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Abstract: Suppose the ground field F is an algebraically closed field of characteristic
different from 2, 3. We determine the Betti numbers and make a decomposition of
the associative superalgebra of the cohomology for the model filiform Lie superalge-
bra. We also describe the associative superalgebra structures of the (divided power)
cohomology for some low-dimensional filiform Lie superalgebras.
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0 Introduction

In 1970, in the study of the reducibility of the varieties of nilpotent Lie algebras, Vergne
introduced the concept of filiform Lie algebras and showed the fact that every filiform Lie
algebra can be obtained by an infinitesimal deformation of the model filiform Lie algebra
Ln (see [1]). Since then, the study of the filiform Lie algebras, especially the model filiform
Lie algebra, has become an important subject. Many conclusions on cohomology of the
model filiform Lie algebra with coefficients in the trivial module have been obtained. For
example, the Betti numbers for Ln with coefficients in the trivial module over a field of
characteristic zero have been calculated in [2–4]. A result, in [5], states that the filiform Lie
algebras Ln and m2(n) have the same Betti numbers over a field of characteristic two, which
is different from the case of characteristic zero. Moreover, the first three Betti numbers of
Ln and m2(n) over Z2 have been calculated in [6]. As what happens in the Lie case, every
filiform Lie superalgebra can be obtained by an infinitesimal deformation of the model
filiform Lie superalgebra Ln,m. Many conclusions on cohomology of the model filiform Lie
superalgebra with coefficients in the adjoint module have been obtained. For example,
Khakimdjanov and Navarro gave a complete description of the second cohomology of
Ln,m with coefficients in the adjoint module in [7–11]. The first cohomology of Ln,m with
coefficients in the adjoint module has been described in [12] by calculating the derivations.
However, in the trivial module case, less of work is done for Ln,m.

Throughout this paper, the ground field F is an algebraically closed field of charac-
teristic different from 2, 3 and all vector spaces, algebras are over F. In the character-
istic zero case, for any non-negative integer k, we make a decomposition of Hk(Ln,m)
by the Hochschild-Serre spectral sequences, moreover, we can describe completely the
Betti number of H•(Ln,m) and the superalgebra structures of the cohomology for some
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low-dimensional filiform Lie superalgebras. We also describe the graded superalgebra
structures of the (divided power) cohomology for some low-dimensional filiform Lie su-
peralgebras by the Hochschild-Serre spectral sequences to a certain ideal, in characteristic
different from 2, 3.

1 Filiform Lie superalgebras

A Lie superalgebra is a Z2-graded algebra whose multiplication satisfies the skew-supersymmetry
and the super Jacobi identity (see [13]). For a Lie superalgebra L, we inductively define
two sequences:

L0
0̄ = L0̄, Li+1

0̄
= [L0̄, L

i
0̄]

and
L0

1̄ = L1̄, Li+1
1̄

= [L0̄, L
i
1̄].

If there exists (m,n) ∈ N2 such that Lm
0̄

= 0, Lm−1
0̄

6= 0 and Ln
1̄

= 0, Ln−1
1̄
6= 0, the

pair (m,n) is called the super-nilindex of L. In particular, A Lie superalgebra L is called
filiform if its super-nilindex is (dimL0̄ − 1, dimL1̄) (see [7]).

Denote by Fn,m the set of filiform Lie superalgebras of super-nilindex (n,m). Let F
be a filiform Lie superalgebra over C. If F ∈ Fn,m, there exists a basis {X0, X1, . . . , Xn |
Y1, . . . , Ym} of F such that:

[X0, Xi] = Xi+1, 1 ≤ i ≤ n− 1, [X0, Xn] = 0;

[X1, X2] ∈ CX4 + · · ·+ CXn;

[X0, Yi] = Yi+1, 1 ≤ i ≤ m− 1, [X0, Ym] = 0.

Recall the following classifications up to isomorphism (see [14]):
The classification of F1,2:
(1) F1

1,2 : [X0, Y1] = Y2;

(2) F2
1,2 : [X0, Y1] = [X1, Y1] = Y2;

(3) F3
1,2 : [X0, Y1] = Y2, [Y1, Y1] = X1.

The classification of F2,2:
(1) F1

2,2 : [X0, X1] = X2, [X0, Y1] = Y2;

(2) F2
2,2 : [X0, X1] = 2[Y1, Y2] = X2, [X0, Y1] = Y2, [Y1, Y1] = X1;

(3) F3
2,2 : [X0, X1] = [Y1, Y1] = X2, [X0, Y1] = Y2;

(4) F4
2,2 : [X0, X1] = X2, [X0, Y1] = [X1, Y1] = Y2;

(5) F5
2,2 : [X0, X1] = [Y1, Y1] = X2, [X0, Y1] = [X1, Y1] = Y2.

Let Ln,m be the filiform Lie superalgebra with a homogeneous basis

{X0, X1, . . . , Xn | Y1, . . . , Ym}

and Lie super-brackets are given by

[X0, Xi] = Xi+1, 1 ≤ i ≤ n− 1; [X0, Yj ] = Yj+1, 1 ≤ j ≤ m− 1.

We call Ln,m the model filiform Lie superalgebra and {X0, X1, . . . , Xn | Y1, . . . , Ym} the
standard basis of Ln,m.

Obviously, we have:
F1

1,2 = L1,2, F1
2,2 = L2,2.
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2 (Divided power) cohomology

In this section, we introduce the definitions of cohomology and divided power cohomology
of g with coefficients in the trivial module. For more details, the reader is referred to [13],
[15] and [16].

Let g be a finite-dimensional Lie superalgebra, denote by g∗ the dual superspace of g.
Fix an ordered basis of g

{x1, . . . , xm | xm+1, . . . , xm+n}, (2.0.1)

where |x1| = · · · = |xm| = 0, |xm+1| = · · · = |xm+n| = 1, and write

{x∗1, . . . , x∗m | x∗m+1, . . . , x
∗
m+n},

for the dual basis.
For k ∈ Z, we let

∧k g∗ be the k-th super-exterior product of g∗. Let
∧• g∗ =

⊕
k∈N0

∧k g∗.

Then
∧• g∗ can be viewed as a g-module in a natural manner. Note that

∧• g∗ also has a Z-
grading structure given by setting ‖x1‖ = . . . = ‖xm+n‖ = 1. Hereafter ‖x‖ denotes the Z-
degree of a Z-homogeneous element x in a Z-graded superspace. Let d :

∧• g∗ −→ ∧• g∗ be
the linear operator induced by the dual of the Lie superalgebra bracket map g∗ −→ ∧2 g∗.
Then

d(1) = 0,

d(x∗i ) =
∑

1≤k<l≤m+n

(−1)|x
∗
k||x∗l |aiklx

∗
kx
∗
l −

1

2

∑

m+1≤k≤m+n

aikkx
∗2
k , 1 ≤ i ≤ m+ n,

d(x ∧ y) = d(x) ∧ y + (−1)‖x‖x ∧ d(y), x, y ∈
•∧
g∗,

where aikl, 1 ≤ i, k, l ≤ m + n, are the structure constants of g with respect to the basis
(2.0.1). Then d is a g-module homomorphism and

d2 = 0, |d| = 0, ‖d‖ = 1.

Denote by H•(g) the cohomology of g defined by the cochain complex (
∧• g∗, d). Note

that
∧• g∗ is a Z-graded associative superalgebra in a natural manner, which induces a Z-

graded associative superalgebra structure on H•(g). In particular, the dimension of Hk(g)
is called the k-th Betti number.

Over a field of prime characteristic p > 2, we introduce the definition of divided power
cohomology of g. For a multi-index r = (r1, . . . , rm+n), where r1, . . . , rm are 0 or 1, and
rm+1, . . . , rm+n are non-negative integers, we set

u
(ri)
i =

xrii
ri!

and u(r) =
m+n∏

i=1

u
(ri)
i .

Clearly, their multiplication relations are

u(r)u(s) =

( m∏

i=1

min(1, 2− ri − si)
)

(−1)

m∑
j=1

m+n∑
k=m+1

rksj+
∑

1≤j<k≤m
rksj

(
r + s
r

)
ur+s (2.0.2)
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where (
r + s
r

)
=

m+n∏

i=m+1

(
ri + si
ri

)

Fix two n-tuples of positive integers t = (t1, . . . , tn) and π = (π1, . . . , πn), where πi = pti ,
1 ≤ i ≤ n. Denote

O(m,n; t) = O(g∗; t) = spanF

(
u(r) | ri

{
< πi, m+ 1 ≤ i ≤ m+ n;
= 0 or 1, 1 ≤ i ≤ m.

)

From Eq. (2.0.2), O(g∗; t) is a finite dimensional submodule and a graded subalgebra of∧• g∗. In particular,

O(g∗; t) =

m−n+
n∑
j=1

ptj

⊕

i=0

Oi(g∗; t),

where Oi(g∗; t) = spanF{u(r) |
m+n∑
k=1

rk = i}. Let d : O(g∗; t) −→ O(g∗; t) be the linear

operator induced by the dual of the Lie superalgebra bracket map. Then

d(1) = 0,

d(x∗i ) =
∑

1≤k<l≤m+n

(−1)|x
∗
k||x∗l |aiklx

∗
kx
∗
l −

∑

m+1≤k≤m+n

aikkx
∗(2)
k , 1 ≤ i ≤ m+ n,

d(u(r)) =

m+n∑

j=1

(−1)r1+...+rj−1+|x∗j |(rm+1+...+rj−1)d(x∗j )u
(r−εj),

where εj = (δj,1, . . . , δj,m+n), aikl, 1 ≤ i, j, k, l ≤ m + n, are the structure constants of g
with respect to the basis (2.0.1). Then d is a g-module homomorphism and

d2 = 0, |d| = 0, ‖d‖ = 1.

Denote by DPH•(g) the divided power cohomology of g defined by the cochain complex
(O(g∗; t), d). Note thatO(g∗; t) is a Z-graded associative superalgebra in a natural manner,
which induces a Z-graded associative superalgebra structure on DPH•(g).

Finally, we close this section with some remarks on the Hochschild-Serre spectral se-
quence (see [13]). Suppose I is an ideal of g. Then there is a convergent spectral sequence
called the Hochschild-Serre spectral sequence such that

Ek,s2 = Hk(g/I,Hs(I)) =⇒ Hk+s(g) (2.0.3)

3 Characteristic zero

Throughout this section the ground field F is an algebraically closed field of characteristic
zero.
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3.1 Model filiform Lie superalgebras

Let I be a subspace of Ln,m spanned by

{X1, . . . , Xn | Y1, . . . , Ym}.

Obviously, I is an abelian ideal of Ln,m. Moreover, H•(Ln,m) is described by using the
Hochschild-Serre spectral sequence relative to I.

Lemma 3.1. Let

D :
•∧
I∗ −→

•∧
I∗,

x 7−→ −X0 · x.

Let Dk = D |∧k I∗ . Then Hk(Ln,m) = Ker Dk
⊕(

FX∗0
∧(∧k−1 I∗/Im Dk−1

))
.

Proof. From Eq. (2.0.3), we have

Ep,k−p∞ ∼=





H0
(
FX0,

∧k I∗
)
, p = 0;

H1
(
FX0,

∧k−1 I∗
)
, p = 1;

0, p 6= 0, 1.

Then we have

Hk(Ln,m) =
⊕

p+q=k

Ep,q∞ = H0

(
FX0,

k∧
I∗
)⊕

H1

(
FX0,

k−1∧
I∗
)
.

By the definitions of the low cohomology (see [13]), we have

H0

(
FX0,

k∧
I∗
)

= Ker Dk,

Der

(
FX0,

k−1∧
I∗
)

= FX∗0
∧ k−1∧

I∗,

Inder

(
FX0,

k−1∧
I∗
)

= FX∗0
∧

Im Dk−1.

Moreover, we obtain that

Hk(Ln,m) = Ker Dk

⊕(
FX∗0

∧( k−1∧
I∗/Im Dk−1

))
.

Theorem 1. As a Z-graded superalgebra, we have

H•(Ln,m) = Ker D n
(
FX∗0

∧( •∧
I∗/Im D

))
.
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Proof. For any x, y ∈ Ker D, z ∈ ∧• I∗/Im D, we have

D(x ∧ y) = −X0 · (x ∧ y) = −[(X0 · x) ∧ y + x ∧ (X0 · y)],

= D(x) ∧ y + x ∧D(y),

= 0,

and

(X∗0 ∧ z) ∧ x = X∗0 ∧ (z ∧ x),

= X∗0 ∧ (z ∧ x) ∈ FX∗0
∧( •∧

I∗/Im D

)
.

Thus, Ker D is a subalgebra of H•(Ln,m) and FX∗0
∧(∧• I∗/Im D

)
is an ideal of

H•(Ln,m) with trivial multiplication. From Lemma 3.1, the proof is complete.

In order to calculate the dimension of H•(Ln,m), it suffices to calculate the dimension
of Ker D.

Let

fi =
1

(n− i)!X
∗
i , 1 ≤ i ≤ n, gj =

1

(m− j)!Y
∗
j , 1 ≤ j ≤ m.

Let x, y, h ∈ EndF(I∗0 ), such that

x = D |I∗0 ,
y(fi) = ifi+1, 1 ≤ i ≤ n− 1, y(fn) = 0,

h(fi) = (n+ 1− 2i)fi, 1 ≤ i ≤ n.
Let x′, y′, h′ ∈ EndF(I∗1 ), such that

x′ = D |I∗1 ,
y′(gj) = jgj+1, 1 ≤ j ≤ m− 1, y′(gm) = 0,

h′(gj) = (m+ 1− 2j)gj , 1 ≤ j ≤ m.
Obviously, spanF{x, y, h}, spanF{x′, y′, h′} are subalgebras of gl(I∗0 ) and gl(I∗1 ), respec-

tively. Moreover, the following Lie algebra isomorphism holds:

spanF{x, y, h} ∼= spanF{x′, y′, h′} ∼= sl(2).

By Weyl’s Theorem and representation theory of sl(2) (see [17]), I∗0 and I∗1 are simple
modules of sl(2) and, for k ≥ 0,

∧k I∗ is a completely reducible module of sl(2). Moreover,
we can obtain the following theorem.

Lemma 3.2. Suppose k ≥ 0. Then

dim Ker Dk =
k∑

k0=0

fn,m(k0, k − k0),

where fn,m(k0, k − k0) = card

{
(i1, . . . , ik0 , j1, . . . , jk−k0) ∈ Zk | 1 ≤ i1 < . . . < ik0 ≤ n, 1 ≤

j1 < . . . < jk−k0 ≤ m + k − k0 − 1,
k0∑
a=1

ia +
k−k0∑
b=1

jb =

⌊
k0(n+ 1) + (k − k0)(m+ 1)

2

⌋
+

(k − k0)(k − k0 − 1)

2

}
.
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Proof. For k ≥ 0, set

k∧
I∗ =

r⊕

i=1

Vi,

where V1, . . . , Vr are simple sl(2)-modules. Moreover,

Ker Dk =

r⊕

i=1

Ker Dk

⋂
Vi.

So we obtain that for any v ∈ Vi, Dk(v) = 0 if and only if v is a maximal vector of Vi.
Moreover, the following conclusions hold:

dim Ker Dk = r = dim
( k∧
I∗
)

0
+
( k∧
I∗
)

1
, (3.1.1)

where
(∧k I∗

)
0
,
(∧k I∗

)
1

are weight spaces of weight 0, 1, respectively.
Let sl(2) = spanF{X+, H,X−}, where FH is a Cartan subalgebra of sl(2), and fi1∧ . . .∧

fik0 ∧ gj1 ∧ . . . ∧ gjk−k0 is a standard basis of
∧k I∗, where 0 ≤ k0 ≤ k, i1 < . . . < ik0 ≤ n,

1 ≤ j1 ≤ . . . ≤ jk−k0 ≤ m. Note that

H(fi1 ∧ . . .∧fik0 ∧gj1 ∧ . . .∧gjk−k0 ) =

(
k0(n+1) +(k−k0)(m+1)−2

( k0∑

a=1

ia+

k−k0∑

b=1

jb

))

fi1 ∧ . . . ∧ fik0 ∧ gj1 ∧ . . . ∧ gjk−k0 .

From Eq. (3.1.1), it is sufficient to calculate the dimensions of
(∧k I∗

)
0

and
(∧k I∗

)
1
.

We consider the following cases:
Case 1 : k0(n+ 1) + (k − k0)(m+ 1) is even. Then

(
k0(n+ 1) + (k − k0)(m+ 1)− 2

( k0∑

a=1

ia +

k−k0∑

b=1

jb

))
= 0,

if and only if
k0∑
a=1

ia +
k−k0∑
b=1

jb =
k0(n+ 1) + (k − k0)(m+ 1)

2
.

Case 2 : k0(n+ 1) + (k − k0)(m+ 1) is odd. Then

(
k0(n+ 1) + (k − k0)(m+ 1)− 2

( k0∑

a=1

ia +

k−k0∑

b=1

jb

))
= 1,

if and only if
k0∑
a=1

ia +
k−k0∑
b=1

jb =
k0(n+ 1) + (k − k0)(m+ 1)− 1

2
.

Thus, the conclusion holds.

Theorem 2. Suppose k ≥ 0. Then

dim Hk(Ln,m) =
k∑

k0=0

fn,m(k0, k − k0) +
k−1∑

k0=0

fn,m(k0, k − k0 − 1).
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Proof. It follows from Lemmas 3.1 and 3.2.

In order to characterize the superalgebra structure of H•(Ln,m), we make a Z-gradation

of
∧k I∗ for any k ≥ 0.

For any 0 ≤ s ≤ k, let l such that αk,s ≤ l ≤ βk,s, where αk,s = s(s+1)
2 + k − s,

βk,s = s(2n−s+1)
2 + (k − s)m.

Let
(∧k I∗

)l
s

be the space spanned by

X∗i1 ∧ . . . ∧X∗is ∧ Y ∗
α1

1 ∧ . . . ∧ Y ∗αmm ,

where 1 ≤ i1 < . . . < is ≤ n, and α1, . . . , αm ≥ 0, satisfying that

m∑

j=1

αj = k − s,
s∑

a=1

ia +
m∑

b=1

αbb = l.

Let

Dk,l
s :

( k∧
I∗
)l

s

−→
( k∧

I∗
)l−1

s

,

x 7−→ Dk(x).

Obviously,
k∧
I∗ =

k⊕

s=0

βk,s⊕

l=αk,s

( k∧
I∗
)l

s

,

since the linear mapping Dk is compatible with this graduation, we have:

Ker Dk =
k⊕

s=0

βk,s⊕

l=αk,s

Ker Dk,l
s , (3.1.2)

Im Dk =

k⊕

s=0

βk,s⊕

l=αk,s

Im Dk,l
s , (3.1.3)

where αk,s = s(s+1)
2 + k − s, βk,s = s(2n−s+1)

2 + (k − s)m.
We describe the superalgebra structures of the cohomology for some low-dimensional

filiform Lie superalgebras by the decomposition in Theorem 1.

Example 1. Then the following Z-graded superalgebra isomorphism holds:

H•(L1,2) ∼= U1,2 n V1,2,

where U1,2 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{α1,i, αi | i ≥ 0},

satisfying that |α1,i| = |αi| = i (mod 2), ‖α1,i‖ = i+ 1, ‖αi‖ = i, and the multiplication is
given by

αiαj = αi+j , α1,iαj = α1,i+j , i, j ≥ 0.
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V1,2 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{α0,i, α0,1,i | i ≥ 0},

satisfying that |α0,i| = |α0,1,i| = i (mod 2), ‖α0,i‖ = i+ 1, ‖α0,1,i‖ = i+ 2, and the trivial
multiplication. The multiplication between U1,2 and V1,2 is graded-supercommutative, and
the multiplication is given by

α0,iα1,0 = (−1)iα0,1,i, α0,iα0 = α0,i, α0,1,iα0 = α0,1,i, i ≥ 0.

Proof. Note that

( k∧
I∗
)l
s

=





FY ∗2k−l1 ∧ Y ∗l−k2 , s = 0;

FX∗1 ∧ Y ∗
2k−l−1

1 ∧ Y ∗l−k2 , s = 1;
0, else.

Moreover, we have

Ker Dk,l
s =





FY ∗k1 , s = 0, l = k;

FX∗1 ∧ Y ∗
k−1

1 , s = 1, l = k;
0, else.

Im Dk,l
s =





FY ∗2k−l+1

1 ∧ Y ∗l−k−1

2 , s = 0, k + 1 ≤ l ≤ 2k;

FX∗1 ∧ Y ∗
2k−l

1 ∧ Y ∗l−k−1

2 , s = 1, k + 1 ≤ l ≤ 2k − 1;
0, else.

From Theorem 1 and Eqs. (3.1.2), (3.1.3), H•(L1,2) has a basis:

Y ∗
i

1 , X∗1 ∧ Y ∗
i

1 , X∗0 ∧ Y ∗
i

2 , X∗0 ∧X∗1 ∧ Y ∗
i

2 , i ≥ 0.

The conclusion can be obtained by a direct calculation.

Example 2. The following Z-graded superalgebra isomorphism holds:

H•(L2,1) ∼= U2,1 n V2,1,

where U2,1 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{αi, α1,i, α1,2,i | i ≥ 0},

satisfying that |αi| = |α1,i| = |α1,2,i| = i (mod 2), ‖αi‖ = i, ‖α1,i‖ = i+ 1, ‖α1,2,i‖ = i+ 2,
and the multiplication is given by

αiαj = αi+j , α1,iαj = α1,i+j , α1,2,iαj = α1,2,i+j , i, j ≥ 0.

V2,1 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{α0,i, α0,2,i, α0,1,2,i | i ≥ 0},

satisfying that |α0,i| = |α0,2,i| = |α0,1,2,i| = i (mod 2), ‖α0,i‖ = i + 1, ‖α0,2,i‖ = i + 2,
‖α0,1,2,i‖ = i+ 3, and the trivial multiplication. The multiplication between U2,1 and V2,1

is graded-supercommutative, and the multiplication is given by

α0,iαj = α0,i+j , α0,2,iαj = α0,2,i+j , α0,1,2,iαj = α0,1,2,i+j ,

α0,2,iα1,j = (−1)i+1α0,1,2,i+j , α0,iα1,2,j = α0,1,2,i+j , i, j ≥ 0.
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Proof. Note that

( k∧
I∗
)l
s

=





FY ∗l1 , s = 0;

FX∗1 ∧ Y ∗
l−1

1 , s = 1, l = k;

FX∗2 ∧ Y ∗
l−2

1 , s = 1, l = k + 1;

FX∗1 ∧X∗2 ∧ Y ∗
l−3

1 , s = 2, l = k + 1;
0, else.

Moreover, we have

Ker Dk,l
s =





FY ∗l1 , s = 0;

FX∗1 ∧ Y ∗
l−1

1 , s = 1, l = k;

FX∗1 ∧X∗2 ∧ Y ∗
l−3

1 , s = 2, l = k + 1;
0, else.

Im Dk,l
s =

{
FX∗1 ∧ Y ∗

l−2

1 , s = 1, l = k + 1;
0, else.

From Theorem 1 and Eqs. (3.1.2), (3.1.3), H•(L2,1) has a basis:

Y ∗
i

1 , X∗1 ∧Y ∗
i

1 , X∗1 ∧X∗2 ∧Y ∗
i

1 , X∗0 ∧Y ∗
i

1 , X∗0 ∧X∗2 ∧Y ∗
i

1 , X∗0 ∧X∗1 ∧X∗2 ∧Y ∗
i

1 , i ≥ 0.

The conclusion can be obtained by a direct calculation.

Example 3. The following Z-graded superalgebra isomorphism holds:

H•(L1,3) ∼= U1,3 n V1,3,

where U1,3 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{αi,j , α1,i,j , | i, j ≥ 0},

satisfying that |αi,j | = |α1,i,j | = 2j + i (mod 2), ‖αi,j‖ = 2j + i, ‖α1,i,j‖ = 2j + i+ 1, and
the multiplication is given by

αi,jαi′,j′ = αi+i′,j+j′ , α1,i,jαi′,j′ = α1,i+i′,j+j′ , i, i
′, j, j′ ≥ 0.

V1,3 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{α0,i,j , α0,1,i,j | i, j ≥ 0},

satisfying that |α0,i,j | = |α0,1,i,j | = 2i+ j (mod 2), ‖α0,i,j‖ = 2i + j + 1, ‖α0,1,i,j‖ =
2i + j + 2, and the trivial multiplication. The multiplication between U1,3 and V1,3 is
graded-supercommutative, and the multiplication is given by

α0,i,jαi′,j′ = ρi,j,i′,j′α0,i+i′+j′,j−i′ ,

α0,i,jα1,i′,j′ = (−1)2i+jα0,1,i,jαi′,j′ = (−1)2i+jρi,j,i′,j′α0,i+i′+j′,j−i′ , i, j ≥ 0,

where ρi,j,i′,j′ =
i′−1∏
s=0

s−j
2(i+j′+s)+1 +

i′+j′∑
t=i′+1

(
t−i′∏
a=1

2(a−1−j′)
a

t−1∏
b=0

b−j−t+i′
2(i+i′+j′−t+b)+1

)
.
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Proof. Note that

( k∧
I∗
)l
s

=





⌊
3k−l

2

⌋
⊕

i=2k−l
FY i

1 ∧ Y 3k−l−2i
2 ∧ Y i+l−2k

3 , s = 0, k ≤ l ≤ 2k;
⌊

3k−l
2

⌋
⊕
i=0

FY i
1 ∧ Y 3k−l−2i

2 ∧ Y i+l−2k
3 , s = 0, 2k + 1 ≤ l ≤ 3k

⌊
3k−l

2

⌋
−1⊕

i=2k−l−1

FX1 ∧ Y i
1 ∧ Y 3k−l−2i−2

2 ∧ Y i+l−2k+1
3 , s = 1, k ≤ l ≤ 2k − 1;

⌊
3k−l

2

⌋
−1⊕

i=0
FX1 ∧ Y i

1 ∧ Y 3k−l−2i−2
2 ∧ Y i+l−2k+1

3 , s = 1, 2k ≤ l ≤ 3k − 2;

0, else.

From a direct computation, we have the following conclusion:
If 2k + 1 ≤ l ≤ 3k, or k ≤ l ≤ 2k and 3k − l is odd, we have Ker Dk,l

0 = 0.

If k ≤ l ≤ 2k, and 3k − l is even, we have dim Ker Dk,l
0 = 1 and Ker Dk,l

0 has a basis:

Y ∗
2k−l

1 ∧ Y ∗l−k2 +

3k−l
2∑

i=2k−l+1

λk,li Y
∗i

1 ∧ Y ∗
3k−l−2i

2 ∧ Y ∗i+l−2k

3 ,

where λk,li =
i−2k+l∏
j=1

2(j−1)+k−l
j . Moreover, we have

( k∧
I∗
)l−1

0
/Im Dk,l

0 =

{
FY ∗3k−l+1

2 ∧ Y ∗l−2k−1

3 , 2k + 1 ≤ l ≤ 3k and 3k − l is odd;
0, else.

From Theorem 1 and Eqs. (3.1.2), (3.1.3), H•(L1,3) has a basis:

Y ∗
i

1 ∧ Y ∗
2j

2 +

i+j∑

s=i+1

λ2j+i,4j+i
s Y ∗

s

1 ∧ Y ∗
2(i+j−s)

2 ∧ Y ∗s−i3 ,

X∗1 ∧ Y ∗
i

1 ∧ Y ∗
2j

2 +

i+j∑

s=i+1

λ2j+i,4j+i
s X∗1 ∧ Y ∗

s

1 ∧ Y ∗
2(i+j−s)

2 ∧ Y ∗s−i3 ,

X∗0 ∧ Y ∗
2i

2 ∧ Y ∗j3 , X∗0 ∧X∗1 ∧ Y ∗
2i

2 ∧ Y ∗j3 , i, j ≥ 0.

The conclusion can be obtained by a direct calculation.

Example 4. The following Z-graded superalgebra isomorphism holds:

H•(L3,1) ∼= U3,1 n V3,1,

where U3,1 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{αi, α1,i, α1,2,i, α1,2,3,i | i ≥ 0},
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satisfying that |αi| = |α1,i| = |α1,2,i| = |α1,2,3,i| = i (mod 2), ‖αi‖ = i, ‖α1,i‖ = i + 1,
‖α1,2,i‖ = i+ 2, ‖α1,2,3,i‖ = i+ 3, and the multiplication is given by

αiαj = αi+j , α1,iαj = α1,i+j , α1,2,iαj = α1,2,i+j , α1,2,3,iαj = α1,2,3,i+j , i, j ≥ 0.

V3,1 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{α0,i, α0,3,i, α0,2,3,i, α0,1,2,3,i | i ≥ 0},

satisfying that |α0,i| = |α0,3,i| = |α0,2,3,i| = |α0,1,2,3,i| = i (mod 2), ‖α0,i‖ = i+1, ‖α0,3,i‖ =
i+2, ‖α0,2,3,i‖ = i+3, ‖α0,1,2,3,i‖ = i+4, and the trivial multiplication. The multiplication
between U3,1 and V3,1 is graded-supercommutative, and the multiplication is given by

α0,iαj = α0,i+j , α0,3,iαj = α0,3,i+j , α0,2,3,iαj = α0,2,3,i+j , α0,1,2,3,iαj = α0,1,2,3,i+j ,

α0,2,3,iα1,j = α0,iα1,2,3,j = (−1)iα0,3,iα1,2,j = (−1)iα0,1,2,3,i+j , i, j ≥ 0.

Proof. Note that

( k∧
I∗
)l
s

=





FY ∗l1 , s = 0;

FX∗1 ∧ Y ∗
l−1

1 , s = 1, l = k;

FX∗2 ∧ Y ∗
l−2

1 , s = 1, l = k + 1;

FX∗3 ∧ Y ∗
l−3

1 , s = 1, l = k + 2;

FX∗1 ∧X∗2 ∧ Y ∗
l−3

1 , s = 2, l = k + 1;

FX∗1 ∧X∗3 ∧ Y ∗
l−4

1 , s = 2, l = k + 2;

FX∗2 ∧X∗3 ∧ Y ∗
l−5

1 , s = 2, l = k + 3;

FX∗1 ∧X∗2 ∧X∗3 ∧ Y ∗
l−6

1 , s = 3, l = k + 3;
0, else.

Moreover, we have

Ker Dk,l
s =





FY ∗l1 , s = 0;

FX∗1 ∧ Y ∗
l−1

1 , s = 1, l = k;

FX∗1 ∧X∗2 ∧ Y ∗
l−3

1 , s = 2, l = k + 1;

FX∗1 ∧X∗2 ∧X∗3 ∧ Y ∗
l−6

1 , s = 3, l = k + 3;
0, else.

.

Im Dk,l
s =





FX∗1 ∧ Y ∗
l−2

1 , s = 1, l = k + 1;

FX∗2 ∧ Y ∗
l−3

1 , s = 1, l = k + 2;

FX∗1 ∧X∗2 ∧ Y ∗
l−4

1 , s = 2, l = k + 2;

FX∗1 ∧X∗3 ∧ Y ∗
l−5

1 , s = 2, l = k + 3;
0, else.

.

From Theorem 1 and Eqs. (3.1.2), (3.1.3), H•(L3,1) has a basis:

Y ∗
i

1 , X∗1 ∧ Y ∗
i

1 , X∗1 ∧X∗2 ∧ Y ∗
i

1 , X∗1 ∧X∗2 ∧X∗3 ∧ Y ∗
i

1 ,

X∗0 ∧ Y ∗
i

1 , X∗0 ∧X∗3 ∧ Y ∗
i

1 , X∗0 ∧X∗2 ∧X∗3 ∧ Y ∗
i

1 , X∗0 ∧X∗1 ∧X∗2 ∧X∗3 ∧ Y ∗
i

1 , i ≥ 0.

The conclusion can be obtained by a direct calculation.
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Example 5. The following Z-graded superalgebra isomorphism holds:

H•(L2,2) ∼= U2,2 n V2,2,

where U2,2 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{αi, α1,i, α1,2,i, βi | i ≥ 0},

satisfying that |αi| = |α1,i| = |α1,2,i| = i (mod 2), |βi| = i+ 1 (mod 2), ‖αi‖ = i,
‖α1,i‖ = i+ 1, ‖α1,2,i‖ = ‖βi‖ = i+ 2, and the multiplication is given by

αiαj = αi+j , α1,iαj = α1,i+j , α1,2,iαj = α1,2,i+j ,

βiαj = βi+j , α1,iβj = (−1)i+1α1,2,i+j+1, i, j ≥ 0.

V2,2 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{α0,i, α0,1,i, α0,2,i, α0,1,2,i | i ≥ 0},

satisfying that |α0,i| = |α0,2,i| = |α0,1,2,i| = i (mod 2), |α0,1,i| = i+ 1 (mod 2), ‖α0,i‖ =
i + 1, ‖α0,2,i‖ = i + 2, ‖α0,1,i‖ = ‖α0,1,2,i‖ = i + 3, and the trivial multiplication. The
multiplication between U2,2 and V2,2 is graded-supercommutative, and the multiplication
is given by

α0,iα0 = α0,i, α0,1,iα0 = α0,1,i, α0,2,iα0 = α0,2,i, α0,1,2,iα0 = α0,1,2,i,

α0,2,iα1,0 = (−1)i+1α0,iα1,2,0 = (−1)i+1α0,1,2,i,

α0,2,iβ0 = (−1)i+1α0,1,2,i+1, α0,i+1α1,0 = (−1)i+1α0,1,i,

α0,iβ0 = (−1)i
i+ 2

i+ 1
α0,1,i, α0,2,iα1 = − 1

i+ 1
α0,1,i, i ≥ 0.

Proof. Note that

( k∧
I∗
)l
s

=





FY ∗2k−l1 ∧ Y ∗l−k2 , s = 0;

FX∗1 ∧ Y ∗
2k−l−1

1 ∧ Y ∗l−k2

⊕
FX∗2 ∧ Y ∗

2k−l
1 ∧ Y ∗l−k−1

2 , s = 1;

FX∗1 ∧X∗2 ∧ Y ∗
2k−l−1

1 ∧ Y ∗l−k−1

2 , s = 2;
0, else.

Moreover, we have

Ker Dk,l
s =





FY ∗l1 , s = 0, l = k;

FX∗1 ∧ Y ∗
l−1

1 , s = 1, l = k;

F(X∗1 ∧ Y ∗
l−3

1 ∧ Y ∗2 −X∗2 ∧ Y ∗
l−2

1 ), s = 1, l = k + 1;

FX∗1 ∧X∗2 ∧ Y ∗
l−3

1 , s = 2, l = k + 1;
0, else.

.

ImDk,l
s =





FY ∗2k−l+1

1 ∧ Y ∗l−k−1

2 , s = 0, k + 1 ≤ l ≤ 2k;

FX∗1 ∧ Y ∗
l−2

1 , s = 1, l = k + 1;

FX∗1 ∧ Y ∗
2k−l

1 ∧ Y ∗l−k−1

2

⊕
FX∗2 ∧ Y ∗

2k−l+1

1 ∧ Y ∗l−k−2

2 , s = 1, k + 2 ≤ l ≤ 2k;

FX∗1 ∧X∗2 ∧ Y ∗
2k−l

1 ∧ Y ∗l−k−2

2 , s = 2, k + 2 ≤ l ≤ 2k − 1;
0, else.

.
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From Theorem 1 and Eqs. (3.1.2), (3.1.3), H•(L3,1) has a basis:

Y ∗
i

1 , X∗1 ∧ Y ∗
i

1 , X∗1 ∧X∗2 ∧ Y ∗
i

1 , X∗1 ∧ Y ∗
i

1 ∧ Y2 −X∗2 ∧ Y ∗
i+1

1 ,

X∗0 ∧ Y ∗
i

2 , X∗0 ∧X∗1 ∧ Y ∗
i+1

2 , X∗0 ∧X∗2 ∧ Y ∗
i

2 , X∗0 ∧X∗1 ∧X∗2 ∧ Y ∗
i

2 , i ≥ 0.

The conclusion can be obtained by a direct calculation.

3.2 Low-dimensional filiform Lie superalgebras

In this section, we describe the cohomology of F1,2, F2,2 by using the Hochschild-Serre
spectral sequence.

Lemma 3.3. For F tss,2, s = 1, 2, t1 = 1, 2, 3, t2 = 1, 3, 4, 5, let Itss,2 = [F tss,2,F tss,2]. For k ≥ 0,
0 ≤ i ≤ k, the following conclusions hold:

(1) Ek−i,i2 =
∧k−i(F tss,2/Itss,2)∗

⊗∧i(Itss,2)∗ =⇒ Hk(F tss,2).

(2) Ek−i,i∞ = Ek−i,i3 .

Proof. (1) Since Itss,2 ⊆ C(F tss,2), the action of F tss,2/Itss,2 on (Itss,2)∗ is trivial. Moreover, from
Eq. (2.0.3), we have

Ek−i,i2 = Hk−i(F tss,2/Itss,2,Hi(Itss,2)) =
k−i∧

(F tss,2/Itss,2)∗
⊗ i∧

(Itss,2)∗ =⇒ Hk(F tss,2).

(2) From (1), we have

Ek−i,ir = Ek−i,i3 , r ≥ 3.

Moreover, Ek−i,i∞ = Ek−i,i3 .

Theorem 3. The following Z-graded superalgebra isomorphisms hold:
(1) H•(F2

1,2) ∼= U2
1,2 n V2

1,2, where U2
1,2 is an infinite-dimensional Z-graded superalgebra

with a Z2-homogeneous basis
{αi, α0,i | i ≥ 0},

satisfying that

|αi| = |α0,i| = i (mod 2); ‖αi‖ = i, ‖α0,i‖ = i+ 1,

and the multiplication is given by

αiαj = αi+j , α0,iαj = α0,i+j , i, j ≥ 0,

V2
1,2 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{αi0,1, α0,1,i | i ≥ 0},

satisfying that

|αi0,1| = |α0,1,i| = i (mod 2); ‖αi0,1‖ = i+ 1, ‖α0,1,i‖ = i+ 2,

and the trivial multiplication. The multiplication between U2
1,2 and V2

1,2 is graded-super
-commutative, and the multiplication is given by

αi0,1α0 = αi0,1, α0,1,iα0 = α0,1,i, α0,0α
i
0,1 = α0,1,i, i ≥ 0.
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In particular,

dim Hk(F2
1,2) =





1, k = 0;
3, k = 1;
4, k ≥ 2.

(2) H•(F3
1,2) ∼= U3

1,2, where U3
1,2 is an infinite-dimensional Z-graded superalgebra with a

Z2-homogeneous basis
{α0, α1, α0,i, βi | i ≥ 0},

satisfying that

|α0| = 0 (mod 2), |α1| = 1 (mod 2), |α0,i| = |βi| = i (mod 2);

‖α0‖ = 0, ‖α1‖ = 1, ‖α0,i‖ = i+ 1, ‖βi‖ = i+ 2,

and the multiplication is given by

α0α0 = α0, α0α1 = α1, α0α0,i = α0,i, α0βi = βi, i ≥ 0.

In particular,

dim Hk(F3
1,2) =

{
1, k = 0;
2, k ≥ 1.

(3) H•(F3
2,2) ∼= U3

2,2, where U3
2,2 is an infinite-dimensional Z-graded superalgebra with a

Z2-homogeneous basis

{α0, α1, β1, α1,1, α0,i, β0,i, α0,1,i, β0,1,i | i ≥ 0},

satisfying that

|α0| = |α1| = 0 (mod 2), |β1| = |α1,1| = 1 (mod 2), |α0,i| = |α0,1,i| = |β0,i| = |β0,1,i| = i (mod 2);

‖α0‖ = 0, ‖α1‖ = ‖β1‖ = 1, ‖α1,1‖ = 2, ‖α0,i‖ = i+1, ‖α0,1,i‖ = ‖β0,i‖ = i+2, ‖β0,1,i‖ = i+3,

and the multiplication is given by

α0α0 = α0, α0α1 = α1, α0β1 = β1, α0α1,1 = α1,1,

α0α0,i = α0,i, α0α0,1,i = α0,1,i, α0β0,i = β0,i, α0β0,1,i = β0,1,i,

α1β1 = α1,1, α1α0,i = −α0,1,i, α1β0,i = β0,1,i, β1β1 = 2α0,1,0,

β1β0,i = 2α0,1,i+1, β0,iβ0,j = 2α0,1,i+j+2, i ≥ 0.

In particular,

dim Hk(F3
2,2) =





1, k = 0;
3, k = 1;
4, k ≥ 2.

(4) H•(F4
2,2) ∼= U4

2,2 n V4
2,2, where U4

2,2 is an infinite-dimensional Z-graded superalgebra
with a Z2-homogeneous basis

{αi, βi | i ≥ 0},
satisfying that

|αi| = i (mod 2), |βi| = i+ 1 (mod 2); ‖αi‖ = i, ‖βi‖ = i+ 2,
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and the multiplication is given by

βiα0 = βi, αiαj = αi+j , i, j ≥ 0.

V4
2,2 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{α, β, α0,i, α0,1,i, α0,2,i, α0,1,2,i, β1,i, β2,i | i ≥ 0},

satisfying that

|α| = |β| = 0 (mod 2), |α0,i| = |α0,2,i| = |α0,1,2,i| = i (mod 2),

|α0,1,i| = |β1,i| = |β2,i| = i+ 1 (mod 2);

‖α‖ = 1, ‖β‖ = 2, ‖α0,i‖ = i+ 1, ‖α0,2,i‖ = ‖β1,i‖ = i+ 2,

‖α0,1,i‖ = ‖α0,1,2,i‖ = ‖β2,i‖ = i+ 3,

and the multiplication is given by

α0,0β2,i = α0,1,2,i+1, α0,0β = α0,1,2,0, α0,0β1,0 = α0,2,1 − α0,1,0,

α0,iβ1,j+1 = (−1)iα0,2,i+j+2, α0,i+1β1,j = (−1)i+1α0,2,i+j+2,

α0,2,0α = −α0,1,2,0, αβ1,0 = −α0,1,0 − α0,2,1,

α0,2,0β1,0 = α0,1,2,1, β2,iα = (−1)iα0,1,2,i+1,

β2,iβ1,0 = (−1)i+1α0,1,2,i+2, αβ1,i+1 = −α0,2,i+2 i, j ≥ 0.

The multiplication between U4
2,2 and V4

2,2 is graded-supercommutative, and the multipli-
cation is given by

α0,1,iα0 = α0,1,i, α0,1,2,iα0 = α0,1,2,i, β2,iα0 = β2,i, αα0 = α, βα0 = β,

α0,0βi = α0,1,i, α0,iαj = α0,i+j , α0,2,iαj = α0,2,i+j , βiα = (−1)i+1α0,1,i,

β2,iα1 = − 1

i+ 2
α0,1,i+1, ααi+1 = −α0,i+1, αiβ1,j = (−1)iβ1,i+j ,

α0,2,0βi = −α0,1,2,i+1, βiβ = α0,1,2,i+1, βiβ1,0 = (−1)i
i+ 3

i+ 2
α0,1,i+1,

βα1 = −α0,1,0 − α0,2,1, βαi+2 = −α0,2,i+2, i, j ≥ 0.

In particular,

dim Hk(F4
2,2) =





1, k = 0;
3, k = 1;
6, k = 2;
8, k ≥ 3.

(5) H•(F5
2,2) ∼= U5

2,2, where U5
2,2 is an infinite-dimensional Z-graded superalgebra with a

Z2-homogeneous basis
{α0, α1, α0,1,i, α

i
0,1, β1,i, β2,i | i ≥ 0},

satisfying that

|α0| = |α1| = 0 (mod 2), |α0,1,i| = |αi0,1| = i (mod 2), |β1,i| = |β2,i| = i+ 1 (mod 2);



On cohomology of filiform Lie superalgebras 17

‖α0‖ = 0, ‖α1‖ = 1, ‖αi0,1‖ = ‖β1,i‖ = i+ 1, ‖α0,1,i‖ = ‖β2,i‖ = i+ 2,

and the multiplication is given by

α0α0 = α0, α0α1 = α1, α0α0,1,i = α0,1,i, α0α
i
0,1 = αi0,1, α0β1,i = β1,i, α0β2,i = β2,i,

α1α
i
0,1 = α0,1,i, α1β1,i = β2,i, β1,i1β1,i2 = 2α0,1,i1+i2 , i, i1, i2 ≥ 0.

In particular,

dim Hk(F5
2,2) =





1, k = 0;
3, k = 1;
4, k ≥ 2.

Proof. (1) For k ≥ 0, 0 ≤ i ≤ k, consider the mapping

dk−i,i2 :

k−i∧
(F2

1,2/FY2)∗
⊗

FY ∗
i

2 −→
k−i+2∧

(F2
1,2/FY2)∗

⊗
FY ∗

i−1

2 ,

f ⊗ Y ∗i2 7−→ (−1)‖f‖if ∧ d(Y ∗2 )⊗ Y ∗i−1

2 ,

where
d(Y ∗2 ) = (X∗0 +X∗1 ) ∧ Y ∗1 .

By Lemma 3.3, we have

Ek−i,i∞ =





∧k(F2
1,2/FY2)∗

∧k−2(F2
1,2/FY2)∗

∧
Fd(Y ∗2 )

, i = 0;

F(X∗0+X∗1 )∧Y ∗k−i−1

1 ⊗Y ∗i2

⊕
FX∗0∧X∗1∧Y ∗

k−i−2

1 ⊗Y ∗i2∧k−2−i(F2
1,2/FY2)∗

∧
Fd(Y ∗2 )

⊗
FY ∗i2

, 1 ≤ i ≤ k − 2;

F(X∗0 +X∗1 )
⊗
Y ∗

k−1

2 , i = k − 1;
0, i = k.

From Hk(F2
1,2) =

k⊕
i=0

Ek−i,i∞ , we can obtain the conclusion.

The proofs of (2), (3), (4), (5) are similar to (1).

Lemma 3.4. For F2
2,2, let I = spanF{X1, X2, Y1, Y2}.

(1) For k ≥ 0, the following conclusion holds:

Hk(F 2
2,2) ∼= H0(FX0,H

k(I))
⊕

H1(FX0,H
k−1(I)).

(2) For k ≥ 2, Hk(I) has a basis:

Y ∗
k

2 , X∗1 ∧ Y ∗
k−1

2 −X∗2 ∧ Y ∗1 ∧ Y ∗
k−2

2 ,

(3) For k ≥ 2, H0(FX0,H
k(I)) has a basis:

Y ∗
k

2 , X∗1 ∧ Y ∗
k−1

2 −X∗2 ∧ Y ∗1 ∧ Y ∗
k−2

2 ,

(4) For k ≥ 3, H1(FX0,H
k−1(I)) has a basis:

X∗0 ∧ Y ∗
k−1

2 , X∗0 ∧X∗1 ∧ Y ∗
k−2

2 −X∗0 ∧X∗2 ∧ Y ∗1 ∧ Y ∗
k−3

2 .
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Proof. (1) Note I is an ideal of F2
2,2. From Eq. (2.0.3), we have

Ei,k−i∞ ∼=





H0(FX0,H
k(I)), i = 0;

H1(FX0,H
k−1(I)), i = 1;

0, else.

Moreover, we have

Hk(F 2
2,2) =

k⊕

i=0

Ei,k−i∞ ∼= H0(FX0,H
k(I))

⊕
H1(FX0,H

k−1(I)).

(2) We use the Hochschild-Serre spectral sequence relative to the ideal I1 = [I, I]. Note
that I1 ⊆ C(I), we have

Ek−i,i2 =

{ ∧k−i(I/I1)∗
⊗∧i I∗1 , 0 ≤ i ≤ 2;

0, else.

Moreover, we have

Ek−i,i∞ = Ek−i,i3 =





FY ∗k2 , i = 0;

F(X∗1 ∧ Y ∗
k−1

2 −X∗2 ∧ Y ∗1 ∧ Y ∗
k−2

2 ), i = 1;
0, else.

Form Hk(I) =
k⊕
i=0

Ek−i,i∞ , we can obtain the conclusion.

(3) By the definitions of the low cohomology (see [10]), we have

H0(FX0,H
k(I)) = Hk(I).

(4) From (3), we have

H1(FX0,H
k−1(I)) = FX∗0

∧
Hk−1(I).

Theorem 4. The following Z-graded superalgebra isomorphism holds:

H•(F 2
2,2) ∼= U2

2,2,

where U2
2,2 is an infinite-dimensional Z-graded superalgebra with a Z2-homogeneous basis

{α0, α1, α0,i, β0, β1,i, β2,i, β3,i | i ≥ 0},

satisfying that
|α0| = 0 (mod 2), |α1| = |β0| = 1 (mod 2),

|α0,i| = |β1,i| = |β3,i| = i (mod 2), |β2,i| = i+ 1 (mod 2);

‖α0‖ = 0, ‖α1‖ = 1, ‖β0‖ = 2, ‖α0,i‖ = i+ 1, ‖β1,i‖ = i+ 2, ‖β2,i‖ = ‖β3,i‖ = i+ 3,

and the multiplication is given by

α0α0 = α0, α0α1 = α1, α0α0,i = α0,i, α0β0 = β0, α0β1,i = β1,i, α0β2,i = β2,i,
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α0β3,i = β3,i, β1,iα1 = 2β2,i, α0,iβ0 = (−1)iβ2,i, α0,iβ1,j = α0,i+j+2,

α0,iβ3,j = (−1)iβ2,i+j+1, β1,iβ0 = (−1)iβ3,i+1, β1,iβ1,j = β1,i+j+2,

β2,iβ1,j = β2,i+j+2, β3,iβ1,j = β3,i+j+2, i, j ≥ 0.

In particular,

dim Hk(F2
2,2) =





1, k = 0;
2, k = 1;
3, k = 2;
4, k ≥ 3.

Proof. For k ≥ 3, by Lemma 3.4, let

Φ : H0(FX0,H
k(I)) −→ Hk(F2

2,2),

Y ∗
k

2 7−→ Y ∗
k

2 − 2kX∗0 ∧X∗2 ∧ Y ∗
k−2

2 ,

X∗1 ∧ Y ∗
k−1

2 −X∗2 ∧ Y ∗1 ∧ Y ∗
k−2

2 7−→ X∗1 ∧ Y ∗
k−1

2 −X∗2 ∧ Y ∗1 ∧ Y ∗
k−2

2

+ 2(k − 2)X∗0 ∧X∗1 ∧X∗2 ∧ Y ∗
k−3

2 ,

and

Ψ : H1(FX0,H
k−1(I)) −→ Hk(F2

2,2),

X∗0 ∧ Y ∗
k−1

2 7−→ X∗0 ∧ Y ∗
k−1

2 ,

X∗0 ∧X∗1 ∧ Y ∗
k−2

2 −X∗0 ∧X∗2 ∧ Y ∗1 ∧ Y ∗
k−3

2 7−→ X∗0 ∧X∗1 ∧ Y ∗
k−2

2 −X∗0 ∧X∗2 ∧ Y ∗1 ∧ Y ∗
k−3

2 .

Then Φ and Ψ are injective linear mappings, and Im Φ ∩ Im Ψ = 0. Moreover, we have

Hk(F2
2,2) = Φ(H0(FX0,H

k(I)))
⊕

Ψ(H1(FX0,H
k−1(I))).

Thus, H•(F2
2,2) has a basis:

1, Y ∗1 , X∗0 ∧ Y ∗
i

2 , X∗1 ∧ Y ∗2 −X∗2 ∧ Y ∗1 , Y ∗
i+2

2 − 2(i+ 2)X∗0 ∧X∗2 ∧ Y ∗
i

2 ,

X∗0 ∧X∗1 ∧ Y ∗
i+1

2 −X∗0 ∧X∗2 ∧ Y ∗1 ∧ Y ∗
i

2 ,

X∗1 ∧ Y ∗
i+2

2 −X∗2 ∧ Y ∗1 ∧ Y ∗
i+1

2 + 2(i+ 1)X∗0 ∧X∗1 ∧X∗2 ∧ Y ∗
i

2 , i ≥ 0.

The conclusion can be obtained by a direct calculation.

4 Characteristic p > 3

Throughout this section the ground field F is an algebraically closed field of characteristic
p > 3.

Lemma 4.1. For F tss,2, s = 1, 2, t1 = 1, 2, 3, t2 = 1, 3, 4, 5, let Itss,2 = [F tss,2,F tss,2]. For k ≥ 0,
0 ≤ i ≤ k, the following conclusions hold:

(1) Ek−i,i2 = Ok−i((F tss,2/Itss,2)∗; t)
⊗Oi((Itss,2)∗; t) =⇒ DPHk(F tss,2).

(2) Ek−i,i∞ = Ek−i,i3 .

Proof. The proof is similar to Lemma 3.3.
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4.1 Divided power cohomology of F1,2

Theorem 5. The following Z-graded superalgebra isomorphisms hold:
(1) DPH•(F1

1,2) ∼= U1
1,2(t), where U1

1,2(t) is a pt1−1(4pt2 + 2p− 2)-dimensional Z-graded
superalgebra with a Z2-homogeneous basis

{αi,j0 , α1,k, αk, α
i,j
0,1, α

s,t
1 , αs,t | 0 ≤ i ≤ pt1−1 − 1, 0 ≤ j ≤ pt2 − 1, 0 ≤ k ≤ pt1 − 1,

1 ≤ s ≤ pt1−1, 1 ≤ t ≤ pt2 − 1},
satisfying that

|αi,j0 | = |αi,j0,1| = i+ j (mod 2), |αk| = |α1,k| = k (mod 2), |αs,t| = |αs,t1 | = s+ t− 1 (mod 2);

‖αi,j0 ‖ = ip+j+1, ‖αi,j0,1‖ = ip+j+2, ‖αk‖ = k, ‖α1,k‖ = k+1, ‖αs,t‖ = sp+t−1, ‖αs,t1 ‖ = sp+t,

and the multiplication is given by

αi1,j0 α1,i2p = (−1)i1+j

(
(i1 + i2)p

i1p

)
αi1+i2,j

0,1 , αi1,j0 αi2p =

(
(i1 + i2)p

i1p

)
αi1+i2,j

0 ,

α1,k1αk2 =

(
k1 + k2

k1

)
α1,k1+k2 , α1,ipα

s,t =

(
(i+ s)p− 1

ip

)
αi+s,t1 ,

αk1αk2 =

(
k1 + k2

k1

)
αk1+k2 , αi1,j0,1 αi2p =

(
(i1 + i2)p

i1p

)
αi1+i2,j

0,1 ,

αs,t1 αip =

(
(i+ s)p− 1

ip

)
αi+s,t1 , αipα

s,t =

(
(i+ s)p− 1

ip

)
αi+s,t,

where 0 ≤ i, i1, i2 ≤ pt1−1 − 1, 0 ≤ j ≤ pt2 − 1, 0 ≤ k1, k2 ≤ pt1 − 1, 1 ≤ s ≤ pt1−1,
1 ≤ t ≤ pt2 − 1.

(2) DPH•(F2
1,2) ∼= U2

1,2(t), where U2
1,2(t) is a pt1−1(4pt2 + 2p− 2)-dimensional Z-graded

superalgebra with a Z2-homogeneous basis

{αi,j0 , αs,k0,1, αi,j , α
l
0, αl, α0,1,s,k | 1 ≤ i ≤ pt1−1, 1 ≤ j ≤ pt2 − 1, 0 ≤ s ≤ pt1−1 − 1,

0 ≤ k ≤ pt2 − 1, 0 ≤ l ≤ pt1 − 1},
satisfying that

|αi,j0 | = |αi,j | = i+ j − 1 (mod 2), |αs,k0,1| = |α0,1,s,k| = s+ k (mod 2), |αl0| = |αl| = l (mod 2);

‖αi,j0 ‖ = ip+j, ‖αi,j‖ = ip+j−1, ‖αs,k0,1‖ = sp+k+1, ‖α0,1,s,k‖ = sp+k+2, ‖αl0‖ = l+1, ‖αl‖ = l,

and the multiplication is given by

αi,j0 αsp =

(
(i+ s)p− 1

sp

)
αi+s,j0 , αsp0 αi,j =

(
(i+ s)p− 1

sp

)
αi+s,j0 ,

αi,jαsp =

(
(i+ s)p− 1

sp

)
αi+s,j , αs1p0 αs2,k0,1 = (−1)s1

(
(s1 + s2)p

s1p

)
α0,1,s1+s2,k,

αs1,k0,1 αs2p =

(
(s1 + s2)p

s1p

)
αs1+s2,k

0,1 , α0,1,s1,kαs2p =

(
(s1 + s2)p

s1p

)
α0,1,s1+s2,k,
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αl10 αl2 =

(
l1 + l2
l1

)
αl1+l2

0 , αl1αl2 =

(
l1 + l2
l1

)
αl1+l2 ,

where 1 ≤ i ≤ pt1−1, 1 ≤ j ≤ pt2 − 1, 0 ≤ s, s1, s2 ≤ pt1−1 − 1, 0 ≤ k ≤ pt2 − 1,
0 ≤ l, l1, l2 ≤ pt1 − 1.

(3) DPH•(F3
1,2) ∼= U3

1,2(t), where U3
1,2(t) is a pt1−1(4pt2 + 1)-dimensional Z-graded su-

peralgebra with a Z2-homogeneous basis

{αi,j0,1, αi, α
1
i , α

i,k
0 , αs,k1 , α1,s, α

s,t | 0 ≤ i ≤ pt1−1 − 1, 0 ≤ j ≤ pt2 − 2, 0 ≤ k ≤ pt2 − 1,

1 ≤ s ≤ pt1−1, 1 ≤ t ≤ pt2 − 1},
satisfying that

|αi,j0,1| = i+ j (mod 2), |αi| = i (mod 2), |α1
i | = i+ 1 (mod 2),

|αi,k0 | = i+ k (mod 2), |αs,k1 | = s+ k − 1 (mod2), |α1,s| = s (mod 2), |αs,t| = s+ t− 1 (mod 2);

‖αi,j0,1‖ = ip+ j + 2, ‖αi‖ = ip, ‖α1
i ‖ = ip+ 1, ‖αi,k0 ‖ = ip+ k + 1,

‖αs,k1 ‖ = sp+ k, ‖α1,s‖ = sp− 1, ‖αs,t‖ = sp+ t− 1,

and the multiplication is given by

αi1,j0,1 αi2 =

(
(i1 + i2)p

i1p

)
αi1+i2,j

0,1 , αi1αi2 =

(
(i1 + i2)p

i1p

)
αi1+i2 ,

αi1α
1
i2 =

(
(i1 + i2)p

i1p

)
α1
i1+i1 , αi1,k0 αi2 =

(
(i1 + i2)p

i1p

)
αi1+i2,k

0 ,

αs,k1 αi =

(
(i+ s)p− 1

ip

)
αi+s,k1 , α1,sαi =

(
(i+ s)p− 2

ip

)
α1,i+s,

αs,tαi =

(
(i+ s)p− 1

ip

)
αi+s,t, α1,sα

1
i =

(
(i+ s)p− 1
ip+ 1

)
αi+s,01 ,

αi,k0 α1,s = (−1)i+k+1

(
(i+ s)p− 2

ip

)
1

2
αi+s,k+1,

where 0 ≤ i, i1, i2 ≤ pt1−1−1, 0 ≤ j ≤ pt2−2, 0 ≤ k ≤ pt2−1, 1 ≤ s ≤ pt1−1, 1 ≤ t ≤ pt2−1.

Proof. (1) For k ≥ 0, 0 ≤ i ≤ k, consider the mapping

dk−i,i2 : Ok−i((F1
1,2/FY2)∗; t)

⊗
FY ∗

(i)

2 −→ Ok−i+2((F1
1,2/FY2)∗; t)

⊗
FY ∗

(i−1)

2 ,

f ⊗ Y ∗(i)2 7−→ (−1)‖f‖f ∧ d(Y ∗2 )⊗ Y ∗(i−1)

2 ,

where
d(Y ∗2 ) = X∗0 ∧ Y ∗1 .

By Lemma 4.1, we have

Ek−i,i∞ =





Ok((F1
1,2/FY2)∗;t)

Ok−2((F1
1,2/FY2)∗;t)

∧
Fd(Y ∗2 )

, i = 0;

Ker dk−i,i∞
Ok−2−i((F2

1,2/FY2)∗;t)
∧

Fd(Y ∗2 )
⊗

FY ∗(i)2

, 1 ≤ i ≤ k − 2;

FX∗0
⊗
Y ∗

(k−1)

2 , i = k − 1;
0, i = k.
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where

Ker dk−i,i∞ = FX∗0 ∧ Y ∗
(k−i−1)

1 ⊗ Y ∗(i)2

⊕
FX∗0 ∧X∗1 ∧ Y ∗

(k−i−2)

1 ⊗ Y ∗(i)2

⊕
Fδk−iX∗1 ∧ Y ∗

(k−i−1)

1 ⊗ Y ∗(i)2

⊕
Fδk+1−iY

∗(k−i)
1 ⊗ Y ∗(i)2 ,

where δa = 1 when a = 0(mod p) and δa = 0 otherwise. From DPHk(F1
1,2) =

k⊕
i=0

Ek−i,i∞ ,

we can obtain the conclusion.
The proofs of (2), (3) are similar to (1).

4.2 Divided power cohomology of F2,2

Theorem 6. The following Z-graded superalgebra isomorphisms hold:
(1) DPH•(F1

2,2) ∼= U1
2,2(t), where U1

2,2(t) is a pt1−1(8pt2 + 4p− 7)-dimensional Z-graded
superalgebra with a Z2-homogeneous basis

{αi, αs,j0 , αi1, α
s,j
0,2, α

s,t
0,1, α

s,j
0,1,2, αu,t, α

u,v
1 , αu,t1,2, βu,h, α

i
1,2, βi | 0 ≤ i ≤ pt1 − 1, 0 ≤ j ≤ pt2 − 1,

0 ≤ s ≤ pt1−1 − 1, 1 ≤ t ≤ pt2 − 1, 1 ≤ u ≤ pt1−1, 2 ≤ v ≤ pt2 − 1, 1 ≤ h ≤ pt2 − 2},
satisfying that

|αi| = |αi1| = |αi1,2| = i (mod 2), |βi| = i+ 1 (mod 2), |αs,j0 | = |αs,j0,2| = |αs,j0,1,2| = s+ j (mod 2),

|αs,t0,1| = s+ t (mod 2), |αu,t| = |αu,t1,2| = u+ t− 1 (mod 2),

|αu,v1 | = u+ v − 1 (mod2), |βu,h| = u+ h− 1 (mod 2);

‖αi‖ = i, ‖αi1‖ = i+ 1, ‖αi1,2‖ = ‖βi‖ = i+ 2, ‖αs,j0 ‖ = sp+ j + 1,

‖αs,j0,2‖ = sp+ j + 2, ‖αs,j0,1,2‖ = sp+ j + 3, ‖αs,t0,1‖ = sp+ t+ 2,

‖αu,t‖ = up+ t− 1, ‖αu,t1,2‖ = up+ t+ 1, ‖αu,v1 ‖ = up+ v, ‖βu,h‖ = up+ h,

and the multiplication is given by

αi1αi2 =

(
i1 + i2
i1

)
αi1+i2 , αi11 αi2 =

(
i1 + i2
i1

)
αi1+i2

1 ,

αi11,2αi2 =

(
i1 + i2
i1

)
αi1+i2

1,2 , βi1αi2 =

(
i1 + i2
i1

)
βi1+i2 ,

αs1,j0 αs2p =

(
(s1 + s2)p

s1p

)
αs1+s2,j

0 , αs1,j0,2 αs2p =

(
(s1 + s2)p

s1p

)
αs1+s2,j

0,2 ,

αs1,t0,1 αs2p =

(
(s1 + s2)p

s1p

)
αs1+s2,t

0,1 , αs1,j0,1,2αs2p =

(
(s1 + s2)p

s1p

)
αs1+s2,j

0,1,2 ,

αs1,j0,2 αs2p+1 = −
(

(s1 + s2)p
s1p

)
αs1+s2,j+1

0,1 , αs1,j0 αs2p1 = (−1)s1+j

(
(s1 + s2)p

s1p

)
αs1+s2,j

0,1 ,

αs1,j0 αs2p1,2 =

(
(s1 + s2)p

s1p

)
αs1+s2,j

0,1,2 , αs1p1 αs2,j0,2 = −
(

(s1 + s2)p
s1p

)
αs1+s2,j

0,1,2 ,
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αspαu,t =

(
(s+ u)p− 1

sp

)
αs+u,t, αu,v1 αsp =

(
(s+ u)p− 1

sp

)
αs+u,v1 ,

αu,t1,2αsp =

(
(s+ u)p− 1

sp

)
αs+u,t1,2 , βu,hαsp =

(
(s+ u)p− 1

sp

)
βs+u,h,

βu,hαsp+1 = −
(

(s+ u)p− 1
sp

)
αs+u,h+1

1 , αsp1 αu,t =

(
(s+ u)p− 1

sp

)
αs+u,t1 ,

αsp1 βu,h = (−1)s
(

(s+ u)p− 1
sp

)
αs+u,h1,2 , αsp1,2αu,t =

(
(s+ u)p− 1

sp

)
αs+u,t1,2 ,

βspαu,t =

(
(s+ u)p− 1

sp

)
(t+1)αs+u,t+1

1 , βu,hβsp = (−1)u+h

(
(s+ u)p− 1

sp

)
hαu+s,h+1

1,2 ,

αs1,j0 βs2p = (−1)s1+j

(
(s1 + s2)p

s1p

)
(j + 2)αs1+s2,j+1

0,1 ,

αs1,j0,2 βs2p = (−1)s1+j+1

(
(s1 + s2)p

s1p

)
(j + 1)αs1+s2,j+1

0,1,2 ,

αi11 βi2 = (−1)i1+1

(
i1 + i2 + 1

i1

)
(i2 + 1)αi1+i2+1

1,2 , 0 ≤ i1, i2 ≤ pt1 − 1,

where 0 ≤ s, s1, s2 ≤ pt1−1 − 1, 0 ≤ j ≤ pt2 − 1, 1 ≤ t ≤ pt2 − 1, 1 ≤ u ≤ pt1−1,
2 ≤ v ≤ pt2 − 1, 1 ≤ h ≤ pt2 − 2.

(2) DPH•(F3
2,2) ∼= U3

2,2(t), where U3
2,2(t) is a pt1−1(8pt2 + 1)-dimensional Z-graded su-

peralgebra with a Z2-homogeneous basis

{αi1, αi,11 , αi,j0 , αi,j0,1, α
s
1,2, α

s,j
1,2, α1,s,h, βs, βi,t, β1,i,t, β2,s,t, γi, γ

1
i , γs,h | 0 ≤ i ≤ pt1−1 − 1,

0 ≤ j ≤ pt2 − 1, 1 ≤ s ≤ pt1−1, 0 ≤ t ≤ pt2 − 2, 1 ≤ h ≤ pt2 − 1},
satisfying that

|αi1| = |γi| = i (mod 2), |αi,11 | = |γ1
i | = i+ 1 (mod 2), |αs1,2| = |βs| = s (mod 2),

|αi,j0 | = |αi,j0,1| = i+ j (mod 2), |βi,t| = |β1,i,t| = i+ t (mod 2), |β2,s,t| = s+ t− 1 (mod2),

|αs,j1,2| = s+ j − 1 (mod 2), |α1,s,h| = |γs,h| = s+ h− 1 (mod 2);

‖γi‖ = ip, ‖αi1‖ = ‖γ1
i ‖ = ip+ 1, ‖αi,11 ‖ = ip+ 2, ‖βs‖ = sp− 1,

‖αs1,2‖ = sp, ‖αi,j0 ‖ = ip+ j + 1, ‖αi,j0,1‖ = ip+ j + 2, ‖βi,t‖ = ip+ t+ 2,

‖β1,i,t‖ = ip+t+3, ‖β2,s,t‖ = sp+t, ‖αs,j1,2‖ = sp+j+1, ‖α1,s,h‖ = sp+h, ‖γs,h‖ = sp+h−1,

and the multiplication is given by

α1,s,hγi =

(
(i+ s)p− 1

ip

)
α1,i+s,h, αs,j1,2γi =

(
(i+ s)p− 1

ip

)
αi+s,j1,2 ,

γs,hγi =

(
(i+ s)p− 1

ip

)
γi+s,h, αs1,2γi =

(
(i+ s)p− 1

ip

)
αi+s1,2 ,
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βsγi =

(
(i+ s)p− 1

ip

)
βi+s, β2,s,tγ

1
i =

(
(i+ s)p− 1
ip+ 1

)
α1,i+s,t+1,

αs1,2γ
1
i =

(
(i+ s)p− 1
ip+ 1

)
αi+s,01,2 , βsγ

1
i =

(
(i+ s)p− 1
ip+ 1

)
2β2,i+s,0,

αi11 βi2,t =

(
(i1 + i2)p

i1p

)
β1,i1+i2,t, αi,j0 αs1,2 =

(
(i+ s)p− 1

ip

)
1

2
α1,i+s,j+1,

αi,j0,1βs = (−1)i+j+1

(
(i+ s)p− 1

ip

)
α1,i+s,j+1, αi1γs,h =

(
(i+ s)p− 1

ip

)
α1,i+s,h,

αi1β2,s,t = (−1)i
(

(i+ s)p− 1
ip

)
αi+s,t1,2 , αi1βs = (−1)i

(
(i+ s)p− 1

ip

)
2αi+s1,2 ,

αi,11 βs = (−1)i+1

(
(i+ s)p− 1
ip+ 1

)
2αi+s,01,2 , β2,s,tγi =

(
(i+ s)p− 1

ip

)
β2,i+s,t,

αs1,2βi,t =

(
(i+ s)p− 1
ip+ 1

)
αi+s,t+1

1,2 , βi,tβs = (−1)i+t
(

(i+ s)p− 1
ip+ 1

)
2β2,i+s,t+1,

γi1γi2 =

(
(i1 + i2)p

i1p

)
γi1+i2 , γi1γ

1
i2 =

(
(i1 + i2)p

i1p

)
γ1
i1+i2 ,

αi1,j0 γi2 =

(
(i1 + i2)p

i1p

)
αi1+i2,j

0 , αi1,j0,1 γi2 =

(
(i1 + i2)p

i1p

)
αi1+i2,j

0,1 ,

αi11 γi2 =

(
(i1 + i2)p

i1p

)
αi1+i2

1 , αi1,11 γi2 =

(
(i1 + i2)p

i1p

)
αi1+i2,1

1 ,

βi1,tγi2 =

(
(i1 + i2)p

i1p

)
βi1+i2,t, β1,i1,tγi2 =

(
(i1 + i2)p

i1p

)
β1,i1+i2,t,

γ1
i1γ

1
i2 = 2

(
(i1 + i2)p

i1p

)
αi1+i2,0

0,1 , αi11 γ
1
i2 =

(
(i1 + i2)p

i1p

)
αi1+i2,1

1 ,

βi1,tγ
1
i2 = 2

(
(i1 + i2)p

i1p

)
αi1+i2,t+1

0,1 , αi1,j0 αi21 = (−1)i1+j

(
(i1 + i2)p

i1p

)
αi1+i2,j

0,1 ,

αi,j0 βs = (−1)i+j+1

(
(i+ s)p− 1

ip

)
γi+s,j+1,

βsβ1,i,t = (−1)s−1

(
(i+ s)p− 1
ip+ 1

)
2αi+s,t+1

1,2 ,

βi,t1β2,s,t2 = (−1)i+t1
(

(i+ s)p− 1
ip+ 1

)(
t1 + t2 + 1
t1 + 1

)
α1,i+s,t1+t2+2,

βi1,t1βi2,t2 = 2

(
(i1 + i2)p

i1p

)(
t1 + t2 + 2
t1 + 1

)
αi1+i2,t1+t2+2

0,1 ,

where 0 ≤ i, i1, i2 ≤ pt1−1 − 1, 1 ≤ s ≤ pt1−1, 1 ≤ h ≤ pt2 − 1, 0 ≤ j ≤ pt2 − 1,
0 ≤ t, t1, t2 ≤ pt2 − 2.
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(3) DPH•(F4
2,2) ∼= U4

2,2(t)nV4
2,2(t), where U4

2,2(t) is a pt1−1(2p+1)-dimensional Z-graded
superalgebra with a Z2-homogeneous basis

{αi, α0,i, α1,s | 0 ≤ i ≤ pt1 − 1, 0 ≤ s ≤ pt1−1 − 1},

satisfying that
|αi| = |α0,i| = i (mod 2), |α1,s| = s (mod 2);

‖αi‖ = i, ‖α0,i‖ = i+ 1, ‖α1,s‖ = sp+ 1,

and the multiplication is given by

αi1αi2 =

(
i1 + i2
i1

)
αi1+i2 , α0,i1αi2 =

(
i1 + i2
i1

)
α0,i1+i2 ,

α1,s1αs2p =

(
(s1 + s2)p

s1p

)
α1,s1+s2 , α1,sαqp+r = −

(
(s+ q)p+ r

sp

)
α0,(s+q)p+r,

where 0 ≤ i1, i2 ≤ pt1 − 1, 0 ≤ s1, s2 ≤ pt1−1 − 1, 0 ≤ s ≤ pt1−1 − 1, 0 ≤ qp+ r ≤ pt1 − 1,
1 ≤ r ≤ p− 1. V4

2,2(t) is a 2pt1−1(4pt2 + p− 3)− 1-dimensional Z-graded superalgebra with
a Z2-homogeneous basis

{α0,2,i, β0,2,i, β
j
0,1,s, β

j
0,1,2,s, α

j
0,1,s, α

k
0,1,2,s, α1,2,s, α

j
h, α

j
0,h, α

j
0,2,h, β

ρ
0,2,h, α

1
1,2,l | 0 ≤ i ≤ pt1 − 1,

1 ≤ j ≤ pt2−1, 0 ≤ s ≤ pt1−1−1, 1 ≤ h ≤ pt1−1, 0 ≤ k ≤ pt2−1, 1 ≤ l ≤ pt1−1−1, 1 ≤ ρ ≤ pt2−2},
satisfying that

|α0,2,i| = i (mod 2), |β0,2,i| = i+ 1 (mod 2), |α1,2,s| = s (mod 2),

|α1
1,2,l| = l + 1 (mod 2), |αk0,1,2,s| = s+ k (mod 2), |βρ0,2,h| = h+ ρ− 1 (mod 2),

|βj0,1,s| = |βj0,1,2,s| = |αj0,1,s| = s+ j (mod 2), |αjh| = |α
j
0,h| = |α

j
0,2,h| = h+ j − 1 (mod2);

‖α0,2,i‖ = ‖β0,2,i‖ = i+ 2, ‖α1,2,s‖ = sp+ 2, ‖α1
1,2,l‖ = lp+ 3, ‖βj0,1,s‖ = sp+ j + 1,

‖βj0,1,2,s‖ = ‖αj0,1,s‖ = sp+j+2, ‖αk0,1,2,s‖ = sp+k+3, ‖αjh‖ = hp+j−1, ‖αj0,h‖ = hp+j,

‖αj0,2,h‖ = hp+ j + 1, ‖βρ0,2,h‖ = hp+ ρ,

and the multiplication

α0,2,spα
j
h =

(
(s+ h)p− 1

sp

)
αj0,2,s+h, α1,2,sα

j
h = −

(
(s+ h)p− 1

sp

)
αj0,2,s+h,

β0,2,spα
j
h =

(
(s+ h)p− 1

sp

)
(j + 1)αj+1

0,s+h, βj0,1,s1α1,2,s2 =

(
(s1 + s2)p

s1p

)
αj0,1,2,s1+s2

,

β0,2,s1pα1,2,s2 =

(
(s1 + s2)p

s1p

)
α1

0,1,2,s1+s2 ,

α0,2,s1pβ
j
0,1,s2

= (−1)s1+1

(
(s1 + s2)p

s1p

)
αj0,1,2,s1+s2

,
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βj0,1,s1β0,2,s2p = (−1)s1+j+1

(
(s1 + s2)p

s1p

)
(j + 2)αj+1

0,1,s1+s2
,

β0,2,spβ
ρ
0,2,h = (−1)s+1

(
(s+ h)p− 1
sp+ 1

)
ραρ+1

0,2,s+h,

β0,2,s1pβ
j
0,1,2,s2

=

(
(s1 + s2)p

s1p

)
(j + 1)αj+1

0,1,2,s1+s2
,

where 0 ≤ s, s1, s2 ≤ pt1−1 − 1, 1 ≤ h ≤ pt1−1, 1 ≤ j ≤ pt2 − 1, 1 ≤ ρ ≤ pt2 −
2. The multiplication between U4

2,2(t) and V4
2,2(t) is graded-supercommutative, and the

multiplication is given by

α1,2,0α1 = −α1
0,1,0 − α0,2,1, α1,2,lαsp+1 =

(
(s+ l)p
sp

)
α1

1,2,s+l,

β0,2,0α1,0 = −2α1
0,1,0 − α0,2,1, α0,s1pβ

j
0,1,s2

= (−1)s1
(

(s1 + s2)p
s1p

)
αj0,1,s1+s2

,

α1
1,2,lαhp−1 =

(
(h+ l)p
lp+ 1

)
α1,2,h+l, α0,hp−1α

1
1,2,l =

(
(h+ l)p
lp+ 1

)
α0

0,1,2,h+l,

αjhαsp =

(
(s+ h)p− 1

sp

)
αjs+h, βj0,1,s1αs2p =

(
(s1 + s2)p

s1p

)
βj0,1,s1+s2

,

βρ0,2,hαsp =

(
(s+ h)p− 1

sp

)
βρ0,2,s+h, βρ0,2,hαsp+1 =

(
(s+ h)p− 1
sp+ 1

)
αρ+1

0,s+h,

αj0,hαsp =

(
(s+ h)p− 1

sp

)
αj0,s+h, βj0,1,2,s1αs2p =

(
(s1 + s2)p

s1p

)
βj0,1,2,s1+s2

,

βj0,1,2,s1αs2p+1 = −
(

(s1 + s2)p
s1p

)
αj+1

0,1,s1+s2
, αj0,2,hαsp =

(
(s+ h)p− 1

sp

)
αj0,2,s+h,

αj0,1,s1αs2p =

(
(s1 + s2)p

s1p

)
αj0,1,s1+s2

, αk0,1,2,s1αs2p =

(
(s1 + s2)p

s1p

)
αk0,1,2,s1+s2 ,

α0,2,i1αi2 =

(
i1 + i2
i1

)
α0,2,i1+i2 , α1,2,s1αs2p =

(
(s1 + s2)p

s1p

)
α1,2,s1+s2 ,

α1,2,sαlp+1 =

(
(s+ l)p
sp

)
α1

1,2,s+l, α1,2,sαq1p+r1 = −
(

(s+ q1)p+ r1

sp

)
α0,2,(s+q1)p+r1 ,

α1
1,2,lαsp =

(
(s+ l)p
sp

)
α1

1,2,s+l, α1
1,2,lαq2p+r2 = −

(
(q2 + l)p+ r + 1

lp+ 1

)
α0,2,(q2+l)p+r2+1,

β0,2,i1αi2 =

(
i1 + i2
i1

)
β0,2,i1+i2 , α0,spα

j
h =

(
(s+ h)p− 1

sp

)
αj0,s+h,

α0,s1pβ
j
0,1,2,s2

=

(
(s1 + s2)p

s1p

)
αj0,1,2,s1+s2

, α0,s1pα1,2,s2 =

(
(s1 + s2)p

s1p

)
α0

0,1,2,s1+s2 ,

α1,sα
j
h = −

(
(s+ h)p− 1

sp

)
αj0,s+h, α1,s1α0,2,s2p = −

(
(s1 + s2)p

s1p

)
α0

0,1,2,s1+s2 ,
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β0,2,lpα1,s = (−1)l+1

(
(s+ l)p
sp

)
α1

0,1,s+l + (−1)l
(

(s+ l)p+ 1
sp

)
α1

1,2,s+l,

β0,2,spα1,l = (−1)s+1

(
(s+ l)p
sp

)
α1

0,1,s+l + (−1)s
(

(s+ l)p+ 1
lp

)
α1

1,2,s+l,

α0,spβ
ρ
0,2,h = (−1)s+1

(
(s+ h)p− 1

sp

)
αρ0,2,s+h,

α0,i1β0,2,i2 = (−1)i1(i2 + 1)

(
i1 + i2 + 1

i1

)
α0,2,i1+i2+1,

βρ0,2,hα1,s = (−1)h+ρ

(
(s+ h)p− 1

sp

)
αρ0,2,s+h,

βj0,1,s1α1,s2 = (−1)s1+j

(
(s1 + s2)p

s1p

)
αj0,1,s1+s2

,

βj0,1,2,s1α1,s2 = (−1)s1+j+1

(
(s1 + s2)p

s1p

)
αj0,1,2,s1+s2

,

β0,2,q3p+r3α1,s = (−1)q3+r3+1(r3 + 1)

(
(s+ q3)p+ r3 + 1
q3p+ r3 + 1

)
α0,2,(s+q3)p+r3+1,

where 0 ≤ i1, i2, q1p+r1, q2p+r2, q3p+r3 ≤ pt1−1, 0 ≤ s, s1, s2 ≤ pt1−1−1, 1 ≤ h ≤ pt1−1,
0 ≤ k ≤ pt2 − 1, 1 ≤ l ≤ pt1−1 − 1, 1 ≤ j ≤ pt2 − 1, 1 ≤ ρ ≤ pt2 − 2, 2 ≤ r1 ≤ p − 1,
1 ≤ r2, r3 ≤ p− 2.

(4) DPH•(F5
2,2) ∼= U5

2,2(t), where U5
2,2(t) is a pt1−1(8pt2 + 2)-dimensional Z-graded su-

peralgebra with a Z2-homogeneous basis

{αi, αi1, αi0,1, αi0, αk,l0 , αi,j0,1, α
k,j
0,2, α

k
0,2, αk,l, βk, β

i,j
0,1, β1,i,s, β2,i,s, β3,k,j | 0 ≤ i ≤ pt1−1 − 1,

0 ≤ j ≤ pt2 − 1, 0 ≤ s ≤ pt2 − 2, 1 ≤ k ≤ pt1−1, 1 ≤ l ≤ pt2 − 1},
satisfying that

|αi| = |αi0| = i (mod 2), |αi0,1| = |αi1| = i+ 1 (mod 2), |αi,j0,1| = |βi,j0,1| = i+ j (mod 2),

|β1,i,s| = |β2,i,s| = i+ s (mod 2), |αk,l0 | = |αk,l| = k + l − 1 (mod 2),

|αk,j0,2| = |β3,k,j | = k + j − 1 (mod 2), |αk0,2| = |βk| = k (mod 2);

‖αi‖ = ip, ‖αi0‖ = ‖αi1‖ = ip+ 1, ‖αi0,1‖ = ip+ 2, ‖αi,j0,1‖ = ip+ j + 2,

‖βi,j0,1‖ = ip+ j + 1, ‖β1,i,s‖ = ip+ s+ 2, ‖β2,i,s‖ = ip+ s+ 3, ‖αk,l0 ‖ = kp+ l,

‖αk,l‖ = kp+ l − 1, ‖αk,j0,2‖ = kp+ j + 1, ‖β3,k,j‖ = kp+ j, ‖αk0,2‖ = kp, ‖βk‖ = kp− 1,

and the multiplication is given by

αi1,j0,1 αi2 =

(
(i1 + i2)p

i1p

)
αi1+i2,j

0,1 , αi10 β
i2,j
0,1 = (−1)i1

(
(i1 + i2)p

i1p

)
αi1+i2,j

0,1 ,

βi1,j0,1 αi2 =

(
(i1 + i2)p

i1p

)
βi1+i2,j

0,1 , αi10 αi2 =

(
(i1 + i2)p

i1p

)
αi1+i2

0 ,
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αi10 α
i2
1 =

(
(i1 + i2)p

i1p

)
αi1+i2

0,1 , αi10 β1,i2,s =

(
(i1 + i2)p

i1p

)
β2,i1+i2,s,

αi10,1αi2 =

(
(i1 + i2)p

i1p

)
αi1+i2

0,1 , αi1αi2 =

(
(i1 + i2)p

i1p

)
αi1+i2 ,

αi1α
i2
1 =

(
(i1 + i2)p

i1p

)
αi1+i2

1 , β1,i1,sαi2 =

(
(i1 + i2)p

i1p

)
β1,i1+i2,s,

β2,i1,sαi2 =

(
(i1 + i2)p

i1p

)
β2,i1+i2,s, αi,j0,1βk = (−1)i+j+1

(
(i+ k)p− 2

ip

)
1

2
αi+k,j+1

0 ,

αk0,2αi =

(
(i+ k)p− 2

ip

)
αi+k0,2 , αk0,2β

i,j
0,1 = (−1)k

(
(i+ k)p− 2

ip

)
1

2
αi+k,j+1

0 ,

βkαi =

(
(i+ k)p− 2

ip

)
βi+k, βi,j0,1βk = (−1)i+j+1

(
(i+ k)p− 2

ip

)
1

2
αi+k,j+1,

αi0αk,l =

(
(i+ k)p− 1

ip

)
αi+k,l0 , αi0βk = (−1)i

(
(i+ k)p− 2

ip

)
αi+k0,2 ,

αk,l0 αi =

(
(i+ k)p− 1

ip

)
αi+k,l0 , αk,j0,2αi =

(
(i+ k)p− 1

ip

)
αi+k,j0,2 ,

αiαk,l =

(
(i+ k)p− 1

ip

)
αi+k,l, β3,k,jαi =

(
(i+ k)p− 1

ip

)
β3,i+k,j ,

αi0β3,k,j = (−1)i
(

(i+ k)p− 1
ip

)
αi+k,j0,2 , βkα

i
1 =

(
(i+ k)p− 1
ip+ 1

)
β3,i+k,0,

αi0,1βk = (−1)i+1

(
(i+ k)p− 1
ip+ 1

)
αi+k,00,2 , αk0,2α

i
1 =

(
(i+ k)p− 1
ip+ 1

)
αi+k,00,2 ,

αk0,2β1,i,s =

(
(i+ k)p− 1
ip+ 1

)
αi+k,s+1

0,2 , βkβ1,i,s =

(
(i+ k)p− 1
ip+ 1

)
β3,i+k,s+1,

β2,i,sβk = (−1)i+s
(

(i+ k)p− 1
ip+ 1

)
αi+k,s+1

0,2 , αi11 α
i2
1 =

(
(i1 + i2)p+ 2

i1p+ 1

)
αi1+i2,0

0,1 ,

β1,i1,sα
i2
1 =

(
(i1 + i2)p+ 2

i1p+ 1

)
αi1+i2,s+1

0,1 , β3,k,jα
i
1 = −

(
(i+ k)p− 2
ip+ 1

)
1

2
αi+k,j+1

0 ,

β1,i1,s1β1,i2,s2 =

(
(i1 + i2)p+ 2

i1p+ 1

)(
s1 + s2 + 2
s1 + 1

)
αi1+i2,s1+s2+2

0,1 ,

β3,k,jβ1,i,s = −
(

(i+ k)p− 2
ip+ 1

)(
j + s+ 1

j

)
1

2
αi+k,j+s+2

0 ,

where 0 ≤ i, i1, i2 ≤ pt1−1 − 1, 0 ≤ j ≤ pt2 − 1, 0 ≤ s, s1, s2 ≤ pt2 − 2, 1 ≤ k ≤ pt1−1,
1 ≤ l ≤ pt2 − 1.

Proof. The proof is similar to Theorem 5.
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