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a b s t r a c t

On a projective complex manifold, the Abelian group of divisors maps surjectively onto
that of holomorphic line bundles (the Picard group). On aG2-manifoldwe use coassociative
submanifolds to define an analogue of the divisors, and a gauge theoretical equation for a
connection on a gerbe to define an analogue of the Picard group. Then, we construct a map
from the former to the later.We also prove that the canonicalmap fromour analogue of the
Picard group to the third cohomology groupwith integer coefficients is surjective. As a side
remarkwemake an observation relating the topological type of coassociative submanifolds
and the cohomology classes they represent.
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1. Introduction

In a complex manifold X one defines the Abelian group of divisors, Div(X), as formal sums of complex codimension 1
submanifolds. On the other hand the holomorphic line bundles also form an Abelian group, known as the Picard group
Pic(X). It is a classical fact that Pic(X) ∼= Div(X)/ ∼, where ∼ denotes linear equivalence of divisors. If X is supposed to
have a Kähler form, it follows from Hodge theory that each holomorphic line bundle has a unique Hermitian–Yang–Mills
(HYM) connection, equivalently a unique connectionwith harmonic curvature. In this short note, inspired by Hitchin’s work
on the moduli of special Lagrangian submanifolds [1], we imitate part of these ideas from complex geometry to the case of
G2 manifolds.

Let (X7, g) be a compact G2-manifold, i.e. a compact, Riemannian 7-manifold with holonomy contained in G2. Equiv-
alently, one can think of the metric g has being induced from a certain 3-form ϕ, which is harmonic with respect to g .
Appealing to this point of view, we will also refer to a G2-manifold as the pair (X7, ϕ). In addition, a G2-manifold is said to
be irreducible if its holonomy representation is irreducible, i.e. Hol(g) = G2. For future reference we shall use the notation
ψ = ∗ϕ ∈ Ω4(X,R), where ∗ is the Hodge-∗ operator of the Riemannian metric g .

On a G2-manifold there are very interesting calibrated submanifolds called associatives and coassociates. Being the later
ones are the main subject of this paper, we now focus on them. These are 4-dimensional submanifolds N4 calibrated by ψ ,
i.e. ψ |N = dvolg|N , where g|N denotes the restriction of the metric g to N . We use them to define the following G2 analogue
of the group of divisors.

Definition 1. Let CDiv(X, ϕ) denote the Abelian group of finite formal sums

k
i=1

qiNi,

where the qi ∈ Z and the Ni are coassociative submanifolds.
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In [2], Joyce conjectured that it may be possible to define an enumerative invariant of G2-manifolds by ‘‘counting’’ coas-
sociative submanifolds. In [3], Donaldson and Segal suggested it may be easier, to define an invariant from solutions of a
gauge theoretical equation, the G2-monopole equation. The authors have further suggested that such monopoles may be
somehow related to coassociative submanifolds, and this have been further investigated in [4]. This short note contains
a detour, which considers gauge theoretical objects of another nature, which we show to also be related to coassociative
submanifolds. In order to further motivate our construction, we nowmention some natural questions regarding coassocia-
tive submanifolds: Given a class α ∈ H3(X,Z), is there a coassociative representative of the Poincaré dual of α? What are
the possible topological obstructions for a class α to be represented by a coassociative submanifold? (as on G2-manifolds
H4

7 = 0we do not know any such). Given a class α, are there any topological/geometric restrictions of possible coassociative
representatives of α? Some of these problems seems to be currently out of reach and is certainly not the author’s goal to
attempt it. Nevertheless, we believe our results may be of interest and we hopemaymotivate further research along similar
lines. We give some possibilities for these at the end of this note.

We turn now to the definitions of the gauge theoretical objects,which are ourG2 analogues of the Picard group. Recall that
wewant these to be related to coassociative submanifolds, which are of codimension 3, this is where gerbeswith connection
come into play. For the sake of simplicity, in this introduction it is enough to think of a gerbe G as being determined by a
representative of a Čech cocycle Ȟ2(X, C∞(S1)), where C∞(S1) is the sheaf of smooth functionswith values in S1. This should
be compared with the way a cocycle in Ȟ1(X, C∞(S1)) determines a circle bundle. Gerbes, as bundles, can be equipped with
connections. There is the notion of a trivialization of a gerbe, and if {Ui}i∈I is an open cover of X , such that on each Ui we
have gerbe trivializations, then a connection is determined by connection 2-forms Fi satisfying some extra conditions, see
Section 2 for more details. These conditions ensure that the exterior derivatives dFi agree on double intersections and so
define a global, closed 3-form H called the curvature of the connection. The third cohomology class represented by H is
integral and independent of the connection. This class is denoted by c1(G) and called the first Chern class of the gerbe G. In
fact, c1(G)may also be defined as the image under the Bockstein morphism of the exponential sequence, i.e.

c1 : Ȟ2(X, C∞

X (S
1))

∼
−→ H3(X,Z).

We are now ready to define our G2-analogue of the Picard group.

Definition 2. A monopole gerbe is a pair (G, F), where G is a gerbe and F a connection on G, such that

• There is an open cover {Ui}i∈I of X equipped with local trivializations of G, and connection 2-forms Fi satisfying

∗(Fi ∧ ψ) = dφi,

for some φi : Ui → R.
• The curvature of F is the harmonic representative of c1(G).

The monopole gerbes form an Abelian group, which we denoteMPic(X, ϕ).

The operation under which the monopole gerbes form an Abelian group is the tensor product of the underlying gerbes
and the canonically induced connections, see Section 3.

Remark 1. We compare each of the conditions above with the definition of a holomorphic line bundle, or rather a complex
line bundle with a connection inducing a holomorphic structure. In this comparison:

• The first condition is the analogue of the existence of holomorphic trivializations where the connection 1-forms are of
type (1, 0).

• The second condition is analogous to changing the Hermitian structure so that the connection has harmonic curvature.
In the Kähler case there is a unique such connection (up to gauge) and this is the so called Hermitian–Yang–Mills one
(HYM).

In the general context of a Riemannian manifold, Hitchin defined in [1] a way to canonically associate a gerbe with
connection to a codimension 3 submanifold. We review this construction in Proposition 2. We are now ready to state our
first result.

Theorem 1. Let (X7, ϕ) be a compact, irreducible G2-manifold, then Hitchin’s construction yields a group homomorphism

m : CDiv(X, ϕ) → MPic(X, ϕ). (1.1)

There is a forgetful map MPic(X, ϕ) → H3(X,Z), which associates to (G, F) the topological type of the gerbe c1(G). Our
second result is the following analogue of the hard-Lefschetz theorem for (1, 1) classes.

Theorem 2. Let (X, ϕ) be a compact, irreducible G2-manifold, then the map MPic(X, ϕ) → H3(X,Z) is surjective.
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Understanding the image of the map resulting from composing that of Theorem 2 together with that of Theorem 1
would give an answer to the first question mentioned above. Namely, which classes can be represented by coassociative
submanifolds. For instance, if themap (1.1) is surjective, then aG2-analogue of theHodge conjecturewould be true. However,
this may well not be the case and, as said before, it is not our goal to attempt an answer to that question.

A more practical goal with the tools at hand, is to obtain restrictions on the geometry/topology of possible coassociative
representatives of certain classes. This may be of interest for better understanding the global geometry of coassociative
fibrations on G2 manifolds. One further possible reason of interest is in giving topological obstructions for the convergence
of themean curvature flowof a 4 dimensional submanifold to a coassociative one. Our final result, which is not an application
of the previous ones, is aligned with that direction. It is an observation that yields topological restrictions on coassociative
submanifolds in terms of the class they represent. This follows from a coassociative analogue of the adjunction formula and
the fact that on a compact, non-flat G2-manifold p1(X) ∪ [ϕ] > 0. Namely we prove that

Proposition 1. Let (X, ϕ) be a compact G2-manifold, α ∈ H3(X,Z), and N a coassociative representative of α. If τ and χ
respectively denote the signature and Euler characteristic of N, then p1(X) ∪ α = 6τ − 2χ . In particular,

• τ > 1
3χ if and only if p1(X) ∪ α > 0;

• τ =
1
3χ if and only if p1(X) ∪ α = 0;

• τ < 1
3χ if and only if p1(X) ∪ α < 0

and there are integral classes α satisfying the first and third inequalities in the right hand side.

Remark 2. In this result I have used the convention that my 3-forms are modeled on

ϕ0 = e123 + e1 ∧ (e45 − e67)+ e2 ∧ (e46 − e75)+ e3 ∧ (e47 − e56),

on R7. In this way, N = 0 × R4 is coassociative and the map ei → ιeiϕ yields an isomorphism of TN⊥ with Λ2
−
N , the anti-

self-dual 2-forms on N . For such irreducible G2-manifolds locally modeled on these we have p1(X)∪ [ϕ] > 0, see Remark 6.
However, many authors use G2-structures locallymodeled on ϕ0 = e123+e1∧(e45+e67)+e2∧(e46+e75)−e3∧(e47+e56),
in which case the normal bundle of a coassociative submanifold N is isomorphic to Λ2

+
N . For such structures, we have

p1(X)∪ [ϕ] < 0 on any irreducible G2-manifold. Moreover, the result of Proposition 1 should then be stated as p1(X)∪α =

6τ + 2χ and so

• τ > −
1
3χ if and only if p1(X) ∪ α > 0;

• τ = −
1
3χ if and only if p1(X) ∪ α = 0;

• τ < −
1
3χ if and only if p1(X) ∪ α < 0.

In fact, these two statements are related by changing the orientation of the coassociative, in which case is calibrated by−ψ .

An immediate consequence of this result is that given any irreducible G2-manifold (X, ϕ) and a compact 4-manifold N4,
there are classes in X , such that N cannot be embedded in X as a coassociative representative of such classes. For example,
given that a 4-torus has τ =

χ

3 = 0 we have

Corollary 1. Any coassociative T 4 of a compact G2-manifold must represent a class α such that p1(X) ∪ α = 0. In particular, if
b3(X) = 1, then (X, ϕ) has no coassociative tori.

We must however remark that up to the author’s knowledge there are no known examples of G2-manifolds with
b3(X) = 1.

This note is organized as follows. Section 2 gives a self contained introduction to gerbes, which recalls Hitchin’s working
definition of gerbes and connections on them. Then, we recall Hitchin’s construction of a gerbe with connection associated
with a codimension-3 submanifold. In Section 3 we give the proofs of the results mentioned in this introduction. Section 4
gives an illustrative example of the construction in the case when the G2-structure is reducible to SU(3). Finally, in section,
5 we mention some possible future directions related to our work.

2. Gerbes

In the introduction we worked with a gerbe as being determined by a representative of a Cêch cocycle G ∈

Ȟ2(X, C∞(S1)). Alternatively, as in [1], one can take an open cover {Uα}α∈I and a gerbe G can be defined by the following
data

• A Hermitian line bundle Lαβ over each Uαβ = Uα ∩ Uβ , and isomorphisms Lβα ∼= L−1
αβ .

• Hermitian trivializations θαβγ : LαβLβγ Lγα ∼= C, such that δθ = 1 on Uαβγ δ .
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One recovers the cocycle G ∈ Ȟ2(X, C∞(S1)) as follows. First, refine the trivialization so that the line bundles become
trivializable in the double intersections. Then, the trivializations θ : C ∼= C in the triple intersections are simply S1-valued
functions. Moreover, the condition that δθ = 1 in the quadruple intersections means they form a cocycle in Ȟ2(X, C∞(S1)).
This is the original point of view taken in the introduction. Turning back to Hitchin’s point of view, a connection F on G is
determined by the following data

• Hermitian connections ∇αβ on the Lαβ , such that ∇αβγ θαβγ = 0 on Uαβγ .
• 2-forms Fα on the Uα , such that on Uαβ

Fαβ = Fα − Fβ ,

is the curvature of ∇αβ on Lαβ .

Then, in the double intersections Uαβ = Uα ∩ Uβ

dFβ = dFα + dFαβ = dFα,

by the Bianchi identity. Therefore, there is a well defined 3-form H such that

H|Uα = dFα,

for all α ∈ I . This H is called the curvature of the gerbe connection.

Remark 3. If (G, F) is a monopole gerbe, then it is easy to see that the connections ∇αβ on the line bundles satisfy

Fαβ ∧ ψ = ∗dφαβ ,

where Fαβ = Fα − Fβ and φαβ = φα − φβ . In other words (∇αβ , φαβ) form an Abelian monopole on Lαβ . This justifies our
nomenclature.

Codimension-3 submanifolds and gerbes

In this section we shall consider a more general setup where (Xn, g) is a real n-dimensional Riemannian manifold and N
a codimension 3 (embedded) submanifold. The next proposition is an analogue of the construction of the map Div → Pic in
complex geometry and I learned it for gerbes from Hitchin’s paper [1]. For completeness, we shall include the construction.

Proposition 2. Let N be a codimension 3, connected and embedded submanifold of X and H ∈ PD[N] ∈ H3(X,Z). Then, there
is a Gerbe with connection (GH , F) whose curvature is H. In particular, c1(GH) = PD [N].

Proof. To construct the gerbe take a finite open cover given by U0 = X\N and {Uα}α∈I , such that N ⊂ ∪α∈I Uα and each
Uα∩N , Uα∩Uβ is contractible. We shall use the indices {i, j, k} to refer to either 0 or α ∈ I . To define the Gerbe GH , onemust
give line bundles Lij on the double intersections Uij = Ui ∩Uj satisfying a cocycle condition on the triple intersections. Using
the notation Lij = L−1

ji , this is given by fixing a trivialization Lij ⊗ Ljk ⊗ Lki ∼= C on the triple intersections Uijk = Ui ∩Uj ∩Uk.
Notice that up to homotopy U0α ∼= (Uα ∩ N) × S2, then we let Lα0 be the pullback of Hopf bundle on the S2 factor. On

Uαβ we let Lαβ be the trivial bundle. Then the cocycle condition is trivially satisfied on the triple intersection U0αβ by fixing
a trivialization C ∼= L0α ⊗ Lβ0|U0αβ .

We turn now to the definition of the connection. This requires giving the connection 2-forms Fi on each Ui, such that

Fij = Fi − Fj,

is the curvature of a connection on Lij. We weakly solve the PDE for currents

∆H0 = H − δN

which is possible, since [H − δN ] = 0 in de Rham cohomology for currents. Then dH0 = 0, as ∆dH0 = d∆H0 = 0, so that
dH0 is both exact and harmonic and so vanishes. Also notice that H0 is only unique up to a harmonic 3-form. Then, we solve

∆Hα = H, dHα = 0,

on each open set Uα . Using the solutions H0,Hα to these equations, one can define the connection 2-forms by

F0 = d∗H0 on U0

Fα = d∗Hα on Uα.

Notice that F0 is indeed uniquely defined as any other H0 will differ by a global harmonic three form, which is then coclosed
and give rise to the same F0. One still needs to check that the 2-forms Fij are the curvature of a connection on Lij. For Fαβ
this is obvious as dFαβ = d(Fα − Fβ) = 0 on Uαβ and the Poincaré lemma gives a primitive to Fαβ which we take to be our
connection on Lαβ .
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Over U0α , there is a unique nontrivial 2 cycle, namely the one generated by the 2-spheres S2 in the normal bundle.
These do bound a 3-dimensional disk D3 in Uα but not in U0α . Indeed any such disk D3 does need to intersect N . Since
dFα0 = d(Fα − F0) = δN , Stokes’ theorem gives

S2
F0α =


D3

dF0α =


D3
δN = 1.

This shows that the 2-forms Fi do define a connection on the gerbe GN . To check that H is its curvature we compute
dF0 = dd∗H0 = H in U0, and dFα = dd∗Hα = H in Uα . �

Remark 4. Hitchin’s construction described above can possibly also be phrased in the language ofHodge sparks, as in section
12 of [5]. For instance, the connection 2-form F0 constructed above can be extended as a current to all of X and that is the
spark of the cycle N (see definition 12.2 in [5]).

Let Y denote the disjoint union of a collection of open sets covering X . Then, the connections on the gerbes GN above
were defined using 2-forms F ∈ Ω2(Y ) satisfying some compatibility conditions, also known as curvings [6]. Given two
open coverings Y1 = {U1

α}α∈I and Y2 = {U2
β}β∈J , we can define a refined open cover

Y12 = {U1
α ∩ U2

β}(α,β)∈I×J .

Then, we can add two connections F 1
∈ Ω2(Y1) and F 2

∈ Ω2(Y2) to define a new one F 12
∈ Ω2(Y12), such that

F 12
|U1
α∩U2

β
= F 1

|U1
α

+ F 2
|U2
β
.

Proceeding inductively, given connections Fi ∈ Ω2(Yi), for i = 1, . . . , k. We define Y1...k, for any k-tuple of open covers, as
well as the sum of the connections F 1...k

∈ Ω2(Y1...k).

Definition 3. Let N = N1 ∪· · ·∪Nk with each Ni as in Proposition 2, andHi ∈ PD[Ni] be 3-forms representing the respective
cohomology classes. Denote the gerbes constructed via Proposition 2 by (GNi , Fi), where the Fi ∈ Ω2(Yi) are connections
on GNi with curvature Hi. Then, we define the gerbe with connection (GN , F) to be given by GN = GN1 ⊗ · · · ⊗ GNk and the
connection F by F 1...k

∈ Ω2(Y1...k).

Notice that the gerbe constructed in the previous Definition 3 has first Chern class c1(GN) = c1(GN1)+ · · · + c1(GNk) =

PD[N]. Its curvature is indeed H = H1 + · · · + Hk.

Lemma 1. In the setup of Definition 3, let all Ni’s be embedded and such that N = N1 ∪ · · · ∪Nk remains embedded. Then, given
H ∈ PD[N] the gerbe with connection (GN , F) from Proposition 2 coincides with the one constructed via Definition 3, for any
choice of Hi ∈ PD[Ni], such that H =

k
i=1 Hi.

Proof. For simplicity we shall only do the case k = 2, the gerbes in question are defined via line bundles on the double
intersections of the open cover given by the sets U1

0 = X\N1, U2
0 = X\N2 and {U1

α}α∈I1 , {U
2
α}α∈I2 such that Ni ⊂ ∪α∈Ii U

i
α ,

for i = 1, 2 and we suppose the U1
α ’s are disjoint from the U2

α ’s. As before, let U0 = X\N and weakly solve the PDE’s for the
following 3-forms (currents)

∆H i
α = Hi, dH i

α = 0,

on each U i
α and

∆H i
0 = Hi − δPi ,

on U i
0 for i = 1, 2. Then, the 2-forms defining the connection are given by

F0 = d∗(H1
0 + H2

0 ), on U0

F 1
α = d∗(H1

α + H2
0 ), on U1

α

F 2
α = d∗(H2

α + H1
0 ), on U2

α .

It follows that dF0 = H1+H2 onU0 and for i = 1, 2 one has dF i
α = H1+H2 on eachU i

α , which shows that the curvature of the
connection on GN1 ⊗ GN2 is H = H1 + H2. To check that the connection does not depend on the splitting H = H1 + H2 take
instead the splitting given by the 3-forms H1 + dω and H2 − dω for some ω ∈ Ω2(X). These are obviously cohomologous to
the initial ones and do add to H . The forms H i

0,H
i
α change by +α,−α, for i = 1, 2 respectively, where α satisfies

dd∗α = dω, dα = 0.

So the forms F i
0 = d∗H i

0 and F i
α = d∗H i

α change by ±d∗α showing that F0 = F 1
0 + F 2

0 do not change. Exactly the same
argument proves that the Fα remain unchanged and therefore so does the connection. �
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3. Proof of the main results

In this section we return to the case when (X, ϕ) is a G2-manifold and denote by ψ = ∗ϕ the calibrating 4-form. The
3-forms in a G2 manifold, pointwise split into G2-irreducible representations as

Λ3
= Λ3

1 ⊕Λ3
7 ⊕Λ3

27,

where the subscripts in the right hand side denote the respective dimension. The respective projections will be denoted by
π1, π7, π27.

Recall from Definition 2 that a gerbe with connection (G, F) is said to be a monopole gerbe if its curvature H ∈ Ω3(X,R)
is the harmonic representative of c1(G) ∈ H3(X,Z) and there is a trivialization {Uα}α∈I and 2-forms Fα satisfying

∗(Fα ∧ ψ) = dφα,

where the φα ’s are real valued functions. It is immediate from the discussion at the end of the previous section that the
monopole gerbes form an Abelian group, which we have denoted byMPic(X, ϕ). The group operation is the tensor product
of the gerbes and addition of the connection, as described at the end of last section (see Definition 3, Lemma 1 and the
discussion preceding these). We shall now turn to the proof of the first main result, Theorem 1. Namely, that associated to
a coassociative submanifold there is a canonical monopole gerbe.

3.1. Proof of Theorem 1

We start by proving an easy but key lemmata.

Lemma 2. Let N be a coassociative submanifold and δN the current it generates, then δN ∧ ϕ = 0.

Proof. An equivalent way to define a coassociative submanifold is to say that ϕ|N = 0. Then for all η ∈ Ω1(X),

δN ∧ ϕ(η) :=


N
η ∧ ϕ = 0. �

Lemma 3. Let (F , φ) be a 2-form and a function on a contractible open set U of a G2-manifold. Then, if π7dF = 0 and
F ∧ ψ = ∗dφ, we have F = d∗G where G is a closed 3-form.

Proof. We write F = ∗(f ∧ ψ) + g for some 1-form f and g ∈ Λ2
14. Then, as F ∧ ψ = ∗dφ, we conclude that f =

dφ
3 and

using table 3 in [7] we compute dF = −
1
7∆(

φ

3 )ϕ + π7dg + π27dg . Moreover, as π7(dF) = 0 by assumption, we conclude
that π7dg = 0.

Now, we compute d ∗ F = ∗(π7dg ∧ ϕ) = 0 and so F is coclosed. As U is contractible we can write F = d∗G′′ on U and
extend G′′ to a 3-form G′ on X , for example by multiplying G′′ by a bump function supported on a slightly larger open set
U ′

⊃ U and letting it vanish on its complement. Then, by de Rham’s theorem G′
= da2 + d∗a4 + a3 for some ai ∈ Ω i with

a3 harmonic. We now redefine G = da2|U , which is therefore closed (in fact exact) and on U

d∗G = d∗da2 = d∗G′
= d∗G′′

= F ,

as we wanted to show. �

We now prove Theorem 1 which we also restate here for convenience.

Theorem 3. Let (X, ϕ) have holonomy strictly equal to G2, N be a connected, embedded, coassociative submanifold. Then, the
gerbe with connection associated with N is a monopole gerbe.

Proof. Let H be the harmonic representative of PD[N] and recall the construction of the connection F on GN . On the open
cover {Ui}i∈{0}∪I it is given by a collection of 2-forms Fi. These are defined such that each Fi = d∗Hi, with each Hi being a
closed 3-form on Ui such that∆H0 = H − δN and∆Hα = H , for α ∈ I .

We shall first work on the open set U0. As X is supposed to have full G2 holonomy, there can be no parallel 1-forms, [8].
This, together with the fact that a G2-manifold is Ricci flat, implies through the Böchner-formula that there are no harmonic
1-forms, and so no harmonic 3-forms of type Λ3

7. Hence, as H is the harmonic representative of PD[N], and the Laplacian
preserves the type decomposition,H has no component inΛ3

7. Moreover, Lemma2 guarantees that δN also has no component
inΛ3

7. Putting this together with∆H0 = H − δN we then have that

∆π7H0 = π7∆H0 = 0.

Again, the hypothesis that g has full G2 holonomy then yields that π7H0 = 0. Then, the equation dH0 = 0 turns into
dπ1(H0) = −dπ27(H0) and if one writes π1(H0) = −aϕ, for some function a, this is

dπ27(H0) = da ∧ ϕ. (3.1)
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Then we compute d∗π27H0 = π7d∗π27H0 +π14d∗π27H0, using that π7d∗π27H0 = −
1
3 ∗ (∗(∗dπ27H0 ∧ϕ)∧ψ) together with

Eq. (3.1) gives

d∗H0 = π14d∗π27H0 −
1
3

∗ (∗(∗dπ27H0 ∧ ϕ) ∧ ψ)− d∗(aϕ)

= π14d∗π27H0 +
4
3

∗ (da ∧ ψ)+ ∗(da ∧ ψ)

= π14d∗π27H0 +
7
3

∗ (da ∧ ψ) ,

where we used that ∗(∗(da ∧ ϕ) ∧ ϕ) = −4da. Now we put F0 = d∗H0, φ = 7a and compute ∗(F0 ∧ ψ). Since Λ2
14 is the

kernel of wedging with ψ and ∗(∗(dφ ∧ ψ) ∧ ψ) = 3dφ, we obtain

∗ (F0 ∧ ψ) = dφ. (3.2)

We now need to define the connection 2-forms for our monopole gerbe on the remaining Uα ’s. Since H is closed we
can locally find, on each Uα , a 2-form F ′

α such that dF ′
α = H . Restricting to each Uα , we shall seek a connection 2-form

Fα = F ′
α + daα such that the monopole equation ∗(Fα ∧ ψ) = dφα holds on Uα for some φα .

To do this we set (aα, φα) = (∗(dbα ∧ ψ),−d∗bα) and solve for bα instead. Using 3d7· = ∗(∗(d · ∧ψ) ∧ ψ) and that
3d∗d7 = d∗d, the monopole equation turns into

− ∗ (F ′

α ∧ ψ) = 3d∗d7bα + dd∗bα = ∆bα.

Moreover, as g is Ricci flat, on 1-forms ∆ = ∇
∗
∇ and so we need to solve ∇

∗
∇bα = − ∗ (Fα ∧ ψ). This can be done by

solving the Dirichlet problem

∇
∗
∇bα = − ∗ (F ′

α ∧ ψ), on Uα
bα|∂U = 0, on ∂Uα.

This follows from minimizing the functional J(u) =

U |∇u|2 + ⟨u, f ⟩, where f = ∗(F ′

α ∧ ψ). To prove it is coercive and
bounded by below we proceed as follows

J(u) =


U

|∇u|2 + ⟨u, f ⟩

≥


U

|∇|u||2 −
ε

2


U

|u|2 −
1
2ε


U

|f |2

≥


cU −

ε

2

 
U

|u|2 −
1
2ε


U

|f |2

where cU > 0 is some constant and ε > 0 is to be chosen small enough to ensure the first term is positive. We also remark
that in the computation above, the first inequality follows from Kato’s and Young’s inequalities, while the second onemakes
use of Poincaré’s inequality, as u has vanishing boundary values. This shows that the functional J is coercive and bounded
by blow, so we can find a solution to the Dirichlet problem above by taking a minimizing sequence of J . Standard elliptic
estimates yield the regularity of the solution bα .

Then set Fα = F ′
α + daα with (aα, φα) = (∗(dbα ∧ ψ),−d∗bα), and it follows by construction that (Fα, φα) satisfy both:

the monopole equation, and dFα = H . Moreover, it follows from Lemma 3 that the connection 2-forms constructed in this
way agree with the one from the construction in Proposition 2. �

In fact, as remarked to the author by an anonymous referee, the second part of the previous proof also proves that given
a harmonic 3-form H on a compact, irreducible G2-manifold, then there is a monopole gerbe whose curvature is H . The
author, does not know whether a gerbe with harmonic curvature, on a compact, irreducible G2-manifold can be written as
a monopole gerbe without changing the connection (up to gauge). If true, this is analogous to the fact that in an irreducible
Calabi–Yau manifold of complex dimension greater than 2, any line bundle with harmonic curvature is holomorphic. A
slightly more general version of this ‘‘integrability’’ theorem is stated as Problem 1.

The second part of the previous proof is, in fact also the key for proving Theorem 2

Proof. We prove that the map MPic(X, ϕ) → H3(X,Z), given by (G, F) → c1(G) is surjective. To do this we start with a
gerbeG and construct a connection F onG satisfying the required conditions so that (G, F) is amonopole gerbe. LetH ∈ c1(G)
be the harmonic representative and {Uα}α∈I be a good open cover of X , i.e. each Uα and Uαβ is contractible.

Then, following the last step in the proof of Theorem 3 we let F ′
α be such that dF ′

α = H . Then, correct each of these
to Fα = F ′

α + daα , with (aα, φα) = (∗(dbα ∧ ψ),−d∗bα), such that Fα ∧ ψ = ∗dφα . As before, this holds if and only if
∇

∗
∇bα = − ∗ (Fα ∧ ψ)which can be solved by standard minimization techniques as in the previous proof. �

Remark 5. Theorem 2 and its proof show that any gerbe with harmonic curvature can be tensored with a flat gerbe so that
the resulting gerbe with connection is a monopole gerbe.
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Proof of Proposition 1

Let p1(X) denote the first Pontryagin class of the tangent bundle of X . If N ⊂ X is a coassociative submanifold, then
TX |N ∼= TN ⊕Λ2

−
(N) and so p1(X)|N = p1(N)+ p1(Λ2

−
(N)). Moreover, if N represents a class α ∈ H3(X,Z), we have

⟨p1(X) ∪ α, [X]⟩ =


N
p1(N)+


N
p1(Λ2

−
(N)). (3.3)

The first term is 3τ and we shall now compute the second. Fix a local orthonormal framing {e0, e1, e2, e3}. Then in this
framing, the curvature of the Levi-Civita connection on N acts via the matrix

R =


0 Ω0

1 Ω0
2 Ω0

3

−Ω0
1 0 Ω1

2 Ω1
3

−Ω0
2 −Ω1

2 0 Ω2
3

−Ω0
3 −Ω1

3 −Ω2
3 0

 ∈ Ω2(N, so(TN)),

whereΩ i
j (X, Y ) = ei(R(X, Y )ej). Using this, the Gauss–Bonnet formula and Chern–Weil theory give

χ =
1

24π22!


ijkl

εijklΩ
i
j ∧Ωk

l =
1

23π2


ijk

εijkΩ
0
i ∧Ω

j
k

=
1

4π2


Ω0

1 ∧Ω2
3 +Ω0

2 ∧Ω3
1 +Ω0

3 ∧Ω1
2


.

p1(N) = −
1

8π2
tr(R ∧ R)

=
1

4π2


Ω0

1 ∧Ω0
1 +Ω0

2 ∧Ω0
2 +Ω0

3 ∧Ω0
3 +Ω1

2 ∧Ω1
2 +Ω1

3 ∧Ω1
3 +Ω2

3 ∧Ω2
3


.

Now let ω1 = e01 − e23, ω2 = e02 − e31, ω3 = e03 − e12 be a local basis ofΛ2
−
. The curvature of the induced connection on

Λ2
−
acts on this basis by

RΛ2
−

=

 0 −(Ω0
3 −Ω1

2 ) Ω0
2 +Ω1

3
Ω0

3 −Ω1
2 0 −(Ω0

1 −Ω2
3 )

−(Ω0
2 +Ω1

3 ) Ω0
1 −Ω2

3 0

 ∈ Ω2(N, so(Λ2
−
)).

Then, we compute

p1(Λ2
−
N) = −

1
8π2

tr(RΛ2
−

∧ RΛ2
−
)

=
1

4π2


Ω0

1 ∧Ω0
1 +Ω0

2 ∧Ω0
2 +Ω0

3 ∧Ω0
3 +Ω1

2 ∧Ω1
2 +Ω1

3 ∧Ω1
3 +Ω2

3 ∧Ω2
3


−

1
2π2


Ω0

1 ∧Ω2
3 +Ω0

2 ∧Ω3
1 +Ω0

3 ∧Ω1
2


= p1(N)− 2χ.

Hence, inserting this into equality (3.3) and using the signature theorem we have
X
p1(X) ∪ α = ⟨(2p1(N)− 2χ), [N]⟩ = 6τ − 2χ (3.4)

as we wanted to prove.

Remark 6. 1. Using our conventions for the 3-form ϕ, see Remark 2, we have p1(X) ∪ [ϕ] > 0 for any compact nonflat
G2-manifold. To see this we notice that p1(X) ∪ ϕ = −

1
8π2 tr(FR ∧ FR) ∧ ϕ. Moreover, as X has holonomy G2, FR takes

values inΛ2
14

∼= g2 by the Ambrose–Singer theorem. Then, using our conventions we have FR ∧ ϕ = ∗FR, so that

⟨p1(X) ∪ ϕ, [X]⟩ = −


X

1
8π2

tr(FR ∧ ∗FR) = ∥FR∥2
L2 > 0,

as (X, ϕ) is not flat.
Using the other convention for ϕ we have FR ∧ ϕ = − ∗ FR and so this sign gets reversed. In any case, there do exist
classes α+, α−

∈ H3(X,R) such that p1(X) ∪ α+ > 0 and p1(X) ∪ α− < 0.
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2. In [9], corollary 4−3, McLean observed a particular case of this equality. Namely, the torus T7 has trivial tangent bundle,
hence p1(T7) = 0, and any coassociative submanifold of T7 must have τ = χ/3. For instance N = T4

× 0 ⊂ T7 has
τ = 0 = χ , which does satisfy such equality.

3. On a G2-manifold there is one other class of very interesting submanifolds known as associatives. These are defined
by requiring that the restriction of ϕ to them agrees with the volume form of the induced metric. Then, there are no
associative submanifolds M of a compact, irreducible G2-manifold (X, ϕ) representing the class p1(X). Otherwise we
would have vol(M) =


M ϕ =


X p1(X) ∪ [ϕ] < 0, which is clearly impossible. If one uses the other convention for ϕ,

then the same argument shows that there are no associatives representing the class−p1(X). I was informed by Henrique
Sá Earp that in joint work with Johannes Nordström they have constructed associative submanifolds representing the
negative of such classes, i.e. −p1(X) in my convention, p1(X) in theirs.

4. A toy example

In this section we explore the construction above in a case when the holonomy representation is actually reducible
and in order to adapt the definition of monopole gerbe to this case we require that π7(H) = 0, where H is the harmonic
curvature. Let X = S1 × M6 with (M, ω,Ω) being an irreducible Calabi–Yau with Kähler form ω and holomorphic volume
formΩ = Ω1 + iΩ2. In this case the G2-structure is

ϕ = dθ ∧ ω −Ω1, ψ = −dθ ∧Ω2 +
ω2

2
,

where θ is a periodic coordinate on S1. From, the last of these formulas it is easy to identify two types of coassociative
submanifolds of S1 × M . Namely, those calibrated by either −dθ ∧ Ω2, or ω

2

2 . These are of the form S1 × SL3 and p × D4,
where SL, D and p are respectively a special Lagrangian submanifold ofM , a divisor inM , and a point in S1.

In order to analyze some features of our construction in this case we need to explain how to get a complex line bundle
π∗G over X from a gerbe G over X . This is most naturally seen by regarding G as a line bundle over the loop space L(M × S1)
as in [1] and chapter 6 in [10]. Each element of L(X) is a map γ : S1 → X . As S1 is 1-dimensional, the pulled back gerbe γ ∗G
has a flat trivialization given by a flat line bundle Lγ → S1, and trivializations whose difference is a flat bundle with trivial
holonomy are regarded as equivalent. Then, the moduli space of flat connections on S1, i.e. H1(S1,Z) = S1 acts on these
trivializations by tensoring with a flat connection. This shows that the space

P = {(γ , Lγ ) | γ ∈ L(X) and Lγ is a trivialization of γ ∗G},

together with the S1 action described above is a circle bundle over L(X). Now we consider the map

M
Γ
−→ L(X), p → γp, (4.1)

where γp : S1 → X is the constant loop at p, i.e. γp(θ) = (θ, p) for all θ ∈ S1.

Definition 4. We define π∗G to be the complex line bundle associated with Γ ∗P over X . When, X = S1 × M6 we shall also
denote by π∗G the pullback of this line bundle toM .

Proposition 3. Let D4
⊂ M be a 4-dimensional submanifold andG the gerbe associatedwith p×D4

⊂ S1×M. If G is amonopole
gerbe, then D is a divisor. In particular π∗G comes equipped with an HYM connection.

Proof. Let H be the harmonic representative of N = p × D. As the Poincaré dual of N is [dθ ] ∪ PD[D], this is of the form
H = dθ ∧ h where h ∈ Ω2(M) is the harmonic representative of PD[D]. Similarly δM = δ(θ − pt)dθ ∧ δD and we solve the
equation

∆H0 = (h − δDδ(θ − pt)) ∧ dθ, (4.2)

which implies dH0 = 0. Using the splittingΛ3X = Λ3M ⊕ (Λ1S1 ⊗Λ2M)we write H0 = g(θ)+ dθ ∧ f (θ) and compute

dM f =
∂g
∂θ

(4.3)

dMg = 0

∆H0 = dθ ∧


∆M f −

∂2f
∂θ2


+∆Mg −

∂2g
∂θ2

. (4.4)

So the component of Eq. (4.2) in Λ3M turns into ∆Mg −
∂2g
∂θ2

= 0. Separation of variables plus periodicity in θ implies that
g must be constant (in θ ) and gM-harmonic. Then, Eq. (4.3) turns into dM f = 0.
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Now define the map π∗ : Ω∗+1(M × S1) → Ω∗(M), given by π∗(ω) = 0 and π∗(dθ ∧ ω) =

S1 dθ ∧ ω, for ω ∈ ΛkM .

Let h0 = π∗H0, then applying π∗ to Eqs. (4.2)–(4.4) leads to

∆f0 = h0 − δD, dM f0 = 0,

where f0 =

S1 f ∈ Ω2(M). So in order to prove that D is a divisor, i.e. the current δD is of type (1, 1) we just need to show

that ∆f0 is of type (1, 1), as h0 certainly is as it is harmonic and H2,0(M) = 0 for any irreducible Calabi–Yau. Note that
such statement does not follow neither from the Kähler identities, neither from the ∂∂-lemma, as we do not know the type
decomposition of f0 neither whether it is exact. However, if G is a monopole gerbe, then d∗H0 ∧ ψ = ∗dφ where φ is the
function such that π1(H0) = φ(dθ ∧ ω −Ω1). Then, this equation yields

dθ ∧


∂ f
∂θ

∧Ω2 − d∗

M f ∧
ω2

2


−
∂ f
∂θ

∧
ω2

2
= ∗M

∂φ

∂θ
− dθ ∧ ∗M dMφ.

Applying π∗ to it and using the fundamental theorem of calculus gives d∗

M f0 ∧
ω2

2 = −∗M dMΦ , where Φ =

S1 φ. This

equation is easily seen to be equivalent to d∗

M f0 = IdMΦ and so

∆f0 = 2i∂∂Φ,

which is clearly of type (1, 1) and so D is a divisor. �

5. Some problems and questions

We now state some directions and conjectures for further research along these lines. The first of these goes back to
Hitchin’s work on the moduli of special Lagrangian submanifolds, [1].

1. In order to understand what is the image of the map m one could hope to proceed as in the case of line bundles. In our
setting this would be something along the following lines: start with a gerbe with connection (G, F). Then, construct a
rank 3-real vector bundle V such that the vanishing locus of a generic section lies in the Poincaré dual of c1(G). Finally,
consider sections of V satisfying a partial differential equation, such that their vanishing locus is coassociative.

The first steps in this construction would give a notion of a ‘‘section’’ of a gerbe. I am unaware if something like this
already exists in the literature.

2. The mapMPic(X, ϕ) → H3(X,Z), from Theorem 2 has a kernel which can be used to define an analogue of the Jacobian

CDiv(X, ϕ)
m ↓

Jac(X, ϕ) → MPic(X, ϕ)
c1
−→ H3(X,Z).

In this way MJac(X, ϕ) ⊆ H2(X,Z) and this can be used to define linear equivalence of coassociatives. Namely, two
coassociatives N1 and N2 are linearly equivalent if and only if the holonomies of the flat monopole gerbe associated with
N1 − N2 vanish.

3. Given a G2-manifold (X, ϕ), we can say it is polarizable (or prequantizable) if [ϕ] ∈ H3(X,Z), i.e. is integral. In this case,
by fixing a good open cover {Ui}i∈I , we can define a monopole gerbe (G, F)with curvature H . This is somewhat similar in
spirit to a polarized complex manifold, or a prequantizable symplectic manifold. It remains to see what can we do with
this G2-version.

4. In the case of a complex manifold and a complex line bundle L, the standard integrability theorem guarantees that if A is
a connection on Lwhose curvature has no (0, 2) component, then the bundle is holomorphic, i.e. there are trivializations
where the (0, 1)-components of the connection forms vanish. We conjecture that the following analogue of this works
for closed G2-structures.

Problem 1. Let U ⊂ R7 be a contractible precompact set, equipped with a closed G2-structure ϕ and H be a closed 3-form
on U with H7 = 0. Is there a 2-form F and a function φ, such that H = dF and F ∧ ψ = ∗dφ?
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