d1,r+1(w − c1) · · · dr−1,r+1(w − cr−1)=
w − d1,r+1 − · · · − dr−1,r+1

w
· EW .

Now,

dr,r+1(w − v) ·
w − d1,r+1 − · · · − dr−1,r+1

w

=
w − d1,r+1 − · · · − dr−1,r+1

w
−

dr,r+1 · (w − d1,r+1 − · · · − dr−1,r+1)
w(w − v)

=
w − d1,r+1 − · · · − dr−1,r+1

w
−

dr,r+1 · (w − s1,r − · · · − sr−1,r )
w(w − v)

=
w − d1,r+1 − · · · − dr−1,r+1

w
−

dr,r+1 · (w − xr )
w(w − v)

=
w − δ + xr+1

w
−

dr,r+1 · (v − xr )
w(w − v)

.

Here in the second equality we used the formula dr,r+1dj,r+1 = dr,r+1sj,r .
We have

b(v)
dr,r+1 · (v − xr )
w(v − w)

· EW · ξ |v=cr =
dr,r+1 · (v − xr )
w(v − w)

· EU |v=cr ,

so we are done since xrEU = crEU . ■

Lemma 12. Let U be a standard walled tableau for the algebra Br,s−1(δ) with s > 0. Then

EU · ζn =
u − xn
u − δ

· EU , (4.25)

where ζn is the following rational function in the variable u:

ζn = sn−1,n(u, cn−1) . . . sr+1,n(u, cr+1) · d1,n(δ − u,−c1) · · · dr,n(δ − u,−cr )

with ci = ci(U), i = 1, . . . , n − 1.
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Proof. We employ the induction on s. The induction base, for s = 1 is the formula (4.24). LetW ↗ U . We have EU = EUEW .
Thus

EU · ζn = EUEW · sn−1,n(u, cn−1)ζ ′

n = EU · sn−1,n(u, cn−1) · EW · ζ ′

n ,

where

ζ ′

n := sn−2,n(u, cn−2) . . . sr+1,n(u, cr+1) · d1,n(δ − u,−c1) · · · dr,n(δ − u,−cr ) .

The diagrams with the vertical line connecting the (n − 1)st upper and lower points linearly span the subalgebra A′ in
Br,s(δ), isomorphic to Br,s−1(δ). By the induction assumption,

EW · ζ ′

n = EWρn ,

where

ρn :=
u − (δ − d1,n − · · · − dr,n + sr+1,n + · · · + sn−2,n)

u − δ
.

So,

EU · ζn = EU · sn−1,n(u, cn−1) · EW · ρn = EUEW · sn−1,n(u, cn−1)ρn
= EU · sn−1,n(u, cn−1)ρn .

Now,

sn−1,n(u, cn−1)ρn =

(
1 −

sn−1,n

u − cn−1

)
ρn = ρn −

sn−1,n

u − cn−1
ρn . (4.26)

Since

ρn =
u − xn + sn−1,n

u − δ
and sn−1,nρn =

u − xn−1

u − δ
sn−1,n ,

we rewrite the right hand side of the formula (4.26) in the form

u − xn + sn−1,n

u − δ
−

1
u − cn−1

u − xn−1

u − δ
sn−1,n

=
u − xn
u − δ

+
1

u − δ

(
1 −

u − xn−1

u − cn−1

)
sn−1,n ,

which completes the proof since EUxn−1 = cn−1EU . ■

We define the following rational function in the variable u = un:

ψU
n := ψn|u1=c1,...,un−1=cn−1

where ψn is defined in (4.23).

Lemma 13. The following identity holds:

EU · ψU
n =

u − δ

u − cn

n−1∏
i=r+1

(
1 −

1
(u − ci)2

)
EU

u − cn
u − xn

. (4.27)

Proof. The formula (4.27) is obtained from the formula (4.25) by using the equalities (2.9) and (2.10). ■

Proof of Theorem 4. Clearly,

zT = zUzTU where zTU =
un − cn
un − δ

n−1∏
i=r+1

(ui − un)2

(ui − un)2 − 1
. (4.28)

Thus,

ΨT (u1, . . . , ur+s)
⏐⏐u1=c1

⏐⏐u2=c2 . . .
⏐⏐un=cn =

(
zTU

⏐⏐u1=c1,...,un−1=cn−1EUψ
U
n

) ⏐⏐un=cn

= EU
u − cn
u − xn

⏐⏐un=cn = ET

by (2.8). ■
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4.2. Proof of Proposition 7

As for the fusion procedure itself, it is sufficient to analyse only the last evaluation . . .
⏐⏐un=cn . Let U ↗ T . Since the last

evaluation of the product ΨT (u1, . . . , un) = zT · Ψr,s is finite by Theorem 4, we only need to locate the dangerous factors
(zeros and poles) in the function

zTU
⏐⏐u1=c1,...,un−1=cn−1 =

un − cn
un − δ

n−1∏
i=r+1

(un − ci)2

(un − ci)2 − 1
. (4.29)

We shall rewrite in another form the product

ϖU (u) :=

n−1∏
i=r+1

(u − ci)2

(u − ci)2 − 1
.

Note that ϖU (u) depends only on the shape of the diagrams λ′(U), ν(U) and λ′′(U). Indeed, the product
∏n−1

i=r+1(u − ci)
is the same as the product

∏
(u − c(α)) over all cells α of λ′(U) \ ν(U) and λ′′(U). The contents are constant along the

diagonals, so each factor will appear with the multiplicity equal to the length of the corresponding diagonal. Taking into
account the definitions (2.5) and (2.5) of the contents, we find

n−1∏
i=r+1

(u − ci) =

∏
k∈Z

(u + k)gλ′(U)\ν(U)(k) ×

∏
k∈Z

(u − k − δ)gλ′′(U)(k) .

The denominator of ϖU (u) contains two products, with factors (u − ci − 1) and (u − ci + 1). Shifting correspondingly the
index in each product, we find that the whole expression ϖU (u) is equal to

ϖU (u) = ϖ ′

U (u) ϖ
′′

U (u) ,

where

ϖ ′

U (u) :=

∏
k∈Z

(u + k)∆λ′(U)\ν(U)(k) , ϖ ′′

U (u) :=

∏
k∈Z

(u − k − δ)∆λ′′(U)(k) ,

and we denoted, for a diagram γ , the Laplacian of the function gγ with the minus sign,

∆γ (k) := 2gγ (k) − gγ (k + 1) − gγ (k − 1) .

We analyse the function
un − cn
un − δ

ϖ ′

U (un) ϖ ′′

U (un) ,

depending on what happens at the nth step.

• If T is obtained from U by adding a cell to the second diagram on a diagonal k then cn = k + δ. The function
ϖ ′

U (un) is regular at un = cn and the direct inspection shows that the function un−cn
un−δ

ϖ ′′

U (un) is regular at un = cn as
well (similarly to the fusion for the symmetric group). Thus the last evaluation of the function Ψr,s is finite, which
corresponds to our statement that pn(T ) = 0 in this case.

• If T is obtained from U by removing a cell from the first diagram on a diagonal k then cn = −k. The function
1

un−δ
ϖ ′′

U (un) is regular at un = cn. However the function (un + k)ϖ ′

U (un) may have singularities at un = cn. The
Laplacian ∆ can take several values depending on the location of the diagonal k. Different types of the location are
illustrated in Figs. 3–5 (the diagonal is shown in red), and in each case the value ∆λ′(U)\ν(U)(k) is given — it can
be directly read off the corresponding figure. There is one more case when the diagonal runs into the horizontal
line of the border of λ′; then, similarly to the case of the vertical line of the border λ′, as in Fig. 5, we have
∆λ′(U)\ν(U)(k) = −1. In each case it is straightforward to see that the needed value pn(T ) of the exponent is indeed
given by (3.19).

The proof is completed. ■

4.3. Proof of Proposition 8

1. We prove the assertion (3.21). Some gymnastics, à la in the Proof of Lemma 10, with the baxterized elements leads to
the recursion

Ψ̊n;Tr ,h = Ψ̊n−1;Tr ,h · s̊
′
↓

n d̊
′
↑

n d̊↓

n s̊
↑

n .

Here

s̊
′
↓

n := s′n−1,n(un−1 + un)s′n−2,n(un−2 + un) · · · s′r+1,n(ur+1 + un)
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Fig. 3. ∆λ′(U)\ν(U)(k) = −2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. ∆λ′(U)\ν(U)(k) = 0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. ∆λ′(U)\ν(U)(k) = −1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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and

s̊↑n := sr+1,n(ur+1 + un)sr+2,n(ur+2 + un) · · · sn−1,n(un−1 + un) .

As before, it suffices to analyse the last evaluation . . .
⏐⏐un=cn . Extracting the factors containing un in the prefactor z̊T ;h, see

(3.20), we see that we have to prove that for U ↗ T the evaluation of the expression

z
′T
U zTUEU · X , with X :=

(
s̊
′
↓

n d̊
′
↑

n d̊↓

n s̊
↑

n

)
|ur+1=cr+1,...,un−1=cn−1 ,

at un = cn is equal to ET . Here zTU is defined in (4.28) and z
′T
U is the following rational function in un:

z
′T
U :=

un − h + δ

un + cn − h
.

Lemma 12 implies that

EU ·

(
s̊
′
↓

n d̊
′
↑

n

)
|ur+1=cr+1,...,un−1=cn−1=

h − un − xn
h − un − δ

EU .

By the fusion procedure of Theorem 4, the evaluation of the expression

zTUEU ·
(
d̊↓

n s̊
↑

n

)
|ur+1=cr+1,...,un−1=cn−1

at un = cn equals ET , and xnET = cnET , so we are done.

2. It is straightforward to see that the Jucys–Murphy elements are stable with respect to the anti-involution ι defined in
(2.1). Therefore the idempotents ET are stable with respect to ι as well. However, we have the identity

ι
(
Ψ̊n;Tr ,h

)
=

˚̃Ψ n;Tr ,h

which implies the assertion (3.22). ■
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