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a b s t r a c t

We notice that one of the Diophantine equations, knm = 2kn + 2km + 2nm, arising in the
universality originated Diophantine classification of simple Lie algebras, has interesting
interpretations for two different sets of signs of variables. In both cases it describes
‘‘regular polyhedra’’ with k edges in each vertex, n edges of each face, with total number
of edges |m|, and Euler characteristics χ = ±2. In the case of negative m this equation
corresponds to χ = 2 and describes true regular polyhedra, Platonic solids. The case
with positive m corresponds to Euler characteristic χ = −2 and describes the so called
equivelar maps (charts) on the surface of genus 2. In the former case there are two routes
from Platonic solids to simple Lie algebras—abovementioned Diophantine classification
and McKay correspondence. We compare them for all solutions of this type, and find
coincidence in the case of icosahedron (dodecahedron), corresponding to E8 algebra. In
the case of positive k, n and m we obtain in this way the interpretation of (some of) the
mysterious solutions (Y -objects), appearing in the Diophantine classification and having
some similarities with simple Lie algebras.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since ancient time natural numbers have been suggested as a basic notion in the construction of our knowledge about
nature. However, it is rare when they are the part of the basis of construction of a given mathematical or physical theory.
In this paper we consider several such cases and observe that they are based on the same Diophantine equation. Moreover,
since two of these cases are connected to simple Lie algebras, we are naturally led to a comparison of these two superficially
disjoint theories.

The focus of the present paper is the following Diophantine equation

1
k

+
1
n

+
1
m

=
1
2

,

k, n,m ∈ Z \ 0
(1)

or in more general form, which allows zero values of integers k, n,m:

knm = 2kn + 2km + 2nm. (2)
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Table 1
McKay correspondence and Diophantine classification.

Solutions (k, n,m) Platonic solids Subgroups of SU(2) McKay correspondence Diophantine classification

(5, 3, −30) Icosahedron
(3, 5, −30) Dodecahedron 2I, |2I| = 120 E8 E8
(4, 3, −12) Cube
(3, 4, −12) Octahedron 2O, |2O| = 48 E7 E6
(3, 3, −6) Tetrahedron 2T , |2T | = 24 E6 SO(8)
(2, n, −n) n-polygon Cn, |Cn| = n An−1 An

C2n, |C2n| = 2n A2n−1
BD2n, |BD2n| = 4n Dn−2

(0, 0, 0) D2,1,λ

Wewould like to point out that this equation appears in three circumstances, depending particularly on the signs of integers
k, n,m. In two of them there are (different) routes from this equation to simple Lie algebras.

One route is the famous McKay correspondence [1]. It is well-known that solutions of Eq. (1) with (+ + −) signs of
variables describe Platonic solids (see below in Section 2). Take the invariance subgroup of a given Platonic solid (it is finite
subgroup of the group SO(3)). Lift it to the group SU(2) by double-covering map

1 → Z2 → SU(2) → SO(3) → 1, (3)

and assign to this subgroup of SU(2) byMcKay procedure the simple Lie algebra from the list of ADE algebras (see Section 3).
Note that one has to consider also degenerate ‘‘Platonic solids’’, and take into account different liftings of groups. All that is
briefly described in Section 3.

An other route from Diophantine equation (1), with the same set of signs, to simple Lie algebras is given by recently
developed [2] Diophantine classification of simple Lie algebras, based on Vogel’s universality [3,4] and Deligne’s conjecture
on exceptional simple Lie algebras [5]. This is briefly described in Section 4.

In Section 5 we compare these two routes from solutions of Diophantine equation (1) to simple Lie algebras, and find
several common features and differences.

Finally, we discuss relation of Diophantine equations (1) with the theory of equivelar maps [6–8] on orientable surfaces
of genus two. They appear to correspond to the same Eq. (1) with (+ + +) signs of variables. In Diophantine classification
this case corresponds to mysterious Y -objects, which have certain similarity with simple Lie algebras, but up to now were
not identified with any known objects. This is discussed in Section 6.

2. Platonic solids’ Diophantine equation

Consider Platonic solid with number of edges of any face r , number of edges at any vertex n, total number of edges E,
total number of vertices V , and total number of faces F . We have

nV = 2E , rF = 2E .

Then Euler’s theorem

V − E + F = 2

can be rewritten as
1
r

+
1
n

−
1
E

=
1
2
. (4)

This is the particular case of Diophantine equation (1) with the special choice (+ + −) of signs of integers k, n,m.
Solutions (r, n, E) of Eq. (4) are:

• (5, 3, 30) or (3, 5, 30)—dodecahedron or icosahedron,
• (4, 3, 12) or (3, 4, 12)—cube (hexahedron) or octahedron,
• (3, 3, 6)—tetrahedron,
• (2, n, n) (or, the same, (r, 2, r))—regular n-polygon.

This information is listed in the first and second column of Table 1.

3. McKay correspondence

McKay correspondence assigns to finite subgroups of SU(2) group Dynkin diagrams of some simple Lie algebras in
the following way. Let G be an arbitrary finite subgroup of the group SU(2) and let V be the restriction of 2-dimensional
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Table 2
Simple Lie algebras on Vogel’s plane.

Algebra α β γ

sl(N) −2 2 N
so(N) −2 4 N − 4
sp(N) −2 1 N/2 + 2
Exc(n) −2 n + 4 2n + 4

representation of SU(2) on that subgroup G. Let {Vi} be the set of all irreducible representations of group G, including trivial
one. Then consider decomposition

V ⊗ Vi =

∑
j

mijVj. (5)

One can prove that for all pairs (ij), mij are symmetric, i.e. mij = mji, and that coefficients mij are equal to 0 or 1. Thus one
comes to graphs ΓG with vertices corresponding to spaces Vi and edges between vertices Vi, Vj iff mij ̸= 0. These graphs
appear to be Dynkin diagrams of all affine untwisted Kac–Moody algebras of types Â, D̂, Ê, (McKay, 1980, [1]).

Particularly, among finite groupsG there are subgroups of SU(2)which are double coverings (through the double covering
SU(2) → SO(3)) of finite subgroups of SO(3) which are groups of rotational symmetries of Platonic solids. These are

• 2I —binary icosahedral group, which is double covering of icosahedral group I—the group of rotational symmetries of
icosahedron and dodecahedron. It has 2 × 60 = 120 elements.

• 2O—binary octahedral group, double covering of octahedral group O—the group of rotational symmetries of cube and
octahedron. It has 2 × 24 = 48 elements.

• 2T —binary tetrahedral group, double covering (extension) of tetrahedral group T—the group of rotational symmetries
of tetrahedron. It has 2 × 12 = 24 elements.

Besides these three groups, there are only two families of finite subgroups of SU(2): Cn and BD2n. They correspond to
degenerate Platonic solids, namely regular n-polygons, which can be considered as ‘‘polyhedra’’ with two faces, n vertices
and n edges.

• Cn —cyclic group, preimage of cyclic group Cn of rotations of regular n-polygon, if n is even, or Cn—preimage of cyclic
group Cn of rotations of regular n-polygon, if n is odd, or C2n —preimage of cyclic group Cn of rotations of regular
n-polygon, if n is odd.

• 2D2n = BD2n, binary dihedral group BD2n, double covering of dihedral group D2n of rotations and reflections of
n-polygon. (Reflections of n-polygon can be considered as rotation in 3-dimensional space.) Group D2n has n+n = 2n
elements and group BD2n has 2 × 2n = 4n elements.

McKay correspondence assigns to all these subgroups simple Lie algebras whose Dynkin diagrams are defined by relation
(5). They are listed in third and fourth columns of Table 1.

4. Diophantine classification of simple Lie algebras

Now turn to the Diophantine classification of simple Lie algebras obtained in [2]. The idea is based on the analysis of the
so called universal character of adjoint representation.

Recall briefly themain ideas of the universality approach to simple Lie algebras [3,4]. Vogel plane is a spacewhich provides
coordinatization of simple Lie algebras. It is 2-dimensional projective space CP2 factorized by the action of group S3 of
permutations of homogeneous coordinates (α, β, γ ) onCP2. Functions onVogel plane are functions on coordinates (α, β, γ ),
which are scaling invariant and symmetric. To every simple Lie algebra corresponds the separate point on Vogel plane. The
values of Vogel parameters (defined up to a rescaling and permutations) for all simple Lie algebras are given in Table 2. All
exceptional algebras belong to the line Exc(n) and are parameterized by numbers n = −2/3, 0, 1, 2, 4, 8 for exceptional
algebras G2, D4, F4, E6, E7 and E8, respectively.

We say that a function f universalizes some quantity if f is an ‘reasonable’ function on Vogel plane which is equal to this
quantity at the points of Vogel plane corresponding to given simple Lie algebras (see Table 2). For example consider such a
quantity as dimension of Lie algebra. One can see that function

d(α, β, γ ) =
(α − 2t)(β − 2t)(γ − 2t)

αβγ
, where t = α + β + γ ,

is universal function for dimension of Lie algebra. The value of this functions at coordinates of an arbitrary simple Lie algebra
is equal to the dimension of that simple Lie algebra (see Table 2).

We come to another very important universal function considering such a quantity as the values of the character of adjoint
representation at theWeyl line. Namely, let g be a simple Lie algebra, and letχ (g)

ad be character of its adjoint representation. Let
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Table 3
Points in Vogel’s plane: series.

g α, β, γ k, n,m

sl(n + 1) −2, 2, n + 1 −n, n, 2
D2,1,λ α + β + γ = 0 0,0,0

{µ} be a set of roots of Lie algebra g. Then considerWeyl vectorwhich is equal to half-sumof all positive roots: ρ =
1
2

∑
µ>0µ.

Consider a function f (x) = fg(x) = χ
(g)
ad (xρ). One can see that for this function the following relation holds:

fg(x) = χ
(g)
ad (xρ) = r +

∑
µ

ex(µ,ρ), (6)

where r is rank of algebra g.
In the papers [9,10] it was suggested the universalization of function (6):

f (x) = f (x|α, β, γ ) =
sinh(x α−2t

4 )
sinh(x α

4 )
sinh(x β−2t

4 )

sinh(x β

4 )

sinh(x γ−2t
4 )

sinh(x γ

4 )
. (7)

The values of this function at points of Vogel plane corresponding to an arbitrary simple Lie algebra g are equal to character
of adjoint representation of the algebra g on Weyl line:

χ
(g)
ad (xρ) = f (x|α, β, γ ). (8)

This function is very important for construction of universal expression for volumes of groups and partition function of
Chern–Simons theory (see [11]). Moreover it turns out that this function can be used for Diophantine classification of simple
Lie algebras, [2]. Let us briefly recall results of [2].

Left hand side of Eq. (8) is the finite sum of exponents, which happens if all possible poles of right hand side of this
equation are cancelled by the zeros of numerator at the points of Vogel plane corresponding to simple Lie algebra. One can
put things upside down and seek all points on the Vogel’s plane for which this happens. One of the possible patterns of
cancellation is the following{2t − α = (k − 1)α

2t − β = (n − 1)β,

2t − γ = (m − 1)γ
t = α + β + γ , (9)

where k, n,m are integers. Generally there are seven such patterns. The pattern (9) requires that determinant of correspond-
ing 3 ×3 matrix vanishes. Thus we come to the condition

knm = 2kn + 2km + 2nm. (10)

We obtain ourmain Eq. (1) in amore general form (2). If condition (10) is obeyed and all integers are non-zero, then solutions
of Eqs. (9) are

α =
2t
k

, β =
2t
n

, γ =
2t
m

. (11)

Besides that, the non-singular form of Diophantine equation (1), Eq. (10), has solution (0, 0,m), with an arbitrary m.
Solution withm = 0 is particularly interesting, and it is the most general in a certain sense. It corresponds to an object with
E = 0, and hence V +F = 2. Corresponding solution for Vogel’s parameters is an arbitrary triple α, β, γ with only restriction
α + β + γ = 0. This solution corresponds to superalgebra D2,1,λ, see [3].

The list of solutions, with corresponding Vogel’s parameters and simple Lie algebras, is given in Tables 3 and 4,
series solutions in Table 3, and isolated solutions in Table 4. Simple Lie (super)algebras, corresponding, in Diophantine
classification, to solutions from the first column of Table 1, are presented in the last, fifth column of Table 1.

5. Comparison of McKay correspondence and Diophantine classification

Now we turn to comparison of connection between solutions and simple Lie algebras in McKay correspondence and in
Diophantine classification. All necessary information is already combined in Table 1, so we have to look on its rows.

We first notice that both approaches combine Platonic solids in dual pairs: dodecahedron with icosahedron, cube with
octahedron, and tetrahedron is alone as it is self-dual. Duality is standard, including vertex ↔ face correspondence, etc.

The corresponding algebra is the same in both routes, in the first case of dodecahedron/icosahedron solution (5, 3, −30),
and is the largest of exceptional algebras, E8. Two other cases give different outputs inMcKay and Diophantine classification:
solution (4, 3, −12) gives E6 (instead of E7 in McKay correspondence), solution (3, 3, −6) gives SO(8) (instead of E6 in McKay
correspondence).
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Table 4
Isolated solutions.

k n m αβγ Dim Rank Algebra

5 3 −30 −6 −10 1 248 8 e8
4 3 −12 −3 −4 1 78 6 e6
3 3 −6 −2 −2 1 28 4 so(8)
1 −4 −4 4 −1 −1 0 0 0d3
1 −3 −6 6 −2 −1 0 0 0d4
6 6 6 1 1 1 −125 −19 Y1
10 5 5 1 2 2 −144 −14 Y10
8 8 4 1 1 2 −147 −17 Y11
12 6 4 1 2 3 −165 −13 Y15
20 5 4 1 4 5 −228 −10 Y29
12 12 3 1 1 4 −242 −18 Y31
15 10 3 2 3 10 −252 −8 Y35
18 9 3 1 2 6 −272 −14 Y38
24 8 3 1 3 8 −322 −12 Y43
42 7 3 1 6 14 −492 −10 Y47

Next we see that Diophantine classification choose one of two series corresponding to polygon solution (2, n, −n) in
McKay correspondence, namely An series (i.e. sl(n + 1) algebras). In McKay correspondence for that degenerate ‘‘Platonic
solid’’ we get either An−1, A2n−1 or D2n. So, there is no exact coincidence for polygon solution.

6. Equivelar maps and solutions with positive k, n,m.

In Eq. (4) we considered solutions of Diophantine equation (1) with signs (++−). These solutions correspond to Platonic
solids. There is a number of solutions of Eq. (1) with ‘wrong’, i.e. all positive, signs. They are presented in the last 10 lines of
Table 4, and correspond to the so called Y -objects [2]. E.g. triple (6, 6, 6) is a solution of Eq. (1), and it cannot be interpreted
in terms of Platonic solids. However, we can get a reasonable interpretation of these solutions assigning to them so called
equivelar maps on double torus (compact Riemannian surface of genus g = 2, and Euler characteristics χ = −2).

Equivelar map on compact Riemann surface is [6] polyhedral map with faces all having equal (say p) edges and vertices
all having equal (say q) number of edges. Initially theory of equivelar maps were developed under the name of regular maps
in [7,8]. Another names for equivelar maps are: equivelar {p, q} maps, or simply {p, q} maps, where {p, q} is Schläfli symbol,
and locally regular maps (see below).

In the same way as for Eq. (4) one immediately derives for an arbitrary equivelar map on double torus an equation

1
p

+
1
q

+
1
E

=
1
2
. (12)

Thus we come to Eq. (1) with positive k, n,m. Correspondingly, we get a connection of Y -objects (which have some features
of simple Lie algebras, see [2]) with equivelar maps on genus two surfaces.

Note that there is a notion of regular maps, which are equivelar maps with additional transitivity requirement on
automorphism group of the graph of the map. Actually transitivity itself already implies that the map is equivelar. (See
[12,13] for definitions and discussion.) Accordingly, another name for equivelarmaps is locally regularmaps. Among solutions
of Eq. (12), listed in Table 4, only Y1, Y10, Y11, Y15 and Y43 give rise to regular maps (see Table 9 in [12]).

7. Conclusion

In this paper we present some observations, which connect Diophantine equations (1), (2) with Platonic solids, McKay
correspondence, equivelar maps and Diophantine classification of simple Lie algebras. Latter, in turn, is based on Vogel’s
universality approach. It appears that there are two routes from these equations to simple Lie algebras, and they have some
similar features and some differences. Particularly, maximal exceptional E8 algebra has the sameDiophantine solution origin
in both routes. We also observe the connection of these equations with equivelar and regular maps on surface of genus
2 (double tori), and in this way get some interpretation of Y -objects. These objects share some features with simple Lie
algebras.

One can ask on the similar interpretation of other six equations [2] of Diophantine classification:

kmn = mn + 2kn + 2km (13)

kmn = mn + 2kn + 2km + 2n − 2k (14)

kmn = mn + kn + 2km + 3n + 2k (15)

kmn = mn + 2kn + 2km + 2n + 2m − 3k − 5 (16)
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kmn = 2mn + 2kn + 2km − 2n − 3m (17)

kmn = 2mn + 2kn + 2km − 2n − 2m − 2k + 5. (18)

Origin of these equations are different patterns of cancellation of zeros in denominator and numerator in universal character
(7), so that final answer is regular function in the entire complex x plane, as is the case for all simple Lie algebras. One can
try to compare them with Arthur Cayley’s [14] form of Euler theorem for some polyhedra:

dvV − E + df F = 2D, (19)

where dv, df ,D are called vertex figure density, face density and density, respectively.
Another possibly relevant remark is that for a given number of edges, vertices and faces, one can construct another

polyhedra, sometimes with the same Euler characteristics, so called Kepler–Poinsot polyhedra [14,15], which however are
not convex.

Hopefully on the bases of observations in present work one can extend the area of the common Diophantine equations
origin of different objects, such as simple Lie algebras, equivelar maps on surfaces of different genus, etc. Another important
direction is an interpretation (identification) of Y -objects, and their deeper understanding, which is an interesting challenge.

Acknowledgements

We are indebted toMPIM (Bonn), where this work is done, for hospitality in autumn–winter 2015–2016. HK is grateful to
Anna Felikson for encouraging discussions. Work of RM is partially supported by Volkswagen Foundation and by the Science
Committee of the Ministry of Science and Education of the Republic of Armenia under contract 15T-1C233.

References

[1] J. McKay, Graphs, singularities, and finite groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, California, 1979), in: Proc.
Sympos. Pure Math 37, American Mathematical Society, Providence, RI, 1980, pp. 183–186.

[2] Ruben L. Mkrtchyan, On the road map of Vogel’s plane, Lett. Math. Phys. 106 (1) (2016) 57–79. arxiv:1209.5709.
[3] P. Vogel, Algebraic structures on modules of diagrams, preprint, 1995, J. Pure Appl. Algebra 215 (6) (2011) 1292–1339.
[4] P. Vogel, The universal Lie algebra, preprint, 1999, see at http://webusers.imj-prg.fr/~pierre.vogel/.
[5] P. Deligne, La série exceptionnelle des groupes de Lie, C. R. Acad. Sci. Paris, Sér. I 322 (1996) 321–326.
[6] P. McMullen, E. Schulte, Abstract Regular Polytopes, Cambridge University Press, 2002.
[7] A. Erréra, Sur les polyédres réguliers de l’Analysis Situs, Acad. Roy. Belg. Cl. Sci. Mem. Coll. 8 7 (2016) 1–17.
[8] W. Threlfall, Gruppenbilder, Abh. Sächs. Akad. Wiss. Math.-phys. Kl. 41 (2016) S. 1–59.
[9] R.L. Mkrtchyan, A.P. Veselov, Universality in Chern–Simons theory, J. High Energy Phys. 08 (2012) 153. arXiv:1203.0766.

[10] B.Westbury, Invariant tensors and diagrams, in: Proceedings of the Tenth OportoMeeting on Geometry, Topology and Physics, Vol. 18, October, suppl.
2001, pp. 49–82.

[11] R.L. Mkrtchyan, Nonperturbative universal Chern–Simons theory, J. High Energy Phys. 09 054 (2013). arXiv:1302.1507.
[12] H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups, fourth ed., Springer-Verlag, Berlin, 1980.
[13] U. Brehm, E. Schulte, in: J.E. Goodman, J. O’Rourke (Eds.), Polyhedral Maps Handbook of Discrete and Computational Geometry, CRC Press, 1997,

pp. 345–358.
[14] Arthur Cayley, On Poinsot’s four new regular solids, Philos. Mag. 17 (1859) 123–127 and 209.
[15] H.S.M. Coxeter, Star polytopes and the Schläfli function f (α, β, γ ), Elem. Math. 44 (2) (1989) 25–36.

http://arxiv.org/1209.5709
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb3
http://webusers.imj-prg.fr/~pierre.vogel/
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb5
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb6
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb7
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb8
http://arxiv.org/1203.0766
http://arxiv.org/1302.1507
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb12
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb13
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb13
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb13
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb14
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb15

	Diophantine equations, Platonic solids, McKay correspondence, equivelar maps and Vogel's universality
	Introduction
	Platonic solids' Diophantine equation
	McKay correspondence
	Diophantine classification of simple Lie algebras
	Comparison of McKay correspondence and Diophantine classification
	Equivelar maps and solutions with positive k,n,m.
	Conclusion
	Acknowledgements
	References


