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a b s t r a c t

In Biswas and Dumitrescu (2018), we introduced and studied the concept of holomorphic
branched Cartan geometry. We define here a foliated version of this notion; this is done
in terms of Atiyah bundle. We show that any complex compact manifold of algebraic
dimension d admits, away from a closed analytic subset of positive codimension, a non-
singular holomorphic foliation of complex codimension d endowed with a transversely
flat branched complex projective geometry (equivalently, aCPd-geometry). We also prove
that transversely branched holomorphic Cartan geometries on compact complex projective
rationally connected varieties and on compact simply connected Calabi–Yau manifolds
are always flat (consequently, they are defined by holomorphic maps into homogeneous
spaces).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the recent article [1], the authors introduced and studied the concept of branched Cartan geometry in the complex
setting. This concept generalizes to higher dimension the notion of branched (flat) complex projective structure on a
Riemann surface introduced and studied byMandelbaum in [2,3]. This new framework ismuchmore flexible than that of the
usual holomorphic Cartan geometries; for example, all compact complex projective manifolds admit branched holomorphic
projective structures.

In this paperwe deal with a foliated version of branched Cartan geometry.More precisely, we give a definition, in terms of
Atiyah bundle, of a branchedholomorphic Cartan geometry transverse to a holomorphic foliation. There is a natural curvature
tensor which vanishes exactly when the transversely branched Cartan geometry is flat. When this happens, away from the
branching divisor, the foliation is transverselymodeled on a homogeneous space in the classical sense (see, for example, [4]).
The local coordinateswith values in the homogeneous space extend through the branching divisor as a ramified holomorphic
map (the branching divisor correspond to the ramification set). It should bementioned that transversely holomorphic affine
as well as projective structures for (complex) codimension one foliations are studied extensively (see [5–7] and references
therein); such structures are automatically flat.

In Section 3, we use the formalism of Atiyah bundle, to deduce, in the flat case, the existence of a developing map which
is a holomorphic map ρ from the universal cover of the foliated manifold into the homogeneous space; the differential dρ
of ρ is surjective on an open dense set of the universal cover, and the foliation on it is given by the kernel of dρ. We also
show that any complex compact manifold of algebraic dimension d admits, away from a closed analytic subset of positive
codimension, a nonsingular holomorphic foliation of complex codimension d, endowed with a transversely flat branched
complex projective geometry (which is same as a CPd-geometry).
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In Section 4we use characteristic classes to prove a criterion for a holomorphic foliation to admit a branched transversely
Cartan geometry. In particular, the criterion asserts that, on compact Kähler manifolds, foliations F with strictly negative
conormal bundle do not admit any branched transversely holomorphic Cartan geometry whose model is the complex affine
space (which is same as a holomorphic affine connection).

In Section 5 we consider holomorphic foliations F on two classes of special manifolds X̂: projective rationally connected
manifolds, and simply connected Calabi–Yau manifolds. In both cases, we show that all transversely branched holomorphic
Cartan geometries (on the open dense set X of X̂ where the foliation is nonsingular) are necessarily flat and come from a
holomorphic map into a homogeneous space with surjective differential at the general point.

2. Foliation and transversely branched Cartan geometry

2.1. Partial connection along a foliation

Let X be a connected complex manifold equipped with a nonsingular holomorphic foliation F; so, F is a holomorphic
subbundle of the holomorphic tangent bundle TX such that the sheaf of holomorphic sections of F is closed under the Lie
bracket operation of vector fields. Let

NF := TX/F −→ X

be the normal bundle to the foliation. Let

q : TX −→ NF (2.1)

be the quotient map. There is a natural flat holomorphic partial connection ∇
F on NF in the direction of F . We will briefly

recall the construction of ∇F . Given locally defined holomorphic sections s and t of F andNF respectively, choose a locally
defined holomorphic section t̃ of TX that projects to t . Now define

∇
F
s t = q([s, t̃]) ,

where q is the projection in (2.1). it is easy to see that this is independent of the choice of the lift t̃ of t . Indeed, if t̂ is another
lift of t , then [s, t̃ − t̂] is a section of F , because t̃ − t̂ is a section of F . From the Jacobi identity for Lie bracket it follows that
the curvature of ∇F vanishes identically.

We will define partial connections in a more general context.
Let H be a complex Lie group. Its Lie algebra will be denoted by h. Let

p : EH −→ X (2.2)

be a holomorphic principal H-bundle on X . This means that EH is a complex manifold equipped with a holomorphic action

p′
: EH × H −→ EH

of H , and p is a holomorphic surjective submersion, such that

• p ◦ p′
= p ◦ pE , where pE : EH × H −→ EH is the natural projection, and

• the map pE × p′
: EH × H −→ EH ×X EH is an isomorphism; note that the first condition ensures that the image of

pE × p′ is contained in EH ×X EH ⊂ EH × EH .

Let

dp : TEH −→ p∗TX (2.3)

be the differential of the map p in (2.2). This homomorphism dp is surjective because p is a submersion. The kernel of dp
is identified with the trivial vector bundle EH × h using the action of H on EH (equivalently, by the Maurer–Cartan form).
Consider the action of H on TEH given by the action of H on EH . It preserves the sub-bundle kernel(dp). Define the quotient

ad(EH ) := kernel(dp)/H −→ X .

This ad(EH ) is a holomorphic vector bundle over X . In fact, it is identified with the vector bundle EH ×
H h associated to

EH for the adjoint action of H on h; this identification is given by the above identification of kernel(dp) with EH × h. This
vector bundle ad(EH ) is known as the adjoint vector bundle for EH . Since the adjoint action of H on h preserves its Lie algebra
structure, for any x ∈ X , the fiber ad(EH )x is a Lie algebra isomorphic to h. In fact, ad(EH )x is identified with h uniquely up to
a conjugation.

The direct image p∗TEH is equipped with an action of H given by the action of H on TEH . Note that p∗TEH is a locally free
quasi-coherent analytic sheaf on X . Its H-invariant part

(p∗TEH )H ⊂ p∗TEH
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is a locally free coherent analytic sheaf on X . The corresponding holomorphic vector bundle is denoted by At(EH ); it is known
as the Atiyah bundle for EH [8]. It is straight-forward check that the quotient

(TEH )/H −→ X

is identified with At(EH ). Consider the short exact sequence of holomorphic vector bundles on EH

0 −→ kernel(dp) −→ TEH
dp

−→ p∗TX −→ 0 .

Taking its quotient by H , we get the following short exact sequence of vector bundles on X

0 −→ ad(EH )
ι′′

−→ At(EH )
d̂p

−→ TX −→ 0 , (2.4)

where d̂p is constructed from dp; this is known as the Atiyah exact sequence for EH . Now define the subbundle

AtF (EH ) := (̂dp)−1(F) ⊂ At(EH ) . (2.5)

So from (2.4) we get the short exact sequence

0 −→ ad(EH ) −→ AtF (EH )
d′p

−→ F −→ 0 , (2.6)

where d′p is the restriction of d̂p in (2.4) to the subbundle AtF (EH ).
A partial holomorphic connection on EH in the direction of F is a holomorphic homomorphism

θ : F −→ AtF (EH )

such that d′p ◦ θ = IdF , where d′p is the homomorphism in (2.6). Giving such a homomorphism θ is equivalent to giving a
homomorphismϖ : AtF (EH ) −→ ad(EH ) such that the composition

ad(EH ) ↪→ AtF (EH )
ϖ

−→ ad(EH )

is the identity map of ad(EH ), where the inclusion of ad(EH ) in AtF (EH ) is the injective homomorphism in (2.6). Indeed, the
homomorphismsϖ and θ uniquely determine each other by the condition that the image of θ is the kernel ofϖ .

Given a partial connection θ : F −→ AtF (EH ), and any two locally defined holomorphic sections s1 and s2 ofF , consider
the locally defined sectionϖ ([θ (s1), θ (s2)]) of ad(EH ) (since θ (s1) and θ (s2) areH-invariant vector fields on EH , the Lie bracket
[θ (s1), θ (s2)] is also an H-invariant vector field). This defines an OX -linear homomorphism

K(θ ) ∈ H0(X, Hom(
⋀2

F, ad(EH ))) = H0(X, ad(EH ) ⊗

⋀2
F∗) ,

which is called the curvature of the connection θ . The connection θ is called flat if K(θ ) vanishes identically.
A partial connection on EH induces a partial connection on every bundle associated to EH . In particular, a partial connection

on EH induces a partial connection on the adjoint bundle ad(EH ).
Since AtF (EH ) is a subbundle of At(EH ), any partial connection θ : F −→ AtF (EH ) produces a homomorphism

F −→ At(EH ); this homomorphism will be denoted by θ ′. Note that from (2.4) we have an exact sequence

0 −→ ad(EH )
ι′

−→ At(EH )/θ ′(F)
d̂p

−→ TX/F = NF −→ 0 , (2.7)

where ι′ is given by ι′′ in (2.4).

Lemma 2.1. Let θ be a flat partial connection on EH . Then θ produces a flat partial connection on At(EH )/θ ′(F) that satisfies the
condition that the homomorphisms in the exact sequence (2.7) are connection preserving.

Proof. The image of θ defines an H-invariant holomorphic foliation on EH ; let

F̃ ⊂ TEH (2.8)

be this foliation. Note that the differential dp in (2.3) produces an isomorphism of F̃ with p∗F . The natural connection on the
normal bundle TEH /̃F in the direction of F̃ is evidently H-invariant (recall that At(EH ) = (TEH )/H). On the other hand, we
have (TEH /̃F )/H = At(EH )/θ ′(F). Therefore, the above connection on TEH /̃F in the direction of F̃ descends to a flat partial
connection on At(EH )/θ ′(F) in the direction on F .

Let s be a holomorphic section ofF defined on an open subset U ⊂ X . Let s′ be the unique section of F̃ over p−1(U) ⊂ EH
such that dp(s′) = s. Let t be a holomorphic section of kernel(dp) ⊂ TEH over p−1(U). Then the Lie bracket [s′, t] has the
property that dp([s′, t]) = 0,meaning [s′, t] is a section of kernel(dp). Since ad(EH ) = kernel(dp)/H , it now follows that the
inclusion of ad(EH ) in At(EH )/θ ′(F) in (2.7) preserves the partial connections on ad(EH ) and At(EH )/θ ′(F) in the direction of
F . Since [s′, t] is a section of kernel(dp), it also follows that the projection d̂p in (2.7) is also partial connection preserving. □
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2.2. Transversely branched Cartan geometry

Let G be a connected complex Lie group and H ⊂ G a closed complex Lie subgroup. The Lie algebra of G will be denoted
by g. As in (2.2), EH is a holomorphic principal H-bundle on X . Let

EG = EH ×
H G −→ X (2.9)

be the principal G-bundle on X obtained by extending the structure group of EH using the inclusion of H in G. The inclusion
of h in g produces a fiber-wise injective homomorphism of Lie algebras

ι : ad(EH ) −→ ad(EG) , (2.10)

where ad(EG) = EG ×
G g is the adjoint bundle for EG. Let θ be a flat partial connection on EH in the direction of F . So θ

induces flat partial connections on the associated bundles EG, ad(EH ) and ad(EG).
A transversely branched holomorphic Cartan geometry of type (G, H) on the foliated manifold (X, F) is

• a holomorphic principal H-bundle EH on X equipped with a flat partial connection θ , and
• a holomorphic homomorphism

β : At(EH )/θ ′(F) −→ ad(EG) , (2.11)

such that the following three conditions hold:

(1) β is partial connection preserving,
(2) β is an isomorphism over a nonempty open subset of X , and
(3) the following diagram is commutative:

0 −→ ad(EH )
ι′

−→ At(EH )/θ ′(F) −→ NF −→ 0
∥

⏐⏐↓β ⏐⏐↓β
0 −→ ad(EH )

ι
−→ ad(EG) −→ ad(EG)/ad(EH ) −→ 0

(2.12)

where the top exact sequence is the one in (2.7), and ι is the homomorphism in (2.10).
From the commutativity of (2.12) it follows immediately that the homomorphism β : NF −→ ad(EG)/ad(EH ) in (2.12)

is an isomorphism over a point x ∈ X if and only if β(x) is an isomorphism.
Let n be the complex dimension of g. Consider the homomorphism of nth exterior products⋀n

β :

⋀n
(At(EH )/θ ′(F)) −→

⋀n
ad(EG)

induced by β . The homomorphism β fails to be an isomorphism precisely over the divisor of the section
⋀n
β of the line

bundle Hom(
⋀n(At(EH )/θ ′(F)),

⋀nad(EG)). This divisor div(
⋀n
β) will be called the branching divisor for ((EH , θ ), β). We

will call ((EH , θ ), β) a holomorphic Cartan geometry if β is an isomorphism over X .
Take a holomorphic principal H-bundle EH on X equipped with a flat partial connection θ in the direction of F . Giving a

homomorphism β as in (2.11) satisfying the above conditions is equivalent to giving a holomorphic g-valued one-form ω on
EH satisfying the following conditions:

(1) ω is H-equivariant for the adjoint action of H on g,
(2) ω vanishes on the foliation F̃ ⊂ TEH in (2.8) given by the image of θ ,
(3) the resulting homomorphism ω : (TEH )/̃F −→ EH × g is an isomorphism over a nonempty open subset of EH , and
(4) the restriction of ω to any fiber of p (see (2.2)) coincides with the Maurer–Cartan form for the action of H on the fiber.

To see that the two descriptions of a transversely branched holomorphic Cartan geometry are equivalent, first recall
that p∗At(EH ) = TEH , and the pullback of p∗ad(EG) is identified with the trivial vector bundle EH × g −→ EH . Given a
homomorphism β : At(EH )/θ ′(F) −→ ad(EG) that satisfying the above conditions, the composition

TEH = p∗At(EH ) −→ p∗(At(EH )/θ ′(F))
p∗β
−→ p∗ad(EG) = EH × g

defines a holomorphic g-valued one-formω on EH that satisfies the above conditions. Conversely, any holomorphic g-valued
one-form ω on EH that satisfying the above conditions, produces a homomorphism

(TEH )/̃F −→ EH × g

because it vanishes on F̃ . This homomorphism is H-equivariant, so descends to a homomorphism

At(EH )/θ ′(F) = ((TEH )/̃F )/H −→ (EH × g)/H = ad(EG)

over X . This descended homomorphism satisfies the conditions needed to define a transversely branched holomorphic
Cartan geometry.

If F is the trivial foliation (by points) then the previous definition is exactly that of a branched Cartan geometry on X , as
given in [1].
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3. Connection and developing map

3.1. Holomorphic connection on EG

Let ((EH , θ ), β) be a transversely branched Cartan geometry of type (G, H) on the foliatedmanifold (X, F). Wewill show
that this data produces a holomorphic connection on the principal G-bundle EG defined in (2.9).

Consider the homomorphism

ad(EH ) −→ ad(EG) ⊕ At(EH ) , v ↦−→ (ι(v), −ι′′(v)) (3.1)

(see (2.10) and (2.4) for ι and ι′′ respectively). The corresponding quotient (ad(EG) ⊕ At(EH ))/ad(EH ) is identified with the
Atiyah bundle At(EG). The inclusion of ad(EG) in At(EG) as in (2.4) is given by the inclusion ad(EG) ↪→ ad(EG) ⊕ At(EH ),
w ↦−→ (w, 0), while the projection At(EG) −→ TX is given by the composition

At(EG) ↪→ ad(EG) ⊕ At(EH )
(0,̂dp)
−→ TX ,

where d̂p is the projection in (2.4).
Consider the subbundle θ ′(F) ⊂ At(EH ) in (2.7). The composition

At(EH ) −→ At(EH )/θ ′(F)
β

−→ ad(EG) ,

where the first homomorphism is the quotient map, will be denoted by β ′. The homomorphism

ad(EG) ⊕ At(EH ) −→ ad(EG) , (v, w) ↦−→ v + β ′(w) (3.2)

vanishes on the image of ad(EH ) by the map in (3.1). Therefore, the homomorphism in (3.2) produces a homomorphism

ϕ : At(EG) = (ad(EG) ⊕ At(EH ))/ad(EH ) −→ ad(EG) . (3.3)

The composition

ad(EG) ↪→ At(EG)
ϕ

−→ ad(EG)

clearly coincideswith the identitymap of ad(EG). Henceϕ defines a holomorphic connection on the principalG-bundle EG [8].
Note that θ is not directly used in the construction of the homomorphism ϕ. Let

Curv(ϕ) ∈ H0(X, ad(EG) ⊗Ω2
X )

be the curvature of the connection ϕ.

Lemma 3.1. The curvature Curv(ϕ) lies in the image of the homomorphism

H0(X, ad(EG) ⊗

⋀2
N ∗

F ) ↪→ H0(X, ad(EG) ⊗Ω2
X )

given by the inclusion q∗
: N ∗

F ↪→ Ω1
X (the dual of the projection in (2.1)).

Proof. Let θ̃ be the partial connection on EG induced by the partial connection θ on EH . Note that θ̃ is flat because θ is flat.
Since the homomorphism β in (2.11) is partial connection preserving, it follows that the restriction of the connection ϕ in
the direction of F coincides with θ̃ . Hence the restriction of ϕ to F is flat.

In fact, since β is connection preserving, the contraction of Curv(ϕ) by any tangent vector of TX lying in F vanishes. This
implies that Curv(ϕ) is actually a section of ad(EG) ⊗

⋀2N ∗
F . □

The transversely branched Cartan geometry ((EH , θ ), β) will be called flat if the curvature Curv(ϕ) vanishes identically.

3.2. The developing map

Assume that ((EH , θ ), β) is flat and X is simply connected. Fix a point x0 ∈ X and a point z0 ∈ (EH )x0 in the fiber of EH
over x0. Using the flat connection ϕ on EG and the trivialization of (EG)x0 given by z0, the principal G-bundle EG gets identified
with X × G. Using this identification, the inclusion of EH in EG produces a holomorphic map

ρ : X −→ G/H . (3.4)

If the base point z0 is replaced by z0h ∈ (EH )x0 , where h ∈ H , then the map ρ in (3.4) gets replaced by the composition

X
ρ

−→ G/H
y↦→hy
−→ G/H .

The map ρ will be called a developing map for ((EH , θ ), β).
The differential of ρ is surjective outside the branching divisor for ((EH , θ ), β). Indeed, the differential dρ : TX −→

ρ∗T (G/H) of ρ is given by the homomorphism β in (2.12). It was noted earlier that β fails to be an isomorphism exactly over
the branching divisor for ((EH , θ ), β).
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Note that ρ is a constant map when restricted to a connected component of a leaf for F , because the connection ϕ
restricted to such a connected component is induced by a connection on EH (it is induced by the partial connection θ on
EH ). In particular, ρ is a constant map if there is a dense leaf for F . In that case, rank(NF ) = dim g − dim h = 0, so X is the
unique leaf.

If X is not simply connected, fix a base point x0 ∈ X , and let ψ : X̃ −→ X be the corresponding universal cover.
Considers the pull-back F̃ of the foliation F , as well as the pull-back of the transversely branched flat Cartan geometry
((EH , θ ), β), to X̃ using ψ . Then the developing map of the transversely flat Cartan geometry on (̃X, F̃) is a holomorphic
map ρ : X̃ −→ G/H (as before, we need to fix a point in (ψ∗EH )x′0 , where x′

0 ∈ X̃ is the base point), which is a submersion
away from the inverse image, under ψ , of the branching divisor). Moreover, the monodromy of the flat connection on EG
produces a group homomorphism (called monodromy homomorphism) from the fundamental group π1(X, x0) of X into G,
and ρ must be equivariant with respect to the action of π1(X, x0) by deck-transformation on X̃ and through the image of the
monodromy morphism on G/H . The reader will find more details about this construction in [4].

3.3. Fibrations over a homogeneous space

The standard (flat) Cartan geometry on the homogeneous space X = G/H is given by the following tautological
construction.

Let FH be the holomorphic principal H-bundle on X defined by the quotient map G −→ G/H (we use the notation
FH instead of EH because it is a special case which will play a role later). Identify the Lie algebra g with the Lie algebra of
right-invariant vector fields on G. This produces an isomorphism

βG,H : At(FH ) −→ ad(FG) (3.5)

and hence a Cartan geometry of type G/H on X (the foliation on G/H (leaves are points) is trivial and there is no branching
divisor).

The principal G-bundle

FG := FH ×
H G −→ X = G/H ,

obtained by extending the structure group of EH using the inclusion of H in G, is canonically identified with the trivial
principal G-bundle X × G. To see this, consider the map

G × G −→ G × G , (g1, g2) ↦−→ (g1, g1g2) . (3.6)

Note that EG is the quotient of G×Gwhere any (g1h, g2) is identified with (g1, g2), where g1, g2 ∈ G and h ∈ H . Therefore,
the map in (3.6) produces an isomorphism of EG with X × G. The connection on FG given by the above Cartan geometry of
type G/H on X = G/H is the trivial connection on X × G. In particular, the Cartan geometry of type G/H on X is flat.

The above holomorphic g-valued 1-form on G = FH will be denoted by βG,H .
Let X be a connected complex manifold and

γ : X −→ G/H

a holomorphic map such that the differential

dγ : TX −→ T (G/H)

is surjective over a nonempty subset of X .
Consider the foliation on X given by the kernel of dγ . It is a singular holomorphic foliation, which is regular on the dense

open set of X where the homomorphism dγ is surjective. It extends to a regular holomorphic foliation

F ⊂ TX ′ (3.7)

on an open subset X ′ of X of complex codimension at least two (containing the open set where dγ is surjective).
Set EH to be the pullback γ ∗FH .
Note that we have a holomorphic map η : EH −→ FH which is H-equivariant and fits in the commutative diagram

EH
η

−→ FH⏐⏐↓ ⏐⏐↓
X

γ
−→ G/H

Notice that, by construction, the H-bundle EH is trivial along the leaves of F and hence it inherits a flat partial connection
θ along the leafs of the foliation F constructed in (3.7). Let

θ ′
: F −→ At(EH ) = At(γ ∗FH ) (3.8)

be the homomorphism giving this partial connection.
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We will show that (EH , η∗βG,H ) defines a transversely holomorphic branched flat Cartan geometry of type G/H on the
foliated manifold (X ′, F), where X ′

⊂ X is the dense open subset introduced earlier. It is branched over points x ∈ X ′

where dγ (x) is not surjective.
To describe the above branchedCartan geometry in terms of theAtiyah bundle, first note that At(EH ) = At(γ ∗FH ) coincides

with the subbundle of the vector bundle γ ∗At(FH ) ⊕ TX given by the kernel of the homomorphism

γ ∗At(FH ) ⊕ TX −→ γ ∗T (G/H) , (v, w) ↦−→ γ ∗pG,H (v′) − dγ (w) ,

where pG,H : At(FH ) −→ T (G/H) is the natural projection (see (2.4)), while v′ is the image of v under the natural map
γ ∗At(FH ) −→ At(FH ), and

dγ : TX −→ γ ∗T (G/H)

is the differential of γ .
Notice that the restriction of the homomorphism

γ ∗At(FH ) ⊕ TX −→ γ ∗ad(FG) , (a, b) ↦−→ γ ∗βG,H (a)

(see (3.5) for βG,H ) to At(γ ∗FH ) ⊂ γ ∗At(FH ) ⊕ TX is a homomorphism

At(γ ∗FH ) −→ ad(γ ∗FG) = γ ∗ad(FG) = ad(EG) ,

which vanishes on θ ′(F), where θ ′ is constructed in (3.8).
It defines a transversely branched holomorphic Cartan geometry of type G/H on (X ′,F).
The divisor of X ′ over which the above branched transversely Cartan geometry of type G/H on X ′ fails to be a Cartan

geometry coincides with the divisor over which the differential dγ fails to be surjective.
It was observed earlier that the model Cartan geometry defined by βG,H in (3.5) is flat. As a consequence of it, the above

branched transversely Cartan geometry of type G/H on X ′ is flat.
The developing map for this flat branched Cartan geometry on X ′, is the map γ itself restricted to X ′.
The following proposition is proved similarly.

Proposition 3.2. Let X be connected complex manifold, and let M be a complex manifold endowed with a holomorphic Cartan
geometry of type (G,H). Suppose that there exists a holomorphic map f : X −→ M such that the differential df is surjective
on an open dense subset of X. Then the kernel of df defines a holomorphic foliation F on an open dense subset X ′ of X of complex
codimension at least two. Moreover F admits a transversely branched holomorphic Cartan geometry of type (G,H), which is flat
if and only if the Cartan geometry on M is flat.

Proof. The proof is the same as above if one considers, instead of γ ∗FH and γ ∗βG,H , the pull back of the Cartan geometry of
M through f . □

3.4. Transversely affine and transversely projective geometry

Let us recall two standard models G/H which are of particular interest: the complex affine and the complex projective
geometries.

Consider the semi-direct product Cd ⋊ GL(d,C) for the standard action of GL(d,C) on Cd. This group Cd ⋊ GL(d,C) is
identified with the group of all affine transformations of Cd. Set H = GL(d,C) and G = Cd ⋊ GL(d,C).

By definition, a given regular holomorphic foliation F of complex codimension d admits a transversely (branched)
holomorphic affine connection if it admits a transversely (branched) holomorphic Cartan geometry of type G/H . When the
transversely Cartan geometry is flat, we say that F admits a transversely (branched) complex affine geometry.

We also recall that a holomorphic foliation F of complex codimension d admits a transversely (branched) holomorphic
projective connection if it admits a (branched) holomorphic Cartan geometry of type PGL(d + 1,C)/Q , where Q ⊂ PGL(d +

1,C) is the maximal parabolic subgroup that fixes a given point for the standard action of PGL(d+1,C) onCPd (the space of
lines in Cd+1). If the transversely Cartan geometry is flat, we say that F admits a transversely (branched) complex projective
geometry.

We have seen in Section 3.3 that any holomorphicmap X −→ CPd which is a submersion on an open dense set gives rise
to a holomorphic foliation with transversely branched complex projective geometry. Conversely, we have seen in Section
3.2 that on simply connected manifolds, any foliation with transversely branched complex projective geometry is given by
a holomorphic map X −→ CPd which is a submersion on an open dense set.

Consider now a complex manifold X of algebraic dimension a(X) = d. Recall that the algebraic dimension is the degree
of transcendence over C of the field M(X) of meromorphic functions on X . It is known that a(X) is at most the complex
dimension of X with equality if and only if X is birational to a complex projective manifold (see [9]), known as Moishezon
manifolds.
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Proposition 3.3. Suppose that X is a compact complex manifold of algebraic dimension a(X) = d. Then, away from an
analytic subset of positive codimension, X admits a nonsingular holomorphic foliation of complex codimension d, endowed with a
transversely branched complex projective geometry.

Proof. This is a direct application of the algebraic reduction theorem (see [9]) which asserts that X admits a modification X̂
such that there exists a holomorphic surjective map f : X̂ −→ Y to a compact complex projective manifold Y of complex
dimension d such that

f ∗
: M(Y ) −→ M(̂X) = M(X)

is an isomorphism. Moreover, since Y is projective, there exists a finite algebraic map π : Y −→ CPd (see a short proof
of this classical fact in [1] Proposition 3.1). Hence we get a holomorphic surjective fibration π ◦ f : X̂ −→ CPd. Now
Proposition 3.2 applies. □

4. A topological obstruction

Let X be a compact connected Kähler manifold of complex dimension d equippedwith a Kähler formω. Chern classes will
always mean ones with real coefficients. For a torsionfree coherent analytic sheaf V on X , define

degree(V ) := (c1(V ) ∪ ωd−1) ∩ [X] ∈ R . (4.1)

The degree of a divisor D on X is defined to be degree(OX (D)).
Fix an effective divisor D on X . Fix a holomorphic principal H-bundle EH on X .

Proposition 4.1. Let F be a holomorphic nonsingular foliation on the Kähler manifold X. Assume that F admits a transversely
branched Cartan geometry of type G/H with principal H-bundle EH and branching divisor D. Then degree(N ∗

F ) − degree(D) =

degree(ad(EH )).
In particular, if D ̸= 0, then degree(N ∗

F ) > degree(ad(EH )).

Proof. Let k be the complex dimension of the transverse model geometry G/H .
Recall that the homomorphism β : NF −→ ad(EG)/ad(EH ) in (2.12) is an isomorphism over a point x ∈ X if and only

if β(x) is an isomorphism.
The branching divisor D coincides with the vanishing divisor of the holomorphic section

⋀k
β of the holomorphic line

bundle
⋀k(N ∗

F ) ⊗
⋀k(ad(EG)/ad(EH )). We have

degree(D) = degree(
⋀k

(ad(EG)/ad(EH )) ⊗

k⋀
(N ∗

F ))

= degree(ad(EG)) − degree(ad(EH )) + degree(N ∗

F ) . (4.2)

Recall that EG has a holomorphic connection φ (see (3.3)). It induces a holomorphic connection on ad(EG). Hence we have
c1(ad(EG)) = 0 [8, Theorem 4], which implies that degree(ad(EG)) = 0. Therefore, from (4.2) it follows that

degree(N ∗

F ) − degree(D) = degree(ad(EH )) . (4.3)

If D ̸= 0, then degree(D) > 0. Hence in that case (4.3) yields degree(N ∗
F ) > degree(ad(EH )). □

Corollary 4.2.

(i) If degree(N ∗
F ) < 0, then there is no branched transversely holomorphic affine connection on X transversal to F .

(ii) If degree(N ∗
F ) = 0, then for every branched transversely holomorphic affine connection on X transversal to F the

branching divisor on X is trivial.

Proof. Recall that a transversely branched holomorphic affine connection on X transversal to F is a transversely branched
holomorphic Cartan geometry on X of type G/H , where H = GL(d,C) and G = Cd ⋊ GL(d,C). The homomorphism

M(d,C) ⊗ M(d,C) −→ C , A ⊗ B ↦−→ trace(AB)

is nondegenerate and GL(d,C)-invariant. In other words, the Lie algebra h of H = GL(d,C) is self-dual as an H-module.
Hence we have ad(EH ) = ad(EH )∗, in particular, the equality

degree(ad(EH )) = 0

holds. Hence from Proposition 4.1,

degree(N ∗

F ) = degree(D) . (4.4)

As noted before, for a nonzero effective divisor Dwe have degree(D) > 0. Therefore, the corollary follows from (4.4). □
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5. Flatness of the transverse geometry on some special varieties

In this section we consider holomorphic foliations F on projective rationally connected manifolds and on simply
connected Calabi–Yau manifolds X̂ . In both cases, we show that the only transversely branched holomorphic Cartan
geometries, on the open dense set X of X̂ where the foliation is nonsingular, are necessarily flat and come from a holomorphic
map into a homogeneous space (as described in Section 3.3).

5.1. Rationally connected varieties

Let X̂ be a smooth complex projective rationally connected variety. Let X ⊂ X̂ be a Zariski open subset such that the
complex codimension of the complement X̂ \ X is at least two. Take a nonsingular foliation

F ⊂ TX

on X . Let ((EH , θ ), β) be a transversely branched holomorphic Cartan geometry of type (G, H) on the foliated manifold
(X, F).

There is a nonempty open subset ofX which can be covered by smooth complete rational curves C such that the restriction
(TX)|C is ample. On a curve any holomorphic connection is flat. Further, since a rational curve is simply connected, any
holomorphic bundle on it equipped with a holomorphic connection is isomorphic to the trivial bundle equipped with the
trivial connection. If (TX)|C is ample, then H0(C, (Ω2

X )|C ) = 0. Therefore, any holomorphic bundle on X with a holomorphic
connection has the property that the curvature vanishes identically. In particular, the transversely branched holomorphic
Cartan geometry ((EH , θ ), β) must be flat. Further, X is simply connected because X̂ is so. Therefore, the transversely
branched holomorphic Cartan geometry ((EH , θ ), β) is the pullback, of the standard Cartan geometry on G/H of type (G, H),
by a developing map f : X −→ G/H . The foliation is given by kernel(df ).

This yields the following:

Corollary 5.1. Let X̂ be a smooth complex projective rationally connected variety, and letF be a holomorphic nonsingular foliation
of positive codimension defined on a Zariski open subset X of complex codimension at least two in X̂ . Then there is no transversely
branched Cartan geometry, with model a nontrivial analytic affine variety G/H, on X transversal to F . In particular, there is no
transversely holomorphic affine connection on X transversal to F .

Proof. Assume, by contradiction, that there is a transversely branched Cartan geometry on X whose model is an analytic
affine varietyG/H . By the above observations, the branched Cartan geometry is necessarily flat and is given by a holomorphic
developing map f : X −→ G/H . Since the target G/H is an affine analytic variety, Hartog’s theorem says that f extends to
a holomorphic map f̂ : X̂ −→ G/H . Now, as X̂ is compact, and G/H is affine, f̂ must be constant: a contradiction; indeed,
as for f , the differential of f̂ is injective on TX/F at a general point of X . □

Notice that if G is a complex linear algebraic group and H a closed reductive algebraic subgroup, then G/H is an affine
analytic variety (see Lemma 3.32 in [10]).

5.2. Simply connected Calabi–Yau manifolds

Let X̂ be a simply connected compact Kähler manifold with c1 (̂X) = 0. As before, X ⊂ X̂ is a dense open subset such
that the complement X̂ \ X is a complex analytic subset of complex codimension at least two. Take a nonsingular foliation

F ⊂ TX

on X . Take a complex Lie group G such that there is a holomorphic homomorphism G −→ GL(n,C) with the property that
the corresponding homomorphism of Lie algebras is injective.

Let ((EH , θ ), β) be a transversely branched holomorphic Cartan geometry of type (G, H) on the foliated manifold (X, F).
Consider the holomorphic connectionϕ on EG overX (see (3.3)). The principalG-bundle EG extends to a holomorphic principal
G-bundle ÊG over X̂ , and the connection ϕ extends to a holomorphic connection ϕ̂ on ÊG [11, Theorem 1.1]. We know that ÊG
is the trivial holomorphic principal G-bundle, and ϕ̂ is the trivial connection [1, Theorem 6.2]. Also, X is simply connected
because X̂ is so. Therefore, the transversely branched holomorphic Cartan geometry ((EH , θ ), β) is the pullback, of the
standard Cartan geometry on G/H of type (G, H), by a developing map f : X −→ G/H . The foliation is given by kernel(df ).

As before we have the following:

Corollary 5.2. Let X̂ be a simply connected Calabi–Yau manifold, and let F be a holomorphic nonsingular foliation of positive
codimension defined on a Zariski open subset X of complex codimension at least two in X̂ . Then there is no transversely branched
Cartan geometry, with model a nontrivial analytic affine variety G/H, on X transversal to F . In particular, there is no transversely
holomorphic affine connection on X transversal to F .

Its proof is identical to that of Corollary 5.1.
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