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a b s t r a c t

The Cauchy–Fueter operator on the quaternionic space Hn induces the tangential
Cauchy–Fueter operator on the boundary of a domain. The quaternionic Heisenberg group
is a standard model of the boundaries. By using the Penrose transformation associated to a
double fibration of homogeneous spaces of Sp(2N,C), we construct an exact sequence on
the quaternionic Heisenberg group, the tangential k-Cauchy–Fueter complex, resolving the
tangential k-Cauchy–Fueter operator Q (k)

0 . Q (1)
0 is the tangential Cauchy–Fueter operator.

The complex gives the compatible conditions under which the non-homogeneous tangen-
tial k-Cauchy–Fueter equations Q (k)

0 u = f are solvable. The operators in this complex are
left invariant differential operators on the quaternionic Heisenberg group. This is a quater-
nionic version of ∂b-complex on the Heisenberg group in the theory of several complex
variables.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

For a point q = (q0, . . . , qn−1) ∈ Hn, write

ql = x4l+1 + x4l+2i + x4l+3j + x4l+4k, (1.1)

l = 0, . . . , n − 1. For a domainΩ in Hn, the Cauchy–Fueter operator D0 : C1(Ω,H) → C(Ω,Hn) is defined as

D0f =

∂q0 f , . . . , ∂qn−1 f

t
, (1.2)

for f ∈ C1(Ω,H), where t is the transport, and

∂ql = ∂x4l+1 + i∂x4l+2 + j∂x4l+3 + k∂x4l+4 . (1.3)

A function f : Ω → H is called regular in Ω if D0f (q) = 0 for any q ∈ Ω . Similar to the Dolbeault complex in the theory
of several complex variables, there exists an exact sequence, the Cauchy–Fueter complex, resolving the Cauchy–Fueter
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operator D0 [1–7]: the sequence

0 → R(R4n,C2)
D0

−−→ R(R4n,C2n)
D1

−−→ R(R4n,Λ3C2n)

D2
−−→ R(R4n,C2

⊗Λ4C2n)
D3

−−→ · · ·
D2n−2

−−−−→ R(R4n,⊙2n−3 C2
⊗Λ2nC2n) → 0 (1.4)

is exact except at the first spot, where Dj are differential operators of the first order except D1, which is of the second
order. Here R(R4n,⊙k C2

⊗ ΛjC2n) is the ring of ⊙
k C2

⊗ ΛjC2n-valued polynomials over R4n. In [8] we solved the non-
homogeneous Cauchy–Fueter equations

D0u = f , (1.5)
on Hn under the compatible condition

D1f = 0, (1.6)
and find the compactly supported solution u to the non-homogeneous equation (1.5) if f is also compactly supported. This
solution allows us to prove the Hartogs’ phenomenon for quaternionic regular functions in any domain (see also [9]). D0 is
the first one of a family of linear differential operatorsD(k)0 , and there exists an exact sequence, the k-Cauchy–Fueter complex,
resolving the k-Cauchy–Fueter operator D(k)0 [4,10]. The Hartogs’ phenomenon for k-regular functions is also proved in [10].

As in the case of several complex variables, the Hartogs’ phenomenon leads to the concept of domains of holomorphy.
There already exist the concept of plurisubharmonic functions on Hn and the concept of a pseudoconvex domain in Hn [11].
To develop the theory of several quaternionic variables, we need to solve the non-homogeneous k-Cauchy–Fueter equations
in a holomorphic domain or in a pseudoconvex domain and to solve the corresponding D-Neumann problem, etc. In the
theory of several complex variables, oneway to solve the non-homogeneous ∂-equations in a smooth pseudoconvex domain
is to solve the ∂b-equations on its boundary, and there is a natural ∂b-complex on the boundary. This leads us to consider
the tangential Cauchy–Fueter operator and to find the counterpart of ∂b-complex.

For a domainΩ ⊂ Hn+1, a vector

Z =

n−
l=0

al∂ql

is called a quaternionic tangential vector field on the boundary ∂Ω if Zρ ≡ 0, where ρ is a defining function of Ω . Suppose
∂qnρ ≠ 0 locally. Then

Z l = ∂ql − ∂qlρ(∂qnρ)
−1∂qn , (1.7)

l = 0, . . . , n − 1, are quaternionic tangential vector fields. The tangential Cauchy–Fueter operator is defined as f −→

(Z0f , . . . , Zn−1f )t locally. A H-valued distribution f on ∂Ω is said to be Cauchy–Fueter (or briefly, CF ) if Zf = 0 in the
sense of distributions for each quaternionic tangential vector field Z . It is easy to see that the restriction to ∂Ω of a function
regular in a neighborhood of ∂Ω is a CF function. So CF functions are abundant. CF functions have already been applied
to determine the extremals for the Sobolev inequality on the quaternionic Heisenberg group and to solve the quaternionic
contact Yamabe problem (see [12] and references therein). It is interesting and important to develop a theory of CF functions.

Chang and Markina [13,14] have constructed the Szegö kernel on the unit ball in H2, equivalently, on the Siegel upper
half space in H2. Consider the boundary of the Siegel upper half space:

Sκ =


q = (q0, . . . , qn) ∈ Hn+1

; Re qn −

n−1−
l=0

κl|ql|2 = 0


, (1.8)

where κl = ±1. We can identify Sκ with Hκ = Hn
× ImH, the quaternionic Heisenberg group with the multiplication given

by

(q, t) · (q,t) =


q +q, t +t + 2

n−1−
l=0

κl Im(qlql)

, (1.9)

where q,q ∈ Hn, t,t ∈ ImH. The neutral element is (0, 0) and the inverse of (q, t) is (−q,−t). In real coordinates, the
multiplication is given by the following formula (cf. Remark 5.2.1):

(x, t) · (y, s) =


x + y, tβ + sβ + 2

n−1−
l=0

4−
i,j=1

κlb
β

ij x4l+iy4l+j,


, (1.10)

where β = 1, 2, 3, x = (x1, x2, . . . , x4n) ∈ R4n, t = (t1, t2, t3) ∈ R3, y and s are defined similarly, and b1, b2, b3 are
antisymmetric matrices

b1 =

 0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 , b2 =

 0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

 , b3 =

 0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

 . (1.11)



W. Wang / Journal of Geometry and Physics 61 (2011) 363–380 365

It is easy to see that matrices b1, b2, b3 satisfy the commutating relation of quaternions:

(b1)2 = (b2)2 = (b3)2 = −id, b1b2 = b3. (1.12)
The vector fields given by

X4l+j = ∂x4l+j + 2κl
3−

β=1

4−
i=1

bβij x4l+i∂tβ , (1.13)

l = 0, . . . , n − 1, j = 1, . . . , 4, are left invariant on Hκ and satisfy the following commutating relation

[X4l+i, X4l′+j] = 4κlδll′
3−

β=1

bβij ∂tβ . (1.14)

By the projection π : Sκ −→ Hκ , it is shown in Section 5.1 that the tangential Cauchy–Fueter operator of the boundary
Sκ of the Siegel upper half space is mapped to the tangential Cauchy–Fueter operator Q : C1(Hκ ,H) → C(Hκ ,Hn),

Q f = (Q 0f , . . . ,Q n−1f )t

with

Q l = X4l+1 + iX4l+2 + jX4l+3 + kX4l+4, (1.15)

l = 0, . . . , n − 1. The equation Q lf = 0 for f = f1 + f2i + f3j + f4k can be written as
X4l+1 + iX4l+2 −X4l+3 − iX4l+4
X4l+3 − iX4l+4 X4l+1 − iX4l+2


φ0

φ1


= 0, (1.16)

where φ0
= f1 + if2, φ1

= f3 − if4. Denote
∇2l+1,1′ ∇2l+1,2′

∇2l+2,1′ ∇2l+2,2′


:= εl


X4l+1 + iX4l+2 −X4l+3 − iX4l+4
X4l+3 − iX4l+4 X4l+1 − iX4l+2


, (1.17)

where εl = 1 if κl = 1 and εl = i if κl = −1. Then Q f = 0 can be written as ∇AA′φA′

= 0 briefly. Here and in the following
we use the Einstein convention of taking summation over repeated indices. The repeated indices A′ and A are taken over 1, 2
and 1, . . . , 2n, respectively. We will use the matrix

(εA′B′) =


0 1

−1 0


, (ϵAB) =


0 In

−In 0


(1.18)

to raise or lower indices A′ and A, respectively. For example,∇A′

A = εA
′B′

∇AB′ , where (εA
′B′

) = −(εA′B′) is the inverse of (εA′B′).
Denote by {eA′

1...A
′
s
} the basis of ⊙s C2, the symmetric product of C2. Define the tangential k-Cauchy–Fueter operator

Q (k)
0 : C∞(R4n+3,⊙k C2) −→ C∞(R4n+3,⊙k−1 C2

⊗ C2n),

feA′
1...A

′
k
→ ∇

A′
s

A feA′
1...
A′
s...A′

k
⊗ eA,

(1.19)

whereA′
s means that A′

s is omitted. Here and in the following we only write down the action of Q (k)
0 on one component for

simplicity, where f is a scalar function. The tangential 1-Cauchy–Fueter operator Q (1)
0 = ∇

A′

A fA′ = ∇AA′ f A
′

is equivalent to
the tangential Cauchy–Fueter operator Q .

Let V (j) be the irreducible representation of sp(2n,C) with the highest weight to be the j-th fundamental weight ωj.
C2n

⊗ V (j) has a unique irreducible subrepresentation of sp(2n,C) isomorphic to V (j±1) (cf. Lemma 4.1.1). Let prjj±1 be
sp(2n,C)-equivariant projection fromC2n

⊗V (j) to V (j±1). For v ∈ V (j), eA ∈ C2n, denote eA ∧0 v := prjj+1(eA⊗v) and eA.v :=

prjj−1(eA ⊗ v).
Similar to the ∂b-complex in the theory of several complex variables, which is important to investigate CR functions, we

can construct an exact sequence, the tangential k-Cauchy–Fueter complex, resolving the Q (k)
0 on the quaternionic Heisenberg

group. Denote
T1 := −i∂x4n+1 , T2 := ∂x4n+2 − i∂x4n+3 , T3 := ∂x4n+2 + i∂x4n+3 . (1.20)

Theorem 1.0.1. If 0 ≤ k ≤ n − 2, the sequence

0 → R(R4n+3,⊙k C2)
Q (k)0
−−→ R(R4n+3,⊙k−1 C2

⊗ V (1))
Q (k)1
−−→ · · · −→ R(R4n+3, V (k))

Q (k)k
−−→ R(R4n+3, V (k+2))

Q (k)k+1
−−→ · · · −→ R(R4n+3,⊙n−k−2 C2

⊗ V (n))

Q (k)n−1
−−→ R(R4n+3,⊙n−k C2

⊗ V (n))
Q (k)n
−−→ · · ·

Q (k)2n−1
−−−→ R(R4n+3,⊙2n−k C2) → 0 (1.21)
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is exact except at the first spot, where the operators Q (k)
j , j = 0, . . . , k − 1, are given by

feA′
1...A

′
k−j

⊗ v → ∇
A′
s

A feA′
1...

ˆA′
s...A′

k−j
⊗ eA ∧0 v, (1.22)

for v ∈ V (j); the operators Q (k)
j , j = k + 1, . . . , n − 2, are given by

feA′
1...A

′
j−k−1

⊗ v → ∇AA′ feA′A′
1...A

′
j−k−1

⊗ eA ∧0 v, (1.23)

for v ∈ V (j+1); the operators Q (k)
j , j = n, . . . , 2n − 1, are given by

feA′
1...A

′
j−k

⊗ v → ∇AA′ feA′A′
1...A

′
j−k

⊗ eA.v, (1.24)

for v ∈ V (2n−j); the operator Q (k)
n−1 is given by

feA′
1...A

′
n−k−2

⊗ v → Tjf · eσjA′
1...A

′
n−k−2

⊗ v, (1.25)

for v ∈ V (n), where σ1 := 1′2′, σ2 =: 1′1′, σ3 := 2′2′; Q (k)
k is an operator of the second order given by

f v → ∇AA′∇
A′

B feA ∧0 eB ∧0 v, (1.26)

for v ∈ V (k). Here R(R4n+3,⊙s C2
⊗ V (t)) is the ring of ⊙

s C2
⊗ V (t)-valued polynomials over R4n+3.

The case k > n − 2 is similar. Note that Q (k)
j are differential operators with variable coefficients, while differential

operators in usual complexes [6] are of constant coefficients. The important application of the tangential k-Cauchy–Fueter
complex is to give the compatible conditions under which the non-homogeneous tangential k-Cauchy–Fueter equations
Q (k)
0 u = f are solvable, i.e., Q (k)

1 f = 0 (cf. Remark 6.1 in [13]).
The proof of this theorem goes as follows. Let G be the complex semisimple Lie group Sp(2(n + 2),C), and let P,Q and

R be its parabolic subgroups, whose Lie algebra are given by (2.1), Q = P ∩ R. Consider the double fibration:

η~~||
||

||
||

G/R

G/Q
τ

""DD
DD

DD
DD

G/P

(1.27)

Here G/P,G/Q and G/R are generalized flag varieties. We use the Penrose transform [15] associated with this double
fibration to construct an exact sequence of sheaves on G/P . In Section 2, we give the preliminaries on Lie algebra sp(2N,C),
its parabolic subalgebras and irreducible homogeneous sheaves. In Section 3, firstly, we get the exact sequence of relative
Bernstein–Gelfand–Gelfand resolution

0 → η−1Or(λk) → Oq(ν1)
∂(k)1
−−→ Oq(ν2)

∂(k)2
−−→ · · · ,

resolving the pulling back of the irreducible homogeneous sheaf Or(λk) on G/R, where Oq(νj) are irreducible homogeneous
sheaves on G/Q , and λk and νj are suitable dominant integral weights for r and q, respectively. Then, calculate their higher
direct image sheaves under τ by using the Borel–Bott–Weil theorem.We calculate the hypercohomology spectral sequence
of a double complex: the Čech cochain complex Cq(U,Oq(νp)), whereU is a covering of Y = τ−1X ⊂ G/Q and X is an affine
open set in G/P . It converges to Hp+q(Y , η−1Or(λk)). The later one vanishes except p + q ≤ 1. We get an exact sequence of
sheaves on G/P which follows from Eq,p

1 .
In Section 4, we use the representation theory to find the explicit form of the invariant operators Q (k)

j . Recently, Colombo
et al. [7] determined the invariant operators D(1)j of the Cauchy–Fueter complex (1.21) also by using representation theory
(see also [5]). In Section 5, by using the embedding of the quaternionic Heisenberg group into G/P , we pull back the exact
sequence of sheaves on G/P to get the exact sequence in Theorem 1.0.1.

2. Preliminaries on sp(2N, C), parabolic subalgebras and irreducible homogeneous sheaves

2.1. Parabolic subgroups and parabolic subalgebras

Let g be semisimple complex Lie algebra with a fixed Cartan subalgebra h and the set of roots∆:

g = h ⊕


α∈∆

gα


.

Let S be a subset of {1, . . . ,N}, hS be the span of Hi with i ∈ S, and gS be the subalgebra of g generated by hS and g±αi
with i ∈ S. gS is a semisimple Lie algebra with Cartan subalgebra hS , root system∆S := ∆ ∩

∑
i∈S Zαi, positive root system
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∆+

S := ∆+
∩∆S and simple roots {αi; i ∈ S}. We have the decomposition gS = n+

S ⊕ hS ⊕ n−

S with n+

S =
∑

α∈∆
+

S
gα, n

−

S =∑
α∈∆

+

S
g−α . Set

u+

S :=

−
α∈∆+\∆

+

S

gα, u−

S :=

−
α∈∆+\∆

+

S

g−α, pS := l ⊕ u+

S , l = z(l)⊕ gS .

l is a reductive subalgebra of g with derived algebra gS and center z(l) ⊂ h. pS is a parabolic subalgebra of g. Set aS := z(l).
We will denote a parabolic subalgebra of g by the diagram crossing through all nodes in the Dynkin diagram for g which
correspond to the simple roots in {αi; i ∉ S}. We will consider G = Sp(2N,C), g = sp(2N,C), where

N = n + 2,
and its parabolic subalgebras

p = •−×−• · · · ⇐= •,

q =×−×−• · · · ⇐= •,

r =×−•−• · · · ⇐= •.

(2.1)

Namely,
p = pS2 , q = pS1,2 , r = pS1 , (2.2)

with S2 = {1, . . . ,N} \ {2}, S1,2 = {1, . . . ,N} \ {1, 2}, S1 = {1, . . . ,N} \ {1}. p and r are maximal parabolic subalgebras.
A weight ωj satisfying ⟨ωj, α

∨

k ⟩ = δjk for each k is called a fundamental weight. Here for any root α its coroot is denoted by
α∨

= 2α/⟨α, α⟩. Hence λ =
∑

⟨λ, α∨

j ⟩ωj. We indicate a weight λ ∈ h∗ by inscribing the coefficient ⟨λ, α∨
⟩ over a node of

the Dynkin diagram for g corresponding to the simple root α. A weight λ is dominant (or integral) for pS if coefficients over
uncrossed nodes are non-negative (or integral), respectively. The finite dimensional irreducible representations of pS are in
a one-to-one correspondence to dominant integral weights for pS . For example,

λk =
−2−k
× • • · · · • ks • , (2.3)

is a dominant integral weight for q and r given by (2.1), where 0 is omitted over the nodes without coefficient.
Let P+

S = {λ ∈ h∗
; 0 ≤ λ(Hi) ∈ Z, i ∈ S}. P+

S parametrizes the set of finite dimensional pS-modules (its restriction to u+

S
is trivial) which remains irreducible under gS . We denote the module corresponding to λ by FpS (λ). For λ ∈ P+

S , let δ be its
restriction to gS . Since aS commutes with gS, aS has to be scalar on the representation if dim aS = 1, i.e.,

λ(h) = νI, h ∈ aS

for some ν ∈ C. So the irreducible representation λ is completely determined by (δ, ν).

2.2. g = sp(2N,C)

It is the space of all 2N × 2N matrices

X =


A B
C −At


(2.4)

satisfying Bt
= B and C t

= C , where A, B and C are all N × N matrices. The subalgebra h of matrices diagonal in this
representation is a Cartan subalgebra, which is spanned byHj = Ej,j−EN+j,N+j. We fix a dual basis {Lj} of h∗, i.e., ⟨Lj,Hi⟩ = δji.
We have root spaces:

gLi−Lj = C(Ei,j − EN+j,N+i),

gLi+Lj = C(Ei,N+j + Ej,N+i),

g−Li−Lj = C(EN+i,j + EN+j,i),

g2Li = CEi,N+i,

g−2Li = CEN+i,i,

(2.5)

i, j = 1, . . . ,N, i ≠ j. So the set ∆ of roots of sp(2N,C) are vectors ±Li ± Lj ∈ h∗. ∆ = ∆+
∪ ∆− with the set of positive

roots to be
∆+

= {Li + Lj}i≤j ∪ {Li − Lj}i<j.

Simple positive roots are α1 = L1 − L2, . . . , αN−1 = LN−1 − LN and αN = 2LN . Up to a constant, the Killing form ⟨·, ·⟩ on
sp(N,C) satisfies

⟨Hi,Hj⟩ = δij, ⟨Li, Lj⟩ = δij,

from which we see that ωi = L1 + · · · + Li constitutes fundamental weights, i.e. ⟨ωi, α
∨

j ⟩ = δij. Hαi = Hi − Hi+1, i =

1, . . . ,N − 1, and HαN = HN (cf. Section 16.1 in [16]).
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We have the following decomposition

g = pS2 ⊕ u−

S2
, l = gS2 ⊕ z(l), h = hS2 ⊕ z(l), (2.6)

with pS2 = gS2 ⊕ u+

S2
, and

aS2 := z(l) = CHz, Hz = H1 + H2. (2.7)

Elements of u−

S2
are matrices of the following form:

0 0
0 0
∗ ∗

...
...

∗ ∗ · · · 0 0 ∗ · · ·

∗ ∗ · · · 0 0 ∗ · · ·

∗ ∗

...
...


.

Denote

Yi,1 := E2+i,1 − EN+1,N+2+i, Yi,2 := E2+i,2 − EN+2,N+2+i,

Yn+i,1 := EN+2+i,1 + EN+1,2+i, Yn+i,2 := EN+2+i,2 + EN+2,2+i,

T1 := −
1
4
(EN+2,1 + EN+1,2), T2 := −

1
2
EN+1,1, T3 := −

1
2
EN+2,2,

(2.8)

i = 1, . . . , n. Here we choose the coefficients in the definition of Ts to make the brackets satisfy (2.10). Then we have the
decomposition

g = u−

S2
⊕ aS2 ⊕ gS2 ⊕ u+

S2
= g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

with gk := {X ∈ g; [Hz, X] = kX},

g0 = aS2 ⊕ gS2 ,

g−1 = {Yi,1, Yi,2; i = 1, . . . , 2n},
g−2 = {T1, T2, T3}.

(2.9)

It is easy to see that:

[Yi,1, Yn+i,1] = 4T2,
[Yi,2, Yn+i,2] = 4T3,
[Yi,1, Yn+i,2] = [Yi,2, Yn+i,1] = 4T1,

(2.10)

and all other brackets vanish. We relabel these elements as

Y4l+1 = Yl+1,1, Y4l+2 = Yl+1,2,

Y4l+3 = Yn+l+1,1, Y4l+4 = Yn+l+1,2, l = 0, . . . , n − 1,
Y4n+1 := T1, Y4n+2 := T2, Y4n+3 := T3.

(2.11)

Then,

[Y4l+1, Y4l+3] = 4Y4n+2,

[Y4l+2, Y4l+4] = 4Y4n+3,

[Y4l+1, Y4l+4] = [Y4l+2, Y4l+3] = 4Y4n+1,

(2.12)

and all other brackets vanish.

2.3. Homogeneous vector bundles and irreducible homogeneous sheaves Op(λ)

Given a finite dimensional representation ρ of a parabolic subgroup P on a vector space V , the homogeneous vector space
G×P V over G/P is the quotient space of G × V under the equivalent relation (g, v) ∼ (gp, ρ(p−1)v), p ∈ P , and the map
(g, v) → gP induces a projection G × V → G/P . The group G acts on G×P V by left translation, which is denoted by τ . We
have a trivialization Uo × V around o = eP and Ugo × V around go = gP . The sheaf of germs of holomorphic sections of
G×P V is denoted by Op(V ).



W. Wang / Journal of Geometry and Physics 61 (2011) 363–380 369

LetOG(V ) be the sheaf of germs of V -valued holomorphic functions onG and letOG(V )P be the sheaf of germs of V -valued
holomorphic functions on G satisfying

f (gp) = ρ(p−1)f (g), g ∈ G, p ∈ P.

A local section f of OG(V )P is in one-to-one correspondence to a local section sf of the homogeneous sheaf Op(V ):

sf (gP) = (g, f (g)).

For each integral weight λ for g which is dominant for p one obtains an irreducible representation of P and hence an
irreducible homogeneous sheaf Op(λ) := Op(Fp(−λ)) on G/P , where Fp(−λ), the dual of Fp(λ), has the lowest weight vector
of weight −λ. The reason we consider Op(Fp(−λ)), and not Op(Fp(λ)), is that the Borel–Bott–Weil theorem holds for such
sheaves.

3. Construct an exact sequence of sheaves over G/P

3.1. The Hasse diagram and the relative Bernstein–Gelfand–Gelfand resolution

The reflection σα associated to a root α acts on a weight λ as σα(λ) = λ− ⟨λ, α∨
⟩α. The reflect associated to the simple

root with coefficient b acts on a weight as follows (cf. Section 4.1 in [15]):

a
•−

b
•−

c
• −→

a+b
•−

−b
•−

b+c
• ,

a
•−

b
•⇐

c
• −→

a+b
•−

−b
• ⇐

b+c
• ,

· · ·
c
•⇐

b
• −→ · · ·

c+2b
• ⇐

−b
• .

(3.1)

For a weight λ ∈ h∗, the affine action of an elementw of the Weyl groupW is

w.λ = w(λ+ ρ)− ρ, ρ =

N−
j=1

ωj, (3.2)

where ωj, j = 1, . . . ,N , are fundamental weights.
The Weyl group admits the structure of a direct graph as follows: for w,w′

∈ W , write w → w′ if l(w′) = l(w) + 1
and w′

= σαw for some α ∈ ∆(g), where l(w) is the length of w. Let Wp be the Weyl group of a reductive Levi factor of
p. Let ρp

=
∑

j∉S wj for p = pS . It is known that Wp is the stabilizer of ρp in W . Let W p be the set of minimal length right
coset representatives of the subgroupWp ofWg. There is a one-to-one correspondence between the elements ofW p and the
orbit of ρp under the action ofWg. If each member of the orbit is connected to ρp by one or more paths of simple reflection,
the corresponding member of W p has reduced expressions which are obtained by taking their composition in the reverse
order. SoW p has an induced subgraph structure, and is called the Hasse diagram. Consider the fibration G/Q

η
−→ G/R, whose

fibre has the form R/Q = LS/LS ∩ Q , where LS is the semisimple part of the reductive Levi factor of R. The Weyl group of
LS is Wr. We can define the relative Hasse diagram W q

r with Wr playing the role Wg and Wq playing the role Wp in the non-
relative case (see p. 41 [15] for the algorithm of calculating Hasse diagrams). Hence to calculateW q

r for parabolic subalgebras

r, q of sp(2N,C) given by (2.1), we first calculate the orbit of×−
1
×−• · · · ⇐ • under the action of Wr. It is easy to see

that

×−
1
×−• · · · • ⇐ •

σ2
−−−−→

1
×−

−1
×−

1
• · · · • ⇐ •

σ3
−−−−→ · · ·

σN−1
−−−→

1
×−×−• · · ·

−1
• ⇐

1
•

σN
−−−−→

1
×−×−• · · ·

1
•⇐

−1
•

σN−1
−−−→

1
×−×· · ·

1
•−

−1
• ⇐ •

σN−2
−−−→ · · ·

σ2
−−−−→

2
×−

−1
× · · · •−• ⇐ •.

So W q
r has a single element of each length from 0 to 2n + 1:W q

r = {Σ0, . . . ,Σ2n+1} with

Σ0 = id,
Σ1 = σ2,

...

Σn+1 = σ2 · · · σn+2,

Σn+2 = σ2 · · · σn+2σn+1,

...

Σ2n+1 = σ2 · · · σn+2σn+1 · · · σ2.

(3.3)
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Since λk is a dominant integral weight for r, η−1Or(λk) has a relative Bernstein–Gelfand–Gelfand resolution (relative BGG
resolution) (cf. Theorem 8.4.1, Sections 8.7 and 9.1 in [15]):

0 → η−1Or(λk) → ∆0
η(λk)

∂(k)0
−−→ ∆1

η(λk)
∂(k)1
−−→ · · ·

∂(k)2n
−−→ ∆2n+1

η (λk) → 0, (3.4)
with

∆j
η(λk) :=


w∈W q

r ;l(w)=j

Oq(w.λk) = Oq(νj), νj := Σj.λk, (3.5)

where∂ (k)j are g-invariant operators. By using the rules (3.1) and the definition of affine action (3.2), it is elementary to check
that ν0 = λk,

νj := Σj.λk =
−2−k+j

× −
−j−1
× −• · · ·

1
• · · · • ⇐ •, (3.6)

where 1 appears in the (2 + j)-th node, j = 1, . . . , n, and

νn+1 := Σn+1.λk =
−k+n
× −

−n−3
× −• · · · • · · · • ⇐

1
•, (3.7)

and

νn+1+j := Σn+1+j.λk =
−k+n+j

× −
−j−n−3

× −• · · ·
1
• · · · • ⇐ •, (3.8)

where 1 appears in the (n + 2 − j)-th node, j = 1, . . . , n.

3.2. The spectral sequence and the exact sequence on G/P

Cf. Sections 7.2–7.3 and Remark 9.2.9 in [15,10]. Recall the hypercohomology spectral sequence for a resolution

F → ∆•

η (3.9)

of coherent sheaves over X , where X is an open affine subset of G/P . Let U be a good affine cover of Y = τ−1(X) ⊂ G/Q .
The differential d of the resolution (3.9) and δ of the Čech cochain complex C•(U,∆•

η)make

Cq(U,∆p
η) (3.10)

a double complex. Deriving with respect to d gives

E0,q
1 = Cq(U,F ), Ep,q

1 = 0 for p ≠ 0. (3.11)
Then deriving with respect to δ gives

E0,q
2 = Hq(U,F ), Ep,q

2 = 0 for p ≠ 0. (3.12)
This spectral sequence converges to the total cohomology of Cq(U,∆p

η), which is just the cohomology of F on Y .
Alternatively, deriving with respect to δ first gives

Ep,q
1 = Hq(Y ,∆p

η), (3.13)
which is the E1 term of the hypercohomology spectral sequence converging to the cohomology of F on Y .

Applying the hypercohomology spectral sequence to the relative BGG resolution (3.4) of η−1Or(λ), we get

Ep,q
1 = Hq(Y ,∆p

η(λk)) ⇒ Hp+q(Y , η−1Or(λk)), (3.14)

i.e., the spectral sequence converges to the cohomology of η−1Or(λ) on Y = τ−1(X). Note that the Dynkin diagram of the
fibres of Y → X is obtained by deleting from the Dynkin diagram for q all crossed nodes (and incident edges) shared with p

and then deleting all connected components with no crossed nodes (Section 2.4 in [15]). Thus the fibre is × = CP1, and so
the cohomology Hp+q(Y , η−1Or(λ)) vanishes except p + q ≤ 1.

It follows from X being affine that the Leray spectral sequence collapses to give isomorphisms:

Hq(Y ,∆p
η(λk))

∼= Γ (X, τ q
∗
∆p
η(λk)) = Γ (X, τ q

∗
Oq(νp)), (3.15)

where τ q∗∆p
η(λ) denotes the q-th direct image.

Proposition 3.2.1. The hypercohomology spectral sequence has the E1 terms of the form

... · · ·
...

...
... · · ·

0 · · · 0 0 0 · · ·

E0,1
1 · · · Ek,1

1 0 0 · · ·

0 · · · 0 0 Ek+2,0
1 · · ·

(3.16)
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with

E j,1
1 = Γ (X,Op(µj)), E j′,0

1 = Γ (X,Op(µj′)),

where j = 0, . . . , k, j′ = k + 2, . . . , 2n + 1,

µj =
k−j
×−

−2−k
× −• · · ·

1
• · · · • ⇐= •, j = 0, . . . , k, (3.17)

where 1 appears in the (2 + j)-th node, and

µj =
−2−k+j

× −
−j−1
× −• · · ·

1
• · · · • ⇐ •, j = k + 2, . . . , n,

µn+1+j =
−k+n+j

× −
−j−n−3

× −• · · ·
1
• · · · • ⇐ •, j = 0, . . . , n,

(3.18)

where 1 appears in the (2 + j)-th node and the (n + 2 − j)-th node, respectively.

Proof. We can apply the Borel–Bott–Weil theorem to compute the higher direct image τ q∗Oq(νp) (Section 5.3 in [15]).
Consider the orbit {w.ν;w ∈ W q

p }. If none of these weights is p-dominant, then all higher direct images of Oq(ν) vanish.
Otherwise, there is a unique p-dominant weight w.ν, and τ l(w)∗ Or(ν) = Op(w.ν), whereas all other higher direct images
vanish.

If j ≤ k, µj = σ1.νj is p-dominant with µj given by (3.17) by direct calculation. If j = k + 1,

νk+1 =
−1
×−

−k−2
× −• · · ·

1
• · · · • ⇐= •, (3.19)

is singular, and so there is no non-zero direct image. If j ≥ k + 2, νj is regular, and so only the zeroth direct images is
non-trivial: µj = νj. �

It follows that Ep,q
∗ (∗ = 2, 3) terms are

... · · ·
...

...
... · · ·

0 · · · 0 0 0 · · ·

E0,1
∗

· · · Ek,1
∗

0 0 · · ·

0 · · · 0 0 Ek+2,0
∗

· · ·

(3.20)

and Ep,q
3 = Ep,q

∞ . Since the spectral sequence converges toHp+q(Y , η−1Or(λk)),which vanishes except p+q ≤ 1 (3.14),we see

that all Ep,q
3 = Ep,q

∞ = 0 except E0,1
3 . Therefore, E1,1

2 = · · · = Ek−1,1
2 = 0, Ek+3,0

2 = · · · = E2n+1,0
2 = 0, i.e., E0,1

1
d1
−→ · · ·

d1
−→ Ek,1

1

and Ek+2,0
1

d1
−→ Ek+3,0

1
d1
−→ · · · are both exact, and 0 = Ek,1

3 = ker d2 : Ek,1
2 → Ek+2,0

2 , Ek+2,0
2 = im d2 : Ek,1

2 → Ek+2,0
2 (by

Ek+2,0
3 = 0). This together with the fact that

Ek,1
2 =

Ek,1
1

im d1 : Ek−1,1
1 → Ek,1

1

and Ek+2,0
2 = ker d1 : Ek+2,0

1 → Ek+3,0
1 , (3.21)

implies that d2 induces a well defined morphism ∆ : Ek,1
1 → Ek+2,0

1 such that ker∆ = im d1 : Ek−1,1
1 → Ek,1

1 and im∆ =

ker d1 : Ek+2,0
1 → Ek+3,0

1 . So we get an exact sequence

E0,1
1

d1
−→ · · ·

d1
−→ Ek,1

1
∆
−→ Ek+2,0

1
d1
−→ · · · . (3.22)

Recall that a sequence of sheaves is called exact if the sequence of stalks at each point is exact. Note that X is an arbitrarily
chosen affine open set in G/P and the induced morphisms in (3.22) are g-morphisms between sheaves of g-modules. We
obtain the following theorem.

Theorem 3.2.1. For k = 0, . . . , n,

0 → H1(G/Q , η−1Or(λk)) → Op(µ0)
∂
(k)
0

−−→ · · ·
∂
(k)
k−1

−−→ Op(µk)

∂
(k)
k

−−→ Op(µk+2)
∂
(k)
k+1

−−→ · · ·
∂
(k)
2n−1

−−−→ Op(µ2n+1) → 0 (3.23)

are exact sequences of sheaves on G/P, where operators ∂ (k)j induced from∂ (k)j are also g-invariant, andµj are p-dominant integral
weights given by (3.17) and (3.18).

In notations in Section 2.1, the irreducible representation Fp(−µj) is completely determined by (δ, νFp(−µj))with

νFp(−µj) = −((k − j)ω1 − (k + 2)ω2 + ωj+2)(H1 + H2) = j + k + 2, (3.24)
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for j = 0, . . . , k, by ωj = L1 + · · · + Lj, Lj dual to Hj, and

νFp(−µj) = −((−2 − k + j)ω1 − (j + 1)ω2 + ωj+2)(H1 + H2) = j + k + 2, (3.25)

for j = k + 2, . . . , n, and

νFp(−µn+1+j) = −((−k + n + j)ω1 − (j + n + 3)ω2 + ωn+2−j)(H1 + H2) = j + k + n + 4, (3.26)

for j = 0, . . . , n.

4. Determination of invariant operators

Let us determine the invariant operators in the exact sequence (3.23) on G/P by using the representation theory.

4.1. Some gS2-modules

Recall that V (j) is the irreducible representation of sp(2n,C) with the highest weight to be the j-th fundamental weight
ωj, j = 1, . . . , n. Let ϕj : ∧

j C2n
→ ∧

j−2 C2n be defined by

ϕj(v1 ∧ · · · ∧ vj) =

−
i<j

ϵ(vs, vt)(−1)s+t−1v1 ∧ · · · ∧vs ∧ · · ·vt ∧ · · · ∧ vj, (4.1)

wherevs means that vs is omitted, and ϵ(·, ·) is the bilinear form defined by the matrix (ϵAB) in (1.18). It is known that
V (j) = kerϕj (cf. Theorem 17.5 in [16]). Consequently,

Λ2C2n
= V (2) ⊕ Cψ, prV (2)(eA1 ∧ eA2) = eA1 ∧ eA2 −

1
n
ϵA1A2ψ, (4.2)

where ψ =
∑n

i=1 ei ∧ en+i (cf. Section 17.3 in [16]). The image of ϕ3 is C2n, and so

prV (3)(eA1 ∧ eA2 ∧ eA3) = eA1 ∧ eA2 ∧ eA3 −
1

n − 1
ψ ∧ (ϵA2A3eA1 − ϵA1A3eA2 + ϵA1A2eA3). (4.3)

From these formulae, we can write down pr21 and pr23.
By definition, if we embed a matrixM ∈ sp(2n,C) as an element of gS2 = sl(2,C)⊕ sp(2n,C), we have

M.YA,A′ := [M, YA,A′ ] = MBAYB,A′ , (4.4)

A′
= 1, 2, where the summation is taken over B = 1, . . . , 2n. Similarly, if we embed a matrix M ′

∈ sl(2,C) as an element
gS2 = sl(2,C)⊕ sp(2n,C) (i.e., a matrix in form of (2.4) with B = C = 0 and A to be diag(M ′, 0n)), we have

M ′.YA,A′ := [M ′, YA,A′ ] = −M ′

A′B′YA,B′ , (4.5)

where the summation is taken over B′
= 1, 2.

Let {e1′ , e2′} and {e1, . . . , e2n} be standard bases of C2 and C2n, respectively. If we identify g−1 with C2
⊗ C2n by taking

YA,A′ → eA′⊗eA, then as an gS2-module g−1 is isomorphic toC2
⊗C2n with the standard representation of sp(2n,C)onC2n and

the representation (4.5) of sl(2,C) on C2 (it is the representation dual to the standard representation of sl(2,C) on C2), i.e.,

(M ′
⊗ M).(eA′ ⊗ eA) = −M ′

A′B′eB′ ⊗ eA + eA′ ⊗ MBAeB. (4.6)

sp(2n,C) acts trivially on g−2. Let g∗

−1 beC2∗
⊗C2n∗ with the contragredient gS2-representation. Define a linear isomorphism

ϑ : g−1 −→ g∗

−1,

YA,A′ −→ eA
′

⊗ eA,
(4.7)

A′
= 1, 2, A = 1, . . . , 2n, where {e1

′

, e2
′

} and {e1, . . . , e2n} are standard bases of C2∗ and C2n∗, respectively. We can identify
C2n∗ ∼= C2n,C2∗ ∼= C2 by taking

eA
′

= εA
′B′

eB′ , eA = ϵABeB. (4.8)

By direct calculation, we have

[H1 − H2, T1] = 0, [H1 − H2, T2] = −2T2, [H1 − H2, T3] = 2T3,
[E1, T3] = 0, [E1, T2] = −2T1, [E1, T1] = −T3,

for E1 := E12 − EN+2,N+1, and similarly,

(E1′1′ − E2′2′).e1′2′ = 0, (E1′1′ − E2′2′).e1′1′ = −2e1′1′ , (E1′1′ − E2′2′).e2′2′ = 2e2′2′ ,

E1′2′ .e2′2′ = 0, E1′2′ .e1′1′ = −2e1′2′ , E1′2′ .e1′2′ = −e2′2′
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by sl(2,C) acting on e1′ , e2′ as (4.6). So we get an isomorphismθ : g−2
∼=
−→ spanC{e1′2′ , e1′1′ , e2′2′} = ⊙

2 C2 as a sl(2,C)-
module defined by T1 → e1′2′ , T2 → e1′1′ , T3 → e2′2′ . Define a linear isomorphism

θ : g−2 −→ g∗

−2
∼= spanC


e1

′2′

, e1
′1′

, e2
′2′


T1 −→ e1
′2′

, T2 → e1
′1′

, T3 → e2
′2′

.

(4.9)

Denote χ1
:= e1

′2′

, χ2
:= e1

′1′

, χ3
:= e2

′2′

.
Denote by Γλ the irreducible representation of GS2 with the highest weight λ. The dual Γ ∗

λ has the lowest weight −λ.
Denote by V (χ) the irreducible representation of sp(2n,C)with highest weight χ .

Lemma 4.1.1. There is a unique irreducible sp(2n,C)-component V (j±1) in C2n
⊗ V (j) (j ≠ n), a unique irreducible sp(2n,C)-

component V (k+2) in C2n
⊗ C2n

⊗ V (k) and a unique irreducible sp(2n,C)-component V (n) in C2n
⊗ C2n

⊗ V (n).

Proof. Recall that the multiplicity of occurrence of the irreducible representation V (µ) in the tensor product C2n
⊗ V (χ) is

the dimension of space of the solutions to

X ri+1
i v = 0, v ∈ (C2n)µ−χ , i = 1, . . . , n, (4.10)

where Xi ∈ sp(2n,C)αi , αi are simple roots, ri = ⟨χ, α∨

i ⟩ (cf. Theorem 5 in Section 131 in [17]). Recall that V (j) = V (χ)with
χ = ωj. Then ri = δji. Note that eA ∈ C2n, A = 1, . . . , n, has weight LA (i.e. Hi.eA = LA(Hi)eA), and en+A ∈ C2n, A = 1, . . . , n,
has weight −LA (i.e. Hi.en+A = −LA(Hi)en+A). Recall Xi = Ei,i+1 − En+i+1,n+i, i = 1, . . . , n − 1 and Xn = En,2n by (2.5). It
is direct to check that when j < n, eA satisfies Eq. (4.10) only for A = 1, j + 1, n + j − 1 (since XA−1eA = eA−1, XAen+A =

−en+A+1, X2
j ej+1 = 0, etc.); when j = n, eA satisfies Eq. (4.10) only for A = 1, 2n. It follows that

C2n
⊗ V (j) ∼= V (ωj + L1)⊕ V (ωj−1)⊕ V (ωj+1), C2n

⊗ V (n) ∼= V (ωn + L1)⊕ V (ωn−1).

A similar argument shows that V (k+2) does not appear in C2n
⊗ [V (ωk + L1) ⊕ V (ωk−1)] and has a multiplicity one in

C2n
⊗ V (ωk+1), and V (n) does not appear in C2n

⊗ V (ωn + L1) and has a multiplicity one in C2n
⊗ V (ωn−1). The result

follows. �

4.2. The left invariant operators between irreducible homogeneous sheaves on G/P and generalized Verma modules

The left invariant differential operator of first order on OG(V ) are given by the element X ∈ g

Xf (g) =
d
dt


t=0

f (g exp tX),

for a local section f of OG(V ). This definition is extended to universal envelope algebra U (g). More generally, the left
invariant differential operators from OG(V1) to OG(V2) are given by U (g)⊗ Hom(V1, V2): U ⊗ v∗

1 ⊗ v2 maps f ∈ OG(V1) to
U⟨f , v∗

1⟩v2 ∈ OG(V2).
Let U (p) be the universal envelope algebra of p and Y → Y ′ be its principal antiautomorphism determined by Y → −Y

for Y ∈ p. A representation ρ of P on vector space V1 induces a representation ρ∗ of p and of U (p) on V1. Let J be the linear
span of elements

UY ⊗ L − U ⊗ (L ◦ ρ∗(Y ′)),

where U ∈ U (g), Y ∈ U (p) and L ∈ Hom(V1, V2). Write

U (g)⊗U (p) Hom(V1, V2) := U (g)⊗ Hom(V1, V2)/J.

The action of U (g)⊗U (p) Hom(V1, V2) on OG(V )P , and hence on Op(V ), is well defined since J act trivially on OG(V )P :

(UY ⊗ L)f (g) = L
d
dt


t=0
(Uf )(g exp tY ) = L

d
dt


t=0
ρ(exp(−tY ))(Uf )(g)

= Lρ∗(Y ′)(Uf )(g) = (U ⊗ L ◦ ρ∗(Y ′))f (g).

Suppose ρ1, ρ2 are two representations of P on vector spaces V1 and V2, respectively. P acts on Hom(V1, V2) by p ∈ P
sending any element L to ρ2(p) ◦ L ◦ ρ1(p−1), and P acts on U by the adjoint representation. Hence we have an action of P
on U ⊗U (p) Hom(V1, V2).

An element u ∈ U (g) defines an operator as

f → ⟨v∗, uf ⟩ (4.11)

for v∗
∈ V ∗ and a germ f ∈ OG(V )P . When u ∈ p,

⟨v∗, uf ⟩ = ⟨v∗,−ρ∗(u)f ⟩ = ⟨ρ∗(u)v∗, f ⟩
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where ρ∗ is the contragredient representation of ρ∗. Identifying the germ of the operator in (4.11) at the identity with an
element of U (g)⊗ V ∗. Since u ⊗ v∗ and 1 ⊗ ρ∗(u)v∗ agree on sections of V ,

Mp(V ∗) := (U (g)⊗ V ∗)/I = U (g)⊗U (p) V ∗ (4.12)

is the space of differential operators from OG(V )P to OG, where I is the ideal generated by elements of form u ⊗ v∗
− 1 ⊗

ρ∗(u)v∗ for u ∈ p. Namely,

Mp(V ∗) = lim
−→

HomC(J r(V )eP ,C), (4.13)

where J r(V )eP is the r-th jet bundle at point eP .Mp(V ∗) is called a generalized Verma module.

Proposition 4.2.1. A g-invariant homomorphism D from sheaf Op(λ) to sheaf Op(µ) is a differential operator.
Proof. A homomorphism D from sheaf Op(λ) to sheaf Op(µ)maps an r1-jet s of J r(Fp(−λ))eP at the identity to some r2-jet
of J r2(Fp(−µ))eP at the identity for some r2 depending on s. So D induces a homomorphism

lim
−→

HomC(J r(Fp(−µ))eP ,C) → lim
−→

HomC(J r(Fp(−λ))eP ,C).

If D is g-invariant, the induced homomorphism is also g-invariant. By (4.13), D defines a g-homomorphism between
generalized Verma modules D : Mp(Fp(−µ)

∗) → Mp(Fp(−λ)
∗). A g-homomorphism between generalized Verma modules

is a invariant differential operator (Proposition 11.2.1 in [15]). �

Proposition 4.2.2. U (g)⊗U (p) Hom(V1, V2) can be identified with the space of G-invariant differential operators from local
holomorphic sections of OG(V1)

P to that of OG(V2). Having chosen a subspace u− of g complementary to p and a basis {Yj}, every
element of U (g)⊗U (p) Hom(V1, V2) can be uniquely written in the following ‘‘normal form’’:−

α

Y α ⊗ Lα, (4.14)

where Lα ∈ Hom(V1, V2), Y α = Y α11 Y α22 · · · for an increasing index α = (α1, α2, . . .).

This proposition is the holomorphic version of Proposition 1.1 in [18], which is stated for C∞-sections. Its proof holds for
holomorphic sections without modification.

4.3. Determination of the invariant differential operators

Proposition 4.3.1. Let G = Sp(2N,C), and let {Yj} in (2.11) be a basis of u−

S2
complementary to pS2 in g = sp(2N,C). Let

((δ, ν), V ) and ((δ′, ν ′), V ′) be two irreducible finite dimensional pS2-modules, and let D be a g-invariant differential operator
from Op(V ) to that of Op(V ′). Then, if ν ′

− ν = 1,D can be uniquely written as

D =

4n−
j=1

Yj ⊗ Fj (4.15)

for some Fj ∈ Hom(V , V ′); if ν ′
− ν = 2,D can be uniquely written as

D =

4n−
j,k=1

YjYk ⊗ Fj +
3−

s=1

Y4n+s ⊗ Fs, (4.16)

for some Fj, Fs ∈ Hom(V , V ′).

Proof. Let D be written in normal form (4.14) with Y α = Y α11 · · · Y α4n+3
4n+3 . Note that

Hz · D =

−
α


ν ′

− ν −

4n−
j=1

αj − 2
3−

j=s

α4n+s


Y α ⊗ Lα

by (2.9). The operator 0 = D − Hz · D is in normal form. When ν ′
− ν = 1, we must have |α| = 1 and α4n+1 = α4n+2 =

α4n+3 = 0. So D has the form (4.15). When ν ′
− ν = 2, there are two cases: (1) |α| = 2 and α4n+1 = α4n+2 = α4n+3 = 0, (2)

|α| = 1 and α1 = · · · = α4n = 0. Although the normal form in (4.14) takes over increasing multiindices, D can be uniquely
written as the form of (4.16) since [Yi, Yj] = 4Y4n+s for some s or equals 0. So D has the form (4.16). �

Proposition 4.3.2. Let G and {Yj} be as in Proposition 4.3.1 and let {wα} be a basis of Fp(−µs) or Fp(−µs+1). Up to a constant,
g-invariant differential operators ∂ (k)s in the complex (3.23) can be written as follows:
(1) if s ≠ k, n − 1,

∂ (k)s = YA,A′ ⊗ w∗

α ⊗ pr(ϑYA,A′ ⊗ wα),
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where pr is the gS2-equivariant projection from g∗

−1 ⊗ Fp(−µs) to Fp(−µs+1) for s < k and is the gS2-equivariant projection
from g∗

−1 ⊗ Fp(−µs+1) to Fp(−µs+2) for s ≥ k + 1.
(2)

∂
(k)
n−1 = Y4n+j ⊗ w∗

α ⊗ pr(θY4n+j ⊗ wα),

where pr is the gS2-equivariant projection from g∗

−2 ⊗ Fp(−µn) to Fp(−µn+1).
(3)

∂
(k)
k = YA,A′YB,B′ ⊗ w∗

α ⊗ pr(ϑYA,A′ ⊗ ϑYB,B′ ⊗ wα),

where pr is the projection from g∗

−1 ⊗ g∗

−1 ⊗ Fp(−µk) to Fp(−µk+2).

Proof. Cf. Theorem 2.2 in [18] for determining the G-invariant differential operators of the first order on boundaries of
symmetric spaces. We prove (2), (3). The proof of (1) is similar.

By (3.24)–(3.26), we have

νFp(−µj+1) − νFp(−µj) = 1, j ≠ k, k + 1, n
νFp(−µk+2) − νFp(−µk) = νFp(−µn+1) − νFp(−µn) = 2.

So by Proposition 4.3.1, we can write

∂
(k)
k = YA1,A′

1
YA2,A′

2
⊗ w∗

α ⊗ f(A1,A′
1)(A2,A

′
2)α

+ Y4n+j ⊗ w∗

α ⊗ fjα,

with f(A1,A′
1)(A2,A

′
2)α
, fjα ∈ V2 := Fp(−µk+2), where {wα} is a basis of V1 := Fp(−µk). This element induces mappings

U1 ∈ Hom(g∗

−1 ⊗ g∗

−1 ⊗ Fp(−µk), Fp(−µk+2)) and U2 ∈ Hom(g∗

−2 ⊗ Fp(−µk), Fp(−µk+2)) defined by

U1 : ϑYA1,A′
1
⊗ ϑYA2,A′

2
⊗ wα −→ f(A,A′

1)(A2,A
′
2)α
,

U2 : θY4n+j ⊗ wα −→ fjα,

and ∂ (k)k can be written as U1 ◦ ∇1 + U2 ◦ ∇2 with

∇1 := YA1,A′
1
YA2,A′

2
⊗ w∗

α ⊗ ϑYA1,A′
1
⊗ ϑYA2,A′

2
⊗ wα,

∇2 := Y4n+j ⊗ w∗

α ⊗ θY4n+j ⊗ wα.
(4.17)

Denote by πVj the representation of GS2 on Vj, and

m.U1 := πV2(m) ◦ U1 ◦ πg∗
−1⊗g∗

−1⊗V1(m
−1),

m.U2 := πV2(m) ◦ U2 ◦ πg∗
−2⊗V1(m

−1).
(4.18)

If m.wα = mβαwβ for m ∈ GS2 , then m.w∗
α = (m−1)αγw

∗
γ by definition of the contragredient representation. It follows

that m.(w∗
α ⊗ wα) = w∗

α ⊗ wα . Similarly, for M ∈ Sp(2n,C),M.(YA1,A′
1
⊗ ϑYA1,A′

1
) = YA1,A′

1
⊗ ϑYA1,A′

1
by ϑYA1,A′

1
dual to

YA1,A′
1
, and N.(YA1,A′

1
⊗ ϑYA1,A′

1
) = YA1,A′

1
⊗ ϑYA1,A′

1
for N ∈ SL(2,C). Consequently,m.∇i = ∇i by the formulae (4.17) of ∇i.

Now the invariance of ∂ (k)k and ∇i under GS2 implies that

m.∂ (k)k = YA1,A′
1
YA2,A′

2
⊗ w∗

α ⊗ πV2(m) ◦ U1 ◦ πg∗
−1⊗g∗

−1⊗V1(m
−1)(ϑYA1,A′

1
⊗ ϑYA2,A′

2
⊗ wα)

+ Y4n+j ⊗ w∗

α ⊗ ⊗πV2(m) ◦ U2 ◦ πg∗
−2⊗V1(m

−1)(θY4n+j ⊗ wα).

It follows from 0 = ∂
(k)
k − m.∂ (k)k in normal form that

πV2(m) ◦ U1 ◦ πg∗
−1⊗g∗

−1⊗V1(m
−1)(ϑYA1,A′

1
⊗ ϑYA2,A′

2
⊗ wα) = U1(ϑYA1,A′

1
⊗ ϑYA2,A′

2
⊗ wα). (4.19)

Namely, U1 is GS2-equivariant. Similarly, U2 is also GS2-equivariant. By Lemma 4.1.1 together with

C2
⊗ ⊙

i C2 ∼= ⊙
i−1 C2

⊗ ⊙
i+1 C2

as sl(2,C)-modules, there is a unique irreducible component Γ ∗
µk+2

in g∗

−1 ⊗ g∗

−1 ⊗ Γ ∗
µk

and obviously no irreducible
component Γ ∗

µk+2
in g∗

−2 ⊗ Γ ∗
µk
. By Schur’s lemma, Ui is scalar on each irreducible component. So U2 is zero. The result

for ∂ (k)k follows.
The same argument is applied to ∂ (k)n−1. By Lemma 4.1.1 again, there is a unique irreducible component Γ ∗

µn+1
in g∗

−1 ⊗ g∗

−1

⊗ Γ ∗
µn

and a unique irreducible component Γ ∗
µn+1

in g∗

−2 ⊗ Γ ∗
µn

, since g−2 ∼= ⊙
2 C2 as gS2-modules. By Schur’s lemma,

∂
(k)
n−1 = C1Y4n+j ⊗ w∗

α ⊗ pr1(θY4n+j ⊗ wα)+ C2YA,A′YB,B′ ⊗ w∗

α ⊗ pr2(ϑYA,A′ ⊗ ϑYB,B′ ⊗ wα) (4.20)
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for some constant C1, C2, where pri, i = 1, 2, are the projection from g∗

−2 ⊗Fp(−µn) and g∗

−1 ⊗g∗

−1 ⊗Fp(−µn) to Fp(−µn+1),
respectively. pr2 is the gS2-equivariant projection from (C2∗

⊗C2n∗)⊗(C2∗
⊗C2n∗)⊗⊙

n−k−2 C2∗
⊗V (n)∗ to⊙

n−k C2∗
⊗⊗V (n)∗.

Let {eA
′
1...A

′
l } be a basis of ⊙l C2∗, {vα} is a basis of V (n)∗. Note that up to a constant,

pr2(e
A′

⊗ eA ⊗ eB
′

⊗ eB ⊗ eA
′
1...A

′
n−k−2 ⊗ vα) = ϵABeA

′B′A′
1......A

′
n−k−2 ⊗ vα,

which is sl(2,C)⊕ sp(2n,C)-invariant. So the second sum of (4.20) is

C2ϵABYA,A′YB,B′ ⊗ eA
′
1...A

′
n−k−2∗ ⊗ vα∗

⊗ eA
′B′A′

1......A
′
n−k−2 ⊗ vα.

Note that ϵABYA,A′YB,B′ ∈ g−2. So ∂
(k)
n−1 has the form

∑3
s=1 Y4n+s ⊗ Fs and we can assume ∂ (k)n−1 = U2 ◦ ∇2. The result follows

as above. �

By Proposition 4.3.2, ∂ (k)j : Op(⊙
k−j C2∗

⊗ V (j)∗) → Op(⊙
k−j−1 C2∗

⊗ V (j+1)∗), j = 0, . . . , k − 1, is written as

∂
(k)
j = YAA′ ⊗ eA

′
1...A

′
k−j∗ ⊗ vα∗

⊗ pr(eA ⊗ eA
′

⊗ eA
′
1...A

′
k−j ⊗ vα)

where pr is the gS2-equivariant projection from C2∗
⊗ C2n∗

⊗ ⊙
k−j C2∗

⊗ V (j)∗ to ⊙
k−j−1 C2∗

⊗ ⊗V (j+1)∗. Note that up to a
constant,

pr(eA
′

⊗ eA
′
1...A

′
k−j) = ϵA

′
sA

′

eA
′
1...Âs′ ...A

′
k−j ,

which is sl(2,C)-invariant. Thus

pr(eA ⊗ eA
′

⊗ eA
′
1...A

′
k−j ⊗ vα) = ϵA

′
sA

′

eA
′
1...Âs′ ...A

′
k−j ⊗ eA ∧0 v

α,

and so

∂
(k)
j (feA

′
1...A

′
k−j ⊗ vα) = Y A′

s
A f eA

′
1...Âs′ ...A

′
k−j ⊗ eA ∧0 v

α.

We can find the formulae of ∂ (k)j for the other j similarly.

Proposition 4.3.3. The G-invariant operators ∂ (k)j in the exact sequences (3.23) of sheaves on G/P are as follows: for j =

0, . . . , k − 1,

feA
′
1...A

′
k−j ⊗ v → Y A′

s
A feA

′
1...
As′ ...A′

k−j ⊗ eA ∧0 v,

for v ∈ V (j)∗; for j = k + 1, . . . , n − 1,

feA
′
1...A

′
j−k−1 ⊗ v → YAA′ feA

′A′
1...A

′
j−k−1 ⊗ eA ∧0 v,

for v ∈ V (j+1)∗; for j = n, . . . , 2n − 1,

feA
′
1...A

′
j−k ⊗ v → YAA′ feA

′A′
1...A

′
j−k ⊗ eA.v,

for v ∈ V (2n−j)∗; for j = n − 1,

feA
′
1...A

′
n−k−2 ⊗ v → Y4n+sf · χ seA

′
1...A

′
n−k−2 ⊗ v,

for v ∈ V (n)∗; for j = k,

f v → YAA′Y A′

B feA ∧0 eB ∧0 v,

for v ∈ V (k)∗, which is an operator of the second order.

5. Pulling back the complex to the quaternionic Heisenberg group

5.1. Tangential Cauchy–Fueter operators on the boundary of the Siegel upper half space

ρ = Reqn −
∑n−1

l=0 κl|ql|
2 is a defining function of Sκ . Define the projection

π : Sκ −→ Hn
⊕ ImH,

q0, . . . , qn−1,

n−1−
l=0

κl|ql|2 + q′

n


−→ (q0, . . . , qn−1, q′

n),
(5.1)
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where q′
n = t1i + t2j + t3k. By definition,

π−1
∗
∂tj = ∂tj , π−1

∗
∂x4l+s = ∂x4l+s + 2κlx4l+s∂x4n+1 , (5.2)

for j = 1, 2, 3, s = 1, . . . , 4, l = 0, . . . , n − 1. Thus,

π−1
∗


∂ql + 2κlql∂ Imqn


= ∂ql + 2κlql∂qn , (5.3)

where ∂ Imqn = i∂t1 + j∂t2 +k∂t3 . So the tangential Cauchy–Fueter operator of Sκ is mapped by π∗ to Q = (Q 0f , . . . ,Q n−1f )t
with

Q l = ∂ql + 2κlql∂ Imqn . (5.4)

To find the explicit forms Q l, denote i0 = 1, i1 = i, i2 = j, i3 = k. Note that

(x1 + x2i + x3j + x4k)i = −x2 + x1i + x4j − x3k,
(x1 + x2i + x3j + x4k)j = −x3 − x4i + x1j + x2k,
(x1 + x2i + x3j + x4k)k = −x4 + x3i − x2j + x1k.

(5.5)

So the right multiplying ij is (4 × 4)-matrix −bj, i.e.

(x1 + x2i + x3j + x4k)iβ = −(bβx)1 − (bβx)2i − (bβx)3j − (bβx)4k (5.6)

where bβ , β = 1, 2, 3, are anti-symmetric matrices defined in (1.11), and (bβx)j is the j-th element of bβx for x =

(x1, x2, x3, x4)t . Therefore,

(x1 + x2i + x3j + x4k)∂tβ iβ =

4−
i,j=1

bβij xiij−1∂tβ , (5.7)

by bβij = −bβji , and so

(x4l+1 + ix4l+2 + jx4l+3 + kx4l+4)(i∂t1 + j∂t2 + k∂t3) =

3−
β=1

4−
i,j=1

bβij x4l+i∂tβ ij−1. (5.8)

Let Xj, j = 1, . . . , 4n, be real vector fields defined by

Q l = X4l+1 + iX4l+2 + jX4l+3 + kX4l+4. (5.9)

Then by (5.4) and (5.8), we get

X4l+j = ∂x4l+j + 2κl
3−

β=1

4−
i=1

bβij x4l+i∂tβ , (5.10)

which are exactly left invariant vector fields of Hκ and satisfy the commutating relation (1.14).

5.2. Embedding the quaternionic Heisenberg group into Sp(2N,C)/P

Define the local embedding

ι1 : C4n+3
−→ G/P,

(w1, . . . , w4n+3) −→ exp(wY )P,
(5.11)

wherewY := w1Y1 + · · ·w4n+3Y4n+3. Setf = f ◦ ι1 : C4n+3
→ V for a local section f of OG(V )P near eP . Note that

(ι−1
1∗ Y4l+j)f (w) = Y4l+jf (exp(wY ))

=
d
dt


t=0

f (exp(wY ) exp(tY4l+j))

=
d
dt


t=0

f

exp


wY + tY4l+j +

1
2
[wY , tY4l+j]


,

by using the Baker–Campell–Hausdorff formula

exp(wY ) exp(wY ) = exp

wY + wY +

1
2
[wY ,wY ]


,
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for a nilpotent Lie group of step 2. By brackets in (2.12), we get

wY + wY +
1
2
[wY ,wY ] = (w + w)Y +

3−
s=1

αs(w,w)Y4n+s,

where αs are bilinear functions given by

α1 = 2
n−1−
l=0

w4l+1w4l+4 − w4l+4w4l+1 + w4l+2w4j+3 − w4l+3w4l+2,

α2 = 2
n−1−
l=0

w4l+1w4l+3 − w4l+3w4l+1,

α3 = 2
n−1−
l=0

w4l+2w4l+4 − w4l+4w4l+2.

(5.12)

Then

(w′, w′′) ◦ (w′,w′′) = (w′
+ w′, w4n+s + w4n+s + αs(w,w)), (5.13)

s = 1, 2, 3, defines the multiplication of a nilpotent group N on C4n+3 such that (ι−1
1 )∗Y4l+j is a left invariant vector field

on N :

(ι−1
1 )∗Y4l+j = ∂w4l+j +

3−
s=1

∂w4l+jαs(w,w)∂w4n+s ,

for l = 0, . . . , n − 1, and (ι−1
1 )∗Y4n+j = ∂w4n+j . Here ∂w4l+jαs(w,w) is independent of w.

It is well known that the quaternionic algebra H can be represented by 2 × 2 matrices with complex entries,

x0 + x1i + x2j + x3k →


x0 + ix1 −x2 − ix3
x2 − ix3 x0 − ix1


.

Consider the complexified conjugate embedding ι2 : C4n+3
→ C4n+3 given by z → w with

w4l+1 w4l+2
w4l+3 w4l+4


=

1
2εl


z4l+1 − iz4l+2 −z4l+3 + ix4l+4
z4l+3 + iz4l+4 z4l+1 + iz4l+2


, (5.14)

where εl is given below (1.17) and

w4n+1 =
i
2
z4n+1, w4n+2 =

1
4
(z4n+2 + iz4n+3), w4n+3 =

1
4
(z4n+2 − iz4n+3). (5.15)

Under this embedding,

(z ′, z ′′) ◦ (z ′,z ′′) = (z ′
+z ′, z4n+s +z4n+s + βs(z,z)), (5.16)

defines the multiplication of a nilpotent group Nκ on C4n+3 such that ι2 is an isomorphism from Nκ to N . It is easy to see
that βs(z,z) are bilinear functions as follows:

β1 = 2
n−1−
l=0

κl(z4l+1z4l+2 −z4l+1z4l+2 − z4l+3z4l+4 +z4l+3z4l+4),

β2 = 2
n−1−
l=0

κl(z4l+1z4l+3 −z4l+1z4l+3 + z4l+2z4l+4 −z4l+2z4l+4),

β3 = 2
n−1−
l=0

κl(z4l+1z4l+4 −z4l+1z4l+4 − z4l+2z4l+3 +z4l+2z4l+3).

(5.17)

In terms of antisymmetric matrices bβ defined in (1.11), the multiplication of the nilpotent group Nκ can be written as
follows:

(z ′, z ′′) · (z ′,z ′′) =


z ′

+z ′, z4n+s +z4n+s + 2
n−1−
l=0

4−
i,j=1

κlbsijz4l+iz4l+j,


, (5.18)

where s = 1, 2, 3, z ′,z ′
∈ C4n, z ′′,z ′′

∈ C3.
At last, ι3 :: R4n+3

→ C4n+3 is the trivial embedding given by x → x + i0. ι3 is an isomorphism from the quaternionic
Heisenberg group Hκ to a subgroup of Nκ . ι = ι1ι2ι3 is an embedding of Hκ to G/P .
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Remark 5.2.1. (1) The multiplications of the quaternionic Heisenberg group in (1.9) and (5.18) are the same by direct
calculation

ℑ{(x1 − x2i − x3j − x4k)(x1 +x2i +x3j +x4k)} = (x1x2 − x2x1 − x3x4 + x4x3)i + (x1x3 − x3x1 + x2x4 − x4x2)j
+ (x1x4 − x4x1 − x2x3 + x3x2)k

=

4−
i,j=1

b1ijxixji + 4−
i,j=1

b2ijxixjj + 4−
i,j=1

b3ijxixjk. (5.19)

(2) The quaternionic contact manifolds can be approximated by another quaternionic Heisenberg group, whose
multiplication is given by

(q, t) · (q′, t ′) =

q + q′, t + t ′ + Im(qq′)


, (5.20)

where q, q′
∈ Hn, t, t ′ ∈ ImH (cf. [19]). It corresponds to the right Cauchy–Fueter operator.

5.3. Pulling back the left invariant vector fields

See [10] for the pulling back operators in the case of the Cauchy–Fueter complex. Note that z4l+1 = εl(w4l+1 + w4l+4),
z4l+2 = iεl(w4l+1 − w4l+4), z4l+3 = −εl(w4l+2 − w4l+3) and z4l+4 = −iεl(w4l+2 + w4l+3) by (5.14). It follows that

(ι−1
2 )∗∂w4l+1 (ι−1

2 )∗∂w4l+2

(ι−1
2 )∗∂w4l+3 (ι−1

2 )∗∂w4l+4


= εl


∂z4l+1 + i∂z4l+2 −∂z4l+3 − i∂z4l+4
∂z4l+3 − i∂z4l+4 ∂z4l+1 − i∂z4l+2


.

This together with the fact that ι−1
2∗ maps left invariant vector fields on N to that on Nκ implies that

(ι−1
2 )∗(ι

−1
1 )∗


Y4l+1 Y4l+2
Y4l+3 Y4l+4


= εl

X4l+1 + iX4l+2 −X4l+3 − iX4l+4X4l+3 − iX4l+4 X4l+1 − iX4l+2


(5.21)

with

X4l+j = ∂z4l+j + 2κl
3−

β=1

4−
i=1

bβij z4l+i∂z4n+β , (5.22)

and

(ι−1
2 )∗(ι

−1
1 )∗Y4n+1 = −2i∂z4n+j , (ι−1

2 )∗(ι
−1
1 )∗Y4n+2 = 2(∂z4n+2 − i∂z4n+3),

(ι−1
2 )∗(ι

−1
1 )∗Y4n+3 = 2(∂z4n+2 + i∂z4n+3).

(5.23)

For a left invariant vector field Y on G/P , we define the notation ι∗Y := ι−1
2∗ ι

−1
1∗ Y |R4n+3+0i. The following proposition follows

from (5.21)–(5.23).

Proposition 5.3.1. We have

ι∗Y4l+1 = ∇2l+1,1′ , ι∗Y4l+2 = ∇2l+1,2′ , ι∗Y4l+3 = ∇2l+2,1′ , ι∗Y4l+4 = ∇2l+2,2′ ,

ι∗Y4n+1 = 2T1, ι∗Y4n+2 = 2T2, ι∗Y4n+3 = 2T3
(5.24)

where vectors ∇∗ are given by (1.17).

Proof of Theorem 1.0.1. The pulling back of the exact sequence (3.23) of sheaves on G/P by ι1ι2 is an exact sequence of
sheaves on C4n+3. Note that a linear differential operator maps a polynomial to a polynomial, and if a germ of holomorphic
function is mapped to a polynomial by a homogeneous differential operator, there obviously exists a polynomial mapped to
this polynomial. Hence the exact sequence (3.23) of sheaves on G/P implies that the sequence on C4n+3

0 −→ R(C4n+3,⊙k C2∗)
(ι1ι2)

∗∂
(k)
0

−−−−−→ R(C4n+3,⊙k−1 C2∗
⊗ V (1)∗)

(ι1ι2)
∗∂
(k)
1

−−−−−→ · · ·

ι∗∂
(k)
2n−1

−−−−→ R(C4n+3,⊙2n−k C2∗) → 0 (5.25)

is exact except at the first spot, where R(C4n,⊙s C2∗
⊗ V (t)∗) is the ring of ⊙s C2∗

⊗ V (t)∗-valued polynomials over C4n+3.
The restriction of the sequence (5.25) to the real subspace R4n+3

+ i0 ⊂ C4n+3 is also exact. For j = 0, . . . , k − 1, it follows
from Proposition 4.3.3 that

Q (k)
j := ι∗∂

(k)
j : R(R4n+3,⊙k−j C2∗

⊗ V (j)∗) −→ R(C4n+3,⊙k−j−1 C2∗
⊗ V (j+1)∗)

feA
′
1...A

′
k−j ⊗ v −→ ∇

A′
s

A feA
′
1...
A′
s...A

′
k−j ⊗ eA ∧0 v.

(5.26)

We get Q (k)
j in Theorem 1.0.1 by identifying ⊙

s C2∗
⊗ V (t)∗ with ⊙

s C2
⊗ V (t). Similarly, we get Q (k)

j for other j. �
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