Journal of Geometry and Physics 61 (2011) 363-380

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

The tangential Cauchy-Fueter complex on the quaternionic
Heisenberg group”

Wei Wang

Department of Mathematics, Zhejiang University, Zhejiang 310028, PR China

ARTICLE INFO ABSTRACT
Arfic{e history: The Cauchy-Fueter operator on the quaternionic space H" induces the tangential
Received 25 June 2010 Cauchy-Fueter operator on the boundary of a domain. The quaternionic Heisenberg group

Received in revised form 6 October 2010
Accepted 8 October 2010
Available online 15 October 2010
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1. Introduction

For a point g = (qo, . .., qn—1) € H", write

Qi = Xaip1 + Xaip2d + Xapaj + Xaak, (1.1)

I=0,...,n— 1.Foradomain £ in H", the Cauchy-Fueter operator Dy : C'(£2, H) — C(£2, H") is defined as

Dof = (540f’ i ~’5qnf1f)t ’ (1.2)

for f € C1(£2, H), where ! is the transport, and

841 = Oxg41 + iaX4I+2 +jax4l+3 + kax4l+4' (1'3)

A function f : 2 — H s called regular in §2 if Dof (g) = O for any q € 2. Similar to the Dolbeault complex in the theory
of several complex variables, there exists an exact sequence, the Cauchy-Fueter complex, resolving the Cauchy-Fueter

* Partially supported by National Nature Science Foundation (Grant No. 10871172) in China.
E-mail address: wwang@zju.edu.cn.

0393-0440/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2010.10.006


http://dx.doi.org/10.1016/j.geomphys.2010.10.006
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
mailto:wwang@zju.edu.cn
http://dx.doi.org/10.1016/j.geomphys.2010.10.006

364 W. Wang / Journal of Geometry and Physics 61 (2011) 363-380

operator Dy [1-7]: the sequence
D D
0 — fR(R“”, CZ) _0> R(R‘ln, CZn) _1) R(R4n, A3(C2n)

Dan—. _
&) REM C? @ AYCH N N RERM M3 02 @ A2 - 0 (1.4)
is exact except at the first spot, where D; are differential operators of the first order except D, which is of the second

order. Here R(R*", K C? ® A/C?") is the ring of O C?> ® A/C?"-valued polynomials over R*". In [8] we solved the non-
homogeneous Cauchy-Fueter equations

Dou =f, (1.5)
on H" under the compatible condition
Dif =0, (1.6)

and find the compactly supported solution u to the non-homogeneous equation (1.5) if f is also compactly supported. This
solution allows us to prove the Hartogs’ phenomenon for quaternionic regular functions in any domain (see also [9]). Dy is

the first one of a family of linear differential operators D and there exists an exact sequence, the k-Cauchy-Fueter complex,

resolving the k-Cauchy-Fueter operator Dg‘) [4,10]. The Hartogs’ phenomenon for k-regular functions is also proved in [10].

As in the case of several complex variables, the Hartogs’ phenomenon leads to the concept of domains of holomorphy.
There already exist the concept of plurisubharmonic functions on H" and the concept of a pseudoconvex domain in H" [11].
To develop the theory of several quaternionic variables, we need to solve the non-homogeneous k-Cauchy-Fueter equations
in a holomorphic domain or in a pseudoconvex domain and to solve the corresponding D-Neumann problem, etc. In the
theory of several complex variables, one way to solve the non-homogeneous d-equations in a smooth pseudoconvex domain
is to solve the d,-equations on its boundary, and there is a natural d,-complex on the boundary. This leads us to consider
the tangential Cauchy-Fueter operator and to find the counterpart of d,-complex.

For a domain £2 C H""!, a vector

n
zZ = Zalaq,
=0

is called a quaternionic tangential vector field on the boundary 352 if Zp = 0, where p is a defining function of §2. Suppose
g, o # 0locally. Then

Z)=0q,— 3qp0g,0) " ' gus (1.7)
I = 0,...,n — 1, are quaternionic tangential vector fields. The tangential Cauchy-Fueter operator is defined as f +——
(Zof s ...y Zn_1f)" locally. A H-valued distribution f on 952 is said to be Cauchy-Fueter (or briefly, CF) if Zf = 0 in the
sense of distributions for each quaternionic tangential vector field Z. It is easy to see that the restriction to 32 of a function
regular in a neighborhood of 042 is a CF function. So CF functions are abundant. CF functions have already been applied
to determine the extremals for the Sobolev inequality on the quaternionic Heisenberg group and to solve the quaternionic
contact Yamabe problem (see [ 12] and references therein). It is interesting and important to develop a theory of CF functions.
Chang and Markina [13,14] have constructed the Szegd kernel on the unit ball in H?, equivalently, on the Siegel upper
half space in H?. Consider the boundary of the Siegel upper half space:

n—1
8 = {q = (o, ... ) € H"';Req — Y _rilql® = 0} : (18)
=0

where k; = £1. We can identify 8, with 7, = H" x Im H, the quaternionic Heisenberg group with the multiplication given
by

n—1
@n-@n= (q +AE+T+2) 1m<q,a,>) : (1.9)

=0

where g, € H, t,T € ImH. The neutral element is (0, 0) and the inverse of (g, t) is (—q, —t). In real coordinates, the
multiplication is given by the following formula (cf. Remark 5.2.1):

n—-1 4
x.0) - (.5 = (x +y.tptsp+2) szb§X4z+.-y4z+j,> , (1.10)
1=0 i,=1
where B = 1,2,3,x = (X1,X2,...,%Xam) € R¥ t = (t1,t,t3) € R? y and s are defined similarly, and b', b, b* are
antisymmetric matrices
0 1 0 O 0 0 1 0 0O 0 O 1
. [-1 00 o , [0 o 01 , (o o -1 0
b= o 0 0 -1} b*= —1 0o 0 o} b*= 0 1 0 O (1.11)
0 0 1 0 0 -1 0 O -1 0 0 O
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It is easy to see that matrices b', b?, b* satisfy the commutating relation of quaternions:
bHY? = (*)? = (b*)* = —id, b'b* =D’. (1.12)
The vector fields given by

3 4
X4l+j = a)(41_'_1' + ZKI Z Z b§x4l+iat§ B (1]3)
B=1 i=1
I=0,...,n—1,j=1,...,4,are left invariant on #, and satisfy the following commutating relation
3
(Xarri, Xar45] = 4cidyy Z bgatﬁ- (1.14)
=1

By the projection  : 8, —> H,, it is shown in Section 5.1 that the tangential Cauchy-Fueter operator of the boundary
8, of the Siegel upper half space is mapped to the tangential Cauchy-Fueter operator Q : C!(#,, H) — C(¥,, H"),

Qf = (aaf’ ce 76n—1f)t

with
Qi = Xarp1 + Xarso + Xarrs + KXarpa, (1.15)
1=0,...,n— 1.The equation Q,f = O forf = f; + foi + fsj + f4k can be written as
Xarp1 +Xars  —Xas — Xaga ) (0% _ 0 (1.16)
. . 1] =0, .
Xapz — Kyppa Xgpr — Ky ¢

where ¢° = f; +ifs, ¢! = f3 — ifs. Denote

Vo Vaz) & Xapp1 +Xg2 —Xais — Xaipg (1.17)
Voo Vo)’ Xap3 — Kappa Xgp1 — Kap2 )7 ’

where g, = 1ifx; = 1and g, = iif ks, = —1. Then Qf = 0 can be written as VAA/q&A/ = 0 briefly. Here and in the following
we use the Einstein convention of taking summation over repeated indices. The repeated indices A" and A are taken over 1, 2
and 1, ..., 2n, respectively. We will use the matrix

(eap) = (_01 é) , (eap) = (—Oln IS) (1.18)

. . . B / 'n/ I'n/ . .
to raise or lower indices A’ and A, respectively. For example, V4 = ¢*B V5, where (6"®) = —(eqp) is the inverse of (c4p ).

Denote by {eA/1 ..} the basis of ©° C?, the symmetric product of C2. Define the tangential k-Cauchy-Fueter operator

Q(fk) . COO(R411+3, ®k Cz) Cw(R4n+3’ qu 2 ® (CZn)’

/ (1.19)
AS

few,.x > Vafey . a ® e,

where :‘\Z means that A; is omitted. Here and in the following we only write down the action of QOG‘) on one component for

simplicity, where f is a scalar function. The tangential 1-Cauchy-Fueter operator Qo(l) = VQ/fA/ = Vu fA’ is equivalent to

the tangential Cauchy-Fueter operator Q.
Let V¥ be the irreducible representation of sp(2n, C) with the highest weight to be the j-th fundamental weight wj.

C*" ® VY has a unique irreducible subrepresentation of sp(2n, C) isomorphic to VU=V (cf. Lemma 4.1.1). Let prj,, be

sp(2n, C)-equivariant projection from C**®@VY to VU=V, Forv € V¥, ey € C*", denote es Ao v := pr},;(ea®v) and es.v :=

pr;'_1 (ea ®v).
Similar to the 3,-complex in the theory of several complex variables, which is important to investigate CR functions, we
can construct an exact sequence, the tangential k-Cauchy-Fueter complex, resolving the Qék) on the quaternionic Heisenberg

group. Denote
Ty := —io —ia

Ty := ) X4n+3 Tg = 8x4n+2 + i8x4n+3. (1.20)

Xan+1° Xan+2

Theorem 1.0.1. If 0 < k < n — 2, the sequence
(k) (k)

0>  RE™3, 0kc?) Q. RE, o102 @ VD) RN RE3, YO
LN R(R4"+3, V(k+2)) it G Q(R4n+3’ ankfz 2 ® V("))

Q':k) Q,gk) Q(k)
;1) :R(R4n+3, On—k 2 ® V(n)) N E) R(R4n+3, ®2n—k CZ) -0 (1.21)
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is exact except at the first spot, where the operators Qj(k),j =0,...,k—1,aregiven by

%
fes, a  ®vi> Vifey iy ®eaiov. (1.22)

J

(k)

for v e vO; the operators Q" ,j = k+1,...,n — 2, are given by

feA’l...Ajf QU VAA’feA’A’l...A’ 1 ®eaNov, (1.23)

—k—1 -
for v e VUtD: the operators Qj-("),j =n,...,2n — 1, are given by

feA/l..‘Aij V> VAA’feA/A’l...A]L,( ®ep.v, (1.24)

for v e V@D); the operator Q¥ is given by

few w @V Tf -egu x ®v, (1.25)

k— k—

for v e V™, where oy == 12, 0y =: 11, 03 := 2'2'; Q¥ is an operator of the second order given by

fU = VAArV{;,feA No€g A\g U, (126)
for v e VIV, Here R(R*3, ©° C? ® V) is the ring of ©° C* ® V©-valued polynomials over R4"+3,

The case k > n — 2 is similar. Note that Q¥ are differential operators with variable coefficients, while differential
operators in usual complexes [6] are of constant coefficients. The important application of the tangential k-Cauchy-Fueter
complex is to give the compatible conditions under which the non-homogeneous tangential k-Cauchy-Fueter equations
Qo(k)u = f are solvable, i.e., Ql(k)f = 0(cf. Remark 6.1 in [13]).

The proof of this theorem goes as follows. Let G be the complex semisimple Lie group Sp(2(n + 2), C), and let P, Q and
R be its parabolic subgroups, whose Lie algebra are given by (2.1), Q = P N R. Consider the double fibration:

G/Q (1.27)

G/R G/P

Here G/P, G/Q and G/R are generalized flag varieties. We use the Penrose transform [15] associated with this double
fibration to construct an exact sequence of sheaves on G/P. In Section 2, we give the preliminaries on Lie algebra sp(2N, C),
its parabolic subalgebras and irreducible homogeneous sheaves. In Section 3, firstly, we get the exact sequence of relative
Bernstein-Gelfand-Gelfand resolution
50 50
0= 1710 = Og(11) —> Og(vy) = -+,

resolving the pulling back of the irreducible homogeneous sheaf @.(Ax) on G/R, where 9, (v;) are irreducible homogeneous
sheaves on G/Q, and A and v; are suitable dominant integral weights for t and g, respectively. Then, calculate their higher
direct image sheaves under t by using the Borel-Bott-Weil theorem. We calculate the hypercohomology spectral sequence
of a double complex: the Cech cochain complex C9(U, O,(vp)), where U is a covering of Y = 771X C G/Q and X is an affine
open set in G/P. It converges to HP*4(Y, =0, (Xy)). The later one vanishes except p 4+ q < 1. We get an exact sequence of
sheaves on G/P which follows from E”.

In Section 4, we use the representation theory to find the explicit form of the invariant operators q("). Recently, Colombo

et al. [7] determined the invariant operators D;” of the Cauchy-Fueter complex (1.21) also by using representation theory
(see also [5]). In Section 5, by using the embedding of the quaternionic Heisenberg group into G/P, we pull back the exact
sequence of sheaves on G/P to get the exact sequence in Theorem 1.0.1.

2. Preliminaries on sp (2N, C), parabolic subalgebras and irreducible homogeneous sheaves
2.1. Parabolic subgroups and parabolic subalgebras

Let g be semisimple complex Lie algebra with a fixed Cartan subalgebra b and the set of roots A:

g=b®<a€gga>-

Let S be a subset of {1, ..., N}, hs be the span of H; with i € S, and gs be the subalgebra of g generated by bhs and g.,

withi € S. gs is a semisimple Lie algebra with Cartan subalgebra bs, root system As := A N )", ¢ Ze;, positive root system
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A;r := AT N As and simple roots {c;; i € S}. We have the decomposition gs = n;r @ bs @ ng with n;' = ZaeA;f Oa> Ng =
Z%A;r g_q-. Set
W= Y g W= Y e Ps=lOu, =30 @0
aeat\af aeat\ad

[ is a reductive subalgebra of g with derived algebra gs and center 3(I) C b. ps is a parabolic subalgebra of g. Set as = 3(1).
We will denote a parabolic subalgebra of g by the diagram crossing through all nodes in the Dynkin diagram for g which
correspond to the simple roots in {c;; i & S}. We will consider G = Sp(2N, C), g = sp(2N, C), where

N=n+2,
and its parabolic subalgebras

p=e—X—®w-.-- 0o,

g=X—X—®e:-- <=0, (2.1)

tT=X—e99---<—ae.
Namely,

p= pSz» q= p51V27 r= p51 ) (2'2)
withS; = {1,...,N}\ {2}, 512 = {1,...,N}\ {1,2},S; = {1,...,N}\ {1}. p and v are maximal parabolic subalgebras.
A weight wj satisfying (wj, )') = §j for each k is called a fundamental weight. Here for any root « its coroot is denoted by
oV =2a/{e, o). Hence A = Y (A, o’ )w;. We indicate a weight A € b* by inscribing the coefficient (A, ") over a node of
the Dynkin diagram for g correspondling to the simple root «. A weight A is dominant (or integral) for ps if coefficients over

uncrossed nodes are non-negative (or integral), respectively. The finite dimensional irreducible representations of ps are in
a one-to-one correspondence to dominant integral weights for ps. For example,

o= e e, 23)

is a dominant integral weight for q and « given by (2.1), where 0 is omitted over the nodes without coefficient.

Let P;“ ={Leb*;0<A(H) €Z,ieS} P;“ parametrizes the set of finite dimensional ps-modules (its restriction to u;F
is trivial) which remains irreducible under gs. We denote the module corresponding to A by Fs (1). For A € Ps+, let § be its
restriction to gs. Since as commutes with gs, as has to be scalar on the representation if dimas = 1, i.e,,

Ah) =vl, he€aqag
for some v € C. So the irreducible representation A is completely determined by (§, v).

2.2. g = sp(2N, C)

It is the space of all 2N x 2N matrices

A B
x:(c _Af> (2.4)

satisfying B* = B and C' = C, where A, B and C are all N x N matrices. The subalgebra b of matrices diagonal in this
representation is a Cartan subalgebra, which is spanned by H; = E; j — Ex.j n+j. We fix a dual basis {L;} of b, i.e., (L;, H;) = §j;.
We have root spaces:

g’-i*’-j = (C(Eu - EN+j,N+i)a

o1+ = C(Ein+j + Ejn+i),

9-1;-1; = C(Enij + Entj), (2.5)
g21; = CEi Ny,
g-2;; = CEnyi,

i,j=1,...,N,i# ]j.So the set A of roots of sp(2N, C) are vectors £L; £ L; € h*. A = At U A~ with the set of positive
roots to be

AT = {Li + Lifig U {Li — L}i<j-
Simple positive roots are ¢y = L1 — Ly, ..., ay_1 = Ly_1 — Ly and oy = 2Ly. Up to a constant, the Killing form (-, -) on
sp(N, C) satisfies

(Hi, Hy) = &, (Li, Lj) = &y,
from which we see that w; = Ly + --- + L; constitutes fundamental weights, i.e. (w;, ozjv) = §j. Hy = Hi — Hipq,1 =
1,...,N —1,and H,,, = Hy (cf. Section 16.1in [16]).
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We have the following decomposition
g="ps, Dug), [=gs, 30D, h = bs, @ 3(D),
with ps, = g5, ® ug,, and
as, = 3() = CH,, H; = H; + H,.
Elements of ug, are matrices of the following form:

0 0
0 0
* ok

*
*
o o
o o

Denote

Yi1 = Exti1 — Enyint2vis Yi2 = Exyi2 — Enya.Nt24is
Ynti1 = Eny2+i1 + Env1.2+is Yoti2 = Entavi2 + Ent2,2+i0

1 1 1
T = —Z(EN+2,1 + Enti1,2), T = —EEN+1,1, T3 = _EEN+2,2a

(2.6)

(2.7)

(2.8)

i = 1,...,n Here we choose the coefficients in the definition of T; to make the brackets satisfy (2.10). Then we have the

decomposition
g=u;, Gas, g5, Qus, =g 2B 1D g0 D 91 D g2,
with g, .= {X € g; [H;, X] = kX},
go = as, D gs,,
g1 =1{Yi1,Yisi=1,...,2n},
g2 =1{T1, Ty, T3}.
It is easy to see that:
[Yi1, Yoyi1] = 4Ty,
[Yi2, Yoyi2] = 4T3,
[Yi1, Yagi2l = [Yi2, Yoyin] = 4Ty,
and all other brackets vanish. We relabel these elements as
Yo = Yigr1, Yarp2 = Yig12,
Yair3 = Yotis1,1, Yara = Yogip12, 1=0,...,n—1,
Yapi1 =T, Yanyz2 = To, Yanys = Ts.
Then,
[Yarp1, Yars] = 4Ya50,
[Yarro, Yarra] = 4Ya543,
[Yarr1, Yaral = [Yarro, Yaus]l = 4Yang1,

and all other brackets vanish.

2.3. Homogeneous vector bundles and irreducible homogeneous sheaves 9, (1)

(2.9)

(2.10)

(2.11)

(2.12)

Given a finite dimensional representation p of a parabolic subgroup P on a vector space V, the homogeneous vector space
G xp V over G/P is the quotient space of G x V under the equivalent relation (g, v) ~ (gp, p(p~')v), p € P, and the map
(g, v) — gP induces a projection G x V — G/P. The group G acts on G xp V by left translation, which is denoted by 7. We
have a trivialization U, x V around o = eP and Ug, x V around go = gP. The sheaf of germs of holomorphic sections of

G xp V is denoted by 9, (V).
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Let O¢(V) be the sheaf of germs of V-valued holomorphic functions on G and let O¢ (V)" be the sheaf of germs of V-valued
holomorphic functions on G satisfying
fep) =p@ "f(@). ge€GpeP.
Alocal section f of O¢(V)" is in one-to-one correspondence to a local section s¢ of the homogeneous sheaf ©,(V):

sp(gP) = (g, f(g)).

For each integral weight A for g which is dominant for p one obtains an irreducible representation of P and hence an
irreducible homogeneous sheaf 9,() := O,(F,(—=1)) on G/P, where F,(—), the dual of F,(1), has the lowest weight vector
of weight —A. The reason we consider O, (F,(—)), and not O, (F,(A)), is that the Borel-Bott-Weil theorem holds for such
sheaves.

3. Construct an exact sequence of sheaves over G /P

3.1. The Hasse diagram and the relative Bernstein-Gelfand-Gelfand resolution

The reflection o,, associated to a root « acts on a weight A as o, (L) = A — (A, «”)a. The reflect associated to the simple
root with coefficient b acts on a weight as follows (cf. Section 4.1 in [15]):

ab c a+b —b b+c
oo o— o000
a b c a+b—b  b+c 3.1
o<i—0— o0 <— o, ( . )
c b c+2b —b
oo - @ <o .

For a weight A € b*, the affine action of an element w of the Weyl group W is

N
wi=wh+p)—p,  p=) (32)
=1
where wj, j = 1, ..., N, are fundamental weights.

The Weyl group admits the structure of a direct graph as follows: for w, w’ € W, write w — w’ if (w") = l(w) + 1
and w’ = o, w for some o € A(g), where I(w) is the length of w. Let W, be the Weyl group of a reductive Levi factor of
p. Let p? = Zj¢5 wj for p = ps. It is known that W, is the stabilizer of p? in W. Let WP be the set of minimal length right
coset representatives of the subgroup W, of W,. There is a one-to-one correspondence between the elements of W* and the
orbit of p” under the action of W,. If each member of the orbit is connected to p” by one or more paths of simple reflection,
the corresponding member of W® has reduced expressions which are obtained by taking their composition in the reverse

order. So W® has an induced subgraph structure, and is called the Hasse diagram. Consider the fibration G/Q R G/R, whose
fibre has the form R/Q = Ls/Ls N Q, where Ls is the semisimple part of the reductive Levi factor of R. The Weyl group of
Ls is W,. We can define the relative Hasse diagram W with W, playing the role W, and W, playing the role W, in the non-
relative case (see p.41[15] for the algorithm of calculating Hasse diagrams). Hence to calculate W for parabolic subalgebras

1
t, g of sp(2N, C) given by (2.1), we first calculate the orbit of x—x—e--- < e under the action of W.. It is easy to see
that

1 oy 1 —11 o3
X-X-.....@.—)X_X_.....<:.—)...

oN_q 1 -1 1 oy 1 1 -1
— > X—X—0:: 0 <0——>X—X—0--- 0@
on—1 1 1 -1 ON-2 o2 2 -1
— XX 0= @—> . — XX .00 .
So W] has a single element of each length from 0 to 2n + 1: W = {Xy, ..., Xy,41) with

Yo =id,

X1 =0,

Znp1 =03+ Opy2, (3.3)

Yny2 =02+ Opg20n41,

2ont1 = 02+ Ony20n41 " 02,
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Since Ay is a dominant integral weight for r, 71O, (1) has a relative Bernstein-Gelfand-Gelfand resolution (relative BGG
resolution) (cf. Theorem 8.4.1, Sections 8.7 and 9.1 in [15]):

5(k> 5(’0 '5(’0
0= 17'0:() = AV) = AJ() —> -+ = A2 () —> 0, (34)
with
A= P 0wr)=0,0). v=Zjhe (3.5)

weWd: l(w)=j

where 5;.“‘) are g-invariant operators. By using the rules (3.1) and the definition of affine action (3.2), it is elementary to check
that Vo = Ak,

—2—k4j —j—1 1

Vii=XjAk= X —X-—®--- 000, (3.6)
where 1 appears in the (2 4 j)-thnode,j =1, ..., n,and

—k+n —-n-3 1

Vpt1 = i1y = X — X —0---0---0 <o, (3.7)

and
—k+n+j —j—n-3 1
Vni4j = ZTH—]-H")"IC = X — X —e:--e@e---0<=e0, (3.8)

where 1 appears in the (n + 2 — j)-thnode,j =1, ..., n.
3.2. The spectral sequence and the exact sequence on G/P

Cf. Sections 7.2-7.3 and Remark 9.2.9 in [15,10]. Recall the hypercohomology spectral sequence for a resolution
F — A7 (3.9)

of coherent sheaves over X, where X is an open affing subset of G/P. Let U be a good affine cover of Y = 7=1(X) C G/Q.
The differential d of the resolution (3.9) and § of the Cech cochain complex C*(U, Aj) make

ci(u, A (3.10)
a double complex. Deriving with respect to d gives
EX =ciu,F), EFM=0 forp+£0. (3.11)

Then deriving with respect to § gives

EY' =HY(U, F), EY'=0 forp#0. (3.12)

This spectral sequence converges to the total cohomology of C7(U, A}), which is just the cohomology of ¥ on Y.
Alternatively, deriving with respect to § first gives

Ef'q — Hq(Y, Ag)’ (3.13)

which is the E; term of the hypercohomology spectral sequence converging to the cohomology of # on Y.
Applying the hypercohomology spectral sequence to the relative BGG resolution (3.4) of =10, (1), we get

EP? = HU(Y, AP () = HPP(Y, 7" 0.(M), (3.14)

i.e., the spectral sequence converges to the cohomology of '@, (1) on Y = 77'(X). Note that the Dynkin diagram of the
fibres of Y — X is obtained by deleting from the Dynkin diagram for q all crossed nodes (and incident edges) shared with p
and then deleting all connected components with no crossed nodes (Section 2.4 in [15]). Thus the fibre is x = CP!, and so
the cohomology HP*9(Y, n~10,())) vanishes exceptp + q < 1.

It follows from X being affine that the Leray spectral sequence collapses to give isomorphisms:

HY(Y, Ag()»k)) =TI X, thZ(Ak)) =TI (X, t]0,(vp)), (3.15)

where 7] AP (A) denotes the g-th direct image.

Proposition 3.2.1. The hypercohomology spectral sequence has the E; terms of the form

0O --- 0

o 0 - (3.16)
E?vl ... E’fvl 0 0
0 - 0 0 E*°




W. Wang / Journal of Geometry and Physics 61 (2011) 363-380 371

with
Bl =TX,0,0). B =TX 0,(u)).
wherej=0,...,k,j=k+2,...,2n+1,

k—j —2—k 1 X
Hj=X—X —o---0--c0o&=e, j=0,...k (3.17)

where 1 appears in the (2 + j)-th node, and

2kt —j-1 1 .
Hj= X — X-e---0- -0, j=k+2,...,n, 318

—k+n+j —j—n—3 1 ) (3.18)
Mﬂ+1+j: X — X —e---0:---0<=0, ]:0,...,n,

where 1 appears in the (2 + j)-th node and the (n 4 2 — j)-th node, respectively.

Proof. We can apply the Borel-Bott-Weil theorem to compute the higher direct image rf(Dq(vp) (Section 5.3 in [15]).
Consider the orbit {w.v; w € W,'}. If none of these weights is p-dominant, then all higher direct images of ©,(v) vanish.

Otherwise, there is a unique p-dominant weight w.v, and r,i("")@,(v) = O,(w.v), whereas all other higher direct images
vanish.
Ifj <k, puj = o1.v; is p-dominant with y; given by (3.17) by direct calculation. If j = k 4 1,

-1 —k-2 1
V] =X— X —@---0---0<—e, (3.19)

is singular, and so there is no non-zero direct image. If j > k + 2, v; is regular, and so only the zeroth direct images is
non-trivial: u; = v;. O

It follows that E2? (x = 2, 3) terms are

EXT ... EXT 0 0 :
0 . 0 0 Ek+2,0
*
and E5'? = E&. Since the spectral sequence converges to H”*9(Y, n~10,(Ax)), which vanishes except p+q < 1(3.14), we see
_ : d d
that all E29 = E% = O except ES''. Therefore, E; ' = - .- = EX "' =0, 570 = ... = £ = 0,ie B 5 ... 25 EF!
d d
and Ef>0 25 E¥30 T .. are both exact, and 0 = EX' = kerd, : Ey' — ExT20 BP0 — imd, : E¥' — EXT20 (by
E5t2° = 0). This together with the fact that

k1

£k
E;“ - 1 and E;‘“*O = kerd; : Ef”’o — Ef“’o, (3.21)

imd; : Effm — EfJ

implies that d, induces a well defined morphism A : Ef’l — Ef”’o such that ker A = imd; : Ef_“

kerd, : E¥*2% — E¥*39 50 we get an exact sequence

— Elf’l andimA =

0,1 d1 di k1 A k42,0 4
S e - = e (3.22)

Recall that a sequence of sheaves is called exact if the sequence of stalks at each point is exact. Note that X is an arbitrarily
chosen affine open set in G/P and the induced morphisms in (3.22) are g-morphisms between sheaves of g-modules. We
obtain the following theorem.

Theorem 3.2.1. Fork=0,...,n,

a0 a®
0= HYG/Q,17'0.(M)) = Op(to) —> -+ == O, ()

— Op(Miy2) —> -+ — Op(uon1) = 0 (3.23)

are exact sequences of sheaves on G/P, where operators Bj(k) induced from 5;’0 are also g-invariant, and y; are p-dominant integral
weights given by (3.17) and (3.18).

In notations in Section 2.1, the irreducible representation F,(—u;) is completely determined by (8, Upp(_ﬂj)) with

Vhy iy = — (k= g — (k+ 2w + wp2) (Hy + Hy) =j+k+2, (3.24)
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forj=0,...,kbyw; =L+ -+ Ljdual to Hj, and

Ve, (- = —((=2 =k +jo1 = + Do + wj2)(Hi + H) =j+ k+ 2, (3.25)
forj=k+2,...,nand

Ve, (—pini1yp = —((k+n+ o1 — (+n+ 3wy + opya)(Hi + H2) =j+ k+n+4, (3.26)
forj=0,...,n

4. Determination of invariant operators

Let us determine the invariant operators in the exact sequence (3.23) on G/P by using the representation theory.
4.1. Some gs,-modules

Recall that VY is the irreducible representation of sp(2n, C) with the highest weight to be the j-th fundamental weight
wj,j=1,...,n.Letg; : NN C* — A72C? be defined by

GV A A = Ze(vs, V) (=D A AT AT A A, (4.1)
i<j
where Vs means that v is omitted, and €(-, -) is the bilinear form defined by the matrix (e4g) in (1.18). It is known that
VO = ker g; (cf. Theorem 17.5 in [16]). Consequently,

AC"=VP gy = !
= s Pry@ (eAl VAN €A2) = ex VAN €a, néAlAzlﬁ, (42)

where ¥ = 31, e; A eny (cf. Section 17.3 in [16]). The image of g5 is C*", and so

1
prya) (ea, A ea, Aeay) =ea Aea, Aeay — mw A (€ayas€A; — €A1A3€Ay T €A1A,€45)- (4.3)
From these formulae, we can write down pr? and pr3.
By definition, if we embed a matrix M € sp(2n, C) as an element of g5, = s[(2, C) @ sp(2n, C), we have
M.Ypp = [M, Yan] = MpaYpa, (4.4)

A’ = 1, 2, where the summation is taken over B = 1, ..., 2n. Similarly, if we embed a matrix M’ € s((2, C) as an element
gs, = sl(2, C) @ sp(2n, C) (i.e., a matrix in form of (2.4) with B = C = 0 and A to be diag(M’, 0,)), we have

M,.YA.A/ = [M,, YA,A’] = — /,{’B’YA-B/’ (45)
where the summation is taken over B’ = 1, 2.
Let {ey/, ey} and {eq, ..., e5,} be standard bases of C? and C?*, respectively. If we identify g_; with C?> ® C?" by taking

Yan +> ey ®eqa, thenasan gs,-module g_; isisomorphic to C?®C?" with the standard representation of sp(2n, C) on C*" and
the representation (4.5) of s[(2, C) on C?2 (it is the representation dual to the standard representation of s((2, C) on C?), i.e.,

(M' ®M).(ex ® €x) = —Mypep ® es + ex ® Mpaes. (4.6)
sp(2n, C) acts triviallyon g_,. Let g* ; be C?* @ C?™ with the contragredient gs,-representation. Define a linear isomorphism

A g1 —> gtp

, (4.7)
YA,A’ —> eA X eA,
A'=1,2,A=1,...,2n,where{e', e} and {e', ..., ¥} are standard bases of C2* and C>™, respectively. We can identify
C2 = C2" C2* = C2 by taking
N = "oy, et = e"Pep. (4.8)

By direct calculation, we have
[Hi —Hy, 1] =0, [Hi — H, T] = —2Ty, [Hi — Ha, T3] = 2T;,
[E1, T3] =0, [E1, T2] = —2Tq, [E1, T1] = —T5,
for Ey := E13 — EN42.n+1, and similarly,
(Evv — Eyy).eyy =0, (Evv — Eyy).eyv = —2eyy, (Evv — Exyy).exy = 2eyy,

E]/z/_ez/z/ = 0, El/z/.el/l/ = —Zel/z/, E]/z/_el/z/ = —eyry
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by s[(2, C) acting on ey, ey as (4.6). So we get an isomorphism 9 g2 3 spanc{eyy, ey, eyy} = O?C? as asl(2, O)-
module defined by T; +— ey, T, > eyy, T3 + ey . Define a linear isomorphism

15U rq/ 5U
0:9_, —> g*, = spang [e”,e“,en}
12/ 17 2 (49)
Ti—e “, Ih—e ', T3> e“~.

Denote x' :=e'?, x2:=e''V, x3 := &7,
Denote by I the irreducible representation of Gs, with the highest weight A. The dual I} has the lowest weight —A.

Denote by V() the irreducible representation of sp(2n, C) with highest weight x.

Lemma 4.1.1. There is a unique irreducible sp(2n, C)-component V%V in C*" ® V9 (j # n), a unique irreducible sp(2n, C)-
component V&2 in C?" ® C*" ® V® and a unique irreducible sp(2n, C)-component V™ in C*"' @ C*" @ V™,

Proof. Recall that the multiplicity of occurrence of the irreducible representation V(1) in the tensor product C2" ® V (x) is
the dimension of space of the solutions to

Xt =0, ve (@, ,, i=1,...,n, (4.10)
where X; € sp(2n, C),,, «; are simple roots, r; = (x, ;) (cf. Theorem 5 in Section 131 in [17]). Recall that VO = v(x) with
X = wj. Thenr; = §;. Note thates € C*",A =1, ..., n, has weight L, (i.e. H;.ea = La(Hi)es), and e,40 € C*", A= 1,...,n,
has weight —Ly (1e H,-.en+A = —LA(H,')en+A). Recall Xi = Ejyi+‘] — En+j+lyn+i, i=1,...,n—1 and Xy = En,Zn by (25) It

is direct to check that when j < n, e, satisfies Eq. (4.10) only forA = 1,j 4+ 1,n +j — 1 (since Xa_1e4 = ea—1, Xpbnia =
—€n+A+1»ij€j+1 = 0, etc.); whenj = n, e, satisfies Eq. (4.10) only for A = 1, 2n. It follows that
C"RVY ZV(wj+ L) @ V(1) ®V(w1), C"RV® ZV(wy+ L) & V(wn1).

A similar argument shows that V*+2 does not appear in C*" @ [V (wr + L1) @ V(wk_1)] and has a multiplicity one in
C* ® V(wys1), and V™ does not appear in C*" ® V(w, + L;) and has a multiplicity one in C** ® V(wn_1). The result
follows. O

4.2. The left invariant operators between irreducible homogeneous sheaves on G/P and generalized Verma modules

The left invariant differential operator of first order on O¢(V) are given by the element X € g
d
Xf(g) = m fgexptX),
tli=o

for a local section f of O¢(V). This definition is extended to universal envelope algebra % (g). More generally, the left
invariant differential operators from O¢(V4) to O¢(V,) are given by % (g) ® Hom(V1, V2): U ® v} ® v, maps f € Og(V1) to
U<f, UT)Uz € (DG(VZ)-

Let % (p) be the universal envelope algebra of p and Y > Y’ be its principal antiautomorphism determined by Y + —Y
for Y € p. Arepresentation p of P on vector space V; induces a representation p, of p and of % (p) on V;. LetJ be the linear
span of elements

UY®L—U® (Lo p.(Y)),
where U € % (g),Y € % (p) and L € Hom(V7, V5). Write
% (9) @ (y Hom(Vy, V3) == % (g) ® Hom(Vy, V3)/].
The action of % (g) ® 4 (,) Hom(V1, V) on Oc(V)?, and hence on 0, (V), is well defined since J act trivially on Oc(V)P:
d d
UY®Df(g) =L I (Uf)(gexptY) =L—| p(exp(—tY))(Uf)(g)
le=o def_
= Lp.(Y)(Uf)(8) = (U @ Lo p.(Y))f (&)
Suppose p1, po are two representations of P on vector spaces V; and V5, respectively. P acts on Hom(V;, V;) by p € P
sending any element L to p,(p) o L o p1(p~ '), and P acts on % by the adjoint representation. Hence we have an action of P
on % ®%(p) HOIT](V], V2)
An element u € % (g) defines an operator as
[ " uf) (4.11)
for v* € V* and agerm f € O¢(V)". Whenu € p,

", uf) = (v*, —psWf) = (" WV, f)
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where p* is the contragredient representation of p,. Identifying the germ of the operator in (4.11) at the identity with an
element of 7 (g) ® V*.Since u ® v* and 1 ® p*(u)v* agree on sections of V,

My(V*) = (% () ® V) /I = %(9) @ 5y V™ (4.12)

is the space of differential operators from O¢(V) to g, where I is the ideal generated by elements of form u ® v* — 1 ®
p*(w)v* for u € p. Namely,

M, (V) = lim Homc (J" (V)ep, ©), (4.13)
where J"(V)ep is the r-th jet bundle at point eP. M,,(V*) is called a generalized Verma module.

Proposition 4.2.1. A g-invariant homomorphism D from sheaf ©,(1) to sheaf O, () is a differential operator.

Proof. A homomorphism D from sheaf 9, (1) to sheaf O, (1) maps an rq-jet s of J"(F,(—1)).p at the identity to some r,-jet
of J”2(F,(—u)).p at the identity for some r, depending on s. So D induces a homomorphism

lim Homc (J" (Fy (—))ep, C) — lim Home (J" (Fy (—2))ep, ©).
If D is g-invariant, the induced homomorphism is also g-invariant. By (4.13), D defines a g-homomorphism between

generalized Verma modules D : M, (F,(—u)*) — M, (F,(—=A)*). A g-homomorphism between generalized Verma modules
is a invariant differential operator (Proposition 11.2.1in [15]). O

Proposition 4.2.2. % (g) ® 4 (» Hom(V1, V,) can be identified with the space of G-invariant differential operators from local
holomorphic sections of O¢ (V)" to that of O¢(V,). Having chosen a subspace u™ of g complementary to p and a basis {Y;}, every
element of % (g) ®+ ;) Hom(Vy, V,) can be uniquely written in the following “normal form”:

D Y ® L, (4.14)

where L, € Hom(Vy, V,), Y* = Y{"'Y;? - - - for anincreasing index « = (a1, @z, . . .).

This proposition is the holomorphic version of Proposition 1.1 in [18], which is stated for C*°-sections. Its proof holds for
holomorphic sections without modification.

4.3. Determination of the invariant differential operators

Proposition 4.3.1. Let G = Sp(2N, C), and let {Y;} in (2.11) be a basis of ug, complementary to ps, in g = sp(2N, C). Let
((8,v), V) and ((§', V'), V') be two irreducible finite dimensional ps,-modules, and let D be a g-invariant differential operator
from O, (V) to that of ©,(V’). Then, if v/ — v = 1, D can be uniquely written as

4n
D= Y ®F (4.15)
=1
for some F; € Hom(V, V'); if v/ — v = 2, D can be uniquely written as

4n 3
D= Z Yij®F}'+ZY4n+s®FSs (4-16)
Jj.k=1 s=1

for some F;, Fs € Hom(V, V').

Proof. Let D be written in normal form (4.14) with Y* = Y} - .. Y, #"*3_ Note that

4n+3
4n 3
H-D=Y v/—u—zaj—zzomnﬁ Y@L,
o = J=s

by (2.9). The operator 0 = D — H; - D is in normal form. When v/ — v = 1, we must have |o| = 1and agp41 = otant2 =
a4n+3 = 0.So D has the form (4.15). When v’ — v = 2, there are two cases: (1) |@| = 2 and &gn11 = Xgni2 = dgna3z = 0,(2)
e = Tand oy = - - - = a4y = 0. Although the normal form in (4.14) takes over increasing multiindices, D can be uniquely
written as the form of (4.16) since [Y;, Y;] = 4Y4n4s for some s or equals 0. So D has the form (4.16). O

Proposition 4.3.2. Let G and {Y;} be as in Proposition 4.3.1 and let {w,} be a basis of F,(—pus) or F,(—us41). Up to a constant,
g-invariant differential operators as(") in the complex (3.23) can be written as follows:
(1) ifs#k,n—1,

3 =Yan ® wi @ pr(¥Yan ® wa),
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where pr is the gs, -equivariant projection from g* ; ® F,(—us) to F,(—us11) for s < k and is the gs,-equivariant projection
from Qi] ® Fp(—psy1) t0 Fy(—psy2) for s > k+ 1.
(2)

0} = Yanyj ® W} ® Pr(BYansy ® wa),

where pr is the gs, -equivariant projection from g* , ® F,(—ttn) t0 Fy(—ns1).

(3)
3,?{) =YauYpp @ ) @ pr(@Yany ® #Ypp @ wy),
where pr is the projection from g* | ® g* ; ® F,(— ) to F,(—tk+2).

Proof. Cf. Theorem 2.2 in [18] for determining the G-invariant differential operators of the first order on boundaries of
symmetric spaces. We prove (2), (3). The proof of (1) is similar.
By (3.24)-(3.26), we have

VEy(—pjr1) — V(=) = 1, j#kk+1,n
VEy (—ptk2) ~ VEy(—pui) = VEy(—ptns1) ~ VEy(—pun) = 2-
So by Proposition 4.3.1, we can write
(k)
O = Yaya,Yap 2, ® Wy @ fia, a1y e T Yantj ® we @ fio,

with f(ApA/l)(Az,A’z)a’ﬁa € Vy = F,(—r42), where {wy} is a basis of V; = F,(—uy). This element induces mappings
Ui € Hom(g* ; ® g% ; ® Fy(—pur), Fy(—i42)) and U € Hom(g* , ® F,(—ui), Fy(—ptrs2)) defined by

U] : l?yAl,A’l ® ﬁYAZ*A/z Q Wy '—>f(A,A/1)(A2,A/2)OH

Uy : 0Yanyj @ wy —> fia,
and a,§’° can be written as U; o V; + U, o V, with

V] = YAlvAgYAZsA/z [02] w; ® ﬁyA],A/l ® ﬁYAZ-A/Z R wy,

R (4.17)
Vy = Yanyj @ w, @ 0Ysnij @ wy.
Denote by my, the representation of Gs, on Vj, and
. -1
m.U; := T(vz(m)OU1 Oﬂgil(@gt]@\/l(m ), (4]8)

. -1
m.U, = Ty, (m) olU; o ﬂgi2®vl (m )

If m.w, = mg,wg form € Gs,, then m.w}; = (m*‘)uy wj’j by definition of the contragredient representation. It follows
that m.(w} ® wy) = w) @ w,. Similarly, for M € Sp(2n, C), M.(Yayn, @ OYp 1) = Yo, a0 @ UVp, 4/ by DYa, 4, dual to
YAl,A’l' and N~(YA1,A’] ® ﬁYAl,A/]) = YAl,A/] ® ?9YA1,A’1 for N € SL(2, C). Consequently, m.V; = V; by the formulae (4.17) of V;.

(k)
k

Now the invariance of 9, and V; under Gs, implies that

M. = Yp, 4 Vappy ® W ® T, (M) 0 Uy 0 T gt v, (M) (O Ya, 41 ® 9V, 40 ® i)
+ Yanij @ wy, ® ®7v, (M) o Uz 0 7+ gy, (M) (OYantj ® wy).
It follows from 0 = 8,5") — m.a,ik) in normal form that
7, (M) 0 Uy 0 Tgr @t v, (M) (0 Vg, a1 @ 0V nr @ we) = Ur(0 Vg, a1 ® 0V, 1 ® We). (4.19)
Namely, U; is Gs,-equivariant. Similarly, U, is also Gs,-equivariant. By Lemma 4.1.1 together with
(CZ ® @i (CZ >~ ®i—1 (CZ ® ®i+1 (CZ
as sl(2, C)-modules, there is a unique irreducible component F;fm ing', ® ¢, ® F:k and obviously no irreducible

component F:Hz ing*, ® F:k. By Schur’s lemma, U; is scalar on each irreducible component. So U, is zero. The result

for 8,£k> follows.
The same argument is applied to 8;"_)1. By Lemma 4.1.1 again, there is a unique irreducible component F;m ing*, ®g*,

® I, and a unique irreducible component Fljm ing*, ® Iy . sinceg_, = O?C?%as gs,-modules. By Schur’s lemma,

3,(1k_)1 = C1Yangj @ w @ pri(0¥anyj ® wy) + GYanYpp @ w) @ pry(WYan @ 0V p ® wy) (4.20)
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for some constant Cy, C;, where pr;, i = 1, 2, are the projection from g*, ® F,(—un) and g* ; ® g* ; ® F, (— n) to Fy (—tng1),
respectively. pr, is the gs, -equivariant projection from (C*®C*™) ® (C* ®@C*™)@O" 2 C*@V™* to " * C* @@V ™*.
Let {¢"1-1} be a basis of ®' C2*, {v*} is a basis of V(™*, Note that up to a constant,

prz(eA/ e @ ® MMk ®vY) = GABeA’B’A’l ...... Al ks ® v,
which is s[(2, C) @ sp(2n, C)-invariant. So the second sum of (4.20) is
CoemsYanYop ® eA/l"‘A;—k—z* ® v ® eArB’A’] AAAAAA k-2 @ p®.

Note that €xpYa o Yppr € g—2. SO 8,5@] has the form ZE’:] Yints ® Fs and we can assume 8,5’:)1 = U, o V. The result follows
asabove. 0O

By Proposition 4.3.2, 3 : 0,(0" 7 C** @ V0*) — 0,(0* 71 C* @ VU+V*) j=0,... k- 1,is written as
3j(k) =Y ® eAq...A;H.* RV ® pr(eA ® eA’ ® eAq...A;H. ® v%)

where pr is the gs,-equivariant projection from C?* ® C** ® O¢7 ¢?* @ VO* to o7~ C?* ® ®VU*V* Note that up to a
constant,

pr(eA/ ® eA/l..AA;kj) _ EA;A/EAQM.AS,.A.A;FJ.’
which is s[(2, C)-invariant. Thus
pr(eA ® A ® eA’l...A,"fj ®1%) = EA;A/EA/T"‘AS/"'AL*J' ® e Ag v,
and so
3j(k)(feA’]...A,;_j ® 1) = Y:QfeA’]..]\s/...A;(_j ® e g .
We can find the formulae of Bj(k) for the other j similarly.

Proposition 4.3.3. The G-invariant operators 8j(k) in the exact sequences (3.23) of sheaves on G/P are as follows: for j =
0,....k—1,

LA A A Ay AL
fe'r i @ v s Y et el @ et Ag v,

forveVO* forj=k+1,...,n—1,

feAq.,.A}7k71 Qv > YM/feA/Aq...A}7k71 Qe Ao,
forveVUitD* forj=n,...,2n—1,

feA/l..‘Aij Qv > YAA/feA’A’l...A}Lk ®eA.v,
forveVeD* forj=n—1,

feAﬁ-"Akaz Qv > Yanidf - XSeA/r--Akaz v,
for v e V¥ for j =k,

fue YAA/Y,?/feA Ao €8 Ao,

for v e V®* which is an operator of the second order.
5. Pulling back the complex to the quaternionic Heisenberg group

5.1. Tangential Cauchy-Fueter operators on the boundary of the Siegel upper half space

o = Req, — Z;;_o] K1|qi|? is a defining function of 8,. Define the projection

78 — H'®ImH,

n—1
2 / ’ (5.1)
qo, ---»qn—1, ) klal® + 4, ) = o, -- -, Gn-1,qy,),

=0
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where q; = t;i + t,j + t3k. By definition,

“1q4 _ -1 _
7T, Oy = 0y, T, Oxgpes = Oxgryy  2K0Xa145 Ok »

forj=1,2,3,s=1,...,4,1=0,...,n— 1.Thus,

7" (B + 261Q101mg, ) = g, + 21013,

377

where g, = id;, +jor, + K, So the tangential Cauchy-Fueter operator of 8, is mapped by 7. to Q = (Qof, - .., Qu_1f)"

with
al = gql + 2K1q151mqn- (5.4)
To find the explicit forms Q;, denote iy = 1,i; = i, i = j, i3 = k. Note that

(X1 + %21 + x3j + x4K)i = —x + xqi + x4 — x3K,

(X] + Xzi + X3j + X4k)j = —X3 — X4i + X]j + sz, (55)

(X1 + %21 + x3j + x4K)K = —x4 + x31 — X2§ + x1K.

So the right multiplying i; is (4 x 4)-matrix —bie.

(X1 + Xoi + x3) + xaK)ig = —(bPx)1 — (BPX)2i — (B %)) — (bFx)4k (5.6)
where b#, 8 = 1,2, 3, are anti-symmetric matrices defined in (1.11), and (bﬁx)j is the j-th element of bPx for x =
(X1, X2, X3, X4)'. Therefore,

4
(1 + Xoi + X3 + XaK)dyis = D blixidj_1,. (5.7)
ij=1
by bg = —b]’-?, and so
3 4
(Xal41 + Xa142 + jXa3 + Kxgpp4) (0, + jOr, + ko) = Z Z b5X4l+iatﬂ ij_1. (5.8)
B=11,j=1

LetX;,j = 1,..., 4n, be real vector fields defined by

Qi = Xaip1 + Xaigz + jXai3 + KXapsa. (5.9)

Then by (5.4) and (5.8), we get
3 4
X4H—j = 8X4l+j + ZKI Z Z ng41+ia[}3 ) (5]0)
p=1 i=1
which are exactly left invariant vector fields of #, and satisfy the commutating relation (1.14).
5.2. Embedding the quaternionic Heisenberg group into Sp(2N, C) /P
Define the local embedding
:chnt3 G/P,
i — ¢/ (5.11)

(w1, ..., Wapy3) —> exp(wY)P,

where wY := w1Y; + - - Wans3Yans3. Set f = f o t1 : C4+3 — V for a local section f of @¢ (V)P near eP.

G Ya)f (W) = Yargf exp(wY))

de

f(exp(wY) exp(tYa;)
t=0

1
f <exp (wY + tYqy + E[wY, tY41+j]>> )

t=0

de

by using the Baker-Campell-Hausdorff formula

~ ~ 1 ~
exp(wY) exp(wY) = exp (wY + wY + E[wY, wY]) ,

Note that
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for a nilpotent Lie group of step 2. By brackets in (2.12), we get

3
~ 1 ~ ~ ~
wY + wY + i[wY, wY] = (w+w)Y + E as(w, W) Yants,
s=1
where «; are bilinear functions given by
n—1
oy =2 E W41 Wal+4 — WalaWait1 + War2Wajp3 — Wary3Waly2,
1=0
n—1
ay =2 E Wi+ 1Wai+3 — Wait3Wait1, (5.12)
1=0
n—1
a3 =2 E Wit Warra — WarpaWaito.
1=0
Then
I " ~/ ~ / ~/ ~ ~
(w', w") o (W', w") = (W + W, Wanys + Wanys + as(w, w)), (5.13)

s = 1, 2, 3, defines the multiplication of a nilpotent group & on C*"*3 such that (t;l)*Y‘”H is a left invariant vector field
on N:

3
-1 ~
([] )*Y4l+j = 3w41+j + Z 85)41+j055(w7 w)aw4n+s,

s=1

forl=0,....,n—1,and (t]")sYanyj = Bugns;- HETE iy, 065 (W, w) is independent of w.

It is well known that the quaternionic algebra H can be represented by 2 x 2 matrices with complex entries,

Xo+ix; —x — ix3>

Xo + x1i + xoJ + x3Kk — (Xz s % —ixg

Consider the complexified conjugate embedding 1, : C***3 — C**3 given by z — w with

W1 Wagz ) _ 1 (Zagn —iza: —Zags +ixagg (5.14)
Wal+3  Walta 2e; \Zal43 T VZaipa Zapr H1zg40 )7 )

where ¢, is given below (1.17) and

i 1 . 1 .
Win+1 = §Z4n+1» Win42 = Z(Z4n+2 +iz4p43), Wyn43 = Z(Z4n+2 —iz443). (5.15)
Under this embedding,
(Z,2") 0 @Z.7") = (' +7, zanss + Zanys + Bs(2, 7)), (5.16)

defines the multiplication of a nilpotent group &, on C**3 such that ¢, is an isomorphism from W, to . It is easy to see
that B,(z, Z) are bilinear functions as follows:

n—1
B =2 E Ki((Zal1Za142 — Zal4124142 — Zal43Zai+4 + Za143Z4144)
=0
n—1
B =2 E K1(Za141Z4143 — Za141241+3 + Zar42Za144 — Zai12Z4144) (5.17)
=0
n—1
B3 =2 Z Ki(Zai41Z4144 — Za4124144 — 2414224143 + Za14224143) .-
=0

In terms of antisymmetric matrices b? defined in (1.11), the multiplication of the nilpotent group ., can be written as
follows:

n—1 4
7,2 @7 = (Z/ +7, Zanys + Zanss + 2 Z Z Klbfjl4l+iz4l+j,) , (5.18)
1=0 ij=1

wheres =1,2,3,7/,7 e C*,7",7" € C3.
At last, 13 2 RT3 — €43 is the trivial embedding given by x — x 4 i0. ¢3 is an isomorphism from the quaternionic
Heisenberg group #, to a subgroup of .t = t1i5t3 is an embedding of #, to G/P.
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Remark 5.2.1. (1) The multiplications of the quaternionic Heisenberg group in (1.9) and (5.18) are the same by direct
calculation

J{(x1 — X201 — X3j — x4K) (X1 +Xoi + X3 +X4K)} = (X1X2 — X2X1 — X3X4 + XaX3)i + (X1X3 — X3X1 + X2X4 — X4X2)j
+ (X1X4 — X4X1 — X2X3 + X3%2)K
4 4 4
=) bixXi+ Y bixXj+ Y bixixk. (5.19)
ij=1 ij=1 ij=1
(2) The quaternionic contact manifolds can be approximated by another quaternionic Heisenberg group, whose
multiplication is given by
@6 -, t)=(q+d,t+t +Im(q0)). (5.20)
where q, g € H", t, t’ € ImH (cf. [19]). It corresponds to the right Cauchy-Fueter operator.

5.3. Pulling back the left invariant vector fields

See [10] for the pulling back operators in the case of the Cauchy-Fueter complex. Note that z4 11 = &/(W4ir1 + Warta),
Zgip2 = ie(Warr1 — Warra), Zaips = —&(Wary2 — Wary3) and 2y 4 = —ig)(way2 + way3) by (5.14). It follows that

—1 -1 . .
<(Lz])*3ul4[+1 ([2, )*3“74l+2> — ¢ (az4l+1 + ?3241_*_2 _8241+3 _.13241+4> ]

(L2 )*3w4[+3 (52 )*aw4l+4 az41+3 — 10744 zarp1 — 102445
This together with the fact that Lz_*l maps left invariant vector fields on ./ to that on ., implies that

- - Yar1 Yauo Xar1 + Kz —Xaps — i)~<4l+4
(NN ( =& (5 = < = 5.21)
2 1 Yoz Yaua Xaips — Kappa Xgpr — iXgip2 (

with
- 3 4
Xaltj = gy + 200 Z Z b§Z4l+iaZ4n+,;v (5.22)
p=1 i=1
and
(5 ey DeYansn = =205, (D7D Yang2 = 2(0zyy, — 1024,,5),

. (5.23)
(5 D7D Yans = 2(0z4,,, + 105,,5)-

For a left invariant vector field Y on G/P, we define the notation (*Y := 1;,'¢},'Y |zan+3_o;. The following proposition follows
from (5.21)-(5.23).

Proposition 5.3.1. We have

* * * *
CYa1 = Vo, CYa10 = Va2, CYae3 = Va1, CYapa = Vo,

5.24
UYanyq = 2Ty, UYanyo = 2Ty, *Y4ni3 = 2T (5:24)

where vectors V, are given by (1.17).

Proof of Theorem 1.0.1. The pulling back of the exact sequence (3.23) of sheaves on G/P by (1, is an exact sequence of
sheaves on C*"+3, Note that a linear differential operator maps a polynomial to a polynomial, and if a germ of holomorphic
function is mapped to a polynomial by a homogeneous differential operator, there obviously exists a polynomial mapped to
this polynomial. Hence the exact sequence (3.23) of sheaves on G/P implies that the sequence on C*+3

k N(
()% (e)*a®

0 —> <R((C4n+3, @k (CZ*) ﬂ(@4n+3, Gk—l (CZ* ® V(l)*)

Foo)

n—1 :R(C4”+3, oMk Cz*) =0 (5.25)
is exact except at the first spot, where R(C*", ©° C** ® V*) is the ring of ©° C** ® V©*-valued polynomials over C*"*3,
The restriction of the sequence (5.25) to the real subspace R*"+3 4 i0  C*"*3 is also exact. Forj = 0, ..., k — 1, it follows

from Proposition 4.3.3 that

Q(IO — L*3j(k) D RRY3, Ok 02 @ V) s RT3, ok 02 @ VItDY
/ / / ’ A ’ (5.26)
f e @ v > v:;\SfeAl...As...Akfj ® e Agv.

We get Qj(k) in Theorem 1.0.1 by identifying ®° C** ® V©* with ©° C? ® V®. Similarly, we get Q(") forotherj. O
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