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We construct families of functions in involution for transverse Poisson structures
at nilpotent elements of Lie–Poisson structures on simple Lie algebras by using the
argument shift method. Examples show that these families contain completely integrable
systems that consist of polynomial functions. We provide a uniform construction of
these integrable systems for an infinite family of distinguished nilpotent elements of
semisimple type.
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1. Introduction

Let M be a manifold of dimension n and B a Poisson structure on M . Fix a point x ∈ M , let 2ρx be the rank of B at x. Then,
using Weinstein splitting theorem, we fix a neighborhood U centered at x with coordinates (q1, . . . , qρx , p1, . . . , pρx , z1,
. . . , zn−2ρx ) such that on U

B =

ρx∑
i=1

∂

∂qi
∧

∂

∂pi
+

1
2

n−2ρx∑
i,j=1

φkl(z)
∂

∂zi
∧

∂

∂zj
(1.1)

where φkl(z) are smooth functions that depend only on z1, . . . , zn−2ρx and vanish at x [1,20]. Note that the intersection of
the symplectic leaf containing x with U is defined by the vanishing of z1, . . . , zn−2ρx . The submanifold N ⊂ U defined by

N = {x′
∈ U : qi(x′) = 0 = pi(x′), i = 1, . . . , ρx}

is transverse to the symplectic leaf of x at x. Then (z1, . . . , zn−2ρx ) are well defined coordinates on N and N inherits what
is called transverse Poisson structure [20]

BN
=

1
2

n−2ρ∑
i,j=1

φkl(z)
∂

∂zi
∧

∂

∂zj
.
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Assume that N ′ is another submanifold transverse to the symplectic leaf of x at x, then we can perform Dirac reduction
(called Poisson–Dirac reduction in [20]) of B to get a Poisson structure BN ′

on N ′. Then there exists at x, a local Poisson
diffeomorphism between (N, BN ) and (N ′, BN ′

) ([20], section 5.3). In this article, we consider the transverse Poisson
structures of Lie–Poisson brackets at nilpotent elements.

The rank of B is defined to be 2ρ = maxx∈M 2ρx. From the formula (1.1), we get 2p = 2ρx + maxt∈U rankφkl(t). In
particular, the rank of the transverse Poisson structure BN at x is 2ρ − 2ρx.

We call a family of functionally independent functions f1, . . . , fn−ρ a (Liouville) completely integrable system if they
are in involution under B. Moreover, we say that the Poisson structure is polynomial if there exist coordinates where
the entries of the matrix of B are polynomial functions in the coordinates. In this case, a completely integrable system
is called polynomial if it consists of polynomial functions. In this article, we provide examples of polynomial completely
integrable systems for polynomial Poisson structures.

Let us assume that the rank of B is constant on U , i.e. for all y ∈ U , ρy = ρ. Then we say that B is a regular
Poisson structure on U and the functions φij(z) given in Eq. (1.1) vanish on U . In this case, the Poisson structure is
also known as a constant Poisson structure [1,20]. Then the coordinates given in (1.1) are called Darboux coordinates
and the coordinate functions q1, . . . , qρ, z1, . . . , zn−2ρ form a polynomial completely integrable system. In other words,
integrability of constant or regular Poisson structure is obtained through Darboux coordinates.

Suppose B is a linear Poisson structure. Then B is a Lie–Poisson structure on the dual space g∗ of some Lie algebra g and
it is not regular. Assume further that g is a semisimple Lie algebra. Then B can be defined on g. In this case, Miscenko and
Fomenko construct a polynomial completely integrable system for B [23]. In their construction, they used a compatible
Poisson structure Ba with B related to a regular semisimple element a in g. Then they apply what it is known now as
the argument shift method [4] on the compatible Poisson structures to find a family of functions in involution. In the
end, they proved that this family contains a sufficient number of independent function. We will review this construction
in Section 2. For arbitrary linear Poisson structures, a conjecture known as Miscenko–Fomenko conjecture states the
existence of polynomial completely integrable systems for any linear Poisson structure. This conjecture was proved in [28]
using a different method than the argument shift method. More information about open problems concerning integrability
of linear Poisson structures is given in ([5], section 5).

The existence of polynomial completely integrable systems for constant and linear Poisson structures leads to the
problem of finding examples of polynomial nonlinear Poisson structures that admit polynomial completely integrable
systems (this problem is also posed in a recent review paper by Bolsinov et al. see ([5], section 5.b). In this paper, we give
an infinite number of such examples. We consider transverse Poisson structures of Lie–Poisson structures on simple Lie
algebras at nilpotent elements, and we use the argument shift method to construct corresponding families of polynomial
functions in involution.

The argument shift method for a bihamiltonian structure works as follows: Assume on M there are compatible Poisson
structures B1 and B2, i.e. B2 and B1 form a bihamiltonian structure, and suppose that B1 is in general position. Then, we
define the family of functions

F[B1, B2] := ∪λ∈C{Fλ : Fλ is a Casimir of B1 + λB2}. (1.2)

This family commutes pairwise with respect to both Poisson brackets. Thus, we can find a completely integrable system
by showing that F[B1, B2] contains a sufficient number of functionally independent functions. Bolsinov [4] proved that
this is the case under certain condition on dimensions of singular sets of the Poisson pencils B1 + λB2, λ ∈ C. However,
methods used in this article are not using this result.

In order to formulate the main result in this article, let us assume that M is a simple Lie algebra g and B is the Lie–
Poisson structure on g. Then the symplectic leaves of B coincide with the orbits of the adjoint group action. Let L1 be a
nilpotent element in g. By Jacobson–Morozov theorem, there exist a nilpotent element f and a semisimple element h such
that A := {L1, h, f } ⊆ g is a sl2-triple with relations

[h, L1] = L1, [h, f ] = −f , [L1, f ] = 2h. (1.3)

We consider the Slodowy slice Q := L1 + gf where gf is the subalgebra of centralizers of f in g. Then Q is a transverse
subspace to the adjoint orbit of L1, and it inherits the transverse Poisson structure BQ of B at L1. It turns out that BQ is a
polynomial Poisson structure [9] (see also [12] where an alternative proof is given by using the notion of bihamiltonian
reduction and finite-dimensional version of Drinfeld–Sokolov reduction). The rank of BQ in the case L1 is regular or
subregular nilpotent element is 0 and 2, respectively. Hence, integrability is trivial in those cases. However, the rank
is greater than 2 for other types of nilpotent elements. For example, when L1 is a nilpotent element of type D2m(am−1)
and g is a Lie algebra of type D2m, m ≥ 2, the rank of BQ is 2m− 2 while dimQ is 4m− 2. Thus, it is natural to ask about
the existence of completely integrable systems for this large family of polynomial Poisson structures.

To apply the argument shift method, we consider a bihamiltonian structure on g formed by compatible Poisson
structures B and BK1 , where the definition of BK1 depends on a nilpotent element K1 related to L1 (see Eq. (2.3)). Then one
can perform bihamiltonian reduction to obtain a bihamiltonian structure BQ and BQ

K1
on Q [12]. The collection F[BQ , BQ

K1
]

of Casimirs of Poisson pencils BQ
λ := BQ

+ λBQ
K1

needed to perform the argument shift method is easy to describe. Let
P1, . . . , Pr be a complete set of generators of the ring of invariant polynomials on g. Then the restrictions of the functions
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Pi to Q + λK1 are a complete set of independent Casimirs of the Poisson pencil BQ
λ . Hence, to find a completely integrable

system, it remains to investigate whether F[BQ , BQ
K1

] contains a sufficient number of independent functions. Examples
show that this is always the case. However, we provide a uniform proof only for some distinguished nilpotent elements
of semisimple type. The proof includes the family of nilpotent elements of type D2m(am−1) mentioned above. It relies on
the notion of opposite Cartan subalgebras, the weights of the adjoint action of A at g, and properties of the so-called
quotient map. Precisely, we prove the following

Theorem 1.1. Let A = {L1, h, f } be an sl2-triple in a simple Lie algebra g of rank r where L1 is in one of the following
distinguished nilpotent orbits of semisimple type: D2m(am−1), B2m(am), F4(a2), E6(a3), E8(a2) and E8(a4) (if L1 is of type Zr (ai)
then g is of type Zr ).

Let Q := L1 + gf be the Slodowy slice and consider the transverse Poisson structure BQ of the Lie–Poisson structure on g.
Let P1, . . . , Pr be a complete set of homogeneous generators of the invariant ring under the adjoint group action. Assume K1 is
an eigenvector of adh of the minimal eigenvalue such that L1 + K1 is regular semisimple. Consider the family of functions P

j
i on

Q defined by the expansion

Pi(x + λK1) :=

βi∑
j=0

λjP
j
i(x), ∀x ∈ Q , i = 1, . . . , r (1.4)

Then the set of all functions P
j
i are independent and form a polynomial completely integrable system under BQ .

We organize the paper as follows. In Section 2, we fix some notations and review Miscenko–Fomenko construction of
a polynomial completely integrable system for Lie–Poisson bracket on a simple Lie algebra. In Section 3, we review the
construction of a bihamiltonian structure on the Slodowy slice of an arbitrary nilpotent element and we show how the
argument shift method can be applied. We give properties and identities related to distinguished nilpotent elements of
semisimple type in Section 4. In Section 5, we prove Theorem 1.1. In the last section, we give some remarks.

2. Integrability of Lie-Poisson structure

In this section, we fix notations and state some facts about simple Lie algebras. For completeness of this article, we
review the Miscenko–Fomenko construction of polynomial integrable systems for the Lie–Poisson bracket.

Let g be a complex simple Lie algebra of rank r with the Lie bracket [·, ·], and denote the Killing form by ⟨.|.⟩. Define
the adjoint representation ad : g → End(g) by adg1 (g2) := [g1, g2]. For g ∈ g, then gg denotes the centralizer of g in g,
i.e. gg := ker adg , and Og denotes the orbit of g under the adjoint group action. The element g is called nilpotent if adg is
nilpotent in End(g) and it is called regular if dim gg = r . Any simple Lie algebra contains regular nilpotent elements. The
set of all regular elements is open dense in g.

Using Chevalley theorem, we fix a complete system of homogeneous generators P1, . . . , Pr of the algebra of invariant
polynomials under the adjoint group action. We assume throughout this article, the degree of Pi equals νi+1. The numbers
ν1, ν2, . . . , νr are known as the exponents of g and we suppose they are given in a non decreasing order, i.e. νi ≤ νj if
i < j. Consider the adjoint quotient map

Ψ : g → Cr , Ψ (x) = (P1(x), . . . , Pr (x)). (2.1)

From the work of Kostant in [19] the rank of Ψ at x equals r if and only if x is regular element in g.
We define the gradient ∇F : g → g for a function F on g by the formula

d
dtt=0

F (x + tq) = ⟨∇F (x)|q⟩, ∀x, q ∈ g. (2.2)

It is obvious that for any x ∈ g the rank of Ψ at x equals the dimension of the vector space generated by ∇Pi(x).
Let K1 be an element in g. Then, we define the following bihamiltonian structure on g which consists of Lie–Poisson

bracket {., .} and the so called frozen Lie–Poisson bracket {., .}K1 [22]. We denote their Poisson structures by B and BK1 ,
respectively. In formulas, for any two functions F and G and v ∈ T ∗

x g
∼= g, we have

{F ,G}(x) = ⟨x|[∇G(x), ∇F (x)]⟩; B(x)(v) = [x, v] (2.3)
{F ,G}K1 (x) = ⟨K1|[∇G(x), ∇F (x)]⟩; BK1 (x)(v) = [K1, v].

We will use this bihamiltonian structure under different assumptions on K1. However, the following setup do not depend
on the property of K1 ([3], section 2.2.4). Consider the Poisson structure Bλ := B+λBK1 , λ ∈ C. Then Bλ is isomorphic to B
by means of the linear transformation x → x+λK1. Thus, the rank of Bλ equals dim g− r . Moreover, the tangent space of
the symplectic leaf through x is spanned by the image of adx+λK1 . Hence, the symplectic leaf of Bλ through x coincides with
the orbit Ox+λK1 . Furthermore, the polynomials Pi(x + λK1) form a complete set of global independent Casimir functions
for Bλ, i.e.

[∇Pi(x + λK1), x + λK1] = 0; ∀i. (2.4)
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Following the argument shift method, we consider the family of functions

F[B, BK1 ] := ∪λ∈C{Fλ : Fλ is a Casimir of B + λBK1}. (2.5)

We expand Pi(x + λK1) in powers of λ

Pi(x + λK1) =

νi+1∑
j=0

λjP j
i (x); and ∇Pi(x + λK1) =

νi∑
j=0

λj
∇P j

i (x). (2.6)

Then the functions P j
i (x) functionally generate F[B, BK1 ] and are in involution with respect to both Poisson brackets {., .}

and {., .}K1 [23]. Moreover, P0
i (x) = Pi(x) and ∇Pνi

i (x) = ∇Pi(K1). Furthermore, using (2.4), we get the following equations

[∇Pi(x), x] = 0, [∇Pνi
i (x), K1] = 0 and [∇P j

i (x), x] + [∇P j−1
i (x), K1] = 0, j = 1, . . . , νi. (2.7)

In particular,

∇Pi(x) ∈ gx and ∇Pνi
i (x) = ∇Pi(K1) ∈ gK1 , ∀x ∈ g, i = 1, . . . , r. (2.8)

As we mention in the introduction, to find a completely integrable system, it remains to prove that the set of functions
P j
i (x) contains

1
2 (dim g + r) independent functions.

Let L1 be a nilpotent element in g. By Jacobson–Morozov theorem, there exist a nilpotent element f and a semisimple
element h such that A := {L1, h, f } ⊆ g is a sl2-triple with relations

[h, L1] = L1, [h, f ] = −f , [L1, f ] = 2h. (2.9)

Consider the Dynkin grading associated to L1

g =

⨁
i∈ 1

2Z

gi; gi := {g ∈ g : adhg = ig} (2.10)

It follows from representation theory of sl2-algebras that the eigenvalues of adh are integers and half integers and
adL1 : gi → gi+1 is surjective for i > −1 and injective for i < 0.

Let us recall Miscenko–Fomenko construction and the proof for the integrability on B.

Theorem 2.1 ([23]). Assume L1 is regular and consider the expansion (2.6) with K1 = h. The set of functions T = {P j
i (x)|i =

1, . . . , r, j = 0, . . . , νi} form a polynomial completely integrable system for B.

Proof. We consider the bihamiltonian structure (2.3) with K1 = h. Then it is known that h is a regular semisimple
element and the eigenvalues of adh are all integers. In particular, h := g0 is a Cartan subalgebra. From the identities (2.7),
∇Pνi

i (L1) = ∇Pi(h) is in h for every i. Since h is regular, properties of the adjoint quotient map implies that ∇Pνi
i (L1),

i = 1, . . . , r , are linearly independent and form a basis for h. The identities (2.7) also give adL1∇P j
i (L1) = −adh∇P j−1

i (L1).
Since adL1 : gi → gi+1 is surjective for i ≥ 0, the gradients ∇Pνi−α

i (L1) span the vector space gα , α ≥ 0. Thus all
gradients of the functions in T span the space b = ⊕i≥0gi which is a Borel subalgebra. Thus a lower bound for the
number of functionally independent functions is dim b. On the other hand, since L1 is regular, the restriction of the adjoint
representation to the sl2-subalgebra A generated by A decomposes g into r irreducible A-submodules Vi of dimensions
2νi+1, i = 1, . . . , r . Each Vi has νi+1 eigenvectors of adh of nonnegative eigenvalues. Then it follows from the definition of
b that dim b =

∑r
i=1(νi +1). Thus the cardinality of T equals the dimension of b. Therefore, elements of T are functionally

independent and form a polynomial completely integrable system for B. □

3. Argument shift method for transverse Poisson structure

In this section, we review the construction of a bihamiltonian structure on Slodowy slice and we apply the argument
shift method. We keep the notations introduced in the previous section. We emphasize that the constructions and results
in this article depend on the nilpotent orbit OL1 and not on the particular representative L1 of OL1 .

We fix a good grading g =
⨁

i∈ 1
2Z

gi of g compatible with the sl2-triple A = {L1, h, f }, i.e. L1 ∈ g1, h ∈ g0 and
adL1 : gi → gi+1 is surjective for i > −1 and injective for i < 0. See [15] for the definition and classification of good
gradings associated to nilpotent elements. Note that the Dynkin grading defined in (2.10) is a good grading.

We fix an isotropic subspace l ⊂ g
−

1
2
under the symplectic bilinear form on g

−
1
2
defined by (x, y) ↦→ ⟨L1|[x, y]⟩. Let l′

denote the symplectic complement of l and introduce the following nilpotent subalgebras

m := l ⊕
⨁
i≤−1

gi; n := l′ ⊕
⨁
i≤−1

gi. (3.1)

Let b denote the orthogonal complement of n under ⟨.|.⟩.
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We consider the bihamiltonian structure (2.3) and assume K1 centralizes the subalgebra n, i.e. n ⊆ gK1 . We can take
K1 to be of the minimal degree under the good grading.

Define Slodowy slice Q := L1 + gf . This affine subspace is transverse to the adjoint orbit of L1. The space gf is invariant
under the action of adh. Let X1, X2, . . . , Xn be a basis of gf of eigenvectors under adh. We introduce the coordinates
(z1, . . . , zn) such that an element in Q can be written in the form L1 +

∑
ziXi. Then we have the following theorem.

Theorem 3.1 ([12]). The space Q inherits a bihamiltonian structure BQ , BQ
K1

from B, BK1 , respectively. Moreover, BQ and BQ
K1

are
polynomial in the coordinates (z1, . . . , zn) and BQ is the transverse Poisson structure of B at L1. This bihamiltonian structure is
independent of the choice of a good grading and isotropic subspace l. It can be obtained equivalently by using the bihamiltonian
reduction with Poisson tensor procedure, Dirac reduction and a finite-dimensional version of the generalized Drinfeld–Sokolov
reduction.

Details on bihamiltonian reduction can be found in [7]. Drinfeld–Sokolov reduction is initiated and applied for regular
nilpotent elements in [14]. Generalizations to other nilpotent elements are obtained in [6,17] (see also [11]). The relation
between Drinfeld–Sokolov reduction and bihamiltonian reduction in the case of regular nilpotent elements is treated
in [25] where the Poisson tensor procedure is also initiated (also called the method of transverse subspace in [21]).
The relation between Drinfeld–Sokolov reduction and Dirac reduction is also mentioned in [17]. The fact that BQ is a
polynomial Poisson bracket is proved in [9] (see also [20]), and an alternative proof is given in [12].

Throughout this article, we denote the restriction of Pi to Q by P
0
i . We observe that for any λ ∈ C the pencil

BQ
λ := BQ

+ λBQ
K1

is obtained by a Dirac reduction of Bλ := B + λBK1 . Since the functions Pi(x + λK1), x ∈ g, form r

global independent Casimirs for Bλ, it follows that the functions P
0
i (z + λK1), z ∈ Q , form r independent Casimirs for BQ

λ .
In particular, the rank of BQ

λ is less than or equal to dimQ − r . Moreover, BQ is the transverse Poisson structure, hence
rank BQ equals dim g−r−dimOL1 = dimQ −r . Thus the rank BQ

λ equals dimQ −r for almost all values of λ. In particular,
BQ

λ is zero in the case L1 is a regular nilpotent element, and thus integrability of BQ does not make sense.
In the following, we would like to show how to realize that the Casimirs of BQ

λ are the functions P
0
i (z + λK1) when we

apply the Poisson tensor procedure. To this end, let us summarize the construction of the Hamiltonian vector field of a
function F on Q under BQ

λ . Let z ∈ Q and identify T ∗
z Q with gL1 using the Killing form ⟨.|.⟩. Then we consider dF (z) as an

element of gL1 . We extend dF (z) to a covector vF ∈ T ∗
z g by requiring that

1. The projection of vF to gL1 equals dF (z), and
2. Bλ(vF ) ∈ gf ≃ TzQ .

It turns out that this extension vF is unique and can be calculated by solving recursive equations. Then the value of the
reduced Poisson structure is given by the formula

BQ
λ (dF ) = Bλ(vF ) = [z + λK1, vF ]. (3.2)

Thus we get a Lax representation of any Hamiltonian vector field in Q under BQ
λ . The following proposition describes the

Casimirs of BQ
λ using (3.2).

Proposition 3.2. The functions P
0
i (z + λK1), z ∈ Q , i = 1, . . . , r, form a set of independent global Casimirs for a generic BQ

λ .

Proof. We follow a method given in ([1], page 68). Let φ : g → gl(Cm) be any faithful matrix representation of g and F a
function on Q . Consider the Lax representation (3.2) under φ. Let z(t) denote the integral curve of BQ

λ (dF ) and TrS denotes
the trace of S, S ∈ φ(g). Then

{Tr(φ(z + λK1))i, F}λz(t) =
d
dt

Tr(φ(z + λK1))i = iTr
(
(φ(z + λK1))i−1 dz

dt

)
= iTr

(
(φ(z + λK1))iφ(vF ) − (φ(z + λK1))i−1φ(vF )(φ(z + λK1))

)
= 0

Thus Tr(φ(z + λK1))i are Casimirs of BQ
λ . Since the functions Tr(φ(g))i, g ∈ g generate the ring of invariant polynomials

under the adjoint group action, we conclude that the restriction of the invariant polynomials Pi to Q + λK1 are Casimirs
of BQ

λ . □

Recall that the nilpotent element L1 is called subregular if dim gL1 = r+2 and any simple Lie algebra contains subregular
nilpotent elements.

Corollary 3.3. If L1 is a subregular nilpotent element then BQ possesses a polynomial integrable system.

Proof. In case L1 is a subregular nilpotent element we have dimQ = r + 2, rank BQ is 2 and P
0
1, . . . , P

0
r are Casimirs of

BQ . Thus (P
0
1, . . . , P

0
r , F ) form a polynomial completely integrable system for any polynomial function F on Q . □
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Similar to the treatment in the last section, to apply the argument shift method for a general nilpotent element L1, we
consider the family of functions

F[BQ , BQ
K1

] := ∪λ∈C{Fλ : Fλ is a Casimir of BQ
+ λBQ

K1
}. (3.3)

and we consider the expansion

Pi(z + λK1) =

γi∑
j=0

λj P
j
i(z), z ∈ Q (3.4)

Then the functions P
0
i (z) are Casimirs of BQ , P

γi
i are Casimirs of BQ

K1
and the functions P

j
i are in involution with respect

to both Poisson structures [23]. The numbers γi depend on L1 and K1. Thus, to find a polynomial completely integrable
system it is enough to show that the functions P

j
i contain

1
2 (dimQ + r) functionally independent functions. This is indeed

the case for all examples we calculated. In other words we conjecture the following:

Conjecture 3.4. The non constant functions P
j
i of the expansion (3.4) are independent over Q and form a polynomial completely

integrable system for BQ .

Here is an example to illustrate the procedure.

Example 3.5. It is known that the nilpotent orbits in the special Lie algebra slm are in one to one correspondence with
the partitions of m. We consider the Lie algebra sl5 and a nilpotent element L1 corresponding to the partition [3, 2]. In
contrary to the treatment in next sections, L1 is not of semisimple type [16]. Using standard procedure to obtain the
sl2-triples [8], we set

L1 = ζ1,2 + ζ2,3 + ζ4,5, h = ζ1,1 − ζ3,3 +
1
2
ζ4,4 −

1
2
ζ5,5, f = 2ζ2,1 + 2ζ3,2 + ζ5,4

where ζi,j denote the standard basis of gl5(C). Then points of Slodowy slice Q will take the form⎛⎜⎜⎜⎝
2u6 1 0 0 0

2u1 −
2
5u5 2u6 1 u8 0

u4 2u1 −
2
5u5 2u6 u7 2u8

2u3 0 0 −3u6 1
u2 u3 0 u1 +

4
5u5 −3u6

⎞⎟⎟⎟⎠ (3.5)

We take K1 = ζ3,1 which has the minimal degree under the Dynkin grading. Using the same notations given in (3.4), we
get the following completely integrable system

P
0
1 = u1 + 3u2

6, P
1
3 = u6, P

1
4 = u5 −

45
4

u2
6 +

5
4
u1, (3.6)

P
0
2 = u4 − 10u3

6 + 10u1u6 − 8u5u6 + 5u3u8,

P
0
3 = u4u6 − 10u4

6 + 2u5u2
6 −

2
3
u2
1 +

8
75

u2
5 −

2
5
u1u5 +

1
2
u3u7 +

1
2
u2u8,

P
0
4 = u4u5 − 90u5

6 + 100u1u3
6 − 10u5u3

6 −
45
4

u4u2
6 + 25u3u8u2

6 − 10u2
1u6 +

8
5
u2
5u6

−6u1u5u6 − 5u3u7u6 − 5u2u8u6 +
5
4
u1u4 −

5
4
u2u7 − 5u1u3u8 − 4u3u5u8.

We make the following change of coordinates using the Casimirs of BQ
K1

which has the property that the inverse map is
also a polynomial map

(w1, w2, . . . , w8) := (P
0
1, P

0
2, P

1
3, P

1
4, u2, u3, u7, u8). (3.7)

Then the nonzero terms of the transverse Poisson bracket BQ are

{w3, w5} =
5
6
w5, {w3, w6} =

5
6
w6, {w3, w7} = −

5
6
w7, {w3, w8} = −

5
6
w8, (3.8)

{w4, w5} = −
5
6

(
140w6w

2
3 + 35w5w3 + 18w4w6

)
, {w4, w6} = −

25
12

(w5 + 4w3w6) ,

{w4, w7} =
5
6

(
140w8w

2
3 + 35w7w3 + 18w4w8

)
, {w4, w8} =

25
12

(w7 + 4w3w8) , {w7, w8} =
10
3

w2
8,

{w5, w6} = −
10
3

w2
6, {w5, w8} =

5
9

(
1080w3

3 − 110w1w3 + 64w4w3 + 3w2 − 21w6w8
)
,
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{w6, w7} =
5
9

(
1080w3

3 − 110w1w3 + 64w4w3 + 3w2 − 21w6w8
)
, {w6, w8} =

1
9

(
−540w2

3 + 25w1 − 8w4
)
,

{w5, w7} =
2
45

(
59400w4

3 − 10250w1w
2
3 − 2840w4w

2
3 + 375w2w3 − 3375w6w8w3 − 144w2

4

)
+

2
45

(450w1w4 + 75w6w7 + 75w5w8).

In particular the vector field

χ4 =

8∑
i=5

{w4, wi}
∂

∂wi
(3.9)

is an integrable Hamiltonian vector field on Q .

4. Distinguished nilpotent elements of semisimple type

In this section, we collect properties of distinguished nilpotent elements of semisimple type in simple Lie algebras and
we derive important identities needed to prove our main results.

Let us recall some definitions and notations from [8]. If L1 is regular then the orbit space OL1 equals the set of all regular
nilpotent elements in g ([8], page 58). While if L1 is subregular then the orbit space OL1 equals the set of all subregular
nilpotent elements in g ([31], Proposition 34.5.7). The nilpotent orbit OL1 is called distinguished, and hence also L1, if OL1
has no representative in a proper Levi subalgebra of g. It turns out that L1 is distinguished iff dim g0 = dim g1. Also, when
L1 is distinguished, the eigenvalues of adh are all integers. A regular nilpotent orbit is always distinguished. Distinguished
nilpotent orbits, along with other nilpotent orbits, are classified by using weighted Dynkin diagrams [8]. Distinguished
nilpotent orbits are listed in the form Zr (ai) where Zr is the type of g and i is the number of vertices of weight 0 in the
corresponding weighted Dynkin diagram. If there is another orbit of the same number i of 0’s, then the notation Zr (bi) is
used. For example, regular nilpotent elements will be of type Zr (a0), while distinguished subregular ones will be of type
Zr (a1).

Let κ denote the maximum eigenvalue of adh. The nilpotent element L1 is said to be of semisimple type [16], if there
exists an element g of the minimal eigenvalue −κ under adh such that L1 + g is semisimple. In this case L1 + g is called
a cyclic element. When L1 is also distinguished, the element L1 + g will be regular semisimple. The list of distinguished
nilpotent orbits of semisimple types is given in [16] and [10]. It consists of

1. All regular nilpotent orbits in simple Lie algebras (those of type Zr (a0)) and subregular nilpotent orbits F4(a1), E6(a1),
E7(a1) and E8(a1).

2. Nilpotent orbits of type B2m(am), D2m(am−1), F4(a2), F4(a3), E6(a3), E7(a5), E8(a2), E8(a4), E8(a6) and E8(a7).

We mention that nilpotent orbits in classical Lie algebras are classified by the partition of the dimension of the
fundamental representations. In this article, B2m(am) corresponds to the partition [2m+1, 2m−1, 1] when the Lie algebra
g is so4m+1 (type B2m). While as usual in the literature, D2m(am−1) corresponds to the partition [2m + 1, 2m − 1] when g
is so4m (type D2m).

For the remainder of this article, we assume L1 is a distinguished nilpotent element of type Zr (ar−s) (thus g is of type
Zr ), where Zr (ar−s) is one of the nilpotent orbits

B2m(am), D2m(am−1), F4(a2), E6(a3), E8(a2), and E8(a4).

The number s is introduced in this form in order to give universal statements to all nilpotent orbits under consideration.
Since L1 is of semisimple type, we fix an element K1 ∈ g−κ such that the cyclic element Y1 := L1 + K1 is regular

semisimple. In what follows, we give a general setup associated with cyclic elements following the work of Kostant for the
case of cyclic elements associated with regular nilpotent elements [18]. Let h′

:= gY1 be the Cartan subalgebra containing
Y1. It is known as the opposite Cartan subalgebra. Then the adjoint group element w defined by

w := exp
2π i

κ + 1
adh (4.1)

acts on h′ as a representative of a regular conjugacy class [w] in the Weyl group W (g) of g of order κ + 1 [10,16].
The element Y1 is an eigenvector of w of eigenvalue ϵ where ϵ is the primitive (κ + 1)th root of unity. We also define

the multiset E(L1) which consists of natural numbers ηi, i = 1, . . . , r , such that ϵηi ’s are the eigenvalues of the action of w

on h′. We call E(L1) the exponents of the nilpotent element L1. Our justification of the name exponents for E(L1) is that, in
this contest, the exponents E(g) of the Lie algebra equal the exponents of the regular nilpotent element [18] (a nilpotent
element of type Zr (a0)). The set E(L1) can be found by combining the results in [10,16] and [30]. In Table 1, we list in the
first 2 columns the elements of E(L1) and in Table 2 we list the exponents of g. Note that we give the elements of E(L1)
in a particular order such that the following significant relation between E(L1) and E(g) is simple to state and its proof is
given by examining Tables 1 and 2.
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Table 1
Weights and exponents of L1 .
Orbit W(L1)

Zr (ar−s) η1, η2, . . . , ηs ηs+1, . . . , ηr ηr+1, . . . , ηn

B2m(am) 1, 3, . . . , 2m − 1 1, 3, . . . , 2m − 1 1, 2, . . . , 2m − 2;m − 1,m

D2m(am−1) 1, 3, . . . , 2m − 1; 2m − 1 1, 3, . . . , 2m − 3 1, 2, . . . , 2m − 2

F4(a2) 1,5 1,5 1,2,3,4

E6(a3) 1, 4, 5 1,2,5 1, 2, 2, 3, 3, 4

E8(a2) 1, 7, 11, 13, 17, 19 3,9 5, 8, 11, 14
E8(a4) 1, 7, 11, 13 2,4,8,14 3, 5, 5, 7, 7, 9, 9, 11

E(L1)

Table 2
Exponents of g.
g ν1, ν2, . . . , νr

B2m 1, 3, . . . , 4m − 1

D2m 1, 3, . . . , 2m − 1
2m − 1, 2m − 3, . . . , 4m − 3

F4 1,5,7,11

E6 1, 4, 5, 7, 8, 11

E8 1, 7, 11, 13, 17, 19, 23, 29

Lemma 4.1. The following formula gives a bijective map between E(g) and E(L1)

νi =

{
ηi, i ≤ s;
ηi + κ + 1, i > s.

Let Y1, Y2, . . . , Yr be a basis of h′ of eigenvectors of w such that w(Yi) = ϵηiYi. Then the elements Yi will have the form

Yi = Li + Ki; Li ∈ gηi , Ki ∈ gηi−(κ+1), i = 1, . . . , r. (4.2)

The commutators [Yi, Yj] = 0 imply that the set {L1, . . . , Lr} generates a commutative subalgebra of gL1 . Hence upon
considering the restriction of the adjoint representation of the sl2-subalgebra A generated by A = {L1, h, f }, the vectors
Li are maximal weight vectors of irreducible A-submodules of dimensions 2ηi + 1. We observe that the total number of
irreducible A-submodules is n := 3r − 2s. The numbers ηr+1, . . . , ηn are given in the third column of Table 1. Let us fix
a decomposition of g into irreducible A-submodules, i.e.

g =

n⨁
j=1

Vj (4.3)

where dimVj = 2ηj + 1 and Li is maximal weight vector of Vi for i = 1, . . . , r . We found it more convenient to denote
also the maximum vectors of the remaining spaces Vj by Lj. The numbers η1, . . . , ηn are known in the literature as the
weights of the nilpotent element L1 and will be denoted W(L1). A procedure to obtain W(L1) for nilpotent elements of
type D2m(am−1) and B2m(am) is given in [13].

Recall that ⟨.|.⟩ denotes the Killing form of g. Let us define the matrix of its restriction to h′

Aij = ⟨Yi|Yj⟩. (4.4)

Proposition 4.2. The matrix Aij is nondegenerate and antidiagonal in the sense that

Aij = 0, if ηi + ηj ̸= κ + 1.

Proof. It follows from the properties of Cartan subalgebras that the matrix Aij is nondegenerate. We will use the fact that
the matrix ⟨.|.⟩ is a nondegenerate invariant bilinear form on h′. Hence for any element Yi there exists an element Yj such
that ⟨Yi|Yj⟩ ̸= 0. Using the Weyl group element w defined in (4.1), we get the equality

⟨Yi|Yj⟩ = ⟨wYi|wYj⟩ = exp
2(ηi + ηj)π i

κ + 1
⟨Yi|Yj⟩.

It forces ηi + ηj = κ + 1 in case ⟨Yi|Yj⟩ ̸= 0. □

Observe that rank r is even. Let us set m := r/2.
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Lemma 4.3. The elements Yi, i > 1 can be normalized such that the only nonzero values of ⟨.|.⟩ on the basis Yi are given as
follows

⟨Yi|Ym−i+1⟩ = κ + 1, ⟨Ym+i|Y2m−i+1⟩ = κ + 1 ; i = 1, . . . ,m. (4.5)

Proof. Form the last lemma the elements Y1, . . . , Yr can be grouped to subsets of 4 or 2 elements where the restriction
of ⟨.|.⟩ will be nondegenerate and has the form⎛⎜⎝ 0 0 ∗ ∗

0 0 ∗ ∗

∗ ∗ 0 0
∗ ∗ 0 0

⎞⎟⎠ or
(

0 ∗

∗ 0

)
, (4.6)

respectively. Using simple linear changes, they can be transformed to blocks of anti-diagonal matrices without losing the
fact that they are eigenvectors of the action of w on h′. □

We assume that the elements of the basis Yi of h′ are normalized and satisfy the hypothesis of the previous lemma.
Then we get the following identities

Lemma 4.4.

⟨Li|Kj⟩ = ηj(δi+j,m+1 + δi+j,3n+1) (4.7)

Proof. Recall that

Yi = Li + Ki; Li ∈ gηi , Ki ∈ gηi−(κ+1), i = 1, . . . , r. (4.8)

Using the identity 0 = [Yi, Yj] = [Li, Kj] + [Ki, Lj] with the invariant bilinear form yields

0 = ⟨h|[Li, Kj] + [Ki, Lj]⟩ = (κ − ηj + 1)⟨Li|Kj⟩ + ηj⟨Ki|Lj⟩. (4.9)

This equation with the normalization ⟨Yi|Yj⟩ = ⟨Li|Kj⟩+⟨Ki|Kj⟩ = (κ+1)(δi+j,m+1+δi+j,3m+1) yields the required identity. □

5. Argument shift method and adjoint quotient map

We keep the notations and assumptions given in the last section. We prove below that the argument shift method
produces a polynomial completely integrable system for BQ . Observe that the dimension of Q is n = 3r − 2s and κ
denotes the maximum eigenvalue of adh.

Consider the adjoint quotient map Ψ defined in (2.1). As we mentioned before, Kostant in [19] proved that the rank of
Ψ at x equals r if and only if x is a regular element in g. Later, Slodowy showed that the rank of Ψ is r − 1 at subregular
nilpotent elements [29]. Finally, the rank of Ψ at distinguished nilpotent elements in g was computed by Richarson [27]
except for nilpotent elements of type E8(a2). In this article, we proved the rank at nilpotent elements of type E8(a2) is 6
(see Corollary 5.5).

Under the normalization given in Lemma 4.4, we fix a basis e0, e1, e2, . . . for g such that:

1. The first n + r are given in the following order

Km, Lm, L1, L2, . . . , Lm−1; Lm+1, . . . , Ln, K1, K2, . . . , Km−1; Km+1, . . . , K2m, (5.1)

2. ⟨ei|Y1⟩ ̸= 0 if and only if i = 0 or i = 1.

Then we define on g the linear coordinates

xi(g) := ⟨ei|g⟩, i = 0, 1, 2, . . . (5.2)

In what follows we will trace the dependence of the invariant polynomials on the coordinates x0 and x1. Note that the
gradient ∇F of a function F on g will be given by the formula ∇F =

∑
∂F
∂xi

ei. Moreover, since Y1 is regular, the gradients
∇Pi(Y1) are linearly independent and in fact a basis of h′. We use these remarks in the following lemma.

Lemma 5.1. The matrix with entries ∂Pi
∂xj

(Y1), i, j = 1, . . . , r, is non-degenerate. Moreover, Pi have the following form

Pi = R1
i + R2

i + R3
i (5.3)

where

R1
i =

∑
{a:a(κ+1)=νi−ηr }

θi,axa+1
1 xνi−a

0 and R2
i =

νi−1∑
a=0

2m∑
j=2

ci,j,axa1x
νi−a
0 (xj + xj+n−1) (5.4)

and ∂R3i
∂xk

(Y1) = 0, ∀k. Here ci,j,a and θi,a are complex numbers.
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Proof. Since ∇Pi(Y1) ∈ gY1 = h′ and h′ has basis Yi = Li + Ki, we get

∇Pi(Y1) =

2m∑
j=1

C i,jYj =

2m∑
j=1

C i,j(Lj + Kj) = Ci,1(e0 + e1) +

2m∑
j=2

Ci,j(ej + en+j−1). (5.5)

Hence

Ci,j =

{ ∂Pi
∂xj

(Y1) =
∂P

∂xj+n−1
(Y1), 1 < j ≤ r;

∂Pi
∂x1

(Y1) =
∂Pi
∂x0

(Y1), j = 1;
(5.6)

and ∂Pi
∂xγ

(Y1) = 0 for other indices γ not included in (5.6). By definition of the coordinates and Lemma 4.4, xj(Y1) are all

zero except x1(Y1) = 1 and x0(Y1) = κ . Hence, for 1 < j ≤ 2m, ∂Pi
∂xj

(Y1) ̸= 0 implies that ∂Pi
∂xj

must contain a term of the
form

νi−1∑
a=0

ci,j,axa1x
νi−a−1
0 , ci,j,a ∈ C (5.7)

This gives the formula for R2
i . Note that ∂R2i

∂x1
(Y1) = 0. Thus, for ∂Pi

∂x1
(Y1) to be nonzero, it must contain terms of the form

fi,a = xa+1
1 xνi−a

0 . But then a is constrained by the identity

∂ fi,a
∂x1

(Y1) = (a + 1)κνi−a
=

∂ fi,a
∂x0

(Y1) = (νi − a)κνi−a−1 (5.8)

This leads to the formula for R1
i . The condition on R3

i is a direct consequence from our analysis. Finally, the non-degeneracy
condition follows from the fact that the vectors ∇Pi(Y1) are a basis for h′. □

We observe that gL1 is orthogonal to gf under ⟨.|.⟩ [32]. Thus (x1, . . . ., xn) form a coordinate system on Q . Also Y1 ∈ Q
and its coordinates are given by (x1, . . . ., xn) = (1, 0, 0, . . . , 0). From Lemma 4.4, x0(q) = ⟨Km|L1⟩ = κ is constant for
every q ∈ Q .

We set degree xi equals ξi + 1 where ξi denotes the eigenvalue of ei under adh, i = 1, . . . , 2m. We recall the following
theorem due to Slodowy.

Theorem 5.2 ([29], section 2.5). The restriction P
0
i of Pi to Q is quasi-homogeneous polynomial of degree νi + 1.

Then we get the following refinement of the last lemma. We introduce the numbers βi where βi = 0 for i ≤ s and
βi = 1 for i > s.

Proposition 5.3. The functions P
0
i in the coordinates (x1, . . . , xn) take the form

P
0
i (x1, . . . , xn) =

∑
{j:νi−deg xj=βi(κ+1)}

c̃i,jx
βi
1 xj + R

3
i (x), c̃i,j ∈ C. (5.9)

Here ∂R3i
∂xk

(Y1) = 0 for k = 1, . . . , n. Moreover, the square matrix ∂P0i
∂xj

(Y1); i, j = 1, . . . , r is nondegenerate.

Proof. We obtain the restriction P
0
i of Pi to Q by setting in (5.3), x0 = κ and xk = 0 for k > n. From the quasihomogeneity

of P
0
i and Lemma 5.1

P
0
i (x1, . . . , xn) =

νi−1∑
a=0

∑
{j:a(κ+1)=νi−deg xj}

c̃i,j,axa1xj + R
3
i (x), c̃i,j,a ∈ C (5.10)

where R
3
i is the restriction of R3

i to Q . The condition (5.3) implies ∂R3i
∂xk

(Y1) = 0, k = 1, . . . , n. Note that deg Pi − deg xj =

a(κ + 1). Using the relation between the multisets E(g) and E(L1) observed in Lemma 4.1, a can only take the values βi
indicated in the statement. In other words the constants ci,j,a in (5.3) are nonzero only if a = βi. This gives the form (5.9).
For the nondegeneracy condition, note that the only possible value for the index a in (5.3) is a = βi and so x0 appear only

with the power νi − βi. This implies that ∂Pi
∂xj

(Y1) =
∂P0i
∂xj

(Y1), i, j = 1, . . . , 2m. Thus the determinant of the required matrix
is nonzero. □

We apply the procedure given in Section 3 for the nilpotent element L1 by considering Dynkin grading and setting
u = K1. Then, using Eq. (5.9) and ⟨Lm|K1⟩ = 1, the expansion (3.4) will take the form

Pi(x + λK1) =

∑
{j:νi−deg xj=βi(κ+1)}

c̃i,j(x1 + λ)βixj + R
3
i (x + λK1) = P

0
i (x) + λβiP

βi
i (x), x ∈ Q . (5.11)
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In particular, we have the following coordinates.

Lemma 5.4. Consider the degrees of the coordinates (x1, . . . , xn) given in Theorem 5.2. Then there exists a quasihomogeneous
change of coordinates on Q defined by

ti :=

{
Pβi
i = ∂

βi
x1P

0
i , i = 1, . . . , r;

xi, i = r + 1, . . . , n
(5.12)

such that the degree of ti equals ηi + 1. Moreover, these coordinates can be chosen such that there exists one index i0 such that
ti0 is the only coordinate depending on x1 and having the form ti0 = x1 + nonlinear terms.

Proof. Note that ∂
βi
x1P

0
i will have the form

∂
βi
x1P

0
i = ∂

βi
x1R

3
i (x) +

∑
{j:νi−deg xj=βi(κ+1)}

c i,jxj, c i,j ∈ C, (5.13)

where ∂xj∂
βi
x1R

3
i (0) = 0. Then

∂xj∂
βi
x1P

0
i (0) =

∂P
0
i

∂xj
(Y1), i, j = 1, . . . , r. (5.14)

Using the last proposition, we conclude that the matrix ∂xj∂
βi
x1P

0
i is nondegenerate. Hence, ∂

βi
x1P

0
i can replace the coordinates

xi on Q for i = 1, . . . , r . This shows that (t1, . . . , tn) defined above are coordinates on Q . Quasihomogeneity and the degree
of each ti follow from Theorem 5.2 and Lemma 4.1. This proves the first part. The second part follows from the structure
of the degrees ηi + 1 and the fact that x1 is of maximum degree κ + 1. If there is another coordinate xi1 with maximum
degree κ + 1, then the statement follows by doing some linear change of coordinates. For example, for the nilpotent
element of type E8(a4), we must take i0 = r . □

Note that ti = P
0
i for i = 1, . . . , s. Hence, in the coordinates developed in the last corollary, the restriction Ψ of the

quotient map Ψ to Q takes the form

Ψ (t1, t2, . . . , tn) = (t1, . . . , ts, P
0
s+1, . . . , P

0
r ). (5.15)

Corollary 5.5. The rank of the quotient map Ψ at L1 equals s.

Proof. From quasi-homogeneity, the rank of Ψ at L1 is the same as the rank of Ψ Q at the origin which equals s. □

Consider the set of functions T = {P
0
1, . . . , P

0
s , P

1
s+1, . . . , P

1
r , P

0
s+1, . . . , P

0
r } which result from applying the argument

shift method to BQ and BQ
K1
. The set T consists of 1

2 (dimQ + rank BQ ) = 2r − s polynomial functions in involution. We
give below what remains to prove Theorem 1.1.

Proof (Theorem 1.1). We only need to prove that elements of T are functionally independent functions. For this task we use
properties of the restriction of the quotient map Ψ . We consider what is called the momentum map Φ in the coordinates
(t1, . . . , tn) developed above:

Φ(t1, . . . , tn) := (P
0
1, . . . , P

0
s , P

1
s+1, . . . , P

1
r , P

0
s+1, . . . , P

0
r ), (5.16)

= (t1, . . . , tr , P
0
s+1, . . . , P

0
r ).

Observe that the functions in T are independent if and only if the map Φ is regular at some points. The Jacobian matrices
JΨ and JΦ of the maps Ψ and Φ have the forms

JΨ (t) =

[
Is 0 0
φ1 φ2 φ3

]
, JΦ(t) =

[ Is 0 0
0 Ir−s 0
φ1 φ2 φ3

]
(5.17)

where Im denotes the identity matrix of size m and φ2 is the square matrix of size r − s with entries ∂P0s+i
∂ts+j

; 1 ≤ i, j ≤ r − s.
Then the entries of the matrices φ1 and φ3 are understood from the definition of the Jacobian. Thus, the regularity of Φ

is guaranteed by showing that the minor matrix φ3 is of maximal rank at some points of Q . Let V be the subvariety of
Q defined by vanishing of the entries of φ2. By quasihomogeneity of the polynomials P

0
i , entries of φ2 are not constant

and hence V is not empty. Since, the set of regular points of the quotient map is dense open subset in g, and hence in Q ,
there is open subset U ⊆ V where the rank of Ψ is maximal. Thus φ3 is of maximal rank at the points of U . This ends the
proof. □
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6. Remarks

We observe that the proof of Theorem 1.1 depends on the fact that the argument shift method produces a set of
functions with the property that each of them is either a Casimir of BQ or/and can be included as a part of coordinates
on Slodowy slice. This property is not valid for distinguished nilpotent orbits of semisimple type F4(a3), E7(a5), E8(a6) and
E8(a7).

In this article, we used the notion of opposite Cartan subalgebra and properties of the adjoint quotient map to prove
integrability of transverse Poisson structure. However, examples show that integrability does not depend on these notions.
Thus we believe that integrability of transverse Poisson structure at other types of nilpotent elements can be obtained
using different methods than the ones given in this article.

We observe that even if the notion of Poisson reductions is well studied, there are no results about the reduction of
completely integrable systems. For instance, it will be interesting to show that the restriction of the polynomial integrable
system obtained by Theorem 2.1 for B leads to a completely integrable system of the transverse Poisson structure BQ on
Slodowy slice Q .

Experts know that the linear terms of BQ define a linear Poisson structure, which can be identified with the Lie–Poisson
structure Bg

f
of the Lie algebra gf . Note that gf is a nilpotent Lie algebra. In [24], the existence of a completely integrable

system for gf using the argument shift method is proved for a large family of nilpotent elements. It will be interesting to
find the relation between the method introduced in this article and [24].

The quantization of BQ is studied in [26], and it is known in the literature as a finite W -algebra [32]. Recently [2], the
finite W -algebra is used to give a quantization of the completely integrable system that could be obtained for Bg

f
using

the argument shift method. It seems that the methods of [2] can be used to obtain a quantization of the integrable system
constructed in this article.
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