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1. Introduction

The notion of Lie conformal (super)algebras was originally introduced by Kac in [16,18], which encodes an axiomatic de-
scription of the operator product expansion (or rather its Fourier transform) of chiral fields in conformal field theory. It plays
important roles in quantum field theory, vertex algebras, integrable systems and so on, and has drawn many researchers’
extensive attentions. As is well known, the theory of Lie conformal (super)algebras gives us a powerful tool for the study of
infinite-dimensional Lie (super)algebras satisfying the locality property described in [17].

There are a lot of researches on the case of Lie conformal algebra. It follows from [11] that Virasoro Lie conformal algebra
and all current Lie conformal algebras with finite-dimensional simple Lie algebras exhaust all finite simple Lie conformal
algebras. The theory of finite Lie conformal algebras associated with Virasoro Lie conformal algebra were intensively studied
(see, e.g., [1,7,8,11,19,25]). Furthermore, the problem of classifying finite simple Lie conformal superalgebras was completely
solved in [14]. It shows that any finite simple Lie conformal superalgebra is isomorphic to one of the Lie conformal superal-
gebras of the list, which includes current Lie conformal superalgebras over finite-dimensional simple Lie superalgebras, four
series of “Virasoro-like” Lie conformal superalgebras and exceptional Lie conformal superalgebra CKg. It is worth noting that
finite non-trivial irreducible conformal modules of them were completely classified in [2-4,7,9,21].

The infinite Lie conformal (super)algebra has become one of the major research objects in conformal algebraic theory. In
order to better understand the theory of infinite Lie conformal (super)algebras, it is very natural to investigate some impor-
tant examples. Based on the relation of Lie algebras and Lie conformal algebras, some infinite Lie conformal algebras were
defined by loop Lie algebras and Block type Lie algebras (see, e.g., [5,6,13,15,22-24]). In a similar way, a class of infinite
Lie conformal superalgebras called loop Virasoro conformal superalgebras were constructed in [10], which are associated
with the loop super-Virasoro algebras. Recently, the infinite Lie conformal superalgebras of Block type were introduced in
[26], which contain a Neveu-Schwarz conformal subalgebra. At the same times, their finite non-trivial irreducible confor-
mal modules were classified for p # 0. But, for all we know, there are very few works about the infinite Lie conformal
superalgebras.

In this paper, we define a new class of infinite Lie conformal superalgebras S(p) with p # 0, which is related to a class
of extended Block type Lie conformal algebras B(«, 8, p) studied in [6]. The Lie conformal superalgebras of extended Block type
are S(p) = S(p)g ® S(p); with S(p)g = Bicz, CIILi P Dicz, CI8IW;, S(p); = Bicz, C[3]G; and A-brackets as follows

[LinLil=(G+p)d+ G+ j+2p)A)Lisj, (11)
[Li Wil = (G+P)0 + G+ j+ P)r)Wis, (12)
[Li3 Gl = (G + P2+ G+ ] +2D)2) Gy, (13)
[(WirGjl=Giyj, [WiaW;l=[Gi»Gj]=0 (1.4)

for i, j € Z. Note that the even part S(p)g of S(p) is an extended Block type Lie conformal algebra B(a, 8, p) for a =
p, B =0. The subalgebra $ = (C[B](%Lo) ® C[3]W, of S(p)j is so-called Heisenberg-Virasoro Lie conformal algebra.

This article is organized as follows.

In Section 2, we introduce some basic definitions and related known results about Lie conformal superalgebras and
conformal modules.

In Section 3, by recalling the definition of B(«, 8, p) and certain module structures, we define a class of Lie conformal
superalgebras S(p). Then we investigate their subalgebras, quotient algebras and representations of annihilation superalge-
bras.

In Section 4, the irreducibilities of all free non-trivial rank 1+ 1 modules over S(p) are determined. A complete classifi-
cation of all finite non-trivial irreducible conformal modules of S(p) is given, which shows that they must be free of rank
lor1+41.

In Section 5, we construct a class of Lie conformal superalgebras, which are generalizations of Lie conformal superalgebras
S(p). They have some subalgebras, one of them is exactly the Lie conformal algebra of N =2 superconformal algebra.

At last, as a byproduct of our main result, we also obtain the classification of all finite non-trivial irreducible conformal
modules over the subalgebra sh and quotient algebras s(n) for n > 1.

Throughout this paper, all vector spaces, linear maps and tensor products are assumed to be over complex field C. We
denote by C*, Z and Z the sets of nonzero complex numbers, integers and nonnegative integers, respectively. Moreover,
if A is a vector space, the space of polynomials of A with coefficients in A is denoted by A[A].

2. Preliminaries

In this section, we recall some basic concepts and results related to Lie conformal superalgebras and conformal modules
in [11,16,18]. o

We denote Z, = {0, 1}. A vector space U is called Zj-graded if U = Uy @ Uz, and u € Uj is called Z,-homogenous and
write |u| =1.
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Definition 2.1. A Lie conformal superalgebra S = S5 @ S7 is a Zy-graded C[d]-module endowed with a A-bracket [a b]
which defines a linear map Sq ® Sg — C[A] ® Sq4p, Where A is an indeterminate, and satisfy the following axioms:

[da, b] = —Alay b], [aydb] = (3 + A)la, b,
la; b) = —(=1)lPl[p _;_5a],
[ax[byucll=1llaxblisucl+ Db, [aycll

for all c € S, Z,-homogenous elements a, b in S, and «, B € Z».
A Lie conformal superalgebra is called finite if it is finitely generated as a C[d]-module, or else it is called infinite.

Definition 2.2. A conformal module M = My & Mj over a Lie conformal superalgebra S is a Z,-graded C[3]-module en-
dowed with a A-action S¢ ® Mg — C[A] ® My4p such that

@a),v=—xa,v,a;@v)y=@@+Ma,v,
ar(bpv)—(=D"b, (@;v)=[a,blspv

for all v € M, Z,-homogenous elements a, b in S, and «, B € Z».

Let M = My ® Mj be a conformal S-module. Obviously, there is a parity-change functor IT from the category of S-
modules to itself, which implies that a new module IT(M) is obtained by IT(Mg) = M; and I1(Mj) = Mg. The module M is
called finite if it is finitely generated over C[d]. We call that the rank of M is m +n as a C[d]-module, if the rank of Mj is
m and the rank of Mj is n. If M has no non-trivial submodules, the conformal module M is called irreducible.

A Lie conformal superalgebra S is called Z-graded if S = &®;czSi, each S; is a C[d]-submodule and [S;; S;] € Sitj[A]
for any i, j € Z. The conformal module M is Z-graded if M = ®;czM;, each M; is a C[d]-submodule and S; M; C Mi;j[A]
for any i, j € Z. Furthermore, if each M; is freely generated by an element v; € M; over C[d], then M is called a Z-graded
free intermediate series module.

Definition 2.3. An annihilation superalgebra A(S) of a Lie conformal superalgebra S is a Lie superalgebra with C-basis
{a(n) |ae S,n e Z,} and relations (for any a, b€ S and k€ C)

(ka)(ny = kamy, (a+b)my =am) +bam), (2.1)
m
[am), by = Z <k>(a(k)b)(m+n—k), (0a)(ny = —nam—1), (2.2)
keZ

where a(n) € A(S)y if a € Sy, and ag,b is called the k-th product, given by [a; b] = ZkeZ+ %(a(k)b). Furthermore, an
extended annihilation superalgebra A(S)¢ of S is defined by .A(S)® = Ca x A(S) with [d,ap)] = —nap_1, where Cd C
A(S)E.

0

Now we can define k-th actions of S on M for each je Z,, ie. agv foranyaeS,veM

A
a,v= Z v(a(k)v), (23)

which is similar to the definition of k-th product ayb for a,b € S.
The following result appeared in [7], which implies that a close connection between the module of a Lie conformal
superalgebra and that of its extended annihilation superalgebra.

Proposition 2.4. A conformal module M over a Lie conformal superalgebra S is the same as a module over the Lie superalgebra A(S)®€
satisfying amyv =0 forae S,ve M,n > 0.

3. Lie conformal superalgebra S(p)

In this section, a class of extended Block type Lie conformal superalgebras S(p) are defined.

We first recall the definition of the extended Block type Lie conformal algebra B(«, 8, p) and its Z-graded intermediate
series modules (see [6,26]).

The infinite Lie conformal algebra called extended Block type Lie conformal algebra B(«, B8, p) with p € C* has a C[d]-basis
{L;, W; |i € Z} satisfying the following non-trivial A-brackets

3
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[Lis Lj]= (G +p)d + (i +j+2P)A)Liyj,
[Lin Wil = (G + )Y@+ B) + i+ + )2 Wi

for any «, 8 € C. In the following, we only consider &« = p,8 = 0. For «1,B1,y1 € C,p € C*, the C[9]-module
Va1, 1, v1, p) = Pjcz Cl01v; is a Z-graded free intermediate series module over B (o, 8, p) with A-actions as follows:

Liyvj= ((i +p)@+pB)+(A+] +0!1))»>Vi+j, WinVj=y1Vitj. (3.1)
Inspired by this, we consider a Z,-graded C[d]-module
S(a1, b1, Y1, p) =S5 © S7
with 5= @ieZ+(C[a]Li &b ®iEZ+C[3]Wi’ Si= ®i€Z+C[a]Gi‘ and satisfying
[Li2.G31 = ((G+P)@ + ) + i+ j +a1)2 )G,
[WirGjl=y1Giyj, [GinGj]=0
fori,je Z.Llet o1 =2p, B1 =0 and y; = 1. Then the Z,-graded C[d]-module S(a1, B1, ¥1, p) becomes the Lie conformal

superalgebra S(p), which is exactly what we defined in (1.1)-(1.4).
Now we present some interesting features on S(p) as follows.

3.1. Subalgebras
Setting L = %Lo, W =Wy, G =Gg € S(p) in (1.1)-(1.4), we can obtain the non-vanishing relations as follows:

[Lall=(@42M)L, [LyW]=0@+1MW, [LxG]= (421G, [W,G]=G,

which is called Heisenberg-Virasoro Lie conformal superalgebra sh. Clearly, the even part of s is Heisenberg-Virasoro Lie
conformal algebra, which has been studied extensively (see, e.g., [6,19,25]). We see that C[d](L + aW) for a € C spans a
subalgebra of Heisenberg-Virasoro Lie conformal algebra which is isomorphic to the Virasoro Lie conformal algebra. Now we
define the following C[d]-module homomorphism from sh to Lie conformal algebra of N =2 superconformal algebra (see

[9D):
1 +
L+58W—>L,W—>],G—>G. (3.2)
Then it is easy to check that sh is isomorphic to a subalgebra of Lie conformal algebra of N =2 superconformal algebra.
3.2. Quotient algebras

Many finite Lie conformal superalgebras will be obtained by considering the quotient algebras of S(p). We note that
S(p) is Z-graded in the sense of

S(p) = Gkez,. Sk (3.3)
where S(p)x = C[31L, & C[9]1W\ & C[3]Gk. For any n € Z ., we can define a subspace S(p)) of S(p) by

S(p) ) = ®iznCII1IL; D ®i=nCIOIW;i ) ®i=nCI91Gi.
Obviously, S(p) is an ideal of the Lie conformal superalgebra of S(p). For n € Z, define

S(P)n =SD)/S(P) (n+1)- (34)

Note that S(p)jo; = sh. Choosing p = —n for 1 <n € Z, we can define the quotient algebras S(—n)p,) by the following
relations

5() =S (=) = S(—n)/S(=N)(n+1)- (3.5)

Then a series of new finite non-simple Lie conformal superalgebras can be produced. Now we give the following two
examples forn=1, 2.
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Example 3.1. Setting L = —Lo, W = Wg,G = Go, M = L1, H = Wy, = G; € s(1), one can obtain the following non-trivial
relations

[Lall=@+20)L, [LaW]=@+ M)W, [L,G]=(3+21)G,

[W,Gl=G, [L,;M]=®@+ 1M, [L, Hl=0H,

[L, [1=0@+MI], [W,I]=[H,G]l=I, [M, G]=—Al.
Other A-brackets are given by skew-symmetry. We observe that C[9]L & C[d]W and C[39]L & C[9]M are both Heisenberg-

Virasoro Lie conformal algebra. Maybe s(1) should be called BiHeisenberg-Virasoro Lie conformal superalgebra.

Example 3.2. Set L=—1Lo, W =Wo,G=Go,M=L1,H=W1,I1 =Gy, X =—L3,Y = —W>, Z = —G; € 5(2). Then the non-
vanishing relations are presented as follows

(Lrll=0@+20L, [LaW]=0@ +MW, [L1C]=(8+21)G,

(W1Gl=G, [LAM]=(8+§)»)M, [LAH]=(3+%A)H,

[L)\I]=(8+%A)I, Will=I1, [LyX]=0+M)X, [L,Y]=0Y,
[LyZ]l=0@+1)Z, W) Z]=Z, [M),M]=0+21)X, [M, H]=9Y,
[MyIl=(0@+2MZ, [H, I1=Z, [M)W]=—-(0+MH,
[M,Gl=—@+3M)I, [HyG]=1, [X,G]=-20Z, [Y,G]="Z.

Other A-brackets can be obtained by skew-symmetry. Note that C[9]L & C[0]M & C[9]X and C[d]L ® C[9]W are re-
spectively Schrédinger-Virasoro Lie conformal algebra and Heisenberg-Virasoro Lie conformal algebra. Maybe s(2) should be
called Schrédinger-Heisenberg-Virasoro Lie conformal superalgebra.

3.3. Representation of annihilation superalgebras

In this section, the irreducible modules over a subquotient algebra of the annihilation superalgebra A(S(p)) of S(p) are
classified.
Firstly, we provide the explicit super-brackets of A(S(p)) as follows.

Lemma 3.3.
(1) The annihilation superalgebra of S(p) is
ASE) = {Lim Wi, Ger i, jokneZim, 12y U{-1)]
with the following Lie super-brackets:

[Lim, Ljn] = (M + 1) +p) = @+ D+ p))Litjmn,
[Lim, Winl = (m~+1)j—nG+ p))Wiyjmin.

[Lim, Gjnl = (M + 1)+ p) — @+ D)+ P)Gitjmsn,
(Wim, Gjnl=Givjmin, Wim, Wjnl=[Gim,Gjnl=0,

(3.6)

where p € C*;
(2) The extended annihilation algebra is

AP = {Lim Wi, Girn 01, j.kon € Zom, 1€ 2o U (-1}
satisfying (3.6) and

[0, Liml = =M+ DLim—1, [0, Wjnl=—nWjn_1, [0, Gxt] = =+ DGy -1.

5
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Proof. By the definition of the k-th product in Definition 2.3 and S(p), we conclude that

(i+p)oLiyj ifk=0,
LiwLli=3G+j+2p)liy; ifk=1,
0 ifk>2,

(i+p)oWiyj ifk=0,
LiWj=(+j+p Wi ifk=1,

0 ifk>2,

(i+Pp)3Gitj ifk=0,
LiGj=1{(+j+2p)Giyj ifk=1,

0 ifk>2,
Wi, Gj= o Tfk:o’

0 ifk>1,

GiGj=Wi, ,W;=0 foranykeZ,.
From (2.1) and (2.2), it is easy to see that

(L) my. L] = (MG + p) —nG + p))(Liyj)nin-1),
(L) mys W]l = (mj —n(i + p)) (Wit min—1)s
(L) my, (Gl = (M + p) — (i + P))(Gitj) mtn—1)
[(Wimy, (Gjmy] = (Gixrj)m+n)> [(Gi)amy, (Gjmy] =0,
[((W)my, Wj)m]=0, [, (Li)m)] = —m(Li)m-1),

[0, (Wp)m]l=-—nnW;j)n-1), [0, (G ] = —=1(Gk)1-1)-

Then the lemma is proved by setting Li m = (Li)m+1), Wjn = (W)@ and Gy = (Gx)g41y in (3.7) for i, j,k,ne Z,m,l €
Z,U{-1}. O

(3.7)

Remark 3.4. It has come to our notice that the super Heisenberg-Virasoro algebra is isomorphic to the Lie superalgebra
generated by {Lom, Wo,n, Gos|m,n,l€Z} in A(S(p)) (see [20]).

Secondly, we investigate the representation theory of a subquotient algebra of A(S(p)). It is obvious that
ASENT = ASD); & ASD)T

is a subalgebra of A(S(p)), where A(S(p))g ={Lim, Wjnli, jymneZy} and .A(S(p))¥r ={Gky | k,1 € Z,}. For any
t,N € Z, we denote

Z(t, N) = Z(k, N)g ® Z(k, N)1,

where Z(t, N)g = {Lim, Wjn € AS(P)4 | i,j>t,m,n> N} and Z(t, N)j = {G; € AS(p))+ | k>t,1 > N}. We see that
Z(t,N) is an ideal of A(S(p))*. Denote

p(t,N) =p(t,N)g & p(t, N); = AS(P)T/L(t. N).
For the later use, denote the following ideals of p(t, N) for t, N > 1:
X(L N) = Spanc{it,m7 Wf,l’h C[’,l € p(t7 N) | m,n, l =< N}v
¥ (t,N) =spanc{Lin, Wjn, Gy € p(t,N) |, j.k <t},
¢ (t, N) =spanc{L¢,m, Wen, Gep, Lin, Wjn, Gy € p(t, N) | m,n, I <N i, j k<t —1}
We also denote two finite sets:
@ ={(@i,m) | Lim. Wim. Gim € p(t, N)}\{(0,0)}, ®o={(i,m) e ®|i—pm=0}.

6
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Lemma 3.5. Let t, N > 1, &g # ¥ and

ip = max{i| (i,m) € ®g}, mg =max{m | (i,m) € Dop}.
Assume that V = V5 ® V7 is a non-trivial finite-dimensional irreducible module over p(t, N).

(1) Ifip <t, then the ideal  (t, N) of p(t, N) acts trivially on V;
(2) If mg < N, then the ideal ¥ (t, N) of p(t, N) acts trivially on V;
(3) Ifig =t, mg = N, then the ideal ¢ (t, N) of p(t, N) acts trivially on V.

Proof. (1) Consider the action of Ly o on ¥ (t, N):

[I:O,O, f‘i,m] =(- mp)l_ai,m7 [[_40,07 V_Vi,m] =(@- mP)V_Vi,m, [Z'O,Ov Ci,m] =(@- mp)éi,m,

where 0 <i <t,0<m < N. It follows from t > ip that (t — mp) # 0. Obviously, x(t, N) is a completely reducible (CZ.()’()-
module with no trivial summand. By Lemma 1 of [7], we get that x (t, N) acts trivially on V. Similarly, (2) can be obtained.

(3) Note that p > 0. Assume that ¢(t, N) acts non-trivially on V. According to the irreducibility of V, one can see that
V =¢(t, N)V. Choose a decomposition of ¢ (t, N) as follows

¢(t7 N) = SpanC{l_‘io,mov V_Vio,mos C_;io,mo} + a(tv N)7

where ¢(t, N) = ¢(¢t, N) \ spanc{Lig,mg, Wig.mg> Gig,mo -
Considering the action of Lo o on &(t, N), we know that every element in ¢(t, N) acts nilpotently on V by Lemma 1 of
[7]. From

[Lis.05 Lo.my] = —((io + P)Mo + i0)Lig.mg»
[Lig.0. Wo,me] = —(io + P)MoWig mg.
[Li,0. Go,me] = —((io + P)mo +i0)Gig mo
we check that spanc{Liy.mg» Wig.mg» Gig.mo} acts trivially on V. The results hold. O

Lemma 3.6. Let V = V5 @ V5 be a non-trivial finite-dimensional irreducible module over p(t, N). Then we obtain dim(V) =
dim(Vg) =1ordim(V)=1+1.

Proof. Regard V as a finite-dimensional p(t, N)j-module. By Lemma 3.5 of [6], we know that there exists v € V such that
lev_a,mv W,mv_rlmv for all i meZ+, where 0 m, Tim eC.
When Gg ov =0, by the relation of [Wim, Go ol = G, m,» We obtain G, mV =0 for i,m e Z,. Then dim(V) =dim(V3) = 1.
If Go.ov # 0, we present the following two cases. First, consider ®g = @. We have a decomposition of p(t, N):

p(t, N) = spanc{Lo,0, Wo,0, Go,o} + P(t, N),

where p(t, N) = p(t, N) \ spanC{ig 0, Wo.0, Go,o} and p(t, N) is a nilpotent ideal of p(t, N). Considering the action of Lg g
on p(t N), which implies that p(t, N) is a completely reducible (CLO o-module with no trivial summand. By Lemma 1 of [7]
and G0 oV =0, we immediately obtain that Vi = (CGO ov and dim(V)=1+1.

Next, consider ®g # (). Assume that t, N > 1. We note that if the y (¢, N) (respectively, ideals ¥ (t, N), ¢(t, N)) of p(t, N)
acts trivially on V, then V can be viewed as an irreducible module over p(t — 1, N) (respectively, p(t, N—1), p(t—1, N —1)).
Using simultaneous induction on ¢, N and Lemma 3.5, we obtain that the odd vector can be written as Vi = (CC(),()V, and
dim(V)=1+1. O

4. Classification of finite irreducible modules

This section will be devoted to giving a complete classification of all finite non-trivial irreducible conformal modules
over S(p).

4.1. Equivalence of modules

We first recall a useful result appeared in [6], which is related to classification of finite non-trivial irreducible conformal
modules over S(p)g.
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Lemma 4.1. Assume that V is a finite non-trivial irreducible conformal module over S(p)g. Then V is isomorphic to Vg p ¢ ¢ = C[3]v
with

Lo, v=p(@+ar+Db)v,

Ly v=26pt1,0Cv,

Woarv=dv,

Wi,v=0,i>1,

Lj)\V:O, ]22
fora,b,c,deC.

The equivalence between finite conformal modules over S(p) and those over its quotient algebra S(p), for some
n € Z is given as follows.

Theorem 4.2. Let V be a finite non-trivial conformal module over S(p). Then the A-actions of L;, W; and G; on V are trivial for i > 0.

Proof. Regard V as a finite conformal module over S(p)g. It follows from Theorem 4.2 of [6] that L;; v =W, v =0 for all
i> 0 and any v € V. Take i such that i > |p|. Fix i > 0. Since

Wi (GopVv)—Gou Winv)=GirpVv,

one can check that G;, v =0 for any v € V, proving the theorem. 0O

Remark 4.3. In fact, a finite conformal module over S(p) is isomorphic to a finite conformal module over S(p),) for some
large enough n € Z, where S(p)y) is defined as (3.4).

4.2. Rank 1 + 1 modules

In the following, a characterization of non-trivial free conformal modules of rank 1+ 1 over S(p) is presented. According
to Lemma 4.1, we can define the following three classes of conformal modules Vyp cd.a p.c.d» Vab.cdo and Vgpo.

(1) Vapedab,e.a =Clalvg ® C[d]vi with

Lo vg=p(@+ar+b)vg,
L1;LV(‘):CV6,
W())LV(']:dV(‘),

and
Ginvg=0,i>0,
Winvg=0, j>1,
Lk)\V['):O, k=>2,

where a,b,c,d,d’,b’,c’,d € C;
(2) Vap,cdo =Clolvg ® C[d]v; with

Lo vg=p(@ +ar+b)vy,

Ly, vy =cvg,

Wo vy =dvg,

Gorvg=ovy, and
Giyvg=0,i>1,

Wij,vg=0, j=>1,

Lgavg=0, k>2,

where a,b,c,d e C,0 € C*;

Losvi=p@+dr+b)vy,
Liyvy=c'vy,
Wosvi=dvi,
Ginvi=0,i>0,
Wij,vi=0,j>1,
Lgavi=0, k>2,

Lo, vi=p@+ @+ DA +b)vy,
Ly, vi=cvy,
Worvi=d+1vy,
Ginvi=0,i>0,

Wiivi=0, j=1,

Lgavi=0, k>2,
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(3) Vap.o = C[d]vg ® C[d]v; with

Lo; vy=p(d+ar+b)vg,
Lo, vi=p@+ar+b)vi,
Wo v(]:(a—l)v(),
Woxvi:avi,
Gorvg=0(d+ar+b)vy,

and Gi)\ViZO,l'ZO,
Gi)\V():O, i>1,
Wijavi=0,j>1,
Wij,vg=0, j>1,

LkAViZO, kZl,
Lk)\Vf):O, kZ],

where a,b € C,0 € C*.
Theorem 4.4. Let V be a non-trivial free conformal module of rank 1 + 1 over S(p).

() Ifp#—1,then V=Vapoda.b.0d O Vapodo OF Vapo 0 TI(Va_1p0d-1.6) 0 1(Vgp ) for somea,b,d,a’,b’,d € C,
o e C*;

(2) Ifp=—1,thenV = Vab,edab.c.d O Vapedo O Vap o 0r TI(Va_1p.cd—1,6) OF H(Va,b,o)for somea,b,c,d,a’,b’,c,d €
C,o e C*.

Proof. In order to prove this theorem, we first let V = C[d]vg @ C[d]vy. Regarding V as a conformal module over S(p)g
and using Lemma 4.1, we can suppose that

Loxvy=p@+ar+Db)vg, Loyvi=p@+adr+b)vy,
L1, vy=14pt1,0CVg, L1, vi=68pt1,0CV,

Wo vy =dvg, and { Wy, vi=d'vy,
Winvg=0,i>1, Winvi=0,i>1,
Lixvg=0, j>2, Lixvi=0, j>2,

where a,b,c,d,d’,b’,c’,d € C. Owing to Theorem 4.2, we see that Lijy v = W, Vs =Gijyvs =0 for s € Zj,i> 0. Let
to € Z be the largest integer such that the action of S(p), (see (3.3)) on V is non-trivial. For 0 <t <to,t € Z, we can
write

Lexvg = fr(@, MV, Loy vi= fe(d, 21,
Wi vy =8(0, M)V, Wiy vi =580, )y,
Gevg=he(d. M)vy, Geavy =he(d. M)vg,
where (3, 1), fe(d, 1), 2:(3, 1), Be(d, 1), he(, 1), e (3, 1) € C[d, A]. Note that
fo(@,2) =p@+ar+b), f1(3,1) =6bpt1,0¢, fi(0,1) =0,
Fo@, 1) =p@+ar+b), F1(0,1) =8ps1.0¢, fi(d,2) =0,
2009, 1) =d, 800, ») =d', gj(0, 1) =§j(3,1) =0
fori>2,j>1.For 1<t <tg,s € Z,, we have
Wi (Gou Vs) — Gopu (Wi Vs) = Geappu Vs,

which gives h; (9, A) =71\t(8, A) =0 for t > 1. Then for s € Zy, by L1 (Go n Vs) = Go u (L1 1 Vs), one has

(ho(@ + 1, )¢’ —ho(d, w)c)8ps1.0=0 and (ho(d+ A, p)c —ho(d, ;1)')8p 41,0 =0. (41)
For s € Z;, we have Go;, (Go , Vs) + Go 1, (Go » vs) = 0, which implies

ho(d + A, o0, 1) + ho(d + w, Mho(d, ) =0, (4.2)

ho(d + 1, o, &) +ho(d + w, Mho(d, ) = 0. (4.3)

Setting A = . =0 in (4.2) or (4.3), one can get ho(d, 0)71\0(8, 0) = 0. Let us consider the following three cases.

9
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Case 1. ho(d, 0) = ho(3,0) = 0.

For s € Z3, we get Lo, (Go u vs) — Goy (Lo Vs) =[Lo s Gol a4 Vs, Which shows

ho(®@ 4+ A, )@ +d' A +b") — (8 + p+ax +b)ho(d, 1)

= (A — p)ho(d, A + ), (4.4)
To(® + A, )@ +ar +b) — (@ + p+d'A +b)ho(d, 1)
= (A= m)ho(d, 1 + ). (4.5)

Setting u =0 in (4.4) and (4.5), we check that ho(d, A) =71\0(3, A)=0.
Case 2. hp(9,0) #0 and Fo(a, 0)=0.

Taking =0 in (4.5) gives Ho(a, A) =0. Based on Wo (Go y vg) — Go . (Wo i vg) = Goatp Vg, We Obtain
d'ho(d + 1, 1) — dho (3, 1) = ho(d, % + 1) (4.6)
Setting A = i = 0 respectively in (4.4) and (4.6), we check that
b'=b and d =d+1.
Then we let =0 in (4.4) and (4.6), which gives
(@4 dr+b)Hhg(d + A,0) — (8 +axr + b)hg(d,0) = Ahg(d, 1), (4.7)
d’hg(3 + A, 0) —dhg(d,0) =hg(d, 1). (4.8)
Inserting (4.8) into (4.7), we get
@+ (@ —dHYA+b)hg(d +A,0) = (8 + (a — d)A + b)hg(d, 0). (4.9)
Consider @’ #£d’,a#d or a =d’,a=d in (4.9). It is straightforward to verify that ho(d,0) = o € C*. Using this in (4.7) and
(4.8), we have
ho(3,A) =0 and d =a+1.

If p=—1in(4.1), one has c=c.
Clearly, we need not discuss the case for a’ #d’ and a =d. The final case is @’ =d’ and a # d. Considering the highest
degree of A in (4.9), one can obtain deg, (ho(a + A, 0)) = 1. The equation of (4.7) can be written as

ho(@ 4+ A,0) —ho(9,0)

ho(9, 1) +aho(d,0) — a’ho(d + A, 0) = (3 + b) . (4.10)
Taking A — 0 in (4.10), we get (a —a’ + 1)ho(3,0) = (3 + b)%(hg(a, 0)), which implies
ad=a and ho(d,0)=0(d+Db) (411)

for o0 € C*. Now putting (4.11) in (4.7) or (4.8) gives
ho(9,A) =0 (0 +ar +Db).
If p=—1in(4.1), we have c =¢' =0.

Case 3. ho(3,0) =0 and ho(d,0) #0.

By the similar arguments in Case 2, we show that
d=a—1,b'=b,d =d—1,hg(3, 1) =0 andifp=-1,c =c,
or
d=a=d b =b,d=a-1hy(d 1) =0@+ar+b)andifp=—1, =c=0,
where o € C*. This completes the proof. O

10
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Now we determine the irreducibilities of conformal modules V over S(p) defined in Theorem 4.4.
Proposition 4.5. Let V be a conformal module over S(p) defined in Theorem 4.4.

(M) IfVZ=Vapedab,ca then Vis reducible, which has some submodules as C[3]vg and C[9]vj.

(2) If V= Vypcdo, then V is irreducible if and only if (a, c,d) # (0,0, 0). The module Vg p 0,0, contains a unique non-trivial
submodule C[8](d + b)vy @ C[8]vy = Vi pq.

(3) If V= Vg, then V is irreducible if and only if a # 0. The module V p , contains a unique non-trivial submodule C[d]vg &
C[31(@ +b)vi = Vop,0-1.0-

(4) If V=T1(Vq_1,p.cd—1.0), then V is irreducible if and only if (a, c,d) # (1,0, 1). The module I1(Vg p,0.0,5) contains a unique
non-trivial submodule C[8]vg & C[3](d + b)vy = TI(V1 p o).

(5) If V=T (Vgps) then V is irreducible if and only if a # 0. The module T1(Vgp ) contains a unique non-trivial submodule
C[81(d + b)vg ® C[3]vi ZTT1(Vg p,0,—1,6)-

4.3. Classification theorems

The following lemma can be found in [7,16].

Lemma 4.6. Let £ be a Lie superalgebra with a descending sequence of subspaces L D> Lo D £1 D --- and an element 9 satisfying
[0, Ln] = Lp—1 forn > 1. Let V be an L-module and let

Vi={veV|Lyv=0}, neZ,.

Suppose that V, # 0 for n > 0 and let N denote the minimal such n. Suppose that N > 1. Then V = C[3] ® ¢ V. Particularly, Vy is
finite-dimensional if V is a finitely generated C[3]-module.

The method in Lemma 6.3 of [26] can be expanded to the following results with a slightly different discussion.
Lemma 4.7. Any finite non-trivial irreducible S(p)-module V must be free of rank 1 or 1+ 1.

Proof. It follows from any torsion module of C[d] is trivial as a module of Lie conformal superalgebra that any finite non-
trivial irreducible S(p)-module V must be free as a C[d]-module. According to Theorem 4.2, one can see that the A-actions
of Lj, W; and G; on V are trivial for all i > 0. Assume that t € Z is the largest integer such that the A-action of S(p); on
V is non-trivial. Thus V can be regarded as a finite non-trivial irreducible conformal module over S(p)(;. Denote

g5b={Lim . Wjn Gk, d10<i,jk<tneZymleZiU{-1}}.

Based on Proposition 2.4, the conformal S(p)(;j-module V can be viewed as a module over the associated extended annihi-
lation algebra gsb = A(S(p)jr)¢, which satisfies

ii,mVZ Wj,nv :ék,lVZO (4.12)
for 0 <i, j,k<t,m,n,I>0,veV.For later use, we write
gsb, = {Lim, Wjn,Grregsb|0<i,jk<tml>z—1,n>z}, VzeZ,.

Then gsbg = A(S(p)r)) and gsb D gsby D gsby O ---. It follows from the definition of extended annihilation algebra that
the element d € gsb satisfies [d, gsb,] = gsb,_; for z > 1. Denote

V,={veV|gsb,v=0}, VzeZ,.

We observe that V, # @ for z > 0 by (4.12). Assume that N € Z is the smallest integer such that Vy # @.

Firstly, consider N = 0. Let 0 # v € V. Then U (gsb)v = C[3]U4(gsby)v = C[d]v. Therefore, from the irreducibility of V,
we have V = C[d]v. It is clear that gsby acts trivially on V. According to Proposition 2.4, we know that V is a trivial
conformal S(p)-module, which leads to a contradiction.

Secondly, consider N > 1. Take 0 # v € V. From

1. 1- 1-
[0 ——=Lo,—-1,Lim]l=1[0 - —=Lo,—1, Wim]l=1[0 — —Lo,—1,Gim] =0
D D D

for i,m € Z, one can show that 3 — %1:0,71 is an even central element of gsb by the definition of extended annihilation

algebra. So there exists some @ € C such that Ly _1v = p(d+0)v by Schur’s Lemma of Lie superalgebra. Moreover, according
to the following relations

11
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- 1- - _ 1 . -
L qv= E[Li,o, Lo,—1]lvand G; _1v = E[Gi,o, Lo,—1]v,

we obtain that the action of gsby on v is determined by gsb; and 9. Obviously, V is gsb-invariant. By the irreducibility
of V and Lemma 4.6, we obtain that V = C[3] ®c Vn and Vy is a non-trivial irreducible finite-dimensional gsb;-module.
If N=1, from the definition of V1, we know that V is a trivial gsb;-module, which gives a contradiction.
If N > 2, the module Vy can be viewed as a gsb;/gsby-module. Note that gsb;/gsby = p(t, N — 2). Based on Lemma 3.6,
one can see that Vy is 1-dimensional or 1+ 1-dimensional. Then V is free of rank 1 or 1+ 1 as a conformal module over
S(p) by Proposition 2.4. The lemma holds. O

Note that the S(p)z-module Vg 4 defined in Lemma 4.1 can be regarded as an S(p)-module by the trivial action of
S(p)i. Combining Theorem 4.4, Proposition 4.5 and Lemma 4.7, we have the main result of this paper as follows, which
shows that the irreducible modules V defined in Theorem 4.4 exhaust all non-trivial finite irreducible conformal modules
over S(p).

Theorem 4.8. Let V be a non-trivial finite irreducible conformal module over S(p).

(1) If p £ —1, then

Vabod for(a,d) #(0,0),b e C,
Vab.0d.o for (a,d) #(0,0),be C,0 € C*,

VZ=3Vapo fora,o e C*,beC,
N(Va-10d-1.0) for(ad) #(1,1),beC,0eC*
I(Vap,e) fora,oc e C*,beC;

(2) If p=—1, then

Vab.cd for (a,c,d)#(0,0,0),beC,
Vab.c.do for (a,c,d)#(0,0,0),b e C,0 € C*,

V=1{Vobo fora,oc e C*,beC,
N(Va_1pcd-10) for(ac,d) #(1,0,1),beC, o eC*,
N(Vapo) fora,oc e C*,beC.

5. Generalized version of S(p)

The aim of this section is to construct a class of new Lie conformal superalgebras as an extended case of S(p).
Now, we continue to apply the B(p, 0, p)—module V (a1, B1, y1, p) in (3.1) and define a super module V = V5 @ Vj,
where Vg = ea,-eZ(C[a]vé-) and Vi = EBI-EZ(C[E)]V'T. More precisely, for a1, B1, 1, %1, B1, 1 € C, p € C*, the C[d]-module

V(r. 1. v1.@1. Bi. 74 p) = ®icz Cl91vG P ®icz CIo 1V}
is a Z-graded free intermediate series module of rank two over B(p, 0, p) with A-actions as follows:

Liavl = (G4 p)@+ o) + i+ +ar v, wivl = vl

Linvi = ((+p)@+ B + 4+ j+@0n )i, Wi vl =pivi,
We consider a Z,-graded C[d]-module

GS(a1, B1, 1,81, B1, 71, (¢ij. ¢i.j)) = GS5 ® GS1
with S5 = ®ieZ+C[a]Li ®®j€Z+C[a]Wf, GSi= @1€Z+C[3]G,‘ ®@152+C[8]H1‘ and satisfying

[Lis Ljl= (G +p)d + (i +j+2p)A)Liy .
(L Wil = (G+ )@+ ) + G+ ]+ )3 Wi,
[Li2.G31 = (G+ D)@+ BO) + i+ +a1)A) i,

12
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[Wi. Gjl=»1Gitj,
[Lis Hy) = (G+ )@+ B + (G + j+@)3) His,
Wiy Hjl=%1Hitj,
[Gix Hjl =i j(0, )Witj+ @i, MLy,
[WirWl=I[G;,Gjl=[HixHj]=0,
where ¢; j(8, 1), ¢; j(0,A) € C[9,A] for i, je Z,.
Lemma5.1. Let p € C*, oy =2p, @1 = p, f1 = B1 =0, 1 = 1 and 7 = —1. Then Z,-graded C [3]-module GS(cr1, B1. 1, @1, B1,

V1. {i.j. ¢i.j}) becomes a Lie conformal superalgebra if and only if ¢; j(3,1) = A and ¢; j(d, 1) = A((i + p)d + (i + j + p)A) for
i,jeZy, AeC.

Proof. It follows from Definition 2.1 that the sufficiency is clear.
We only need to prove the necessity. Assume that GS(a1, B1, ¥1, @1, B1, V1, {¢i,j, @i, j}) is a Lie conformal superalgebra.
For any i, j € Z, using the Jacobi identity for triple (Wq, G;, H;), we have

@i,j 0, A+ 1) =i j(@, 1), (51)
(4 J+p)r@ij@+r ) =¢i 0, 2+ 1) — ¢i (3, ). (5.2)

From (5.1), one has

©i,j(3, 1) = ¢; (3, 0) (5.3)

for i, je Z,. For any i, j € Z, by the Jacobi identity for triple (Lo, G;, H;), we check that

(P9 + i+ j+p)A)di j(@ + 1, w)

= (A +p)r—pp)i j@, 2+ )+ (PB + 1) + (J + P)A)bi j(0, 1), (5.4)
(P9 + (i 4 j+2p)2)@ij(®+ 2, 1)

=((+p)r—pu)@ij(@. 2+ 1)+ (p + 1) + (+ p)i)gi (0. 1). (5.5)

Setting 1 =0 in (5.5) and using (5.3), we conclude that ¢; j(3,1) = A € C for any i, j € Z. We take ;=0 in (5.2), one
can write

$i,j(0,2) = ¢;,j(3,0) + Ali + j + p)A (5.6)

By choosing © =0 in (5.4), it is easy to show that

pd (¢i,j(@ + A, 0; — ¢i,j(9,0))
=({+p)gij(3,2)+ (j+p)¢ij0,0) — (i +j+ pij@d+2,0). (5.7)

Taking A — 0, we have 3%4),-,,(8,0) = ¢i,j(3,0), which has a nonzero solution ¢; j(9,0) = Ag(i + p)d for Ag € C. Then
(5.6) can be written as

$i,j(0,A) = Ag(i+p)d+ A@ + j+ plr (5.8)

Inserting (5.8) into (5.7), we immediately obtain A = Ap, which yields ¢; j(3,1) = A((i +po+@G+j+ p)k) for i,j e
Z, A € C. We complete the proof. O

Remark 5.2. Up to isomorphism, we may assume that A =2 in Lemma 5.1 for A # 0. Then we can define a class of Lie
conformal superalgebras GS(p) = GS5 @ GS7 with

GSy = Bicz, CIOILi P ®icz, CLOIW;, GSt = ®icz, C[01Gi P Bicz, CIO1H;
and the following non-trivial A-brackets

13



H. Chen, Y. Hong and Y. Su Journal of Geometry and Physics 166 (2021) 104256

[Lis Lj]= (G +p)d + (i +j+2P)A)Liyj,

[Lin Wil =+ P+ G+ + P)h) Wi,

[Li7. Gl = (G +P)d+ i+ +2p)2)Gis,
[LisHjl= (G + P+ i+ j+ P2 ) His .
[WixGjl=Giyj, WirHjl=—Hiyj,

(G Hjl =2Liy; +2(( + PO + i+ + D)3 ) Wi

Denote the subalgebra C[9]Ly @ C[0]W @ C[3]Go ® C[3]Hg of GS(p) by SN Define the following C[3]-module homo-
morphism from SN to the Lie conformal algebra of N =2 superconformal algebra (see [9]):

1 1 1
ELO + §8W0 — L, Wo— J, Go— G4, EHO - G_.
It is easy to check that the subalgebra SN is isomorphic to the Lie conformal algebra of N =2 superconformal algebra.

A class of infinite-dimensional Lie superalgebras related to Block type Lie algebra are presented in the rest of this section,
which have a subalgebra called topological N =2 superconformal algebra.

Lemma 5.3. The annihilation superalgebra of GS(p) is given by

A@GS®)) = {Lim Wi, Gt Hpg 11, jokon e Zom, e Zy U (=1}
with non-vanishing relations:

[Lim. Ljnl = (m+ 1)+ p) — (0 + D) + P))Litjmtn.

[Lim, Wjnl= ((m +1)j—n@+ p)) Witimin,

[Lim, Gjnl = (M + 1D+ p) — 1+ V)i + P))Gitjmtn,

[Lijm, Hjnl= ((m +1)j—n@+ p))HH-j,m-&-n,

[Gim, Hjnl=2Litjmin +2((m+1)j—n@+ p))Witjmin,

[Wim,Gjnl=Gitjmsn, Wim,Hjnl=—Hitjmin,

where p € C*.
Proof. Since the proof is similar to Lemma 3.3, we omit the details. O

Remark 5.4. We observe that the topological N =2 superconformal algebra is isomorphic to the Lie superalgebra generated
by {Lo,m, Wo,n, Go1, Hoq | m,n,1,q € Z} (see [12]).

6. Applications
From the definition of (3.4), we know that S(p)[n; has a C[8]-basis {L;, W;, G; | 0 <i < n} with the following A-brackets:
[LixLjl= (G +p)d + (i +j+2p)a)Litj,
(Lo Wil = (G+ )3+ G+ j+ P)r) Wis .
[Li2.Gj1 = (G+ )3 + i+ j+2p)3) i,
[WixGijl=Giyj, Wi Wj1=1[Gi1Gj1=0

fori,jeZy,p e C* (i + j > n the above relations are trivial). It follows from that S(p)ig) = sb, 5(n) = S(—=n)(y) for n > 1
(also see (3.4), (3.5)). Now we define C[d]-modules V4 0.4, Vap.0dc and Vqp o over s(n) for n>1 as follows.
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(1) Vap,0,4=C[3]v with
Loyv=-n@+ar+b)v,
Wo, v =dv,
Ginv=0,0<i<n,

Wj,v=0,1<j<n,

Lk, v=0,1<k<n,

v_vhere a,b,deC;
(2) Vapodo = (C[a]v(—, (45 (C[a]vf with

Loy vg=—n(d+ar+b)vg, _
) Loavi=-n@+ (@+1r+byvy,
Wovg=dvg, _
_ Wovi=d+ vy,
Gorvg=o0Vy, _
_ and {Gj,vi=0,0<i<n,
Giyvg=0,1<i<n, _
_ Wijyvi=0,1<j<n,
Wiivg=0,1=<j=<n,

Lyavi=0,1<k<n,

ikkvﬁ=07 1<k<n,

where a,b,de C,0 € C*;
(3) Vap.o =Cldlvg ® C[d]vy with

Loy vg=—n(d+ar+b)vg, _
_ Lo; vi=—n(@+ar+b)vy,
Woivg=(a—1)vg,
. Wo, vy =avj,
Gorvg=0(0+ar+b)vy, _
_ and {G;,vi=0,0<i<n,
Ginvg=0,1=<i=<n, _
_ Wijyvi=0,1<j<n,
Wiivg=0,1=<j=<n,

Lyavi=0,1<k<n,

Lkyvg=0,1<k<n,

where a,b e C,0 € C*,
The C[d]-modules \7a$b,c,d, \:/a,b,cyd’g and \:/a,b,g over s(1) are given.

(1) ‘:/a,b,c,d = C[a]v with
Lopv=—@+ar+b)v,
Li;v=cv,
Wo,v=dv,

Ginv=0,0=<i=<T1,

Wi, v=0,

where a,b,c,d e C;

(2) Vabedo = C[a]V() &) (C[3]Vi with

Loyvg=—(d+ar+b)vg, Loavi=—(@+ (@a+ Dr+b)v;,
Ly vy=cvg, Liyvi=cvy,

Wo i vg=dvp, and { Wy, vi=(d+ vy,
Goyvg=o0vi, Gipvi=0,0<i<I,
Gi1avg=Wirvg=0, Wixvi=0,
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where a,b,c,de C,0 € C*;

(3) Vap,o =Cldlvg ® C[d]vy with

Lo,\v():—(8+ak+b)v6, Loyrvi=—( +ak+b)vi,
WO)LV('):(G—I)VG, WO)\ vi=avy,

and
Gorvy=0(d+ar+b)vy, Giavi=0,0<i<I1,
Giavg=Wirvg=L1av5g=0, Wiavi=Liavy=0,

where a,b e C,0 € C*.
The following C[d]-modules Vg 0.4, Vap.0d0 and Vg, over sh are presented.
(1) ‘:/a,b,o,d = C[d]v with

(%Lo)A v=(+ar+b)v,
Wo,v=dv,

Gorv=0,

where a,b,d € C;

(2) Vapo.d.0 =Cldlvg ® C[d]v; with

(3L0) 5 vg = (8 +ar +b)vg, (5L0)5vi = (@ + @+ Dr +byvs,
Wo v(-):dv(-), and { Wo V]:(d+1)vi,
Goyrvg=o0vy, Goxvy=0,

where a,b,d e C,0 € C*;

(3) Vap,o =Cldlvg ® C[d]vy with

1

(5L0) 1 vg= (3 +ar +b)vg, (%Lg)x vi=(+ar+b)vy,
Woivg=(a—1vg, and { Wo; vi =avj,
Goxvg=0(d +ax+b)vy. Goavi=0,

where a,b € C,0 € C*.
Based on Theorem 4.4, the classification of non-trivial conformal modules of rank 1+ 1 over sh and s(n) for n > 1 can be
presented. Moreover, the same irreducibility assertions as those modules of sh and s(n) for n > 1 in Proposition 4.5 are

obtained. We see that the irreducible modules of these modules exhaust all non-trivial finite irreducible conformal modules
respectively over sh and s(n) for n > 1.

Corollary 6.1. Assume that V is a finite non-trivial irreducible conformal module over sh or s(n) forn > 1.

(i) If V is an s(n)-module for n > 1, then

Vab.0d for (a,d) #(0,0),b e C,
Vab.0.d.0 for (a,d) # (0,0),be C,0 € C*,

VELVepo fora,c e C*,beC,
N(Va_1p0d-1,0) for(a,d)#(1,1),beC,0eC*,
N(Vap,o) fora,o eC*,beC;
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(ii) If V is an s(1)-module, then

Vabed for (a,c,d) # (0,0,0),b e C,
Vabcdo for (a,¢,d) # (0,0,0),0 € C*,b e C,
V= \:/a,b,a fora,c eC*,beC,

M(Va_1pcdto) Jor(ac.d)#(1,0,1),0eC* beC,
H(‘zla,b,a) fora,c e C*,beC;

(iii) If V is an sh-module, then

Vab.od for (a,d) #(0,0),b e C,
Vab.odo for (a,d) # (0,0),0 € C*,b e C,
5= \:/a,b’a fora,oc e C*,beC,

N(Va-1p0d-10) for(ad #(1,1),0 eC* beC,

n(‘z/a,b,a) fora,c eC*,beC.

Remark 6.2. By (3.2), we also obtain the classification of all non-trivial finite irreducible conformal modules over a subalge-
bra of Lie conformal algebra of N =2 superconformal algebra.
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