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a b s t r a c t

Recently, M. de León et al. (Campos et al., 2015) have developed a geometrical descrip-
tion of Hamilton–Jacobi theory for multisymplectic field theory. In our paper we analyze
in the same spirit a special kind of field theories which are gauge field theories. The
Hamilton–Jacobi theory for this kind of fields is shown.
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1. Introduction

The historical beginning of classical field theory comes back to XIX century with the discovery of electromagnetic
field by James Clerk Maxwell. However, only in XX century physicists and mathematicians started to look for a proper
mathematical description of phenomena described by this theory (see e.g. [2,9,27,28,32,34,36,38,40,41,47,48]). From the
mathematical point of view, a classical field is represented by a section of the fiber bundle π : E → M where the
base manifold M usually represents spacetime. For instance a real (complex) scalar field is a section of the trivial bundle
M × R → M (M × C → M), electromagnetic field is a section of the cotangent bundle T∗M → M etc. The natural choice
for the configuration space of the first order classical field theory is a bundle of first jets J1E of sections of π . The bundle
J1E plays a similar role in field theory as the tangent bundle TM in classical mechanics, however, one has to be careful
with this comparison since the internal structure of J1E is much richer than TM .

In mechanics one uses symplectic geometry to derive the dynamics of the mechanical system [1]. The cotangent bundle
T∗M associated with the Hamiltonian description of the system has a canonical symplectic structure. On the other hand,
the bundle TM does not have a canonical symplectic form but, at least for regular systems, one can transport the canonical
symplectic structure from T∗M to TM via the Legendre map [33]. In field theory one has to consider a multisymplectic
structure which is a generalization of the symplectic one. It turns out that in the presence of a volume form on the (n+1)-
dimensional manifold M , the phase bundle is isomorphic to the bundle Λn+1

2 E representing two-horizontal (n+ 1)-forms
on E and being a canonical multisymplectic manifold. To read more about multisymplectic structures and its applications
in field theory one can see for example [10–12,22,25,26,43]. An interesting description of covariant Hamiltonian field
theories on manifolds with boundary, and applications to Yang–Mills theories, was developed in [30].

In the very center of interest of physicists are the so called gauge theories. Gauge theories are field theories with certain
special kind of symmetries called gauge transformations. In the modern description of fundamental interactions one usually
takes a classical Yang–Mills theory and then quantize it to obtain possible experimental predictions.
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On the other hand, Hamilton–Jacobi theory is a powerful tool in analytical mechanics that provides a method to find
the dynamics of the mechanical system. It is also the most clear way to see the classical limit of the quantum mechanics
when one takes ℏ → 0. Its geometrical formulation was investigated in many papers, e.g. in [3–7,13–17,19,21,31,35,37] .
Recently, a Hamilton–Jacobi for field theories version has been developed too [8,18,20,39,49]. In our paper we would like
to investigate the field theoretical version of Hamilton–Jacobi theory for gauge field theories.

The paper is organized as follows. In Section 2 we present the basic features of the geometrical picture of classical field
theory of first order. We start with a general definition of a multisymplectic structure. Subsequently, we present basic
tools of jet bundle theory and their relations to multisymplectic structures. In 3 we make a brief introduction to principal
bundles which provide the most common definition of a gauge field. The main result from this constructions is that a
gauge field is just a connection in a principal bundle. In Section 4 we present an equivalent definition of connection
which is based on jet bundles and is more useful for our purposes. In particular we present a canonical projection of
the configuration space of gauge field theory which is essential in our further work. Section 5 contains the Hamiltonian
formalism for gauge theories. In Section 6 we present the main result of our paper which is a Hamilton–Jacobi theory for
gauge theories.

Along this paper we will assume that the base manifold M has always dimension n+ 1. If (xi) are local coordinates in
M we introduce notation

dn+1x = d0x ∧ · · · ∧ dnx

and

dnxi = i ∂
∂xi

d0x ∧ · · · ∧ dnx

for the contraction with the coordinate vector fields. Furthermore, we assume that M is orientable with fixed orientation,
together with a given volume form η. Its pullback to any bundle over M will still be denoted η, as for instance π∗η. In
addition, local coordinates on M will be chosen compatible with η, which means such that η = dn+1x. To great extent,
this form η is not needed and our constructions can be generalized, although we are going to make use of η for the sake
of simplicity.

2. Multisymplectic structures and jet bundles

We begin reviewing the basic notions of multisymplectic structures and jet bundles.

2.1. Multisymplectic structures

Let V be a finite-dimensional real vector space. A (k + 1)-form Ω on V is said to be multisymplectic if it is
non-degenerate, i.e., if the linear map

bΩ : V → ΛkV ∗

v ↦−→ bΩ (v) := ivΩ
is injective. The pair (V ,Ω) is called then a multisymplectic vector space of order k+1. This definition has a straightforward
extension to differential manifolds. We say that a pair (P,Ω) where P is a manifold and Ω a closed (k + 1)-form on P is
a multisymplectic manifold if each (TpP,Ω(p)) is multisymplectic, for any point p ∈ P .

In a similar way that a cotangent bundle is a canonical example of symplectic manifold, the canonical example of a
multisymplectic manifold is the bundle of forms P = ΛkN over a manifold N .

Let N be a smooth manifold of dimension n, ΛkN be the bundle of k-forms on N and ν : ΛkN → N be the canonical
projection (1 ≤ k ≤ n). The Liouville or tautological form of order k is the k-form Θ over ΛkN given by

Θ(ω)(v1, . . . , vk) = ω(Tων(v1), . . . , Tων(vk)), ω ∈ ΛkN, v1, . . . , vk ∈ Tω(ΛkN).

The canonical multisymplectic form is then defined by

Ω = −dΘ.

Let us introduce local coordinates (xi) in N and induced local coordinates (xi, pi1...ik ) in Λ
kN where 1 ≤ i1 ≤ · · · ≤ ik ≤ n.

Then

Θ =

∑
i1<i2<···<ik

pi1...ikdx
i1 ∧ ...dxik

Ω = −

∑
i1<i2<···<ik

dpi1...ik ∧ dxi1 ∧ ...dxik .

It is immediate to check that Ω is indeed multisymplectic.
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Another example of multisymplectic manifold comes from the particular case of the previous example. Let π : E → M
be a bundle. Let us assume that dimM = n + 1 and dim E = n + 1 + m. Given 1 ≤ r ≤ m, we can consider the vector
subbundle Λk

rE of ΛkE that consists of k-forms on E which are r-horizontal with respect to the fibration π , i.e.

(Λk
rE)e = {ω ∈ Λk

eE : ivr ...iv1ω = 0, ∀v1, . . . , vr ∈ VeE}.

where e ∈ E and VE ⊂ TE is the subbundle of vectors tangent to E which are vertical with respect to π .
We denote by νr ,Θr ,Ωr the restrictions to Λk

rE of ν,Θ,Ω , respectively. It is easy to see that (Λk
rE,Ωr ) is a

multisymplectic manifold. The most interesting cases from the point of view of field theory are k = n + 1 and r = 1, 2.
Let (xi, uα) denote adapted coordinates on E, where i ∈ 0, n and α ∈ 1,m. They induce coordinates (xi, uα, p, piα) on

Λn+1
2 E such that any element ω ∈ Λn+1

2 E is locally expressed by

ω = pdn+1x + piαduα ∧ dnxi,

where dnxi = i ∂
∂xi

dn+1x. Therefore Θ2 and Ω2 read as

Θ2 = pdn+1x + piαduα ∧ dnxi
Ω = −dp ∧ dn+1x − dpiα ∧ duα ∧ dnxi.

in local coordinates

2.2. First order jet bundles

We will introduce now the notion of first order jet spaces and their duals. We follow the notations in [29]. For a more
detailed discussion of the jet bundle geometry see e.g. [46].

Let π : E → M be a bundle with the total space of the dimension dimE = n+1+m. We introduce in a domain U ∈ M
a local coordinate system (xi)ni=0 on M . In field theory, fields are represented by sections of the fibration π . The total space
is a space of values of the field e.g vector fields are sections of the π being a vector bundle, scalar fields are sections of
the trivial bundle E = M × R or E = M × C, etc. On an open subset V ⊂ E such that π (V ) = U we can introduce local
coordinates (xi, uα) adapted to the structure of the bundle.

In TE we have a vector subbundle VE consisting of those tangent vectors that are vertical with respect to the projection
π i.e. Tπ (vp) = 0 for vp ∈ VpE. We will also need the dual vector bundle V∗E.

The space of first jets of sections of the bundle π will be denoted by J1E. By definition, the first jet j1mφ of the section
φ at the point m ∈ M is an equivalence class of sections having the same value at the point m and such that the spaces
tangent to the graphs of the sections at the point φ(m) coincide. Therefore, there is a natural projection j1π from the
space J1E onto the manifold E

j1π : J1E → E : j1mφ ↦−→ φ(m).

Moreover, every jet j1mφ may be identified with a linear map Tφ : TmM → Tφ(m)E. Linear maps coming from jets at the
point m form an affine subspace in a vector space Lin(TmM, TeE) of all linear maps from TmM to TeE. A map belongs to
this subspace if composed with Tπ gives identity. In a tensorial representation we have an inclusion

J1eE ⊂ T∗

mM ⊗ TeE.

It is easy to check that the affine space J1eE is modeled on the vector space T∗
mM ⊗VeE. Summarizing, the bundle J1E → E

is an affine bundle modeled on a vector bundle

π∗(T∗M) ⊗E VE → E.

The symbol π∗(T∗M) denotes the pullback of the cotangent bundle T∗M along to the projection π . In the following we
will omit the symbol of the pullback writing simply T∗M ⊗E TE and T∗M ⊗E TE.

Using the adapted coordinates (xi, uα) in V ⊂ E, we can construct the induced coordinate system (xi, uα, uβ j) on
j1π−1(V ) such that for any section φ given by n functions φa(xi) we have

uβ j(φα(xi)) =
∂φβ

∂xj
(xi(m)).

In the tensorial representation the jet j1mφ may be written as

dxi ⊗
∂

∂xi
+
∂φα

∂xj
(xi(m))dxj ⊗

∂

∂uα
,

where we have used local bases of sections of T∗M and TE coming from the chosen coordinates.
We will introduce now the bundle which is dual to the bundle J1E → E. Let us recall that each fiber J1eE is an affine

space. We can consider a set of affine maps J1eE → R which we will denote by Aff(J1eE,R), for each e ∈ E. Collecting
Aff(J1eE,R) point by point we obtain a bundle of affine maps on J1E, namely Aff(J1E,R) → E. From now we will use



4 M. de León and M. Zając / Journal of Geometry and Physics 152 (2020) 103636

notation J†E := Aff(J1E,R). It is a vector bundle over E. If (xi, uα, uβ j) are coordinates in J1E, then we introduce coordinates
(xi, uα, r, ϕb

j) in J†E. The evaluation between J1E and J†E in coordinates reads

J†E ×E J1E → R, ⟨Te, jeψ⟩ = r + ϕb
jyjb

We also introduce a vector bundle JoE over E which is a quotient of J†E by constant affine maps, namely

JoE := J†E/{f : E → R}.

It is equipped with adapted coordinates (xi, uα, ϕb
j). The bundle µ : J†E → JoE is a principal R-bundle.

The following theorem justifies the importance of the multisymplectic structures in field theory.

Theorem 1. There exists an isomorphism Ψ : Λn+1
2 E → J†E given by the formula

⟨Ψ (ω), j1xφ⟩η = φ∗

x (ω), ∀j1xφ ∈ J1xE, ∀ω ∈ Λn+1
2 E.

We will therefore identify J†E with Λn+1
2 E and JoE with Λn+1

2 E/Λn+1
1 E.

3. Geometry of principal bundles

We introduce now a mathematical framework to analyze gauge theories. It turns out that gauge fields are sections of
the bundle of connections in a principal bundle.

3.1. Principal bundles

Let G be a Lie group and P a smooth manifold. We will denote by g the Lie algebra of G. We assume that G acts
on P from the right-hand side in a smooth, free and proper way. We denote by M the space of orbits P/G. The bundle
π : P → M is called a principal bundle. It is locally isomorphic to M × G. Let Uα be an open subset in M . We have local
trivializations

π−1Uα

π
↘↘

Ψα →→ Uα × G

pr1↙↙
Uα

where Ψα is a G-equivariant diffeomorphism such that Ψα(p) = (π (p), gα(p)) for gα : P → G. Equivariance means that
Ψα(pg) = Ψα(p)g which implies that gα is also G-equivariant, says gα(pg) = gα(p)g .

Local trivializations of principal bundles are associated with its local sections. Let σα : Uα → π−1Uα be a local section
of π . Using σα we can construct a local trivialization by Ψα(σα(m)) = (π (σα(m)), e), where e is the neutral element of
G. Since Ψα is equivariant we obtain a trivialization of the whole subset π−1Uα . Conversely given a trivialization Ψα we
define value of σα(m) by condition Ψα(σα(m)) = (π (σα(m)), e). Let us notice that gα ◦ σα(m) = e, for each m ∈ M . Local
trivializations (or equivalently local sections) enable us to identify fibers of the bundle π with a group G by choosing an
element p which satisfies gα(p) = e.

Let Uαβ := Uα ∩ Uβ . For Ψα,Ψβ associated with Uα and Uβ , respectively, we have transition conditions such that the
following diagram commutes

Uαβ × G

pr1
↘↘

π−1Uαβ
Ψα←← Ψβ →→

π

↓↓

Uαβ × G

pr1
↙↙

Uαβ

Let us assume now that m belongs to Uαβ . With each trivialization Ψα,Ψβ there are associated functions gα, gβ . One can
show that there exists a function ḡαβ : P → G such that

ḡαβ (p) = gα(p)gβ (p)−1

In addition, ḡαβ is constant on each fiber i.e. ḡαβ (p) = ḡαβ (pg). Therefore, ḡαβ defines a function

gαβ : M → G, gαβ (π (p)) := ḡαβ (p)

The transition functions gαβ satisfy cocycle conditions

gαβ (m)gβα(m) = e on Uα ∩ Uβ
gαβ (m)gβγ (m)gγα(m) = e on Uα ∩ Uβ ∩ Uγ .
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3.2. Adjoint bundle

Let F be a manifold and let G act on F from the left hand side. We assume that G acts on P × F by

g(p, f ) = (pg, g−1f ).

We denote by N := (P × F )/G the space of orbits of this action. We have a bundle

ξ : N → M, [(p, f )] → π ([p]),

which is called an associated bundle to a principal bundle P . Let sα : M ⊃ Uα → P be a local section of P and let
N ⊃ Oα := ξ−1(Uα). Then for each orbit y ∈ Oα , where ξ (y) = m, there exists a unique element χs(y) ∈ F such that
(s(m), χs(y)) belongs to y. A local section of π provides then a local trivialization of N

N ⊃ Oα → Uα × F , y ↦−→ (ξ (y), χs(y)).

The most important examples of associated bundles to P in context of our work are the bundles with fibers F = g or
F = G, i.e. N = (P × g)/G and N = (P × G)/G. We will use the notation ad(P) := (P × g)/G and Ad(P) := (P × G)/G. The
action of G on g and G on G is the adjoint map given by

Ad : G × g → g, (g, X) ↦−→ Adg (X),
Ad : G × G → G, (g, h) ↦−→ Adg (h),

respectively.
Let us take a closer look on the bundle ξ : ad(P) → M . It has a natural structure of the vector bundle with addition

and multiplication given by

[p, X1] + [p, X2] = [p, X1 + X2] p ∈ P, X1, X2 ∈ g (1)
λ[p, X] = [p, λX] λ ∈ R (2)

The ‘‘zero’’ vector in the fiber over p is just the element [p, 0]. The bundle adP is called the adjoint bundle. Given a
section sα : Uα → P we have a local trivialization of ad(P)

ad(P) → Uα × g, [p, X] ↦−→
(
π (p), Xsα

)
h ∈ G.

where Xsα ∈ g is the unique element satisfying

[p, X] = [sα (ξ (p)) , Xsα ].

In the above trivialization the equivalence class is represented by its representative in e ∈ G i.e. if in a local trivialization
(p, X) = (π (p), gα(p), X), then [p, X] ∈ adP reads (π (p),Adgα (p)−1X).

The structure of adP has its reflection in transition functions between different trivializations of P . Every element (p, X)
is in relation with itself, therefore

(π (p), gα(p), X) ∼ (π (p), gβ (p), X)

where gα : π−1Uα → G and gβ : π−1Uβ → G are two different trivializations related by the transition function gαβ . Since
for each p ∈ π−1Uαβ , the relation gα(p) = gαβ (π (p))gβ (p) is satisfied, we obtain

(π (p), e,Adgα (p)−1 ◦ X) ∼ (π (p), e,Adgαβ (m) ◦ Adgα (p)−1 ◦ X).

Therefore, the local trivializations of adP must satisfy a condition

ad(P)
triv1

↙↙

triv2

↘↘

[p, X]

triv1

↙↙

triv2

↘↘
Uαβ × g →→ Uαβ × g (m, Y ) →→ (m,Adgαβ (m)Y )

(3)

on the overlappings Uαβ = Uα ∩ Uβ .

3.3. Forms with values in adP

We are ready now to construct the bundle of forms onM with values in adP . Denote byΛk(M, g) the bundle of g-valued
k-forms on M . We assume that G acts on g by

R∗

gX = Adg−1X, g ∈ G, X ∈ g

Let {ξα} be a set of local k-forms on M such that for each α, ξα ∈ Λk(Uα, g). We also require that for each overlapping
Uαβ the condition

ξα(m) = Adgαβ (m) ◦ ξβ (m), m ∈ Uαβ , gαβ : Uαβ → G (4)
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is satisfied. We claim that the family of forms {ξα} defines an element of Λk(M, adP). Indeed, if (v1, . . . , vk) ∈ TmM are
tangent vectors at a point m ∈ Uαβ , then ξα(v1, . . . , vk) and ξβ (v1, . . . , vk) satisfy (3).

Let us assume now that we have a scalar product on g which will be denoted by ⟨·, ·⟩g. In an obvious way, it defines
a scalar product K on each fiber of the bundle P × g → P

K : (P × g) ×P (P × g) → R, K (p)(X, Y ) = ⟨X, Y ⟩g

Let us require now that the form K is Ad-invariant i.e.

K (p)(X, Y ) = K (p)(AdgX,AdgY ) g ∈ G.

In such a case, it defines a scalar product KA on the associated bundle adP → M , namely

KA : adP ×M adP → R, KA(m)(XA(p), YA(p)) = K (p)(X, Y ), ξ (p) = m.

where XA(p) and YA(p) are equivalence classes of the elements (p, X) and (p, Y ), respectively. One can easily see that if K
is Ad-invariant, then the above definition does not depend on the choice of the representatives.

Let us assume now that the manifold M is equipped with a metric g . It allows us to define a Hodge star operator ⋆.
On the other hand, the Hodge star allows us to define a scalar product (·|·)k on the space Λk(Uα) given by

(α|β)k =

∫
α ∧ ⋆β

The above scalar product may be extended to a scalar product on Λk(Uα, g) by

(·|·) : Λk(Uα, g) ×Λk(Uα, g) → R, (α|β) =

∫
Kijα

i
∧ ⋆β j

where we have used the notation α = αi
⊗ ei, β = β j

⊗ ej and Kij := K (ei, ej). In physical literature there is a common
notation Tr(α ∧ ⋆β) := Kijα

i
∧ ⋆β j. If we assume again that K (we will omit letter A in KA) is Ad-invariant then the above

formula defines also a scalar product on a space Λk(M, adP).

3.4. Connection in a principal bundle

A connection in a principal bundle P → M is a G-invariant distribution H in TP complementary to VP , i.e.

TpP = VpP ⊕ Hp, p ∈ P

and

Hpg = Hpg g ∈ G.

The above definition is very elegant and general, however when it comes to applications, it is more convenient to use
another definition of connection. We will start with introducing some basic mathematical tools. Let X be an element of
g. The group action of G on P defines a vertical vector field σX on P associated with the element X , namely

σX (p) :=
d

dt |t=0
p exp(tX).

The field σX is called a fundamental vector field corresponding to an element X . The fundamental vector field is equivariant
in the sense that

σX (pg) = σAdg−1 (X)(p).

The connection in a principal bundle P is a G-equivariant, g-valued one-form ω

ω : TP → g,

such that ω(σX (p)) = X for each p ∈ P and X ∈ g. The G-equivariance means that

R∗

gω(p) = Adg−1 ◦ ω(p).

Since the connection form is an identity on vertical vectors the difference of two connections is a horizontal form. It
follows that the space of connections is an affine subbundle A ⊂ T∗P ⊗ g over M modeled on a vector bundle of g-valued
horizontal forms on P . Due to the transformation properties, the bundle of horizontal forms may be identified with the
bundle T∗M ⊗ adP → M . We have the following diagram

A ⊂ T∗P ⊗ g

prP
↓↓
P

ω

↗↗
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The connection ω provides also a decomposition of the dual bundle T∗P . The annihilator (VP)o of the bundle VP is a
vector subbundle in T∗P and by definition it is a bundle of horizontal forms on P . The complementary subbundle of (VP)o
in T∗P is an annihilator of the horizontal distribution Ho. Therefore, we have a Whitney sum

T∗P = (VP)o ⊕M Ho.

We also have identifications (VP)o ≃ P × T∗M and Ho
≃ V∗P . The decomposition of the cotangent bundle allows us to

define a horizontal projection of differential forms. If β ∈ ΛkP is a k-form on P then its horizontal part is given by the
map

h
: ΛkP → Λk

1P, β ↦−→ βh

βh(v1, . . . , vk) = β(vh1, . . . , v
h
k ), v1, . . . , vk ∈ TP

where vhi is a horizontal part of the tangent vector vi.
The curvature of the connection is defined as a horizontal part of the differential dω. It is a g valued two form on P

and it reads

Ω = dω +
1
2
[ω,ω],

where [ω,ω] is the bracket of g-valued forms on P .

3.5. Gauge fields

The notion of the connection may be equally expressed in terms of a family of g-valued one forms on M . This approach
is widely used by physicists working in classical field theory.

Let sα : M ⊃ Uα → P be a local section of the bundle π . A pull-back of the connection form ω defines a form Aα := s∗αω

Aα(m) : TmM → g, vm ↦−→ ωP (sα(m))(Tsα(vm)). (5)

The form Aα is called a gauge field. In local coordinates it takes a form

Aα(m) = Aa
α(m) ⊗ ea = Aa

j(m)dqj ⊗ ea m ∈ M

where we skipped the index α in order to simplify the notation. One can show that gauge fields must satisfy a gluing
condition

Aα = Adgαβ ◦ (Aβ − g∗

αβθ )

or equivalently

Aα = Adgαβ ◦ Aβ + g∗

βαθ

on the overlapping Uαβ . We used here the Maurer–Cartan form

θ : G → T∗G ⊗ g, θ (g) = TLg−1 .

On the other hand, once we have a family of forms Aα we can restore a connection form ω on P . The restriction of ω to
π−1Uα is given by

ωα(p) = Adgα (p)−1 ◦ π∗Aα(p) + g∗

αθ (p). (6)

The proof of the above statement is rather technical so we will skip it here.
We can also use sα to pull-back the curvature form Ω and obtain a g valued two-form Fα = s∗αΩ on M . It is an easy

task to check that Fα and Fβ satisfy the condition (4) on the overlappings. Therefore we claim that the family of forms
{Fα} define a section

F : M → ∧
2T∗M ⊗M adP .

It turns out that the curvature of the connection ω may be equally represented by a global g-valued two-form Ω on P or
by a global adP-valued two-form F on M .

4. Gauge fields in terms of jet spaces

In gauge field theories, the Lagrangian density usually depends just on the curvature instead of the full jet of the
connection. Therefore it is a natural physical question whether there is a geometrical procedure for describing a reduction
of the jet of the connection to the curvature. The answer turns out to be ‘‘yes’’ and it is associated with the notion of the
so-called canonical principal connection [23,24,44]. We will start with a more precise description of the bundle C → M .
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4.1. The jet bundle of a principal bundle

We will consider the bundle of first jets over a principal bundle. Let us take a closer look on the trivialization of the
bundle J1P . From the previous considerations, we have an inclusion J1P ⊂ T∗M ⊗P TP over P . Let gα : P ⊃ π−1Uα → G
be a local trivialization of P . We can use it to trivialize the tensor bundle T∗M ⊗P TP , namely

T∗M ⊗ TP → T∗M ⊗ (TM × G × g) = (T∗M ⊗ TM) × G × (T∗M ⊗ g).

Notice that using that trivialization the affine bundle J1P reads that the left bracket is an identity on TM . Therefore, we
can skip it and introduce a local trivialization

Ψα : J1P ⊃ π−1
1 Uα → G × (T∗M ⊗ g),

Ψα(j1mφ) ↦−→

(
gα(φ(m)),−φ∗g∗

αθ

)
,

where θ is a Maurer–Cartan form on G. It can be written as θ = θb ⊗ eb, where θb are one-forms on T∗G and {eb} is a
basis of g. Then we obtain a more convenient form of above trivialization −φ∗g∗

αθ = f b ⊗ eb, where f b = −φ∗g∗
αθ

b are
one forms on M .

Let gα : P ⊃ π−1Uα → G, gβ : P ⊃ π−1Uβ → G be two trivializations. One can show that on the overlappings the
transition functions must obey a gluing condition

−φ∗g∗

βθ = −φ∗g∗

αθ − Adgα◦φ(m)−1 ◦ g∗

βαθ.

The right action Rg of G on P can be prolonged to the action on the first jet bundle J1P

J1Rg : J1P → J1P : j1mφ → j1m(φg),

such that the diagram

J1P
J1Rg →→

π1,0

↓↓

J1P

π1,0

↓↓
P

Rg →→ P

is commutative. So, the action in local trivialization reads

J1Rh : G × (T∗M ⊗ g) → G × (T∗M ⊗ g),
(g, jα) ↦−→ (gh,Adh−1 ◦ jα), jα ∈ T∗M ⊗ g.

The affine dual of the bundle J1P is the bundle J†P over M . We have a trivialization

J†P → G × R × TM ⊗ g∗.

Next, we introduce coordinates (gα(p), r, xi, ϕa
j) in J†P . If (ea

∗
) is a basis of g∗ then ϕa

j are coordinates with respect to the
basis dxj ⊗ ea

∗
. If in a local trivialization j1mφ = (gα ◦ φ(m), xi, Aa

j) and Tm = (gα(p), r, xi, ϕa
j), then the evaluation between

J1P and J†P is given by

⟨j1mφ, Tm⟩ = r + ϕa
jAa

j.

The bundle JoP is locally isomorphic to G × TM ⊗ g∗. It has adapted coordinates (gα(p), xi, ϕa
j).

4.2. Connection in a principal bundle as sections of the jet bundle

We will present now an equivalent approach to the notion of connections in a principal bundle. Let π1,0 : J1P → P be
the bundle of first jets of P . Let us also consider a section σ : P → J1P . For each p ∈ P the value σ (p) is a first jet of a certain
section of the bundle π . Let us denote it by σ (p) = j1mφ where φ(m) = p. There is a tangent map Tφ : TmM → Tφ(m)P
associated with j1mφ. The image Tφ(TmM) ⊂ Tφ(m)P is a horizontal complement to VmP in the tangent space Tφ(m)P , namely

Tφ(m)P = Vφ(m)P ⊕ Tφ(TmM).

Therefore, a global section of the bundle π1,0 provides a horizontal distribution in the bundle π : P → M .
Since a principal connection has to be equivariant with respect to the action of G we can divide the bundle π1,0 :

J1P → P by this action and obtain a bundle

πC : C → M
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where C := J1P/G. Each section of πC provides a principal connection of the bundle π : P → M . The bundle πC is an
affine bundle over M modeled on a vector bundle T∗M ⊗P adP . The trivialization of C comes from the trivializations of
J1P . We have

C → T∗M ⊗ g : [j1mφ] → (jα).

The transition functions between different trivializations read

C
triv2

↘↘

triv1

↙↙

[j1mφ]

triv2

→→

triv1

↙↙
T∗M ⊗ g →→ T∗M ⊗ g (jα) →→ (Adgβα (m) ◦ jα + g∗

αβθ )

There is a one-to-one correspondence between sections of the bundle πC and G-invariant sections of the bundle π1,0
given by the formula

[σ ] : M → C, [σ ](m) = [σ (p)], σ : P → J1P

where we assume that σ is G-invariant and π (p) = m. A glance at the expression shows that the above definition does
not depend on the choice of the representatives.

The g-valued one forms jα can be identified with gauge fields. Therefore, we will introduce coordinates (xi, jak) in C
such that

jα = jakdxk ⊗ ea.

Since the forms jα may be identified with gauge fields, from now on we will write Aα and Aa
k instead of jα and jak,

respectively.
The bundle J1C may be equipped with local coordinates (xi, Aa

k, Aa
kl). Similarly, in the dual bundle J†C we have

coordinates (xi, Aa
k, r, ϕa

kl). In the bundle J†C we can distinguish a vector subbundle of constant affine maps on the
fibers. In coordinates it is given by (xi, Aa

k, r, 0). Since each such a map depends only on its projection on C it can be
associated with a function f : C → R. We introduce the bundle

JoC := J†C/{f : C → R}

with coordinates (xi, Aa
k, ϕ

a
kl).

4.3. Canonical principal connection

It is well-known that if P → M is a principal bundle, then there is no a canonical choice of a connection in it. However,
it turns out that in a case of the bundle P × C → C such a canonical choice exists [42,44]. As it was stated before there
is a natural embedding J1P ⊂ T∗M ⊗P TP . Furthermore, there also exists an embedding of J1P in T∗P ⊗P VP given by the
formula

J1P → T∗P ⊗P VP, j1mφ ↦−→ (idTP − T(φ ◦ π )).

This embedding induces a map

θ : J1P ×P TP → VP, (j1mφ, v) ↦−→ (idTP − T(φ ◦ π ))(v),

and if we take the quotients by G we obtain

θG : C ×M A → adP,

(xi, Aa
j) × (xi, ẋk, Xb) ↦−→ (xi, Xb

− Aa
jẋj).

The connection in the bundle P × C → C is given by a splitting of the short exact sequence

0 → V(P ×M C) → T(P ×M C) → P ×M TC → 0

We can rewrite the above construction by using these identifications

V(P ×M C) ≃ C × VP, (7)
T(P ×M C) ≃ TP ×M TC, (8)

and taking the quotient by G. Then, we obtain a short exact sequence

0 → C ×M adP → A ×M TC → TC → 0.
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One can see that the embedding θG provides a splitting of this sequence

0 →→ C ×M adP →→ A ×M TC →→

id×τC
↓↓

TC →→ 0.

A ×M C
θ

↖↖

It follows that, if P → M is a principal bundle then the bundle P ×M C → C admits a canonical connection. A form θG
defines a horizontal lift

ZC : TC → TC ×M A.

(xi, Aa
j , ẋ

k, Ȧb
l ) ↦−→ (xi, Aa

j , ẋ
k, Ȧb

l ) × (xi, ẋj, Aa
kẋ

k),

which is a section of the tensor bundle

ZC : C → T∗C ⊗ (TC ×M A),

ZC = dxi ⊗ ∂xi + dAa
j ⊗ ∂Aaj

+ Aa
j dx

j
⊗ ea.

We can define now the strength FC of the canonical connection ZC

FC =
1
2
[ZC , ZC ]FN , FC ∈ ∧

2T∗C ⊗M adP

FC = (dAa
j ∧ dxj +

1
2
camndx

m
∧ dxn) ⊗ ea

where [·, ·]FN is the Frölicher–Nijenhuis bracket. The strength form FC is called a canonical strength because if ω : M → C
is any principal connection then ω∗FC = Fω . The form FC allows us to define an affine surjective map

F : J1C → C × ∧
2T∗M ⊗M adP, F(j1ω) = ω∗FC = Fω.

There exists a canonical splitting over C [45]

J1C = C+ ⊕C C−,

C+ = J2P/G, C− = C ×M ∧
2T∗M ⊗M adP

with projections

F : J1C → C−,

(xi, Aa
j, Ab

jk) ↦−→

(
xi, Aa

j,
1
2
(Al

jk − Al
kj + c labA

a
jAb

k)
)
,

S : J1C → C+,

(xi, Aa
j, Ab

jk) ↦−→

(
xi, Aa

j,
1
2
(Al

jk + Al
kj − c labA

a
jAb

k)
)
.

One can see that the result of the first projection is just the curvature form of the connection

Fω = dω +
1
2
[ω,ω],

Fω =
1
2
F a

ijdxi ∧ dxj ⊗ eb

where

F a
ij = ∂jAa

i − ∂iAa
j + camnA

m
iAn

j.

Therefore, we can introduce coordinates

(xi, Aa
j, F b

jk) in C−, (9)

(xi, Aa
j, Sbjk) in C+ (10)

such that F b
jk = −F b

kj and Sbjk = Sbkj.

4.4. The phase bundle

In the previous section we have described a procedure for reducing the bundle J1C to the bundle ∧
2T∗M ⊗M adP . We

will show now that F defines a similar reduction on the dual side. We recall that the bundle J†C consists of affine maps
on J1C . The bundle J1C can be decomposed on subbundles C+ and C− where the first one is affine and the second one is
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of vector type. Therefore each affine map on J1C may be similarly decomposed on an affine map on C+ and a linear map
on C−. Let us recall that the bundle J†C is isomorphic to Λn+1

2 C via the formula

Ψ : Λn+1
2 C → J†C

⟨Ψ (α), j1ω⟩η = ω∗α, α ∈ Λn+1
2 C

The pull-back ω∗α reads in local coordinates as

α(xi, Aa
j, p, pika) = pdn+1x + pikadAa

k ∧ dnxi, ω(xi) = (xi, Aa
k(xi))

ω∗α = pdn+1x + pikadAa
k(xi) ∧ dnxi = pdn+1x + pika∂lAa

k(xi)dxl ∧ dnxi
= pdn+1x + plka∂lAa

k(xi)dn+1x = (p + plka∂lAa
k(xi))dn+1x.

Therefore the evaluation between J1C and J†C in given by

⟨Ψ (α), j1ω⟩ = p + plkaAa
kl.

In the same way, we can show that the evaluation between JoC ≃ Λn+1
2 C/Λn+1

1 C and J1C reads as

⟨Ψ (α), j1ω⟩ = plkaAa
kl.

Let us recall that the coordinates F b
jk and Sbjk in C− and C+ are antisymmetric and symmetric in j, k respectively. It means

that the dual bundle to C− in JoC is a subbundle C∗
−

⊂ JoC such that each map from C∗
−

vanishes on C+. Similarly, the
dual bundle of C+ is a subbundle C∗

+
⊂ JoC such that each map from C∗

+
vanishes on C−. We have a decomposition

JoC = C∗

+
⊕C C∗

−

pika =
1
2
(pika + pkia) +

1
2
(pika − pkia)

and coordinates

(xi, Aa
j, ϕ

ik
a) in C∗

−
, ϕik

a = −ϕki
a

(xi, Aa
j, ξ

ik
a) in C∗

+
, ξ ika = ξ kia.

One can show that there is an isomorphism

C∗

−
= C × (∧2TM ⊗M ad∗P).

Given a volume form η on M , we have the following decomposition

J†C = C∗

+
⊕C C∗

−
⊕ R.

Since the bundle J†C is isomorphic to the bundle Λn
2(C), then each element of C∗

−
⊕ R may be represented as follows

α(xi, Aa
j, p, ϕik

a) = pdn+1x + ϕik
adAa

k ∧ dnxi

Similarly, we can identify the elements of C∗
+

and C∗
−

with forms

Λn+1
2 C/Λn+1

1 C ∋ ϕik
adAa

k ∧ dnxi in C∗

−
,

Λn+1
2 C/Λn+1

1 C ∋ ξ ikadAa
k ∧ dnxi in C∗

+
.

Finally, there is a decomposition

Λn+1
2 (J†C) = Λn+1

2 (C∗

+
⊕ C∗

−
⊕ R) = Λn+1

2 (C∗

+
⊕ R) ⊕Λn+1

2 (C∗

−
⊕ R)

which means that the canonical multisymplectic form on J†C may be written as

Ω = Ω+ +Ω−, where Ω+ ∈ Λn+1
2 (C∗

+
⊕ R), Ω− ∈ Λn+1

2 (C∗

−
⊕ R)

and

Ω− = −dp ∧ dn+1x − dϕjk
a ∧ dAa

j ∧ dnxk.

We can easily check that submanifold (C∗
+

⊕ R,Ω−) is still a multisymplectic manifold. If we take a Hamiltonian section
h : C∗

−
→ C∗

−
⊕ R then the pull-back of the multisymplectic form reads

h∗Ω = h∗Ω− = Ω−h ∈ Λn+1
2 (C∗

−
).
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5. Hamiltonian formalism for gauge theories

We will describe now the Hamiltonian formalism for field theories which configuration space is C− instead of full J1C .
For example, this is a case of Yang–Mills theories. Since the bundle of gauge fields is the bundle πC : C → M , then the
role of the configuration space is played by its bundle of first jets J1C . Therefore, the Lagrangian density is a map

L : J1C → Λn+1M.

Let us assume now that L does not depend on the full jet of connection but only on its projection on C−. Then we have

L : C ×M ∧
2T∗M ⊗M adP → Λn+1M.

In presence of a volume form the Lagrangian density can be written as L = Lη, where L is called Lagrangian function. In
coordinates we have

L(xi, Aa
j, F b

jk) = L(xi, Aa
j, F b

jk)η.

The Hamiltonian side of the theory is usually obtained from the Lagrangian density L via Legendre transform. Since the
Lagrangian depends only on C− and

Ab
jk = F b

jk + Sbjk
∂

∂Ab
jk

=
∂

∂F b
jk

+
∂

∂Sbjk

then the Legendre map J1C → J†C reduces to

LegL : C− → C∗

−
⊕ R, (11)

LegL(x
i, Aa

j, F b
jk) =

(
xi, Aa

j, L −
∂L
∂F b

jk
F b

jk,
∂L
∂F b

jk

)
(12)

Using the projection µ : J†C → JoC we can now introduce the map

legL = µ ◦ LegL, legL : C− → C∗

−
, (13)

legL(x
i, Aa

j, F b
jk) =

(
xi, Aa

j,
∂L
∂F b

jk

)
. (14)

The Hamiltonian section is then defined as

h : C∗

−
→ C∗

−
⊕ R, h = LegL ◦ leg−1

L ,

h(xi, Aa
j, ϕb

jk) = (xi, Aa
j, L(xi, Aa

j, F b
jk) − ϕb

jkF b
jk, ϕb

jk)

with the associated Hamiltonian density

H : C∗

−
⊕ R → Λn+1M,

H(xi, Aa
j, p, ϕb

jk) = (p + ϕb
jkF b

jk − L)dn+1x

and the Hamiltonian function

H(xi, Aa
j, ϕb

jk) = ϕb
jkF b

jk − L. (15)

Let us consider now a section

τ : M → C∗

−
, τ (xi) =

(
xi, τ aj(xi), τ ajk(xi)

)
.

The Hamilton–De Donder–Weyl equations on C∗
−

read

∂τ aj

∂xi
=

∂H
∂ϕa

ij ◦ τ ,
∂τ a

ij

∂xi
= −

∂H
∂Aa

j
◦ τ
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6. Hamilton–Jacobi theory for gauge theories

In this section we will apply the formalism derived in [8] for the case of gauge fields. Let us consider the diagram

JoC
πo
1

↘↘
J†C

↓↓

µ

↑↑

M

C

γ

↑↑

π

↗↗

where γ is a section. We will assume now that we have a connection in the bundle JoC → M and that h is its horizontal
projector. The connection in π o

1 can be projected to a connection in the bundle C → M in such a way that its horizontal
projector reads

hγ (ω) : TωC → TωC,
X ↦−→ hγ (ω)(X) = Tfπ

◦

1,0(h(f )(Y )),

where f = (µ◦γ )(ω) and Y is any tangent vector of Tf JoC which projects onto X by Tπ◦

1,0. The Hamilton–Jacobi equation
can be expressed as follows.

Theorem 2. Assume that γ is closed and that the induced connection hγ on C → M is flat. Then the following conditions are
equivalent:

(i) If σ is an integral section of h then µ ◦ γ ◦ σ is a solution of the Hamilton–De Donder–Weyl equations
(ii) The (n + 1)-form h ◦ µ ◦ γ is closed

In our case, the above diagram may be reduced to the diagram

C∗
−

πo
1

↘↘
h

↓↓
C∗

−
⊕ R

↓↓

µ

↑↑

M

C

γ−

↑↑

π

↗↗λ

↗↗

Let us denote by λ := µ ◦ γ− a section of the bundle C∗
−

→ C . We have the following theorem.

Theorem 3. Assume that γ− is closed and that the induced connection hγ on C → M is flat. Then the following conditions
are equivalent:

(i) If σ is an integral section of h then λ ◦ σ is a solution of the Hamilton–De Donder–Weyl equations
(ii) The (n + 1)-form h ◦ λ is closed

Let us assume now that λ = dS where

S = S i(xi, Aa
j)dnxi

is a 1-semibasic form on C such that ∂Si
∂Aaj

= −
∂Sj
∂Aai

. Then in local coordinates the equation d(h ◦ λ) = 0 is equivalent to

∂S i

∂xi
+ H

(
xi, Aa

j,
∂Si
∂Aa

j

)
= f (xi). (16)

7. Example: Yang–Mills theories

Let us consider now a Hamilton–Jacobi theory for Yang–Mills theory. A free Yang–Mills theory is described by the
Lagrangian

L : J1C ⊃ C ×M ∧
2T∗M ⊗M adP → Ωn+1, L(ω, F ) =

1
4
KabF a

∧ ⋆F b,

where F = F a
⊗ ea = F a

ijdxi ∧ dxj ⊗ ea. One can easily show that the associated Lagrangian function is

L(qi, Aa
j, F b

jk) =
1
4
Kabg img jnF a

ijF b
mn

√
|g| =

1
4
F a

ijF a
ij
√

|g|
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where g is a metric on M and K is an Ad-invariant scalar product on g. To write the Hamilton–Jacobi equation we need
the Hamiltonian side of the theory. Using (12) and (14) we have

legL(x
i, Aa

j, F a
ij) =

(
xi, Aa

j,
∂L
∂F a

ij

)
=

(
xi, Aa

j,
1
2
F a

ij
√

|g|

)
LegL(x

i, Aa
j, F a

ij) =

(
xi, Aa

j,−
1
4
F a

ijF a
ij
√

|g|,
1
2
F a

ij
√

|g|

)
The inverse map of legL−1 reads

leg−1
L (xi, Aa

j, ϕa
ij) =

(
xi, Aa

j,
2

√
|g|
ϕa

ij

)
.

from which we have that

F a
ij =

2
√

|g|
ϕa

ij

Therefore, from (15) we obtain that the Yang–Mills Hamiltonian reads

H(xi, Aa
j, ϕa

ij) =
2

√
|g|
ϕa

ijϕa
ij − L =

2
√

|g|
ϕa

ijϕa
ij −

1
4

·
4
|g|
ϕa

ijϕa
ij
√

|g| =
1

√
|g|
ϕa

ijϕa
ij

We can find now the Hamilton–De Donder–Weyl equations

∂τ aj

∂xi
=

∂H
∂ϕa

ij ◦ τ ,
∂τ a

ij

∂xi
= −

∂H
∂Aa

j
◦ τ

for the above Hamiltonian. Let us consider a section

τ (xi) =

(
xi, τ aj(xi), τ ajk(xi)

)
The derivatives of the Hamiltonian read

∂H
∂ϕa

ij =
2

√
|g|
ϕa

ij

∂H
∂Aa

j
=

∂H
∂ϕb

kl ·
∂ϕb

kl

∂Aa
j

=
2

√
|g|

· ϕb
kl ·

√
|g|

2
·
∂F b

kl

∂Aa
j

= ϕb
kl ·
∂F b

kl

∂Aa
j

where

∂F b
kl

∂Aa
j

= cbma(Amkδl j − Amlδkj)

so that
∂H
∂Aa

j
= ϕb

klcbma(Amkδl j − Amlδkj) = 2ϕb
klcbmaAmkδl j = 2ϕb

kjcbmaAm
k.

In the above calculations ckab are the structure constants of the Lie algebra g. Therefore, the Hamilton–De Donder–Weyl
equations for Yang–Mills theory read

∂τ aj

∂qi
=

2
√

|g|
ϕa

ij,

∂τ a
ij

∂qi
= −2ϕb

kjcbmaA
m
k.

We can also write the Hamilton–Jacobi equation

∂Si
∂xi

+
1

√
|g|

K abgkiglj
∂Si
∂Aa

j

∂Sk
∂Ab

l
= f (xi).

8. Hamilton–Jacobi theory for gauge theories in a Cauchy data space

The Cauchy data space itself allows to relate the finite-dimensional and the infinite-dimensional formulation of field
theory. It was shown in [8] that the Hamilton–Jacobi theory for classical fields may be formulated in a setting of the
Cauchy space. We will show here a similar construction of the Hamilton–Jacobi theory for gauge field theories. We will
base on the notation and constructions from [8].
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8.1. A space of Cauchy data

We will introduce now a notion of a Cauchy data space which is the fundamental tool to consider infinite-dimensional
version of our field theory. Let M be an n + 1-dimensional manifold and Σ an n-dimensional, compact, oriented and
embedded submanifold of M . We say that Σ is a Cauchy surface. Let us assume that Σ has a volume form ηΣ such that∫

Σ

ηΣ = 1.

We define a slicing of M which is a diffeomorphism

χM : R ×Σ → M, (t, p) ↦−→ χM (t, p).

We will assume here that M admits such a slicing and omit a detailed discussion of topological properties that ensure it.
For each fixed t ∈ R the slicing defines an embedding of Σ in M

(χM )t : Σ → M, p ↦−→ χM (t, p)

We will also assume that there exists such t0 ∈ R that Σ = (χM )t0 (Σ). The infinitesimal generator of χM will be denoted
by ξM :

ξM : M → X(M), ξM := (χM )∗
( ∂
∂t

)
where ∂

∂t is the vector field tangent to the curve (t, x) → (t + s, x).
Let π : E → M be a fiber bundle and let us define the set

Ẽ := {σ : Σ → E, such that π ◦ σ = (χM )t}.

This is a line bundle over R and there is a one-to-one correspondence between sections of E → M and sections of Ẽ → R.
If φ : M → E is a section than the section of Ẽ → R is given by

t ↦−→ σt = φ ◦ (χM )t .

Furthermore, the standard bundle structures define by composition the bundle structures on the space of χ-sections. For
instance, one can construct a bundle

π̃ o
1,0 : J̃oE → Ẽ, σJoE ↦−→ π o

1,0 ◦ σJoE .

One can also define tangent vectors and forms on Ẽ. A vector tangent to the curve t → σt is given by map a X̃ : Σ → TE
such that the diagram

Σ
X̃ →→

σ0
↘↘

TE

τE

↓↓
E

is commutative and such that there exists k ∈ R that

Tπ (̃X(p)) = kξM
(
π (σE(p))

)
, ∀p ∈ N

Forms on Ẽ can be constructed from forms on E. Let α be a (k + n)-form on E. The k-form α̃ on Ẽ is given by

α̃(σE)(̃X1, . . . , X̃k) =

∫
Σ

σ ∗

E (ĩX1,...,̃Xkα)

The most important examples of the above construction are forms Ω̃h and η̃ obtained from the forms Ωh and η,
respectively.

8.2. Hamilton–Jacobi theory on a bundle C̃

Let us consider now the case when E = C . The bundle C̃ inherits an affine structure from C → M where the model
bundle is the vector bundle ˜T∗M ⊗ adP → R. The correspondence between C → M and C̃ → R constitutes the relation
between the infinite-dimensional and finite-dimensional picture of gauge field theory.

For a section τ : M → JoC there is an associated section

c : R → J̃oC, t ↦−→ τ|Nt ◦ (χM )t .

One can show that τ satisfies the Hamilton equations if and only if

iċ(t)Ω̃h = 0.

The above formula is an infinite-dimensional version of the Hamilton’s equations on the bundle C .
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Let us move now to the Hamilton–Jacobi equation. Let us assume now that γ is a solution of the Hamilton–Jacobi
equation and that we have a connection in the bundle J†C → M which satisfies Hamilton’s field equations.

The section γ defines a section

γ̃ : C̃ → J̃oC,
σC ↦−→ µ ◦ γ ◦ σC .

On the other hand we can construct vector fields X̃h and X̃hγ from the connection h and hγ by

X̃h
: J̃oC → TJ̃oC,

σJo → X̃h(σ ) : Σ → TJoC

p ↦−→ X̃h(σ )(p) = Hor
(
ξ ((χM )t (p))

)
where Hor(X)(y) represents the horizontal lift of the tangent vector X to the point y.

In the same way we can construct the vector field X̃hγ on C̃ using the horizontal lift of the connection hγ .
Now we can introduce an infinite-dimensional version of the Hamilton–Jacobi theorem [8]. Before we will do that let us

notice that there is no notion of Hamilton–Jacobi equation neither a solution of this equation in an infinite-dimensional
case. Therefore, our idea is to extrapolate this definition from the finite-dimensional case through the properties that
admit such an extrapolation.

First of all, let us notice that in a finite-dimensional case given the pair (T∗Q × R,H) where H is a Hamiltonian on
T∗Q ×R then the pair of forms (ωQ , dt) defines a cosymplectic structure on T∗Q ×R. However, (T∗Q ×R,H) admits also
another cosymplectic structure given by a pair (ΩQ , dt) where ΩQ is a two-form such that

ΩQ = ωQ + dH ∧ dt.

The dynamics of the system is given by a Reeb vector field RH satisfying iRHΩQ = 0 and iRHdt = 1. Secondly, the solution
of a Hamilton–Jacobi equation for a classical Hamiltonian system (T∗Q , ωQ ,H) is a closed one-form γ : Q → T∗Q such
that H ◦ γ = const . However, the condition dγ = 0 is equivalent to the condition γ ∗ωQ = 0 and both of them just say
that γ (Q ) is a Lagrangian submanifold in T∗Q .

It follows then that (J̃oC, Ω̃h, η̃) is a precosymplectic system. In our infinite-dimensional case the vector field X̃h

satisfies properties ĩXhΩ̃h = 0 and ĩXh η̃ = 1. For dimensional reasons it fails to be cosymplectic. What is more, we
have a following theorem

Theorem 4. The section γ̃ satisfies:
(i) γ̃ ∗Ω̃h = 0
(ii) iTγ̃ (σC )(̃Xhγ )Ω̃h = 0 for all σC ∈ C̃which is an integral submanifold of hγπ̃ (σC ).

Due to these properties we call γ̃ a solution of a Hamilton–Jacobi equation in an infinite dimensional setting.

8.3. Reduced Hamilton–Jacobi in a space of Cauchy data

In the previous subsection we presented the infinite-dimensional formulation of Hamilton–Jacobi equation for gauge
theories. Now we will show how to reduce it when Hamiltonian depends only on the part C∗

−
.

First of all, let us notice that many of our constructions from Section 4 have their reflections in the bundles of
χ-sections. For example, the decomposition J1C = C− ⊕C C+ implies a decomposition J̃1C = C̃+ ⊕C̃ C̃−. The same happens
with the other bundles, namely J̃oC = C̃∗

+ ⊕C̃ C̃
∗
− and J̃†C = C̃∗

+ ⊕C̃ C̃
∗
− ⊕R. Let us consider now the restriction of Ω to C∗

−
.

An infinite-dimensional counterpart of (C∗
−
,Ω−h) is a pair (̃C∗

−
, Ω̃−h). Let us remind that (C∗

−
,Ω−h) is a multisymplectic

manifold while (̃C∗
−
, Ω̃−h) is presymplectic.

Let us assume now that γ is a solution of the reduced Hamilton–Jacobi equation (16). We define a section

γ̃− : C̃ → C̃∗
− ⊕ R,

σC ↦−→ µ ◦ γ− ◦ σC .

One can easily see that

γ̃ ∗

−
Ω̃h = γ̃ ∗

−
(Ω̃+h + Ω̃−h) = γ̃ ∗

−
Ω̃−h.

On the other hand Tγ̃−(σC )(̃Xhγ
− ) ∈ C̃∗

−
so that i

Tγ̃−(σC )(̃X
hγ
− )
Ω̃h = i

Tγ̃−(σC )(̃X
hγ
− )
Ω̃−h. Hence, we have a following conclusion

Theorem 5. The section γ̃ : C̃ → C̃∗
− ⊕ R satisfies:

(i) γ̃ ∗Ω̃−h = 0,
(ii) iTγ̃ (σE )(̃Xhγ )Ω̃−h = 0 for all σE ∈ Ẽwhich is an integral submanifold of hγπ̃ (σC ).

Similarly as in Theorem 4 we call γ̃ a solution of the reduced Hamilton–Jacobi equation in an infinite dimensional
setting.
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