
Journal of Geometry and Physics 61 (2011) 1263–1291

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization
Tomoki Ohsawa a,∗, Oscar E. Fernandez b, Anthony M. Bloch c, Dmitry V. Zenkov d

a Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112, United States
b Institute for Mathematics and its Applications, University of Minnesota, 207 Church Street SE, Minneapolis, MN 55455, United States
c Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, United States
d Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States

a r t i c l e i n f o

Article history:
Received 12 October 2010
Accepted 10 February 2011
Available online 26 February 2011

Keywords:
Nonholonomic mechanics
Hamilton–Jacobi theory
Reduction
Hamiltonization

a b s t r a c t

WedevelopHamilton–Jacobi theory for Chaplygin systems, a certain class of nonholonomic
mechanical systems with symmetries, using a technique called Hamiltonization, which
transforms nonholonomic systems into Hamiltonian systems.We give a geometric account
of the Hamiltonization, identify necessary and sufficient conditions for Hamiltonization,
and apply the conventional Hamilton–Jacobi theory to the Hamiltonized systems. We
show, under a certain sufficient condition for Hamiltonization, that the solutions to
the Hamilton–Jacobi equation associated with the Hamiltonized system also solve the
nonholonomic Hamilton–Jacobi equation associated with the original Chaplygin system.
The results are illustrated through several examples.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background and motivation

In 1911, S.A. Chaplygin published a paper (re-published in English in [1]) introducing his theory of the ‘‘reducing
multiplier’’ into the study of nonholonomically constrained mechanical systems. In his paper, Chaplygin showed that
a two degree of freedom nonholonomic system possessing an invariant measure became Hamiltonian after a suitable
reparameterization of time, a process we would like to refer to as Chaplygin Hamiltonization. Since then, Chaplygin’s result
has generated considerable interest and has been extended [2–6] to more general settings.

However, a second contribution contained in Chaplygin’s paper has been left undeveloped. In Section 5 of his paper,
Chaplygin integrates the nonholonomic system now known as the Chaplygin Sleigh [7] by using the Hamilton–Jacobi
equation for the Hamiltonized system. The aim of this paper is to develop this idea further to establish a link with the
nonholonomic Hamilton–Jacobi equation in [8,9].

Specifically, we first employ the technique called Chaplygin Hamiltonization to transform Chaplygin systems into
Hamiltonian systems, and then apply the conventional Hamilton–Jacobi theory to the resulting Hamiltonian systems
to obtain what we would like to call the Chaplygin Hamilton–Jacobi equation. This is an indirect approach towards
Hamilton–Jacobi theory for nonholonomic systems, compared to the direct approach of extending Hamilton–Jacobi theory
to nonholonomic systems, as in [8,10,9,11].
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Fig. 1. Relationship between the nonholonomic H–J equation applied to a Chaplygin system and the H–J equation applied to the Hamiltonized Chaplygin
system. Explicit formulas for the correspondence W̄ → γ are given in Theorems 4.1 and 7.1.

1.2. Direct vs. indirect approaches

The indirect approach to nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization has both advantages and
disadvantages. The main advantage is that we have a conventional Hamilton–Jacobi equation and thus the separation of
variables argument applies in a rather straightforwardmanner compared to the direct approach in [9]. A disadvantage is that
the Chaplygin Hamiltonization works only for certain nonholonomic systems; even if it does, the relationship between the
Hamilton–Jacobi equation and the original nonholonomic system is not transparent, since one has to inverse transform the
information in theHamiltonized systems. Nevertheless, Hamiltonization is known to be a powerful technique for integration
of nonholonomic systems [1,4,12,13,6], and hence it is interesting to establish a connection with the direct approach.

Let us briefly summarize the differences between two approaches. Recall from [9] that the nonholonomic Hamilton–Jacobi
equation is an equation for a one-form γ on the original configuration manifold Q :

H ◦ γ = E, (1.1)

along with the condition that γ , seen as a map from Q to T ∗Q , takes values in the constrained momentum space M ⊂ T ∗Q
(see Eq. (2.4) below), i.e., γ : Q → M, and also that

dγ |D×D = 0, i.e., dγ (v,w) = 0 for any v,w ∈ D, (1.2)

where D ⊂ TQ is the distribution defined by nonholonomic constraints, and H : T ∗Q → R the Hamiltonian.
On the other hand, the Chaplygin Hamiltonization first reduces the system by identifying it as a so-called Chaplygin

system with a symmetry group G, and then Hamiltonizes the system on the cotangent bundle T ∗(Q/G) of the reduced
configuration space Q/G. The resulting system is a (strictly) Hamiltonian system on T ∗(Q/G) with another Hamiltonian
H̄C : T ∗(Q/G) → R; so we may apply the conventional Hamilton–Jacobi theory to the Hamiltonized system to obtain the
Chaplygin Hamilton–Jacobi equation

H̄C ◦ dW̄ = E,

which is a partial differential equation for a function W̄ : Q/G → R. Therefore, the difference lies not only in the forms
of the equations (the former involves the one-form γ , which is not even closed, whereas the latter invokes the exact
one-form dW̄ ), but also in the spaces on which the equations are defined. Furthermore, the Chaplygin Hamilton–Jacobi
equation corresponds to the Hamiltonized dynamics and is related to the original nonholonomic one in a rather indirect
way. Therefore, on the surface, there does not seem to be an apparent relationship between the two approaches.

1.3. Main results

Themain goal of this paper is to establish a link between the two distinct approaches towards Hamilton–Jacobi theory for
nonholonomic systems. To that end,we first formulate the ChaplyginHamiltonization in an intrinsicmanner to elucidate the
geometry involved in theHamiltonization. This gives a slight generalization of theChaplyginHamiltonization by Fedorov and
Jovanović [4] and also an intrinsic account of the necessary and sufficient condition for Hamiltonizing a Chaplygin system
presented in [6]. These results are also related to the existence of an invariant measure in nonholonomic systems (see,
e.g., [14,15,4]).

We also identify a sufficient condition for the Chaplygin Hamiltonization, which turns out to be identical to one of those
for another kind of Hamiltonization (which renders the systems ‘‘conformal symplectic’’ [5]) obtained by Stanchenko [2]
and Cantrijn et al. [16]. We then give an explicit formula that transforms the solutions of the Chaplygin Hamilton–Jacobi
equation into those of the nonholonomic Hamilton–Jacobi equation (see Fig. 1). Interestingly, it turns out that the sufficient
condition plays an important role here as well. We also present an extension of these results to a class of systems that
are Hamiltonizable after reduction by two stages, following the idea of Hochgerner and García-Naranjo [5]. We illustrate,
through several examples, that the Chaplygin Hamilton–Jacobi equation may be solved by separation of variables, and that
the solutions are identical to those obtained by Ohsawa and Bloch [9] after the transformation mentioned above.
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1.4. Outline

We begin with an overview of nonholonomic mechanical systems in Section 2.1, specializing to Chaplygin systems in
Section 2.2. Afterdiscussing the relationship between the Hamiltonizability of a nonholonomic system and the existence
of an invariant measure for it in Section 3.1, we derive necessary and sufficient conditions for a Chaplygin system to be
Hamiltonizable in an intrinsic manner in Section 3.2. This result then leads to the development of Hamilton–Jacobi theory
for Hamiltonizable Chaplygin systems in Section 4.2. Specifically, we relate the Chaplygin Hamilton–Jacobi equation for the
Hamiltonized system with the nonholonomic Hamilton–Jacobi equation for the original system. A couple of examples are
presented in Section 5 to illustrate the theoretical results. In Section 6, we introduce a further reduction of the reduced
Chaplygin systems under certain conditions; the second reduction is employed to Hamiltonize those systems that are not
Hamiltonizable after the first reduction. Then, in Section 7, we relate the Chaplygin Hamilton–Jacobi equation for such
systems with the nonholonomic Hamilton–Jacobi equation. We then illustrate the theory in the Snakeboard example.

2. Chaplygin systems

2.1. Hamiltonian formulation of nonholonomic mechanics

Consider a nonholonomic system on an n-dimensional configuration manifold Q with a constraint distribution D ⊂ TQ
defined by the constraint one-forms {ωs

}
m
s=1 as

D =

v ∈ TQ | ωs(v) = 0, s = 1, . . . ,m


and also with the Lagrangian L : TQ → R of the form

L(vq) =
1
2
gq(vq, vq)− V (q) (2.1)

with the kinetic energy metric g defined on Q . Define the Legendre transform FL : TQ → T ∗Q by
FL(vq), wq


=

d
dε

L(vq + ε wq)


ε=0

= gq(vq, wq) =

g♭q(vq), wq


,

where the last equality defines g♭ : TQ → T ∗Q ; hence we have FL = g♭. Also define the Hamiltonian H : T ∗Q → R by

H(pq) :=

pq, vq


− L(vq),

where vq = (FL)−1(pq) on the right-hand side. Then, Hamilton’s equations for nonholonomic systems arewritten as follows:

iXΩ = dH − λsπ
∗

Qω
s, (2.2)

along with

TπQ (X) ∈ D or ωs(TπQ (X)) = 0 for s = 1, . . . ,m, (2.3)

where πQ : T ∗Q → Q is the cotangent bundle projection. Introducing the constrained momentum space

M := FL(D) ⊂ T ∗Q , (2.4)

the above constraints may be replaced by p ∈ M.

2.2. Chaplygin systems

Definition 2.1 (Chaplygin Systems). A nonholonomic system with Hamiltonian H and distribution D is called a Chaplygin
system if there exists a Lie group G and a free and proper group action of it on Q , i.e., Φ : G × Q → Q or Φh : Q → Q for
any h ∈ G, such that

(i) the Hamiltonian H and the distribution D are invariant under the G-action;
(ii) for each q ∈ Q , the tangent space TqQ is the direct sum of the constraint distribution and the tangent space to the orbit

of the group action, i.e.,

TqQ = Dq ⊕ TqOq,

where Oq is the orbit through q of the G-action on Q , i.e.,

Oq := {Φh(q) ∈ Q | h ∈ G} .

This setup gives rise to the principal bundle

π : Q → Q/G =: Q̄
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and the connection

A : TQ → g,

with g being the Lie algebra of G such that kerA = D . So the above decomposition may be written as

TqQ = kerAq ⊕ ker Tqπ.

Furthermore, for any q ∈ Q and q̄ := π(q) ∈ Q̄ , the map Tqπ |Dq : Dq → Tq̄Q̄ is a linear isomorphism, and hence we have
the horizontal lift

hlDq : Tq̄Q̄ → Dq; vq̄ → (Tqπ |Dq)
−1(vq̄).

We will occasionally use the following shorthand notation for horizontal lifts:

vhq := hlDq (vq̄).

Therefore, any vectorWq ∈ TqQ can be decomposed into the horizontal and vertical parts as follows:

Wq = hor(Wq)+ ver(Wq), (2.5a)

with

hor(Wq) = hlDq (wq̄), ver(Wq) = (Aq(Wq))Q (q), (2.5b)

wherewq̄ := Tqπ(Wq) and ξQ ∈ X(Q ) is the infinitesimal generator of ξ ∈ g.
We may then define the reduced Lagrangian

L̄ := L ◦ hlD , (2.6a)

or more explicitly,

L̄ : T Q̄ → R; vq̄ →
1
2
ḡq̄(vq̄, vq̄)− V̄ (q̄), (2.6b)

where ḡ is the metric on the reduced space Q̄ induced by g as follows:

ḡq̄(vq̄, wq̄) := gq

hlDq (vq̄), hl

D
q (wq̄)


= gq(vhq , w

h
q ), (2.7)

and the reduced potential V̄ : Q̄ → R is defined such that V = V̄ ◦ π .
This geometric structure is carried over to the Hamiltonian side (see [17]). Specifically, we define the horizontal lift

hlMq : T ∗

q̄ Q̄ → Mq by

hlMq := FLq ◦ hlDq ◦ (FL̄)−1
q̄ = g♭q ◦ hlDq ◦ (ḡ♭)−1

q̄ , (2.8)

or the diagram below commutes.

Dq
FLq // Mq

Tq̄Q̄

hlDq

OO

T ∗

q̄ Q̄
(FL̄)−1

q̄

oo

hlMq

OO�
�
�
�

We will use the shorthand notation

αh
q := hlMq (αq̄)

for any αq̄ ∈ T ∗

q̄ Q̄ .
We also define the reduced Hamiltonian H̄ : T ∗Q̄ → R by

H̄ := H ◦ hlM. (2.9)

It is easy to check that this definition coincides with the following one by using the reduced Lagrangian L̄:

H̄(pq̄) :=

pq̄, vq̄


− L̄(vq̄),

with vq̄ = (FL̄)−1
q̄ (pq̄).
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Performing the nonholonomic reduction of [18] (see also [19,17,5]), we obtain the reduced Hamilton’s equations for
Chaplygin systems defined by

iX̄Ω̄
nh

= dH̄ (2.10)

with the almost symplectic form

Ω̄nh
:= Ω̄ − Ξ , (2.11)

where X̄ is a vector field on T ∗Q̄ and Ω̄ is the standard symplectic form on T ∗Q̄ ; the two-form Ξ on T ∗Q̄ is defined as
follows: For any αq̄ ∈ T ∗

q̄ Q̄ and Yαq̄ ,Zαq̄ ∈ Tαq̄T
∗Q̄ , let Yq̄ := TπQ̄ (Yαq̄) and Zq̄ := TπQ̄ (Zαq̄) where πQ̄ : T ∗Q̄ → Q̄ is the

cotangent bundle projection, and then set

Ξαq̄(Yαq̄ ,Zαq̄) :=

J ◦ hlMq (αq̄),Bq


hlDq (Yq̄), hlDq (Zq̄)


=

J(αh

q ),Bq(Y h
q , Z

h
q )

, (2.12)

where J : T ∗Q → g∗ is the momentum map corresponding to the G-action, and B is the curvature two-form of the
connection A. This is well-defined, since the Ad∗-equivariance of the momentum map J and the Ad-equivariance of the
curvatureB cancel each other [3]:Writinghq := Φh(q), wehave, using LemmaA.1 and theG-equivariance of themomentum
map J and the curvature B (see, e.g., [20, Corollary 2.1.11] for the latter),

J(αh
hq),Bhq(Y h

hq, Z
h
hq)

=

J

T ∗

qΦh−1(αh
q )

,Φ∗

hBq(Y h
q , Z

h
q )


=

Ad∗

h−1 J(αh
q ),AdhBq(Y h

q , Z
h
q )


=

J(αh

q ),Bq(Y h
q , Z

h
q )

.

3. Chaplygin Hamiltonization of nonholonomic systems

This section discusses the so-called Chaplygin Hamiltonization of the reduced dynamics defined by Eq. (2.10). The results
here are mostly a summary of some of the key results of Stanchenko [2], Cantrijn et al. [16], Fedorov and Jovanović [4],
and Fernandez et al. [6]. However, our exposition is slightly different from them, and also touches on those aspects that
are not found in the above papers. Furthermore, our intrinsic account of the Hamiltonization provides us with a better
understanding of the geometry involved in it, and then leads us to our main results on nonholonomic Hamilton–Jacobi
theory in Sections 4 and 7.

3.1. Hamiltonization and existence of invariant measure

We first discuss the relationship between Hamiltonization and existence of an invariant measure for nonholonomic
systems. The next subsection will show how to Hamiltonize the reduced system, Eq. (2.10), explicitly.

Let f : T ∗Q̄ → R be a smooth nowhere-vanishing function that is constant on each fiber, i.e., f (αq̄) = f (βq̄) for any
αq̄, βq̄ ∈ T ∗

q̄ Q̄ . Therefore, we can write, with a slight abuse of notation, f (αq̄) = f (q̄); so f may be seen as a function on Q̄ as
well.

Remark 3.1. The above definition of the function f is essentially the same as that of [1], where f is defined as a function on
Q . However, in the present work, it is more convenient to formally define f as a function on T ∗Q .

Remark 3.2. In the discussion to follow, we derive certain conditions on the function f in order to Hamiltonize the system
given by Eq. (2.10). It sometimes turns out that such f is nowhere-vanishing only on an open subset U in Q̄ . In such cases,
we redefine Q̄ := U .

Now, consider the vector field

X̄/f =
1
f
X̄ ∈ X(T ∗Q̄ ),

and letΦ X̄/f
t : T ∗Q̄ → T ∗Q̄ be the flow defined by the corresponding vector field, i.e., for any αq̄ ∈ T ∗Q̄ ,

d
dt
Φ

X̄/f
t (αq̄)


t=0

= (X̄/f )(αq̄) =
1

f (αq̄)
X̄(αq̄).

Furthermore, define a map Ψf : T ∗Q̄ → T ∗Q̄ by

Ψf : α → f α,
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which is clearly a diffeomorphism with the inverse Ψ−1
f = Ψ1/f : T ∗Q̄ → T ∗Q̄ ; α → α/f , and define Φ X̄C

t : T ∗Q̄ → T ∗Q̄
by

Φ
X̄C
t := Ψf ◦ Φ

X̄/f
t ◦ Ψ−1

f = Ψf ◦ Φ
X̄/f
t ◦ Ψ1/f ,

or the diagram below commutes.

T ∗Q̄
Φ

X̄/f
t // T ∗Q̄

Ψf

��
T ∗Q̄

Ψ
−1
f =Ψ1/f

OO

Φ
X̄C
t

//_____ T ∗Q̄

α/f � //
Φ

X̄/f
t (α/f )_

��
α
_

OO

� //_____
Φ

X̄C
t (α)

(3.1)

Then, we have the vector field X̄C ∈ X(T ∗Q̄ ) corresponding to the flow Φ
X̄C
t , which is the pull-back of X̄/f by Ψ−1

f = Ψ1/f :
For any αq̄ ∈ T ∗Q̄ ,

X̄C(αq̄) :=
d
dt
Φ

X̄C
t (αq̄)


t=0

=
d
dt
Ψf ◦ Φ

X̄/f
t ◦ Ψ−1

f (αq̄)


t=0

= TΨf · (X̄/f )(Ψ−1
f (αq̄))

= (Ψ−1
f )∗(X̄/f )(αq̄)

= Ψ ∗

1/f (X̄/f )(αq̄). (3.2)

In particular, the third line in the above equation shows that X̄/f and X̄C are Ψf -related:

TΨf ◦ (X̄/f ) = X̄C ◦ Ψf . (3.3)

Now, we relate the (possible) symplecticity of the vector field X̄C with the existence of an invariant measure for the
reduced system, Eq. (2.10):

Theorem 3.3. If X̄C ∈ X(T ∗Q̄ ) is symplectic, i.e., £ X̄CΩ̄ = 0, then the reduced system, Eq. (2.10), has the invariant measure
f n̄−1Λ̄, where n̄ := dim Q̄ and Λ̄ is the Liouville volume form

Λ̄ :=
(−1)n̄(n̄−1)/2

n̄!
Ω̄ ∧ · · · ∧ Ω̄  

n̄

= dq1 ∧ · · · ∧ dqn̄ ∧ dp1 ∧ · · · ∧ dpn̄.

In other words, we have

£ X̄ (f
n̄−1Λ̄) = 0.

This theorem is a slight generalization of the following:

Corollary 3.4 (Fedorov and Jovanović [4]). If X̄C ∈ X(T ∗Q̄ ) is Hamiltonian, i.e.,

iX̄CΩ̄ = dH̄C

for some H̄C : T ∗Q̄ → R, then the reduced nonholonomic dynamics, Eq. (2.10), has the invariant measure f n̄−1Λ̄.

Proof. Follows easily from Cartan’s formula:

£X̄CΩ̄ = d(iX̄CΩ̄)+ iX̄CdΩ̄ = ddH̄C = 0. �

We state a couple of lemmas before proving Theorem 3.3.

Lemma 3.5. Let f : T ∗Q̄ → R be a smooth function that is constant on each fiber, i.e., f (αq̄) = f (βq̄) for any αq̄, βq̄ ∈ T ∗

q̄ Q̄ .
Then,

(Ψ ∗

f Ω̄) ∧ · · · ∧ (Ψ ∗

f Ω̄)  
n̄

= f n̄ Ω̄ ∧ · · · ∧ Ω̄  
n̄

.
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Proof. Let Θ̄ be the symplectic one-form on T ∗Q̄ , i.e., Ω̄ = −dΘ̄ . Let us first calculateΨ ∗

f Θ̄: We have, for any α ∈ T ∗Q̄ and
v ∈ TαT ∗Q̄ ,

(Ψ ∗

f Θ̄)α(v) = Θ̄Ψf (α)(TΨf (v))

=

Ψf (α), TπQ ◦ TΨf (v)


=

f α, T (πQ ◦ Ψf )(v)


= f


α, TπQ (v)


= f Θ̄α(v),

where we used the fact that Ψf is fiber-preserving, i.e., πQ ◦ Ψf = πQ . Hence we have Ψ ∗

f Θ̄ = f Θ̄ , and thus

Ψ ∗

f Ω̄ = Ψ ∗

f (−dΘ̄)

= −d(Ψ ∗

f Θ̄)

= −d(f Θ̄)
= −df ∧ Θ̄ − fdΘ̄

= f Ω̄ − df ∧ Θ̄. (3.4)

Therefore, using the fact that α ∧ β = β ∧ α for any two-forms α and β , we have

(Ψ ∗

f Ω̄) ∧ · · · ∧ (Ψ ∗

f Ω̄) = f n̄Ω̄ ∧ · · · ∧ Ω̄ +

n̄−
k=1


n̄
k


(−1)kf n̄−k Ω̄ ∧ · · · ∧ Ω̄  

n̄−k

∧ (df ∧ Θ̄) ∧ · · · ∧ (df ∧ Θ̄)  
k

.

Let us show that the second term vanishes. Since f is constant on fibers, we have

df =
∂ f
∂qa

dqa.

Therefore,

df ∧ Θ̄ = pb
∂ f
∂qa

dqa ∧ dqb

and thus df ∧Θ̄ does not contain any termwith dpa’s. On the other hand, Ω̄ ∧ · · · ∧ Ω̄  
n̄−k

contains only n̄−k of dpa’s. Therefore,

the 2n̄-form

Ω̄ ∧ · · · ∧ Ω̄  
n̄−k

∧ (df ∧ Θ̄) ∧ · · · ∧ (df ∧ Θ̄)  
k

contains only n̄ − k of dpa’s, and thus n̄ + k of dqa’s, which implies that this 2n̄-form must vanish. �

Definition 3.6. LetM be an n-dimensional orientable manifold, and µ be a volume form, i.e., a nowhere-vanishing n-form.
Then, the divergence divµ(X) of a vector field X onM relative to µ is defined by

£Xµ = divµ(X) µ. (3.5)

Therefore, the flow of X is volume-preserving if and only if divµ(X) = 0.

Lemma 3.7. Let M be an orientable differentiable manifold with a volume form µ, X a vector field on M, and f a nowhere-
vanishing smooth function on M. Then, the following identity holds:

divµ(fX) = f divfµ(X). (3.6)

Proof. We have the identities (see, e.g.,[21] Proposition 2.5.23 on p. 130)

divfµ(X) = divµ(X)+
1
f
X[f ], divµ(fX) = f divµ(X)+ X[f ].

Multiplying the first by f and taking the difference of both sides, we have the desired identity. �
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Proof (Theorem 3.3). As shown in Eq. (3.3), the vector fields X̄/f and X̄C are Ψf -related. Therefore,

£X̄/f (Ψ
∗

f Ω̄) = Ψ ∗

f £X̄CΩ̄ = 0,

since X̄C is assumed to be symplectic; thus

£X̄/f [(Ψ
∗

f Ω̄) ∧ · · · ∧ (Ψ ∗

f Ω̄)  
n̄

] = 0.

However, by Lemma 3.5, we have

£X̄/f (f
n̄ Ω̄ ∧ · · · ∧ Ω̄  

n̄

) = 0,

and hence £X̄/f (f
n̄Λ̄) = 0; this implies divf n̄Λ̄(X̄/f ) = 0. Then, the above lemma gives

divf n̄−1Λ̄(X̄) = f divf n̄Λ̄(X̄/f ) = 0,

which implies £X̄ (f
n̄−1Λ̄) = 0. �

3.2. The Chaplygin Hamiltonization

Here we discuss the so-called Chaplygin Hamiltonization of the reduced system, Eq. (2.10). Let us first find the equation
satisfied by the vector field X̄C defined in Eq. (3.2).

Lemma 3.8. The vector field X̄C ∈ X(T ∗Q̄ ) satisfies the following equation:

iX̄C

[
Ω̄ +

1
f


df ∧ Θ̄ − f Ξ

]
= dH̄C, (3.7)

where H̄C : T ∗Q̄ → R is defined by

H̄C := H̄ ◦ Ψ1/f . (3.8)

Proof. As shown in Eq. (3.3), the vector fields X̄/f and X̄C are Ψf -related. Therefore, Ψ ∗

f iX̄Cα = iX̄/fΨ
∗

f α for any differential
form α (see, e.g. [21], Proposition 2.4.14]); in particular, for α = Ω̄ , we have

Ψ ∗

f iX̄CΩ̄ = iX̄/fΨ
∗

f Ω̄.

Using Eqs. (3.4) and (2.10) on the right-hand side, we have

iX̄/fΨ
∗

f Ω̄ = iX̄/f (f Ω̄ − df ∧ Θ̄)

= iX̄Ω̄ − iX̄/f

df ∧ Θ̄


= dH̄ + iX̄Ξ − iX̄/f


df ∧ Θ̄


= dH̄ − iX̄/f


df ∧ Θ̄ − f Ξ


.

Therefore,

Ψ ∗

f iX̄CΩ̄ + iX̄/f

df ∧ Θ̄ − f Ξ


= dH̄,

and then applying Ψ ∗

1/f to both sides gives

iX̄CΩ̄ + Ψ ∗

1/f iX̄/f

df ∧ Θ̄ − f Ξ


= dH̄C.

Since the vector fields X̄C and X̄/f are Ψ1/f -related, we have Ψ ∗

1/f iX̄/f α = iX̄CΨ
∗

1/f α for any differential form α; hence

Ψ ∗

1/f iX̄/f

df ∧ Θ̄ − f Ξ


= iX̄CΨ

∗

1/f


df ∧ Θ̄ − f Ξ


= iX̄C


d(Ψ ∗

1/f f ) ∧ (Ψ ∗

1/f Θ̄)− Ψ ∗

1/f (f Ξ)


= iX̄C

df ∧ (Θ̄/f )− Ξ


= iX̄C

[
1
f


df ∧ Θ̄ − f Ξ

]
,
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where Ψ ∗

1/f f = f since f is constant on each fiber; Ψ ∗

1/f Θ̄ = Θ̄/f as in the proof of Lemma 3.5; Ψ ∗

1/fΞ = Ξ/f follows from
the following calculation: From the definition ofΞ in Eq. (2.12), we have

(Ψ ∗

1/fΞ)αq̄(Yαq̄ ,Zαq̄) = Ξαq̄/f

TΨ1/f (Yαq̄), TΨ1/f (Zαq̄)


=

J ◦ hlMq (αq̄/f ),Bq


hlDq (Yq̄), hlDq (Zq̄)


=

1
f (q̄)


J ◦ hlMq (αq̄),Bq


hlDq (Yq̄), hlDq (Zq̄)


=

1
f (q̄)

Ξαq̄(Yαq̄ ,Zαq̄),

where, in the second line, we defined Yq̄, Zq̄ ∈ Tq̄Q̄ as

Yq̄ := TπQ̄ ◦ TΨ1/f (Yαq̄) = T (πQ̄ ◦ Ψ1/f )(Yαq̄) = TπQ̄ (Yαq̄),

and Zq̄ in the sameway,which coincide the ones introduced earlierwhen definingΞ ; the third line follows from the linearity
of hlM and also of J in the fiber variables. �

Proposition 3.9 (Necessary and Sufficient Condition for Hamiltonization). The vector field X̄C ∈ X(T ∗Q̄ ) satisfies Hamilton’s
equations

iX̄CΩ̄ = dH̄C (3.9)

if and only if the one-form iX̄C

df ∧ Θ̄ − f Ξ


vanishes.

Proof. Follows immediately from Lemma 3.8. �

Remark 3.10. Locally, the above necessary and sufficient condition is precisely Eq. (2.17) in [6].

Definition 3.11. The process of finding an f satisfying the above condition is called Chaplygin Hamiltonization, or just
Hamiltonization for short; the resulting Hamiltonian system, Eq. (3.9), is called the Hamiltonized system; we would like to
call H̄C a Chaplygin Hamiltonian.

Now, combining Proposition 3.9 with Theorem 3.3 or Corollary 3.4, we have

Corollary 3.12. Suppose there exists a nowhere-vanishing fiber-wise constant function f : T ∗Q̄ → R such that iX̄C(df ∧

Θ̄ − f Ξ) vanishes. Then, the 2n̄-form f n̄−1Λ̄ is an invariant measure of the reduced system, Eq. (2.10).

We now state the main result of this section. The following theorem will be used in the next section in relation to the
nonholonomic Hamilton–Jacobi theory:

Theorem 3.13 (A Sufficient Condition for Hamiltonization). Suppose there exists a nowhere-vanishing fiber-wise constant
function f : T ∗Q̄ → R that satisfies the equation

df ∧ Θ̄ = f Ξ . (3.10)

Then, the vector field X̄C ∈ X(T ∗Q̄ ) satisfies the following Hamilton’s equations:

iX̄CΩ̄ = dH̄C, (3.11)

and, as a result, the reduced nonholonomic dynamics Eq. (2.10) has the invariant measure f n̄−1Λ̄.

Proof. Straightforward from Lemma 3.8 and Corollary 3.4. �

Remark 3.14. Locally, the sufficient condition (3.10) becomes condition (2.22) in [6].

Remark 3.15. As shown by Stanchenko [2] (see also [16]), Eq. (3.10) is also a sufficient condition for the two-form Ω̄f :=

f (Ω̄ − Ξ) to be closed, so that Eq. (2.10) becomes

iX̄/f Ω̄f = dH̄,

and so the dynamics of X̄/f is Hamiltonian with the non-standard symplectic form Ω̄f .
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4. Nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization

4.1. The Chaplygin Hamilton–Jacobi equation

Since the Hamiltonized system, Eq. (3.11), is a canonical Hamiltonian system on T ∗Q̄ , we may apply the conventional
Hamilton–Jacobi theory (see, e.g., [21, Chapter 5]) to the system and obtain the (time-independent) Hamilton–Jacobi
equation:

H̄C ◦ dW̄ = E, (4.1)

with an unknown function W̄ : Q̄ → R and a constant E (the total energy). We would like to call Eq. (4.1) the Chaplygin
Hamilton–Jacobi equation.

Now that we have two Hamilton–Jacobi equations for Chaplygin systems, i.e., the nonholonomic Hamilton–Jacobi
equation (1.1) and the Chaplygin Hamilton–Jacobi equation (4.1), a natural question to ask is: What is the relationship
between the two?

4.2. Relationship between the Chaplygin H–J and nonholonomic H–J equations

In relating the Chaplygin Hamilton–Jacobi equation (4.1) to the nonholonomic Hamilton–Jacobi equation (1.1), a natural
starting point is to look into the relationship between the Chaplygin Hamiltonian H̄C and the original Hamiltonian H (recall
from Eqs. (2.9) and (3.8) that they are related through the Hamiltonian H̄); the upper half of the following commutative
diagram shows their relationship.

R

M

H

??�������������
T ∗Q̄

H̄

OO

hlM
oo T ∗Q̄

H̄C

__?????????????

Ψ1/f

oo

Q
π

//

γ

OO�
�
�
�
�

Q̄

dW̄

OO (4.2)

Now, suppose that a function W̄ : Q̄ → R satisfies the Chaplygin Hamilton–Jacobi equation (4.1). This means that the
one-form dW̄ , seen as a map from Q̄ to T ∗Q̄ , satisfies H̄C ◦ dW̄ (q̄) = E for any q̄ ∈ Q̄ with some constant E; equivalently,
H̄C ◦ dW̄ ◦π(q) = E for any q ∈ Q . The lower half of the above diagram (4.2) incorporates this view, and also leads us to the
following:

Theorem 4.1. Suppose that there exists a nowhere-vanishing fiber-wise constant function f : T ∗Q̄ → R that satisfies Eq. (3.10),
and hence by Theorem 3.13, we have Hamilton’s equations (3.11) for the vector field X̄C. Let W̄ : Q̄ → R be a solution of the
Chaplygin Hamilton–Jacobi equation (4.1), and define γ : Q → M by

γ (q) := hlMq ◦ Ψ1/f ◦ dW̄ ◦ π(q) = hlMq


1

f (q̄)
dW̄ (q̄)


, (4.3)

where q̄ := π(q). Then γ satisfies the nonholonomic Hamilton–Jacobi equation (1.1) as well as the condition equation (1.2).

Remark 4.2. Notice that Theorem 4.1 relates a solution of the Chaplygin Hamilton–Jacobi equation, which is for the reduced
dynamics defined by Eq. (3.11), with that of the nonholonomic Hamilton–Jacobi equation for the full dynamics defined by
Eq. (2.2). Therefore, the theorem provides a method to integrate the full dynamics by solving a Hamilton–Jacobi equation
for the reduced dynamics.

Proof. That the one-form γ defined by Eq. (4.3) satisfies the nonholonomic Hamilton–Jacobi equation (1.1) follows from
the diagram (4.2). To show that it also satisfies the condition equation (1.2), we perform the following lengthy calculations:
Let Y h, Zh

∈ X(Q ) be arbitrary horizontal vector fields, i.e., Y h
q , Z

h
q ∈ Dq for any q ∈ Q . We start from the following identity:

dγ (Y h, Zh) = Y h
[γ (Zh)] − Zh

[γ (Y h)] − γ ([Y h, Zh
]). (4.4)
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The goal is to show that the right-hand side vanishes. Let us first evaluate the first two terms on the right-hand side of the
above identity at an arbitrary point q ∈ Q : Let Zq̄ := TqπQ (Zh

q ) ∈ Tq̄Q̄ , then Zh
q = hlDq (Zq̄). Thus, using Lemma A.2, we have1

γ (Zh)(q) =

hlMq ◦ Ψ1/f ◦ dW̄ (q̄), hlDq (Zq̄)


=

Ψ1/f ◦ dW̄ (q̄), Zq̄


=

1
f (q̄)

dW̄ (Z)(q̄).

Hence, defining a function γZ : Q̄ → R by

γZ (q̄) :=
1

f (q̄)
dW̄ (Z)(q̄),

we have γ (Zh) = γZ ◦ π . Therefore, defining Yq̄ := Tqπ(Y h
q ), i.e., Y

h
q = hlDq (Yq̄),

Y h
[γ (Zh)](q) = Y h

[γZ ◦ π ](q)
=

d(γZ ◦ π)q, Y h

q


=

(π∗dγZ )q, Y h

q


=

dγZ (q̄), Tqπ(Y h

q )


=

dγZ (q̄), Yq̄


= Y [γZ ](q̄)

= Y
[
1
f
dW̄ (Z)

]
(q̄)

=


1
f
Y

Z

W̄


−
1
f 2

df (Y ) dW̄ (Z)

(q̄).

Hence we have

Y h
[γ (Zh)] − Zh

[γ (Y h)] =
1
f


Y

Z

W̄


− Z

Y

W̄


−
1
f 2

df (Y ) dW̄ (Z)− df (Z) dW̄ (Y )


=

1
f
dW̄ ([Y , Z])−

1
f 2

df ∧ dW̄ (Y , Z), (4.5)

where we have omitted q and q̄ for simplicity.
Now, let us evaluate the last term on the right-hand side of Eq. (4.4): First we would like to decompose [Y h, Zh

]q into the
horizontal and vertical part. Since both Y h and Zh are horizontal, we have2

hor([Y h, Zh
]q) = hlDq ([Y , Z]q̄),

whereas the vertical part is

ver([Y h, Zh
]q) =


Aq([Y h, Zh

]q)

Q (q) = −


Bq(Y h

q , Z
h
q )

Q
(q),

where we used the following relation between the connection A and its curvature B that hold for horizontal vector fields
Y h and Zh:

Bq(Y h
q , Z

h
q ) = dAq(Y h

q , Z
h
q )

= Y h
[A(Zh)](q)− Y h

[A(Zh)](q)− A([Y h, Zh
])(q)

= −A([Y h, Zh
])(q).

As a result, we have the decomposition

[Y h, Zh
]q = hlDq ([Y , Z]q̄)−


Bq(Y h

q , Z
h
q )

Q
(q).

1 Recall that f : T ∗Q̄ → R is fiber-wise constant and thus, with a slight abuse of notation, wemay write f (αq̄) = f (q̄) for any αq̄ ∈ T ∗

q̄ Q̄ ; therefore f may
be seen as a function on Q̄ as well.
2 See, e.g., [22, Proposition 1.3(3), p. 65].
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Therefore,

γ ([Y h, Zh
])(q) =


hlMq ◦ Ψ1/f ◦ dW̄ ◦ π(q), hlDq ([Y , Z]q̄)


−


hlMq ◦ Ψ1/f ◦ dW̄ ◦ π(q),


Bq(Y h

q , Z
h
q )

Q
(q)


=

Ψ1/f ◦ dW̄ (q̄), [Y , Z]q̄


−

J

hlMq ◦ Ψ1/f ◦ dW̄ (q̄)


,Bq(Y h

q , Z
h
q )


=
1

f (q̄)


dW̄ (q̄), [Y , Z]q̄


−

J ◦ hlMq


dW̄ (q̄)/f (q̄)


,Bq(Y h

q , Z
h
q )


=
1

f (q̄)
dW̄ ([Y , Z])(q̄)−

1
f (q̄)


J ◦ hlMq


dW̄ (q̄)


,Bq


hlDq (Yq̄), hlDq (Zq̄)


=

1
f (q̄)

dW̄ ([Y , Z])(q̄)−
1

f (q̄)
(dW̄ )∗Ξ(Y , Z)(q̄), (4.6)

where the second equality follows from Lemma A.2 and the definition of the momentummap J; the fourth one follows from
the linearity of hlM and also of J in the fiber variables; the last one follows from the definition of Ξ in Eq. (2.12): Since
πQ̄ ◦ dW̄ = idQ̄ and thus TπQ̄ ◦ TdW̄ = idT Q̄ , we have

(dW̄ )∗Ξ(Y , Z)(q̄) = ΞdW̄ (q̄)


TdW̄ (Yq̄), TdW̄ (Zq̄)


=

J ◦ hlMq


dW̄ (q̄)


,Bq


hlDq (Yq̄), hlDq (Zq̄)


.

Substituting Eqs. (4.5) and (4.6) into Eq. (4.4), we obtain

dγ (Y h, Zh) = −
1
f 2

df ∧ dW̄ (Y , Z)+
1
f
(dW̄ )∗Ξ(Y , Z)

= −
1
f 2

df ∧ dW̄ − f (dW̄ )∗Ξ


(Y , Z)

= −
1
f 2
(dW̄ )∗


df ∧ Θ̄ − f Ξ


(Y , Z)

= 0,

where the third line follows since3 (dW̄ )∗f (q̄) = f

dW̄ (q̄)


= f (q̄) and also that (dW̄ )∗Θ̄ = dW̄ (see, e.g., [21]

Proposition 3.2.11 on p. 179); the last line follows from Eq. (3.10), which is assumed to be satisfied. �

5. Examples

Example 5.1 (The Vertical Rolling Disk; see, e.g., Bloch [7]). Consider the motion of the vertical rolling disk of radius R shown
in Fig. 2. The configuration space is

Q = SE(2)× S1
= (SO(2) n R2)× S1

= {(ϕ, x, y, ψ)}.

Fig. 2. Vertical rolling disk.

Suppose thatm is the mass of the disk, I is the moment of inertia of the disk about the axis perpendicular to the plane of the
disk, and J is the moment of inertia about an axis in the plane of the disk (both axes passing through the disk’s center). The
Lagrangian L : TQ → R and the Hamiltonian H : T ∗Q → R are given by

3 Again recall that f : T ∗Q̄ → R may be seen as a function on Q̄ as well.
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L =
1
2
m

ẋ2 + ẏ2


+

1
2
Jϕ̇2

+
1
2
Iψ̇2

and

H =
1
2


p2x + p2y

m
+

p2ϕ
J

+
p2ψ
I


.

The velocity constraints are

ẋ = R cosϕ ψ̇, ẏ = R sinϕ ψ̇,

or in terms of constraint one-forms,

ω1
= dx − R cosϕ dψ, ω2

= dy − R sinϕ dψ.

So the constraint distribution D ⊂ TQ and the constrained momentum space M ⊂ T ∗Q are given by

D =

(ϕ̇, ẋ, ẏ, ψ̇) ∈ TQ | ẋ = R cosϕ ψ̇, ẏ = R sinϕ ψ̇


and

M =


(pϕ, px, py, pψ ) ∈ T ∗Q | px =

mR
I

cosϕ pψ , py =
mR
I

sinϕ pψ


.

Let G = R2 and consider the action of G on Q defined by

G × Q → Q ; ((a, b), (ϕ, x, y, ψ)) → (ϕ, x + a, y + b, ψ).

Then, the system is a Chaplygin system in the sense of Definition 2.1. The Lie algebra g is identified with R2 in this case; let
us use (ξ , η) as the coordinates for g. Then, we may write the connection A : TQ → g as

A = (dx − R cosϕ dψ)⊗
∂

∂ξ
+ (dy − R sinϕ dψ)⊗

∂

∂η
, (5.1)

and hence its curvature as

B = R

sinϕ dϕ ∧ dψ ⊗

∂

∂ξ
− cosϕ dϕ ∧ dψ ⊗

∂

∂η


. (5.2)

Furthermore, the momentum map J : T ∗Q → g∗ is given by

J(pq) = px dξ + py dη. (5.3)

The quotient space is Q̄ := Q/G = {(ϕ, ψ)}. The reduced Hamiltonian H̄ : T ∗Q̄ → R is

H̄ =
1
2


1
J
p2ϕ +

I + mR2

I2
p2ψ


. (5.4)

A simple calculation shows that the horizontal lift hlM : T ∗Q̄ → M is given by

hlM(pϕ, pψ ) =


pϕ,

mR
I

cosϕ pψ ,
mR
I

sinϕ pψ , pψ


. (5.5)

Then, we find from Eq. (2.12) along with Eqs. (5.1)–(5.3) and (5.5) thatΞ = 0. Therefore, the sufficient condition, Eq. (3.10),
for Chaplygin Hamiltonization reduces to df ∧ Θ = 0, and hence we may choose f = 1. Thus, the Chaplygin Hamiltonian
H̄C : T ∗Q̄ → R is identical to H̄ (see Eq. (3.8)).

To illustrate Theorem 4.1, we begin with the Chaplygin Hamilton–Jacobi equation (4.1):

1
2


1
J


∂W̄
∂ϕ

2

+
I + mR2

I2


∂W̄
∂ψ

2
= E. (5.6)

Now, we employ the conventional approach of separation of variables, i.e., assume that W̄ : Q̄ → R takes the following
form:

W̄ (ϕ, ψ) = W̄ϕ(ϕ)+ W̄ψ (ψ).

Then, Eq. (5.6) becomes

1
2


1
J


dW̄ϕ

dϕ

2

+
I + mR2

I2


dW̄ψ

dψ

2
= E.
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Fig. 3. Knife edge on inclined plane.

Since the first term on the left-hand side depends only on ϕ and the second only on ψ , we obtain the solution

dW̄ϕ

dϕ
= γ 0

ϕ ,
dW̄ψ

dψ
= γ 0

ψ , (5.7)

where γ 0
ϕ and γ 0

ψ are the constants determined by the initial condition such that

1
2

[
1
J
(γ 0
ϕ )

2
+

I + mR2

I2
(γ 0
ψ )

2
]

= E.

Then, Eq. (4.3) gives

γ (ϕ, x, y, ψ) = γ 0
ϕ dϕ +

mR
I

cosϕ γ 0
ψ dx +

mR
I

sinϕ γ 0
ψ dy + γ 0

ψ dψ, (5.8)

which is the solution of the nonholonomic Hamilton–Jacobi equation (1.1) obtained in [9, Example 4.1]:

Example 5.2 (The Knife Edge; see, e.g., Bloch [ [7]). Consider a plane slanted at an angle α from the horizontal and let (x, y)
represent the position of the point of contact of the knife edge with respect to a fixed Cartesian coordinate system on the
plane (see Fig. 3) and ϕ the angle of it as shown in Fig. 3. The configuration space is

Q = SE(2) = SO(2) n R2
= {(ϕ, x, y)}.

Suppose that the mass of the knife edge is m, and the moment of inertia about the axis perpendicular to the inclined plane
through its contact point is J . The Lagrangian L : TQ → R and the Hamiltonian H : T ∗Q → R are given by

L =
1
2
m

ẋ2 + ẏ2


+

1
2
Jϕ̇2

+ mgx sinα

and

H =
1
2


p2x + p2y

m
+

p2ϕ
J


− mgx sinα.

The velocity constraint is

sinϕ ẋ − cosϕ ẏ = 0

and so the constraint one-form is

ω1
= sinϕ dx − cosϕ dy.

The constraint distribution D ⊂ TQ and the constrained momentum space M ⊂ T ∗Q are given by

D = {(ϕ̇, ẋ, ẏ) ∈ TQ | sinϕ ẋ − cosϕ ẏ = 0}

and

M =

(pϕ, px, py) ∈ T ∗Q | sinϕ px = cosϕ py


.

Let G = R and consider the action of G on Q defined by

G × Q → Q ; (a, (ϕ, x, y)) → (ϕ, x, y + a).
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Then, the system is a Chaplygin system in the sense of Definition 2.1. The Lie algebra g is identified with R in this case; let
us use η as the coordinate for g. Then, we may write the connection A : TQ → g as

A = (dy − tanϕ dx)⊗
∂

∂η
, (5.9)

and hence its curvature as

B =
1

cos2 ϕ
dx ∧ dϕ ⊗

∂

∂η
, (5.10)

where we assume that ϕ stays in the range (0, π/2) or (π/2, π) to avoid singularities. Furthermore, the momentum map
J : T ∗Q → g∗ is given by

J(pq) = py dη. (5.11)

The quotient space is Q̄ := Q/G = {(ϕ, x)}. The reduced Hamiltonian H̄ : T ∗Q̄ → R is

H̄ =
1
2


cos2 ϕ
m

p2x +
1
J
p2ϕ


− mgx sinα.

A simple calculation shows that the horizontal lift hlM : T ∗Q̄ → M is given by

hlM(pϕ, px) =

pϕ, cos2 ϕ px, sinϕ cosϕ px


. (5.12)

Then, we find from Eq. (2.12) along with Eqs. (5.9)–(5.12) that

Ξ = px tanϕ dx ∧ dϕ.

Therefore, the sufficient condition, Eq. (3.10), for Chaplygin Hamiltonization gives

pϕ
∂ f
∂x

− px
∂ f
∂ϕ

= (px tanϕ) f .

It is easy to find the solution

f = cosϕ. (5.13)

Note that f is nowhere-vanishing if ϕ is assumed to be in the range (0, π/2) or (π/2, π).
Then, Eq. (3.8) gives the following Chaplygin Hamiltonian:

H̄C(ϕ, x, pϕ, px) = H̄

ϕ, x,

pϕ
cosϕ

,
px

cosϕ


=

1
2


1
m

p2x +
1

J cos2 ϕ
p2ϕ


− mgx sinα.

The Chaplygin Hamilton–Jacobi equation (4.1) then becomes

1
2


1
m


∂W̄
∂x

2

+
1

J cos2 ϕ


∂W̄
∂ϕ

2
− mgx sinα = E. (5.14)

Assume that W̄ : Q̄ → R takes the following form:

W̄ (ϕ, x) = W̄ϕ(ϕ)+ W̄x(x).

Then, Eq. (5.14) becomes

1
2


1
m


dW̄x

dx

2

− (2mg sinα) x +
1

J cos2 ϕ


dW̄ϕ

dϕ

2
= E.

The first two terms in the brackets depend only on x, whereas the third only on ϕ, and thus

1
m


dW̄x

dx

2

− (2mg sinα) x = 2E −
(γ 0
ϕ )

2

J
,

1
cos2 ϕ


dW̄ϕ

dϕ

2

= (γ 0
ϕ )

2,

with some positive constant γ 0
ϕ . Hence, assuming dW̄x/dx ≥ 0, we have

dW̄x

dx
=


m

2E −

(γ 0
ϕ )

2

J


+ (2m2g sinα) x,

dW̄ϕ

dϕ
= γ 0

ϕ cosϕ.
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Then, Eq. (4.3) gives

γ (ϕ, x, y) = γ 0
ϕ dϕ +


m

2E −

(γ 0
ϕ )

2

J


+ (2m2g sinα) x (cosϕ dx + sinϕ dy),

which is the solution of the nonholonomic Hamilton–Jacobi equation (1.1) obtained in [9, Example 4.2].

6. Further reduction and Hamiltonization

It often happens that there does not exist an f that satisfies the necessary and sufficient condition in Proposition 3.9 or
the sufficient condition, Eq. (3.10), and hence we cannot Hamiltonize the system based on the above theory. However, we
may reduce such systems further and then attempt to Hamiltonize the further-reduced system.

6.1. Further reduction of Chaplygin systems

We consider the following special case of the ‘‘truncation’’ of [5, Section 3.B]. Recall the reduced Chaplygin system,
Eq. (2.10), on T ∗Q̄ , i.e.,

iX̄Ω̄
nh

= dH̄ (6.1)

with the almost symplectic form

Ω̄nh
:= Ω̄ − Ξ , (6.2)

and consider a free and proper Lie group action K × Q̄ → Q̄ , or ΦK
k : Q̄ → Q̄ with any k ∈ K , that satisfies the following

conditions:

I. The Hamiltonian H̄ is K -invariant, i.e., H̄ ◦ T ∗ΦK
k = H̄ for any k ∈ K , where T ∗ΦK is the cotangent lift ofΦK .

II. For any element η in the Lie algebra k of K , the infinitesimal generator ηT∗Q̄ satisfies

iηT∗Q̄
Ξ = 0. (6.3)

Now, let JK : T ∗Q̄ → k∗ be the equivariantmomentummap for the cotangent lift of theK -actionΦK , i.e., for anyαq̄ ∈ T ∗Q̄
and η ∈ k,

JK (αq̄), η

=

αq̄, ηQ̄


. (6.4)

Also define JηK : T ∗Q̄ → R by JηK (αq̄) :=

JK (αq̄), η


for each η ∈ k. Then, we have

iηT∗Q̄
Ω̄ = dJηK .

Notice that Condition II implies

iηT∗Q̄
Ω̄nh

= iηT∗Q̄
Ω̄,

and thus

iηT∗Q̄
Ω̄nh

= iηT∗Q̄
Ω̄ = dJηK . (6.5)

In other words, JK is amomentummapwith respect to both the standard symplectic form Ω̄ and the almost symplectic form
Ω̄nh. We also have the following:

Proposition 6.1. Under Conditions I and II stated above, the momentum map JK : T ∗Q̄ → k∗ is conserved along the flow of the
vector field X̄ of the reduced Chaplygin system, Eq. (6.1).

Proof. Follows easily from the following calculation:

X̄[JηK ] = iX̄dJ
η

K

= iX̄ iηT∗Q̄
Ω̄nh

= −iηT∗Q̄
iX̄Ω̄

nh

= −iηT∗Q̄
dH̄

= −ηT∗Q̄ [H̄]

= 0,

where we used Eq. (6.5) in the second line, and Condition I in the last line. �
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Also, let Kµ be the coadjoint isotropy group of µ, i.e., Kµ :=

k ∈ K | Ad∗

kµ = µ

, and assume

III. µ ∈ k∗ is a regular value of JK , and Kµ acts freely and properly on J−1
K (µ).

Since JK is amomentummapwith respect to the almost symplectic form Ω̄nh, the two-form Ω̄nh itself works as a ‘‘truncated
form’’ (see [5, Section 3.B and Theorem 3.3]) in this special case: Performing the almost symplectic reduction of [23], wemay
drop the dynamics to J−1

K (µ)/Kµ as follows:

Proposition 6.2 (Further Reduction of Chaplygin Systems). Under Conditions I–III, we have the following:

(i) There exists an almost symplectic form Ω̄nh
µ on J−1

K (µ)/Kµ uniquely characterized by

π∗

µΩ̄
nh
µ = i∗µΩ̄

nh, (6.6)

where iµ : J−1
K (µ) ↩→ T ∗Q̄ and πµ : J−1

K (µ) → J−1
K (µ)/Kµ.

(ii) The reduced Chaplygin system, Eq. (6.1), is further reduced to the following system:

iX̄µΩ̄
nh
µ = dH̄µ, (6.7)

where X̄ and X̄µ are πµ-related, i.e.,

Tπµ ◦ X̄ = X̄µ ◦ πµ, (6.8)

and H̄µ : J−1
K (µ)/Kµ → R is defined by

H̄µ ◦ πµ = H̄ ◦ iµ. (6.9)

(iii) The almost symplectic form Ω̄nh
µ is written as

Ω̄nh
µ = Ω̄µ − Ξµ,

whereΞµ is uniquely characterized by

π∗

µΞµ = i∗µΞ . (6.10)

Proof. (i) and (ii) follow directly from [23, Theorem 2.1]. (iii) Since JK is an equivariant momentummap with respect to the
canonical symplectic form Ω̄ , the symplectic reduction of [24] applies here as well (not to the reduction of the dynamics but
to the reduction of the symplectic structure). Hence there exists a unique (strictly) symplectic form Ω̄µ on J−1

K (µ)/Kµ such
that

π∗

µΩ̄µ = i∗µΩ̄. (6.11)

Combining this with Eq. (6.6), we have

π∗

µ(Ω̄µ − Ω̄nh
µ ) = i∗µ(Ω̄ − Ω̄nh) = i∗µΞ .

Since πµ is a surjective submersion, the pull-back π∗
µ is injective, and thus the uniqueness follows. �

Furthermore, under certain assumptions, we may employ a result from the theory of cotangent bundle reduction (see,
e.g., [20, Section 2.2]) to make our result more explicit. To that end, we first define a mechanical connection on the principal
bundle

π̄ : Q̄ → Q̄/K =: Q̃

as follows: For each q̄ ∈ Q̄ , let I(q̄) : k → k∗ be the locked inertia tensor defined by

⟨I(q̄)η, ζ ⟩ = ḡq̄

ηQ̄ (q̄), ζQ̄ (q̄)


,

where ḡ is the kinetic energy metric defined in Eq. (2.7), and η and ζ are arbitrary elements in k. Then, the mechanical
connection AK : T Q̄ → k is defined by

AK (vq̄) := I(q̄)−1
◦ JK


FL̄(vq̄)


. (6.12)

We will also need the ‘‘µ-component’’ of AK , i.e., the one-form αµ on Q̄ defined by αµ(q̄) := AK (q̄)∗µ, or equivalently,
αµ(q̄), vq̄


=

µ,AK (vq̄)


. (6.13)

Let us introduce the two-form βµ on Q̃ defined by

π̄∗βµ = dαµ, (6.14)
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and also the two-form BK
µ on T ∗Q̃ defined by

BK
µ := π∗

Q̃
βµ, (6.15)

where πQ̃ : T ∗Q̃ → Q̃ is the cotangent bundle projection.
Now, we assume the following:

IV. Kµ = K , which is always the case when K is Abelian;
V. αµ is K -invariant and takes values in J−1

K (µ).

With these additional assumptions, we have the following important special case of Proposition 6.2:

Proposition 6.3 (Further Reduction of Chaplygin Systems—Special Case). If, in addition, Conditions IV and V hold, then we
may extend the results of Proposition 6.2 so that the dynamics after the second reduction is described on the cotangent bundle
T ∗(Q̄/K) = T ∗Q̃ as follows:

(i) The reduced space J−1
K (µ)/K is symplectically diffeomorphic to T ∗Q̃ with the symplectic structure Ω̃ − BK

µ, where Ω̃ is the
standard symplectic form on T ∗Q̃ .

(ii) Let ϕµ : J−1
K (µ)/K → T ∗Q̃ be the symplectomorphism that gives the correspondence in (i). Then, the dynamics on J−1

K (µ)/K
defined by Eq. (6.7) is equivalent to the one defined by

iX̃µΩ̃
nh
µ = dH̃µ, (6.16)

where

Ω̃nh
µ := Ω̃ − BK

µ − Ξ̃µ (6.17)

with X̃µ := (ϕ−1
µ )

∗X̄µ, Ξ̃µ := (ϕ−1
µ )

∗Ξµ, and H̃µ := H̄µ ◦ ϕ−1
µ .

Proof. (i) See [20, Theorem 2.2.3 on p. 64]. The construction of the map ϕµ is summarized in Appendix B. The diagrams
below summarize the spaces and almost symplectic forms involved in the procedure of the reduction.

T ∗Q̄

J−1
K (µ)

iµ

OO

πµ

��
J−1
K (µ)/K

ϕµ // T ∗Q̃

Ω̄nh
_

i∗µ

��
i∗µΩ̄

nh
= π∗

µΩ̄
nh
µ

Ω̄nh
µ

_

π∗
µ

OO

� (ϕ−1
µ )∗ // Ω̃nh

µ

(ii) Apply (ϕ−1
µ )

∗ to both sides of Eq. (6.7) and use the fact from (i) that (ϕ−1
µ )

∗Ω̄µ = Ω̃ − BK
µ. �

6.2. Hamiltonization after second reduction

Now,we follow a similar argument as in Section 3 to discuss the Hamiltonizability of the system defined by Eq. (6.16): Let
fµ : T ∗Q̃ → R be a smooth nowhere-vanishing function that is constant on each fiber, and define themap Ψ̃fµ : T ∗Q̃ → T ∗Q̃
by

Ψ̃fµ : α → fµ α.

Define the vector field X̃µC analogously to Eq. (3.2) so that

X̃µC = Ψ̃ ∗

1/fµ(X̃µ/fµ), (6.18)

and hence X̃µ/fµ and X̃µC are Ψ̃fµ-related:

T Ψ̃fµ ◦ (X̃µ/fµ) = X̃µC ◦ Ψ̃fµ . (6.19)

Following the same arguments as in the proofs of Proposition 3.9 and Theorem3.13, we obtain similar results for the further-
reduced system, Eq. (6.16).
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Proposition 6.4 (Necessary and Sufficient Condition for Hamiltonization after Second Reduction). The vector field X̃µC ∈ X(T ∗Q̃ )
satisfies Hamilton’s equations

iX̃µC Ω̃ = dH̃µC

with the Chaplygin Hamiltonian

H̃µC := H̃µ ◦ Ψ̃1/fµ (6.20)

if and only if the one-form iX̃µC


dfµ ∧ Θ̃ − f 2µ


BK
µ + Ψ̃ ∗

1/fµΞ̃µ


vanishes, where Θ̃ is the symplectic one-form on T ∗Q̃ .

Proof. The result follows from essentially the same calculations as in the proof of Lemma 3.8. The only difference is the
treatment of the curvature term BK

µ, which is not present in Lemma 3.8. Specifically, we need to calculate Ψ̃ ∗

1/fµB
K
µ: From the

definition of BK
µ, Eq. (6.15), we have

Ψ̃ ∗

1/fµB
K
µ = Ψ̃ ∗

1/fµπ
∗

Q̃
βµ

=

πQ̃ ◦ Ψ̃1/fµ

∗
βµ

= π∗

Q̃
βµ

= BK
µ,

where we used the fact that Ψ̃1/fµ is fiber-preserving, i.e., πQ̃ ◦ Ψ̃1/fµ = πQ̃ . Therefore, we obtain

iX̃µC


Ω̃ +

1
fµ


dfµ ∧ Θ̃ − f 2µ


BK
µ + Ψ̃ ∗

1/fµΞ̃µ


= dH̃µC , (6.21)

and thus the claim follows. �

Remark 6.5. Since Ω̃−BK
µ is also a (non-standard) symplectic form aswell, wemay discuss Hamiltonizationwith respect to

this symplectic form. However, we prefer to work with the standard symplectic form Ω̃ since the standard Hamilton–Jacobi
theory directly applies to Hamiltonian systems defined with the standard symplectic form Ω̃ .

Theorem 6.6 (A Sufficient Condition for Hamiltonization after Second Reduction). Suppose there exists a nowhere-vanishing
fiber-wise constant function fµ : T ∗Q̃ → R that satisfies the equation

dfµ ∧ Θ̃ = f 2µ

BK
µ + Ψ̃ ∗

1/fµΞ̃µ


. (6.22)

Then, the vector field X̃µC ∈ X(T ∗Q̃ ) (see Eq. (6.18)) satisfies the following Hamilton’s equations:

iX̃µC Ω̃ = dH̃µC , (6.23)

and, as a result, the further-reduced nonholonomic dynamics, Eq. (6.16), has the invariant measure f ñ−1
µ Λ̃, where ñ := dim Q̃

and

Λ̃ :=
(−1)ñ(ñ−1)/2

ñ!
Ω̃ ∧ · · · ∧ Ω̃  

ñ

.

Proof. Follows immediately from Eq. (6.21) and Corollary 3.4. �

7. Nonholonomic H–J theory via Hamiltonization after second reduction

7.1. Relationship between the Chaplygin H–J and nonholonomic H–J equations after second reduction

If the system is Hamiltonized in the sense of Theorem 6.6, then we have the Chaplygin Hamilton–Jacobi equation

H̃µC ◦ dW̃µ
= E (7.1)

corresponding toHamilton’s equation (6.23). One thenwonders if there is any relationship between W̃µ and γ that is similar
to the one obtained in Theorem 4.1.

A natural starting point towards the answer to this question is, again, to look into the relationship between the Chaplygin
Hamiltonian H̃µC and the original Hamiltonian H; then we obtain the relationship between the two solutions W̃µ and
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γ by exploiting the geometry involved in the process of reduction and Hamiltonization. The diagram below combines
the following things together: the first and second reductions of Chaplygin systems; the relationship between the two
Hamiltonians H̃µC and H; the shift map shiftµ : J−1

K (µ) → J−1
K (0) (see Appendix B); also the horizontal lift hlM̄ : T ∗Q →

M̄ := J−1
K (0), which is defined in a similar way as hlM (see Eq. (2.8)) using the connection AK (see Eq. (6.12)) as follows: Let

us define the horizontal space

D̄ := kerAK ⊂ T Q̄ .

Then, the connection AK induces the horizontal lift hlD̄ : T Q̃ → D̄ defined by hlD̄ := (T π̄ |D̄)
−1. Let us also define

M̄ := J−1
K (0).

Then, it is straightforward to see that M̄ = FL̄(D̄). Now, we define the horizontal lift hlM̄ : T ∗Q̃ → M̄ as follows:

hlM̄q̄ := FL̄q̄ ◦ hlD̄q̄ ◦ (FL̃)−1
q̃ , (7.2)

where L̃ : T Q̃ → R is defined by L̃ := L̄ ◦ hlD̄ .

R

M

H

;;wwwwwwwwwwwwwwwwwwwwwwwwwwww
T ∗Q̄

hlM
oo J−1

K (µ)
iµoo

πµ

��

J−1
K (0)

shift−1
µoo

J−1
K (µ)/K T ∗Q̃

ϕ−1
µ

oo

hlM̄
ccGGGGGGGGGG

T ∗Q̃
Ψ̃1/fµ

oo

H̃µC

ccGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Q
π

//

γ

OO�
�
�
�
�
�
�
�
�

Q̄
π̄

//

γ̄µ

OO�
�
�
�
�
�
�
�

Q̃

dW̃µ

OO

(7.3)

That the map hlM̄ fits into the diagram is shown in Appendix C (see also Appendix B). The diagram also shows the map
dW̃µ

: Q̃ → T ∗Q̃ with W̃µ being a solution of the Chaplygin Hamilton–Jacobi equation (7.1); this leads us to the following
result that is similar to Theorem 4.1:

Theorem 7.1. Suppose that there exists a nowhere-vanishing fiber-wise constant function fµ : T ∗Q̃ → R that satisfies Eq. (6.22),
and hence by Theorem 6.6, we have Hamilton’s equations (6.23) for the vector field X̃µC . Let W̃µ

: Q̃ → R be a solution of the
Chaplygin Hamilton–Jacobi equation (7.1), and define γ : Q → M by

γ (q) := hlMq ◦ γ̄µ ◦ π(q) (7.4)

with γ̄µ : Q̄ → T ∗Q̄ defined by4

γ̄µ(q̄) := iµ ◦ shift−1
µ ◦ hlM̄q̄ ◦ Ψ̃1/fµ ◦ dW̃µ

◦ π̄(q̄)

= i0 ◦ hlM̄q̄


1
fµ

dW̃µ(q̃)


+ αµ(q̄), (7.5)

where q̄ := π(q) and q̃ := π̄(q̄). Then γ satisfies the nonholonomic Hamilton–Jacobi equation (1.1) as well as the condition
equation (1.2).

4 See Appendix B for the relationship between iµ , i0 , and shiftµ: We have iµ ◦ shift−1
µ (pq̄) = i0(pq̄)+ αµ(q̄) for any pq̄ ∈ J−1

K (0).
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Proof. That the one-form γ defined by Eqs. (7.4) and (7.5) satisfies the nonholonomic Hamilton–Jacobi equation (1.1)
follows from the diagram (7.3). Showing that it also satisfies the condition equation (1.2) requires tedious calculations:
Following a similar calculation to that of dγ (Y h, Zh) in the proof of Theorem 4.1, Eq. (7.4) gives

dγ (Y h, Zh) = dγ̄µ(Y , Z)+ γ̄ ∗

µΞ(Y , Z) (7.6)

for arbitrary horizontal vector fields Y h, Zh
∈ X(Q ), where Y := Tπ(Y h) and similarly for Z .

Let us calculate the first term in Eq. (7.6): Writing

γ̄0 := i0 ◦ hlM̄q̄


1
fµ

dW̃µ


,

we have γ̄µ = γ̄0 + αµ and thus

dγ̄µ(Y , Z) = dγ̄0(Y , Z)+ dαµ(Y , Z).

Calculation of dγ̄0(Y , Z) is somewhat similar to that of dγ (Y h, Zh) in the proof of Theorem 4.1, but there is one difference:
Y and Z are not horizontal here. Specifically, we have

dγ̄0(Y , Z) = Y [γ̄0(Z)] − Z[γ̄0(Y )] − γ̄0([Y , Z])

=
1
fµ

dW̃µ([Ỹ , Z̃])−
1
f 2µ

dfµ ∧ dW̃µ(Ỹ , Z̃)− γ̄0([Y , Z]),

where we defined Ỹ := T π̄(Y ) and similarly for Z̃ . To calculate γ̄0([Y , Z]), we decompose [Y , Z] into the horizontal and
vertical parts:

[Y , Z] = hlD̄([Ỹ , Z̃])+ (AK ([Y , Z]))Q̄ ,

where we note that T π̄([Y , Z]) = [Ỹ , Z̃], since Y and Z are π̄-related to Ỹ and Z̃ , respectively. As a result, we have

γ̄0([Y , Z])(q̄) =
1

fµ(q̃)
dW̃µ([Ỹ , Z̃])(q̃)+

1
fµ(q̃)


JK ◦ hlM̄q̄


dW̃µ(q̃)


,AK ([Y , Z])(q̄)


=

1
fµ(q̃)

dW̃µ([Ỹ , Z̃])(q̃),

where the second term vanishes because hlM̄ takes values in M̄ := J−1
K (0). Next let us calculate dαµ(Y , Z): Using Eq. (6.14),

the relation πQ̃ ◦ dW̃µ
= idQ̃ , and Eq. (6.15), we obtain

dαµ(Y , Z) = π̄∗βµ(Y , Z)

= π̄∗
◦ (πQ̃ ◦ dW̃µ)∗βµ(Y , Z).

= π̄∗
◦ (dW̃µ)∗ ◦ π∗

Q̃
βµ(Y , Z).

= π̄∗
◦ (dW̃µ)∗BK

µ(Y , Z).

= (dW̃µ)∗BK
µ(Ỹ , Z̃).

Therefore, the first term on the right-hand side of Eq. (7.6) becomes

dγ̄µ(Y , Z) = −
1
f 2µ
(dW̃µ)∗


dfµ ∧ Θ̃ − f 2µ BK

µ


(Ỹ , Z̃),

since (dW̃µ)
∗fµ = fµ and also (dW̃µ)

∗Θ̃ = dW̃µ.
Now, let us evaluate the second term on the right-hand side of Eq. (7.6): Substitution of Eq. (7.5) gives

γ̄ ∗

µΞ =


shift−1

µ ◦ hlM̄q̄ ◦ Ψ̃1/fµ ◦ dW̃µ
◦ π̄

∗

◦ i∗µΞ

=


shift−1

µ ◦ hlM̄q̄ ◦ Ψ̃1/fµ ◦ dW̃µ
◦ π̄

∗

◦ π∗

µΞµ

=


πµ ◦ shift−1

µ ◦ hlM̄q̄ ◦ Ψ̃1/fµ ◦ dW̃µ
◦ π̄

∗

Ξµ

=


Ψ̃1/fµ ◦ dW̃µ

◦ π̄
∗

◦


πµ ◦ shift−1

µ ◦ hlM̄q̄
∗

Ξµ

=


Ψ̃1/fµ ◦ dW̃µ

◦ π̄
∗

◦

ϕ−1
µ

∗
Ξµ
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Fig. 4. The snakeboard.

=


Ψ̃1/fµ ◦ dW̃µ

◦ π̄
∗

Ξ̃µ

= π̄∗
◦ (dW̃µ)∗ ◦ Ψ̃ ∗

1/fµΞ̃µ

where we used Eq. (6.10), the relation πµ ◦ shift−1
µ ◦ hlM̄q̄ = ϕ−1

µ from the diagram (7.3), and the definition of Ξ̃µ from
Proposition 6.3. This implies

γ̄ ∗

µΞ(Y , Z) = (dW̃µ)∗ ◦ Ψ̃ ∗

1/fµΞ̃µ(Ỹ , Z̃).

As a result, Eq. (7.6) becomes

dγ (Y h, Zh) = −
1
f 2µ
(dW̃µ)∗


dfµ ∧ Θ̃ − f 2µ


BK
µ + Ψ̃ ∗

1/fµΞ̃µ


(Ỹ , Z̃),

which vanishes because the sufficient condition, Eq. (6.22), is assumed to be satisfied. �

7.2. Example of further reduction, Hamiltonization, and Chaplygin H–J equation

Example 7.2 (The Snakeboard; see, e.g., Ostrowski et al. [25], Bloch et al. [26] and Koon and Marsden [27]). Consider the motion
of the snakeboard shown in Fig. 4. Let m be the total mass of the board, J the inertia of the board, J0 the inertia of the rotor,
J1 the inertia of each of the wheels, and assume the relation J + J0 + 2J1 = mr2. The configuration space is

Q = SE(2)× S1
× S1

= (SO(2) n R2)× S1
× S1

= {(θ, x, y, φ, ψ)}.

The Lagrangian L : TQ → R and the Hamiltonian H : T ∗Q → R are given by

L =
1
2


m

ẋ2 + ẏ2 + r2θ̇2


+ 2J0 θ̇ ψ̇ + 2J1 φ̇2

+ J0 ψ̇2
and

H =
1
2m


p2x + p2y


+

1
2(mr2 − J0)

(pθ − pψ )2 +
1
4J1

p2φ +
1
2J0

p2ψ .

The velocity constraints are

ẋ + r cotφ cos θ θ̇ = 0, ẏ + r cotφ sin θ θ̇ = 0,

or in terms of constraint one-forms,

ω1
= dx + r cotφ cos θ dθ, ω2

= dy + r cotφ sin θ dθ.

So the constraint distribution D ⊂ TQ and the constrained momentum space M ⊂ T ∗Q are given by

D =

(θ̇ , ẋ, ẏ, φ̇, ψ̇) ∈ TQ | ωs(θ̇ , ẋ, ẏ, φ̇, ψ̇) = 0, s = 1, 2


,

and

M =

(pθ , px, py, pφ, pψ ) ∈ T ∗Q | px = −κ cotφ cos θ (pθ − pψ ), py = −κ cotφ sin θ (pθ − pψ )


,

where κ := mr/(mr2 − J0).
Let G = R2 and consider the action of G on Q defined by

G × Q → Q ; ((a, b), (θ, x, y, φ, ψ)) → (θ, x + a, y + b, φ, ψ).

Then, the system is a Chaplygin system in the sense of Definition 2.1. The Lie algebra g is identified with R2 in this case. Let
us use again (ξ , η) as the coordinates for g. Then, we may write the connection A : TQ → g as

A = (dx + r cotφ cos θ dθ)⊗
∂

∂ξ
+ (dy + r cotφ sin θ dθ)⊗

∂

∂η
, (7.7)
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and hence its curvature as

B =


r cos θ csc2 φ dθ ∧ dφ ⊗

∂

∂ξ
+ r sin θ csc2 φ dθ ∧ dφ ⊗

∂

∂η


. (7.8)

Furthermore, the momentum map J : T ∗Q → g∗ is given by

J(pq) = px dξ + py dη. (7.9)

The quotient space is Q̄ := Q/G = {(θ, φ, ψ)}, and the reduced Hamiltonian H̄ : T ∗Q̄ → R is

H̄ =
1
2


sin2 φ

mr2 − J0 sin2 φ
(pθ − pψ )2 +

p2φ
2J1

+
p2ψ
J0


,

and the horizontal lift hlM : T ∗Q̄ → M is given by

hlM(pθ , pφ, pψ ) =


pψ +

(mr2 − J0) sin2 φ

mr2 − J0 sin2 φ
(pθ − pψ ),−

mr cosφ sinφ cos θ
mr2 − J0 sin2 φ

(pθ − pψ ),

−
mr cosφ sinφ sin θ
mr2 − J0 sin2 φ

(pθ − pψ ), pφ, pψ


. (7.10)

Then, we find from Eq. (2.12) along with Eqs. (7.7)–(7.10) that

Ξ = −
mr2(pθ − pψ ) cotφ

mr2 − J0 sin2 φ
dθ ∧ dφ.

However, there exists no function f that satisfies the sufficient condition, Eq. (3.10), for Chaplygin Hamiltonization. In fact,
one can show (see [6]) that there does not exist an f which satisfies thenecessary and sufficient condition forHamiltonization
from Proposition 3.9. Hence the system is not Hamiltonizable at this level of reduction. Therefore, we would like to further
reduce the system: Let K = S1 and consider the action of K on Q̄ defined by

K × Q̄ → Q̄ ; (c, (θ, φ, ψ)) → (θ, φ, ψ + c);

and soΦK
c (θ, φ, ψ) = (θ, φ, ψ + c) for any c ∈ K . This gives rise to the cotangent lift

K × T ∗Q̄ → T ∗Q̄ ;

c, (θ, φ, ψ, pθ , pφ, pψ )


→ (θ, φ, ψ + c, pθ , pφ, pψ ),

that is,

T ∗ΦK
−c(θ, φ, ψ, pθ , pφ, pψ ) = (θ, φ, ψ + c, pθ , pφ, pψ ).

It is easy to see that theHamiltonian H̄ is K -invariant. Also, for any ζ ∈ k, we have the infinitesimal generator ζT∗Q̄ = ζ ∂/∂ψ
and so easily see that iζT∗Q̄

Ξ = 0. Hence Conditions I and II are satisfied. Therefore, by Proposition 6.1, the corresponding
momentum map

JK (pq̄) = pψ dζ

is conserved. It is straightforward to check that Condition III is satisfied for anyµ = µψ dζ ∈ k∗. Then, Proposition 6.2 gives
the reduced dynamics on J−1

K (µ)/Kµ, and Eqs. (6.9) and (6.10) give

H̄µ =
1
2


sin2 φ

mr2 − J0 sin2 φ
(pθ − µψ )

2
+

p2φ
2J1

+
µ2
ψ

J0


and

Ξµ = −
mr2(pθ − µψ ) cotφ

mr2 − J0 sin2 φ
dθ ∧ dφ.

Furthermore, Eq. (6.12) gives the mechanical connection

AK = (dθ + dψ)⊗
∂

∂ζ
, (7.11)

and hence Eq. (6.13) gives

αµ = µ(dθ + dψ), (7.12)
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and so βµ = 0 and BK
µ = 0. It is also straightforward to check that Conditions IV and V are satisfied. Therefore, wemay apply

Proposition 6.3 to this case. Specifically, we have Q̃ := Q̄/K = {(θ, φ)}, and Eq. (B.5) (from Example B.1 in Appendix B)
gives

ϕ−1
µ : T ∗Q̃ → J−1

K (µ)/K ; (θ, φ, pθ , pφ) → (θ, φ, pθ + µψ , pφ),

and hence we have

H̃µ(θ, φ, pθ , pφ) := H̄µ ◦ ϕ−1
µ (θ, φ, pθ , pφ) =

1
2


sin2 φ

mr2 − J0 sin2 φ
p2θ +

p2φ
2J1

+
µ2
ψ

J0


and

Ξ̃µ := (ϕ−1
µ )

∗Ξµ = −
mr2pθ cotφ

mr2 − J0 sin2 φ
dθ ∧ dφ.

Therefore, the sufficient condition, Eq. (6.22), for Chaplygin Hamiltonization becomes

pφ
∂ fµ
∂θ

− pθ
∂ fµ
∂φ

= −pθ
mr2 cotφ

mr2 − J0 sin2 φ
fµ,

which gives

∂ fµ
∂θ

= 0,
∂ fµ
∂φ

=
mr2 cotφ

mr2 − J0 sin2 φ
fµ.

A straightforward integration yields5

fµ =
sinφ

mr2 − J0 sin2 φ
,

where we assume that | sinφ| <
√
m/J0 r . Then, Eq. (6.20) gives the following Chaplygin Hamiltonian:

H̃µC (θ, φ, pθ , pφ) = H̃µ


θ, φ,


mr2 − J0 sin2 φ

sinφ
pθ ,


mr2 − J0 sin2 φ

sinφ
pφ



=
1
2


p2θ +

mr2 − J0 sin2 φ

2J1 sin2 φ
p2φ +

µ2
ψ

J0


.

Hence the Chaplygin Hamilton–Jacobi equation (7.1) becomes

1
2

∂W̃µ

∂θ

2

+
mr2 − J0 sin2 φ

2J1 sin2 φ


∂W̃µ

∂φ

2

+
µ2
ψ

J0

 = E. (7.13)

Assume that W̃µ
: Q̃ → R takes the following form:

W̃µ(θ, φ) = W̃µ
θ (θ)+ W̃µ

φ (φ).

Then, Eq. (7.13) becomes

1
2

dW̃µ
θ

dθ

2

+
mr2 − J0 sin2 φ

2J1 sin2 φ


dW̃µ

φ

dφ

2

+
µ2
ψ

J0

 = E.

The first term in the brackets depends only on θ whereas the second only on φ, and the third one is constant. Thus we have

dW̃µ
θ

dθ
= γ 0

θ ,
dW̃µ

φ

dφ
=

sinφ
mr2 − J0 sin2 φ

γ 0
φ ,

with some set of constants γ 0
θ and γ 0

φ that satisfy

1
2


γ 0
θ

2
+
(γ 0
φ )

2

2J1
+
µ2
ψ

J0


= E,

5 Formr2 = J0 = 1, this verifies the result of [6, Section 4.4].
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which is solved for γ 0
θ (assumed to be positive) to give

γ 0
θ =

2


E −

(γ 0
φ )

2

4J1
−
µ2
ψ

2J0


.

Therefore, Eq. (7.4) with Eq. (7.5) gives

γ (θ, x, y, φ, ψ) =


µψ +

(mr2 − J0) C sinφ
g(φ)


dθ −

mrC cotφ sinφ
g(φ)

(cos θ dx + sin θ dy)+ γ 0
φ dφ + µψ dψ,

where we defined

C :=


E −

(γ 0
φ )

2

4J1
−
µ2
ψ

2J0
, g(φ) :=


(mr2 − J0 sin2 φ)/2.

This is the solution of the nonholonomic Hamilton–Jacobi equation (1.1) obtained in [9, Example 4.3].

8. Conclusion and future work

We established a link between two different approaches towards nonholonomic Hamilton–Jacobi theory; the direct one
in [8,9] and the indirect one via Hamiltonization. We formulated the procedure of Hamiltonization in an intrinsic manner;
this helped us understand the relationship between the two approaches and also lead us to the formulas relating the
solutions of the two different types of Hamilton–Jacobi equations resulting from the direct and indirect approaches. The
formulas provide us with the following new method to exactly integrate equations of motion of nonholonomic systems:

1. Reduce and Hamiltonize the nonholonomic system.
2. Solve the Chaplygin Hamilton–Jacobi equation for the Hamiltonized reduced system.
3. Use the formula in Theorem 4.1 or 7.1 to obtain the solution of the nonholonomic Hamilton–Jacobi equation for the full

dynamics.
4. Integrate the full dynamics using the solution as shown in [9].

A notable feature of this method is that it links the solution of the Hamilton–Jacobi equation for the reduced system with
integration of the full dynamics. We illustrated this method with a few examples and obtained the solutions identical to
those in [9].

The following questions are interesting to consider for future work:

• Hamiltonization and Hamilton–Jacobi theory for a more general class of nonholonomic systems with symmetries: This paper
only dealt with Chaplygin systems, a special case of the more general class of nonholonomic systems with symmetries
treated in [26]. We are interested in extending our results to the general case, possibly relating them to the results on
existence of an invariant measure in [15].

• Application to nonholonomic systems on Lie groups: Nonholonomic systems on Lie groups, such as the Suslov problem (see,
e.g., [28,29]), often involve an interesting question on integrability: Whether or not the full dynamics is integrable when
the reduced dynamics is (see [30]). Relating this question with the Hamilton–Jacobi equations for the full and reduced
dynamics is an interesting question to consider.
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Appendix A. Some lemmas on the horizontal lift hlM

Lemma A.1. The horizontal lift hlM is invariant under the action of the cotangent lift of Φ . Specifically, for any h ∈ G, we have

hlMhq = T ∗

qΦh−1 ◦ hlMq , (A.1)

where hq = Φh(q); or equivalently, for any αq̄ ∈ T ∗

q̄ Q̄ ,

αh
hq = T ∗

qΦh−1(αh
q ).
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Proof. From the definition of hlMq and the G-invariance of hlD , we have

hlMhq = FLhq ◦ hlDhq ◦ (FL̄)−1
q̄

= FLhq ◦ TqΦh ◦ hlDq ◦ (FL̄)−1
q̄ .

Now, using the G-invariance of the Lagrangian L, we have, for any vq ∈ TqQ andwhq ∈ ThqQ ,
FLhq ◦ TqΦh(vq), whq


=

d
dε

L(TqΦh(vq)+ ε whq)


ε=0

=
d
dε

L ◦ TqΦh(vq + ε ThqΦh−1(whq))


ε=0

=
d
dε

L(vq + ε ThqΦh−1(whq))


ε=0

=

FLq(vq), ThqΦh−1(whq)


=

T ∗

qΦh−1(FLq(vq)), whq

,

and thus FLhq ◦ TΦh = T ∗Φh−1 ◦ FLq. Hence we obtain

hlMhq = T ∗

qΦh−1 ◦ FLq ◦ hlDq ◦ (FL̄)−1
q̄

= T ∗

qΦh−1 ◦ hlMq . �

Lemma A.2. Let q be an arbitrary point in Q and q̄ = π(q) ∈ Q̄ . For any αq̄ ∈ T ∗

q̄ Q̄ and vq̄ ∈ Tq̄Q̄ , the following identity holds:
hlMq (αq̄), hlDq (vq̄)


=

αq̄, vq̄


.

Proof. Follows from the definitions of ḡ and hlMq (see Eqs. (2.7) and (2.8), respectively):
hlMq (αq̄), hlDq (vq̄)


=


g♭q ◦ hlDq ◦ (ḡ♭)−1

q̄ (αq̄), hlDq (vq̄)


= gq

hlDq ◦ (ḡ♭)−1

q̄ (αq̄), hlDq (vq̄)


= ḡq̄

(ḡ♭)−1

q̄ (αq̄), vq̄


=


ḡ♭q̄ ◦ (ḡ♭)−1

q̄ (αq̄), vq̄


=

αq̄, vq̄


. �

Appendix B. Construction of ϕµ : J−1
K (µ)/K → T ∗Q̃

We briefly summarize the construction of the map ϕµ : J−1
K (µ)/K → T ∗Q̃ that appears in Proposition 6.3 following

Marsden et al. [20, Section 2.2]. First define ϕ̄0 : J−1
K (0) → T ∗Q̃ by

ϕ̄0(pq̄), Tq̄π̄(vq̄)

=

pq̄, vq̄


(B.1)

for any pq̄ ∈ Tq̄Q̄ and vq̄ ∈ Tq̄Q̄ . Let π0 : J−1
K (0) → J−1

K (0)/K be the projection to the quotient. Then, ϕ0 : J−1
K (0)/K → T ∗Q̃

is uniquely characterized by the relation

ϕ0 ◦ π0 = ϕ̄0. (B.2)

It can be shown that ϕ0 is in fact a diffeomorphism (see [20, Proof of Theorem 2.2.2 on pp. 62–63]). We also introduce the
shift map

Shiftµ : T ∗Q̄ → T ∗Q̄

defined by

Shiftµ(pq̄) := pq̄ − αµ(q̄), (B.3)

where αµ is the one-form on Q̄ defined in Eq. (6.13). This gives rise to the K -equivariant diffeomorphism

shiftµ : J−1
K (µ) → J−1

K (0),
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and the commutative diagram below, where iµ and i0 are both inclusions.

T ∗Q̄
Shiftµ // T ∗Q̄

J−1
K (µ)

iµ

OO

shiftµ
// J−1
K (0)

i0

OO

Since the map shiftµ is K -equivariant, it induces the diffeomorphism

shiftµ : J−1
K (µ)/K → J−1

K (0)/K .

The map ϕµ : J−1
K (µ)/K → T ∗Q̃ is then defined by

ϕµ := ϕ0 ◦ shiftµ. (B.4)

The diagram below summarizes the construction of ϕµ.

J−1
K (µ)

shiftµ //

πµ

��

J−1
K (0)

π0

��

ϕ̄0

""FFFFFFFFFFFFFFFF

J−1
K (µ)/K shiftµ

//

ϕµ

77J−1
K (0)/K ϕ0

// T ∗Q̃

Example B.1 (The Snakeboard; See Example 7.2). Let us first determine ϕ̄0 and ϕ0. Note that we may parametrize J−1
K (0) as

follows:

J−1
K (0) =


(θ, φ, ψ, pθ , pφ, pψ ) ∈ T ∗Q̄ | pψ = 0


= {(θ, φ, ψ, pθ , pφ)},

and also that π̄(θ, φ, ψ) = (θ, φ) and hence T π̄(vθ , vφ, vψ ) = (vθ , vφ). Therefore, Eq. (B.1) gives

ϕ̄0(θ, φ, ψ, pθ , pφ) = (θ, φ, pθ , pφ).

Since π0(θ, φ, ψ, pθ , pφ) = (θ, φ, pθ , pφ), Eq. (B.2) gives

ϕ0(θ, φ, pθ , pφ) = (θ, φ, pθ , pφ).

Now, let us determine the map shiftµ: Using the αµ in Eq. (7.12), we find, from Eq. (B.3),

Shiftµ(θ, φ, ψ, pθ , pφ, pψ ) = (θ, φ, ψ, pθ − µψ , pφ, pψ − µψ ).

Parameterizing J−1
K (µ) as

J−1
K (µ) =


(θ, φ, ψ, pθ , pφ, pψ ) ∈ T ∗Q̄ | pψ = µψ


= {(θ, φ, ψ, pθ , pφ)},

we obtain

shiftµ(θ, φ, ψ, pθ , pφ) = (θ, φ, ψ, pθ − µψ , pφ),

and hence

shiftµ(θ, φ, pθ , pφ) = (θ, φ, pθ − µψ , pφ).

As a result, we obtain, from Eq. (B.4),

ϕµ(θ, φ, pθ , pφ) = (θ, φ, pθ − µψ , pφ). (B.5)
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Appendix C. On the horizontal lift hlM̄

Lemma C.1. Let q̄ be a point in Q̄ and q̃ = π̄(q̄). Then, we have hlM̄q̄ ◦ϕ̄0(pq̄) = pq̄ for any pq̄ ∈ J−1
K (0) and also ϕ̄0◦hlM̄ = idT∗Q̃ ,

and the diagram

J−1
K (0)

π0

��
J−1
K (0)/K ϕ0

// T ∗Q̃

hlM̄

bbFFFFFFFFFFFFFFFF

commutes with an appropriate choice of the base point q̄ of the image of hlM̄ .

Proof. Let pq̃ ∈ T ∗

q̃ Q̃ and vq̃ ∈ Tq̃Q̃ be arbitrary. Then, Eq. (B.1) implies that
ϕ̄0 ◦ hlM̄q̄ (pq̃), Tq̄π̄


hlD̄q̄ (vq̃)


=


hlM̄q̄ (pq̃), hl

D̄
q̄ (vq̃)


=

pq̃, vq̃


,

where we used an identity on pairings between the images of hlM̄ and hlD̄ , which can be shown in the same way as
Lemma A.2. However, the definition hlD̄ := (T π̄ |D̄)

−1 implies T π̄ ◦ hlD̄ = idT Q̃ , and thus the above equation reduces
to 

ϕ̄0 ◦ hlM̄q̄ (pq̃), vq̃

=

pq̃, vq̃


.

Therefore, we have ϕ̄0 ◦ hlM̄ = idT∗Q̃ . So Eq. (B.2) gives

ϕ0 ◦ π0 ◦ hlM̄ = idT∗Q̃ ,

which also implies

π0 ◦ hlM̄ ◦ ϕ0 = idJ−1
K (0)/K ,

since ϕ0 is a diffeomorphism.
To show hlM̄q̄ ◦ ϕ̄0(pq̄) = pq̄, take an arbitrary vq̄ ∈ Tq̄Q̄ . Then, we may decompose vq̄ into the horizontal and vertical

parts, i.e.,

vq̄ = hlD̄q̄ (ṽq̃)+ (AK (vq̄))Q̄ (q̄)

where ṽq̃ = Tq̄π̄(vq̄). Therefore, we obtain
hlM̄q̄ ◦ ϕ̄0(pq̄), vq̄


=


hlM̄q̄ ◦ ϕ̄0(pq̄), hlD̄q̄ (ṽq̃)


+


hlM̄q̄ ◦ ϕ̄0(pq̄), (AK (vq̄))Q̄ (q̄)


=

ϕ̄0(pq̄), ṽq̃


+


JK ◦ hlM̄q̄ ◦ ϕ̄0(pq̄),AK (vq̄)


=

ϕ̄0(pq̄), Tq̄π̄(vq̄)


=

pq̄, vq̄


,

where we used the fact that hlM̄ takes values in M̄ := J−1
K (0), and also Eq. (B.1). Hence hlM̄q̄ ◦ ϕ̄0(pq̄) = pq̄ and also, by

Eq. (B.2), hlM̄q̄ ◦ ϕ0 ◦ π0(pq̄) = pq̄. �
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