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a b s t r a c t

It is well known that a pseudo-Kähler structure is one of the natural generalizations of a
Kähler structure. In this paper, we consider the Dolbeault cohomology groups of compact
pseudo-Kähler homogeneous manifolds.
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0. Introduction

A pseudo-Kähler manifold is a symplectic manifold (M,ω) with a complex structure J that is compatible with ω, i.e., ω
induces an indefinite Hermitian metric on M. The manifolds represent an interesting class containing the class of Kähler
manifolds in symplectic geometry. For example, the Kodaira–Thurston manifold, which is the first example of compact
non-Kähler symplectic manifolds, has a pseudo-Kähler structure. On the other hand, some results (e.g. [6,9]) have shown
that pseudo-Kähler manifolds are natural generalizations of Kähler manifolds.

Dorfmeister–Guan [6] proved that a compact homogeneous pseudo-Kähler manifold is biholomorphic to the direct
product of a homogeneous rational manifold and a complex torus (cf. also [15]). By a homogeneous pseudo-Kähler
manifold wemean a pseudo-Kähler manifold on which the group of holomorphic isometric transformations act transitively.
Huckleberry [13] investigated pseudo-Kählermanifolds fromaHamiltonian viewpoint, and gave a simpler proof of the result
of Dorfmeister–Guan. However, in the non-homogeneous pseudo-Kähler case, the results are still not complete.

Our aim in the present paper is to construct some methods for investigating these manifolds by considering the
Dolbeault cohomology groups. This is because there exist many important studies related to Dolbeault cohomology groups
of homogeneous complexmanifolds (for example, [1,14,17,20,21,25]), and we can investigate pseudo-Kähler homogeneous
manifolds by using some of the results of these studies (cf. [28,29], and Corollary 5.4). By a pseudo-Kähler homogeneous
manifold we mean a pseudo-Kähler manifold on which the group of holomorphic transformations act transitively.

We mainly prove the following three theorems, one of which was announced in the previous paper [29]:

Theorem 2.2. For a compact pseudo-Kähler manifold, the following two assertions are equivalent:
(a) Any Dolbeault cohomology class contains an almost ∂̄-harmonic representative (see Definition 1.9).
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(b) The pseudo-Kähler manifold satisfies the hard Lefschetz theorem with respect to the Dolbeault cohomology groups, i.e., every
Lefschetz mapping is an isomorphism.

For a compact pseudo-Kähler manifold (M,ω, J), we can consider a subspace of the Dolbeault cohomology group of type
(p, q) such that each cohomology class contains an almost ∂̄-harmonic representative. We denote the subspace by Kp,q

ω (M).
Then we have:

Theorem 3.3. Let (M, J) be a compact complex manifold, and ω, ω′ cohomologous pseudo-Kähler structures. Then Kp,q
ω (M) =

Kp,q
ω′ (M) for each p, q.

Let Γ be a discrete subgroup of a real Lie group Gwith a compact left coset space G/Γ . We can project the left G-invariant
forms on G onto G/Γ . As an application of Theorem 3.3, we see:

Theorem 3.4. Let (G/Γ ,ω, J) be a compact pseudo-Kähler manifold such that J is a left G-invariant complex structure. Assume
that each Dolbeault cohomology class contains a left G-invariant representative. Then a left G-invariant form ω0 that is
cohomologous to ω is a pseudo-Kähler structure such that Kp,q

ω0
(G/Γ) = Kp,q

ω (G/Γ). In particular, each cohomology class of
Kp,q

ω0
(G/Γ) contains a left G-invariant almost ∂̄-harmonic representative.

Note that condition (a) can be rewritten as follows: (a′) The subspace Kp,q
ω (M) is equal to the Dolbeault cohomology group of

type (p, q) for each p, q. Thus, there exists an important relationship among these theorems. As one of the applications, we
can exactly compute the dimensions of Kp,q

ω (G/Γ) for investigating pseudo-Kähler structures of (G/Γ ,ω, J) if it satisfies the
above assumptions. Thus, we can also notice the properties of Lefschetz mappings.

Cordero–Fernández–Ugarte [4] investigated condition (b) of Theorem 2.2, and they proved that if a compact pseudo-
Kähler nilmanifold satisfies condition (b), then it is a complex torus. On the other hand, there exists a non-toral compact
pseudo-Kähler solvmanifold which satisfies condition (b) (see Example 6.1). Cordero–Fernández–Gray–Ugarte [3] proved
that if G is nilpotent, and if the complex structure J satisfies the nilpotent condition, then each Dolbeault cohomology class
contains a left G-invariant representative. For example, the Kodaira–Thurston manifold is a nilmanifold which satisfies the
nilpotent condition. Moreover, Cordero–Fernández–Ugarte [5] showed that the complex structure underlying a pseudo-Kähler
structure of a 6-dimensional nilpotent Lie algebra satisfies the nilpotent condition.

In Section 1, we prepare several notation and propositions to prove our main theorems. In Sections 2 and 3, we prove
Theorems 2.2 and 3.4.

A complex manifold M is said to be complex parallelizable if the holomorphic tangent bundle of M is holomorphically
trivial. Then M can be written as G/Γ , where G is a complex Lie group, and Γ is a lattice of G. In the previous paper [29],
we proved that if a compact complex parallelizable solvmanifoldM has a pseudo-Kähler structure, thenM is the total space
of a complex torus bundle over a complex torus. In particular, the derived Lie subgroup of G is abelian. Thus we have the
following natural question:

“When does a compact homogeneous manifold which is the total space of a complex torus bundle over a complex torus have a
pseudo-Kähler structure?”

With respect to this question, in Section 5, we point out a remarkable property if M is complex parallelizable (see
Theorem 5.8 and Remark 5.9).

In Section 4, we construct a compact pseudo-Kähler manifold which is a homogeneous space of a real solvable Lie group
G such that the derived Lie subgroup of G is not abelian. Moreover, we prove that the curvature tensor of the pseudo-Kähler
manifold vanishes.

1. The space of almost ∂̄-harmonic forms

In this section, we exactly define an almost ∂̄-harmonic form, and apply an sl(2)-representation to the space of all almost
∂̄-harmonic forms in order to prove Theorems 2.2 and 3.4.

Let (M2m,ω) be a symplectic manifold and G the skew-symmetric bivector field dual to ω. Hence, G induces a mapping
i(G) : Ωk(M)→ Ωk−2(M). We define a star operator

∗ω : Ω
k(M)→ Ω2m−k(M) for k = 0, . . . , 2m

by requiring

α ∧ ∗ω β = (∧k(G))(α,β)vM for α,β ∈ Ωk(M),

where vM = ωm/m!. We define Lω : Ωk(M) −→ Ωk+2(M) by Lω(α) = α ∧ ω. If there exist no possibilities of confusion, then
we write ∗ω = ∗ and Lω = L for simplicity. We define d∗ : Ωk(M) −→ Ωk−1(M) by d∗ = (−1)k ∗ d ∗. Brylinski [2] proved the
following:

Proposition 1.1. d∗ = [d, i(G)] = d ◦ i(G)− i(G) ◦ d.
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We define an operator L∗ by

L∗ = ∗L∗ : Ωk(M)→ Ωk−2(M).

We can easily see that L∗ is the adjoint operator for L, where we define an inner product (, ) on Ω∗(M) by (α,β) =∫
∗(α ∧ ∗β)vM for α,β ∈ Ωk(M). Moreover, we define an operator A by

A =
∑

(m− k)πk,

where πk : Ω
∗(M)→ Ωk(M) is the natural projection.

Proposition 1.2 ([30]). i(G) = −L∗.

These operators satisfy the following relations:

Proposition 1.3 ([30]). [L∗, L] = A, [A, L] = −2L, [A, L∗] = 2L∗.

Let X,H, Y be the standard basis of sl(2,C) = sl(2). Thus these satisfy the relations [X, Y] = H, [H, X] = 2X, and
[H, Y] = −2Y.

Definition 1.4. Let V be an infinite-dimensional vector space. Assume that sl(2) acts on V . We say that V is an sl(2)-module
of finite H-spectrum if the following two conditions are satisfied:

(a) V can be decomposed as the direct sum of eigenspaces of H.
(b) H has only finitely many distinct eigenvalues.

Let V be an sl(2)-module of finite H-spectrum, and Vk the eigenspace of H with eigenvalue k. Note that {v ∈ Vk | Xv =
0} = {v ∈ Vk | Yk+1v = 0}. By a basic result on an sl(2)-representation, we have the following:

Proposition 1.5 ([8]). For any k, the maps Yk
: Vk → V−k and Xk

: V−k → Vk are isomorphisms.

Now we have a representation sl(2) on Ω∗(M)⊗ C by sending

X←→ L∗, Y ←→ L, H←→ A.

It is easy to check that Ω∗(M)⊗ C is an sl(2)-module of finite H-spectrum, and Ωm−k(M)⊗ C = Vk.
From now on, we consider the case of pseudo-Kähler manifolds.

Definition 1.6. A non-degenerate real closed (1, 1)-formω on a complex manifold (M, J) is called a pseudo-Kähler structure.

Let (M2m,ω, J) be a pseudo-Kähler manifold of dimR M = 2m. Then we have the following:

Corollary 1.7. For each k ≤ m, the Lefschetz mapping

Lk : Ωm−k(M)⊗ C −→ Ωm+k(M)⊗ C

is an isomorphism. In particular, for each p+ q ≤ m, the Lefschetz mapping

Lk : Ωp,q(M) −→ Ωm−q,m−p(M)

is an isomorphism.

Proof. By Proposition 1.5, we have our corollary (note that ω is a (1, 1)-form). �

By the definition of G, for α ∈ Ω s,t(M) and β ∈ Ωp,q(M), we have∧p+q
(G)(α,β) = 0 if s 6= q, t 6= p,

which implies that ∗ : Ωp,q(M) −→ Ωm−q,m−p(M). Thus we define operators ∂∗ : Ωp,q(M) −→ Ωp−1,q(M) and ∂̄∗ : Ωp,q(M) −→
Ωp,q−1(M) by ∂∗ = (−1)p+q ∗ ∂̄∗ and ∂̄∗ = (−1)p+q ∗ ∂∗, respectively. Then we have the following lemma.

Lemma 1.8. ∂∗ = [∂̄, i(G)], ∂̄∗ = [∂, i(G)].

Proof. Since [d, i(G)] = d∗, d = ∂+ ∂̄ and d∗ = ∂∗ + ∂̄∗, we have our lemma. �

For a complex manifold (M, J), we denote the space of all ∂̄-closed (p, q)-forms on M by Zp,q

∂̄
(M), and we write Bp,q

∂̄
(M) =

∂̄(Ωp,q−1(M)).

Definition 1.9. Let (M,ω, J) be a pseudo-Kähler manifold. A form α ∈ Ωp,q(M) is said to be almost ∂̄-harmonic with respect
to ω, if it satisfies ∂̄α = ∂∗α = 0. We denote the space of all almost ∂̄-harmonic forms of type (p, q) by Kp,q

ω (M),
and we set K(M) =

∑
r K

r(M) =
∑

r

∑
p+q=r K

p,q(M). We define the almost ∂̄-harmonic cohomology group Kp,q
ω (M) by

Kp,q
ω (M)/Kp,q

ω (M) ∩ Bp,q

∂̄
(M).
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Remark 1.10. (1) It is obvious that dd∗ + d∗d = 0 by Proposition 1.1, while ∂̄∂̄∗ + ∂̄∗∂̄ 6= 0. However, it is false that if
(∂̄∂̄∗ + ∂̄∗∂̄)α = 0, then ∂̄α = 0.

(2) Let (M, g, J) be a compact Kähler manifold and ∗g the ∗-operator induced naturally. Brylinski proved that ∗ω =
√
−1p−q

∗g on Ωp,q(M), where ω is the fundamental 2-form induced by g. Thus, in this case, if ∂̄α = ∂̄∗α = 0, then
∂̄α = ∂∗α = 0.

Proposition 1.11. K(M) is an sl(2)-submodule of Ω∗(M)⊗ C =
∑

p,q Ωp,q(M).

Proof. Since [i(G), d] = d∗, [L, d∗] = d, and [L, d] = 0, we see

[∂̄, L∗] = ∂∗, [L∗, ∂∗] = 0, [L, ∂̄] = 0, [L, ∂∗] = ∂̄.

Hence, K(M) is an sl(2)-submodule. �

Since K(M) is an sl(2)-submodule, we have the following:

Corollary 1.12. For each k ≤ m, the Lefschetz mapping

Lk :Km−k(M) −→Km+k(M)

is an isomorphism. In particular, for each p+ q ≤ m, the Lefschetz mapping

Lm−p−q :Kp,q(M) −→Km−q,m−p(M)

is an isomorphism.

2. Mathieu’s theorem of Dolbeault cohomology groups

In this section, we prove Theorem 2.2, which is a Mathieu’s theorem of Dolbeault cohomology groups. The original result
due to Mathieu is a theorem related to de Rham cohomology groups of symplectic manifolds (see [30]). The proofs of
Theorems 2.2 and 3.4 are essentially the same as that of the case of de Rham cohomology groups (see [30,26]). We use
same notation introduced in Section 1.

Proposition 2.1. Let (M2m,ω, J) be a pseudo-Kähler manifold of dimR M = 2m. Then for each p, q,

Pp,q
ω (M) ⊂ Kp,q

ω (M),

where Pp,q
ω (M) = {[α] ∈ Hp,q

∂̄
(M) | Lm−p−q+1([α]) = 0}.

Proof. Let [α] ∈ Pp,q
ω (M). Hence, α ∧ ωm−p−q+1

= ∂̄γ, where γ ∈ Ωm−q+1,m−p(M). Since Lm−p−q−1 : Ωp,q−1(M) −→

Ωm−q+1,m−p(M) is surjective, there exists θ ∈ Ωp,q−1(M) such that Lm−p−q+1θ = γ. Then we have Lm−p−q+1(α − ∂̄θ) = 0.
Therefore, i(G)(α− ∂̄θ) = 0, which implies ∂∗(α− ∂̄θ) = 0 by Lemma 1.8. Hence, α− ∂̄θ is almost ∂̄-harmonic. �

Theorem 2.2. Let (M2m,ω, J) be a pseudo-Kähler manifold. Then the following two assertions are equivalent:

(a) Any Dolbeault cohomology class contains an almost ∂̄-harmonic representative.
(b) For any p+ q ≤ m, the Lefschetz mapping Lm−p−q : Hp,q

∂̄
(M) −→ Hm−q,m−p

∂̄
(M) is surjective.

Proof. (b)⇒ (a). Consider the following commutative diagram

Kp,q(M)
Lm−p−q
−−−−→ Km−q,m−p(M)y y

Hp,q

∂̄
(M)

Lm−p−q
−−−−→ Hm−q,m−p

∂̄
(M),

where the two vertical arrows are surjective by our assumption. It follows from Corollary 1.12 that the second horizontal
arrow is also surjective.

(a)⇒ (b). Let u ∈ Hp,q

∂̄
(M) and consider Lm−p−q+1(u). Since

Lm−p−q : Hp,q

∂̄
(M) −→ Hm−q,m−p

∂̄
(M)

is surjective, there exists v ∈ Hp−1,q−1
∂̄

(M) which satisfies

Lm−p−q+1(u) = Lm−p−q+2(v).

Hence, Lm−p−q+1(u− L(v)) = 0. Since u = (u− L(v))+ L(v), we have Theorem 2.2 by Proposition 2.1. �
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Condition (b) is sometimes called the hard Lefschetz propertywith respect to Dolbeault cohomology groups.

Corollary 2.3. Let (M2m,ω, J) be a compact pseudo-Kähler manifold. If any Dolbeault cohomology class contains an almost ∂̄-
harmonic representative, then for each p, q,

dimHp,q

∂̄
(M) = dimHq,p

∂̄
(M).

Proof. By Theorem 2.2, we have

dimHp,q

∂̄
(M) = dimHm−q,m−p

∂̄
(M).

On the other hand, let us consider any Riemannian metric g of M, and consider a Hermitian metric h induced by g and J. By
the Hodge decomposition with respect to h, we have

dimHq,p

∂̄
(M) = dimHm−q,m−p

∂̄
(M).

Hence, dimHp,q

∂̄
(M) = dimHq,p

∂̄
(M). �

3. Nomizu type theorem on K p,q
ω (M)

In this section we prove Theorem 3.4, which is a Nomizu type theorem (cf. [7,18,26]).

Lemma 3.1. Let (M, J) be a complex manifold of dimR M = 2m. Assume that ω, ω′ are cohomologous pseudo-Kähler structures
on M. Then for each p, q,

Pp,q
ω (M) = Pp,q

ω′ (M).

Proof. Let v = [α] ∈ Pp,q
ω (M), where z ∈ Zp,q

∂̄
(M). Since ω = ω′ + ∂̄γ, we have

Lk+1ω (α) = ωk+1
∧ α

= (ω′ + ∂̄γ)k+1 ∧ α

= Lk+1ω′ (α)+
∑

r 6=k+1

(
k+ 1

r

)
ω′ ∧ (∂̄γ)k−r+1 ∧ α,

where k = m− p− q. Therefore,

Lk+1ω (v) = [Lk+1ω (α)] = [Lk+1ω′ (α)] = Lk+1ω′ (v) = 0.

Hence, Pp,q
ω (M) = Pp,q

ω′ (M). �

Lemma 3.2. Let (M,ω, J) be a compact pseudo-Kähler manifold. Then for each p, q,

Kp,q
ω (M) = Pp,q

ω (M)+ Lω(Kp−1,q−1
ω (M)).

Proof. Since K(M) =
∑

r

∑
p+q=r K

p,q(M) is an sl(2)-submodule of
∑

p,q Ωp,q(M), we have Lemma 3.2 in the same manner
as in the proof of Theorem 2.2. �

Theorem 3.3. Let (M, J) be a compact complex manifold of dimR M = 2m. Assume that ω, ω′ are cohomologous pseudo-Kähler
structures. Then for each p, q,

Kp,q
ω (M) = Kp,q

ω′ (M).

Proof. We prove our theorem by induction. By Lemma 1.8, we have Kp,0
ω (M) = Kp,0

ω′ (M) = Hp,0
∂̄

(M) and K0,q
ω (M) = K0,q

ω′ (M) =

H0,q
∂̄

(M). Assume that if s + t < p + q < m, then Ks,t
ω (M) = Ks,t

ω′ (M). Let [α] ∈ Kp−1,q−1
ω (M), where α ∈ Kp−1,q−1

ω (M). By
induction, there exists [α′] ∈ Kp−1,q−1

ω′ (M), where α′ ∈ Kp−1,q−1
ω′ (M), such that [α] = [α′] on Hp−1,q−1

∂̄
(M). Then we have

Lω(Kp−1,q−1
ω (M)) = Lω′(K

p−1,q−1
ω′ (M)). Indeed,

Lω(Kp−1,q−1
ω (M)) 3 [ω ∧ α] = [ω] ∧ [α]

= [ω] ∧ [α′]

= [ω ∧ α′] = [(ω′ + ∂̄γ) ∧ α′]

= [ω′ ∧ α′] ∈ Lω′(K
p−1,q−1
ω′ (M)).
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Therefore, by Lemma 3.2, we have

Kp,q
ω (M) = Pp,q

ω (M)+ Lω(Kp−1,q−1
ω (M))

= Pp,q
ω′ (M)+ Lω′(K

p−1,q−1
ω′ (M))

= Kp,q
ω′ (M).

Let v = [β] ∈ Km−q,m−p
ω (M), where β ∈ Km−q,m−p

ω (M). Since Lm−p−q : Kp,q(M) → Km−q,m−p(M) is an isomorphism, there
exists θ ∈ Kp,q

ω (M) such that v = [β] = [Lkω(θ)] = Lkω([θ]), where k = m − p − q. Thus, by the above argument, there exists
τ ∈Kp,q

ω′ (M) such that [θ] = [τ]. Since ω = ω′ + ∂̄γ, we have Lkω([θ]) = Lkω′([τ]). Indeed,

Lkω([θ]) = Lkω([τ]) = [ωk
∧ τ]

= [(ω′ + ∂̄γ)k ∧ τ]

=

[
Lkω′(τ)+

∑
r 6=k

(
k
r

)
ω′ ∧ (∂̄γ)k−r ∧ τ

]
= [Lkω′(τ)] = Lkω′([τ]).

This implies Kp,q
ω (M) = Kp,q

ω′ (M) for p, q = 0, . . . ,m. �

Let Γ be a discrete subgroup of a real Lie group G with a compact quotient space M = G/Γ , J a left G-invariant complex
structure on G, and

∧k(gC)∗ =
∧k g∗ ⊗ C the space of complex valued left G-invariant k-forms on G. By the projection onto

G/Γ , we can consider
∧k(gC)∗ ⊂ Ωk(M)⊗ C, and J is a complex structure of M. We define Zp,q

∂̄
(gC) = Zp,q

∂̄
(M) ∩

∧
∗(gC)∗. We

also define Bp,q

∂̄
(gC), Hp,q

∂̄
(gC) and Kp,q(gC) in the same manner.

Theorem 3.4. Let (G/Γ ,ω, J) be a compact pseudo-Kähler manifold such that J is a left G-invariant complex structure. Assume
that Hp,q

∂̄
(G/Γ) = Hp,q

∂̄
(gC) for each p, q. Then we have

Kp,q
ω (G/Γ) = Kp,q

ω0
(G/Γ) = Kp,q

ω0
(gC),

where ω0 is a left G-invariant form on G.

Proof. By Proposition 2.1, we see that Kp,q
ω (G/Γ) = Kp,q

ω0
(G/Γ). Since

∧
∗ g∗⊗C is an sl(2)-submodule with respect to ω0, and

since Kp,0
ω0

(G/Γ) = Kp,0
ω0

(gC) = Hp,0
∂̄

(gC) and K0,q
ω0

(G/Γ) = K0,q
ω0

(gC) = H0,q
∂̄

(gC) by our assumption, we have Theorem 3.4 in the
same manner as in the proof of Theorem 3.3. �

4. A construction of compact pseudo-Kähler solvmanifolds with flat curvature tensors

In this section, we construct a compact pseudo-Kähler solvmanifold G/Γ such that the derived Lie subgroup of G is not
abelian and the curvature tensor vanishes. In the paper [5], Cordero–Fernández–Ugarte considered the curvature tensors of
compact invariant pseudo-Kähler nilmanifolds G/Γ , where an invariant pseudo-Kähler structure means a left G-invariant
pseudo-Kähler structure on G. We consider the following Lie algebra over R,

g = ap + bp + · · · + b1,

where ap is abelian subalgebra, and bi is an abelian ideal of g = ap + bp + · · · + bi for each i. Put ap = dim ap, and bi = dim bi

for each i. Assume that a = spanR{U1, . . . ,Uap }, and bi = spanR{X
(i)
1 , . . . , X(i)

bi
} for each i. By our assumption, the basis

{U1, . . . ,Uap , X
(p)
1 , . . . , X(p)

bp
, . . . , X(1)

1 , . . . , X(1)
b1
} has the following relations for each k, h:

[Uk, X
(i)
h ] =

∑
l

iCl
kh X

(i)
l , [X(i)

k , X(j)
h ] =

∑
l

ijCl
kh X

(j)
l ,

where i > j, and iCl
kh,

ijCl
kh ∈ R.

Consider a Lie subalgebra h = ap + bp + · · · + b1 +
√
−1b1 of R(g)

C, where gC is the complexification of g. Let us consider
an abstract vector space k = spanR{V1, . . . , Vap , Y

(p)
1 , . . . , Y(p)

bp
, . . . , Y(2)

2 , . . . , Y(2)
b2
}. Put gD

= k+ h. We define the product of gD

by relations [Uk, Y
(i)
h ] =

∑
l
iCl

kh Y
(i)
l , [X(i)

k , Y(j)
h ] =

∑
l
ijCl

kh Y
(j)
l for i > j, and the above relations. Then we can easily see that gD

is a Lie algebra. We define a complex structure J on gD by JUk = Vk, JX
(i)
h = Y(i)

h for each i, k, h. Let GD be the simply connected
Lie group corresponding to gD. Then we see:

Proposition 4.1. The almost complex structure J is integrable on GD.

Proof. Weprove our proposition by the induction. It is easy to check that theNijenhuis tensorNJ vanishes on ap+Jap+bp+Jbp

(see [27]). Assume that NJ vanishes on gD
i−1 = ap + Jap + bp + Jbp + · · · + bi−1 + Jbi−1. If X ∈ gi−1 = a + bp + · · · + bi−1 and

Y ∈ bi + Jbi, then NJ(X, Y) = J[X, Y] − [X, JY], hence NJ(X, Y) = 0 by the definition of the brackets. If X ∈ Jgi−1 and Y ∈ bi + Jbi,
then NJ(X, Y) = −[JX, Y] − J[JX, JY]. Hence, NJ(X, Y) = 0 by the definition of the brackets. Thus, NJ vanishes on gD

i . �
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Let {α1, . . . ,αap ,β1, . . . ,βap } be the dual basis of {U1, . . . ,Uap , V1, . . . , Vap }, and {ξ
(i)
1 , . . . , ξ

(i)
bi

,η
(i)
1 , . . . ,η

(i)
bi
} be the dual

basis of {X(i)
1 , . . . , X(i)

bi
, Y(i)

1 , . . . , Y(i)
bi
} for each i. We put{

λk = αk +
√
−1βk, k = 1, . . . , ap,

ζ
(i)
hi
= ξ

(i)
hi
+
√
−1η(i)

hi
, hi = 1, . . . , bi, i = 1, . . . , p.

Proposition 4.2. If bi has a non-degenerate 2-form ωbi ∈
∧2 b∗i ↪→ Ω2(G) such that dωbi = 0 for each i, then GD has a pseudo-

Kähler structure ω.

Proof. Let ωbi =
∑

k<h P
i
khξ

(i)
k ∧ ξ

(i)
h , where Pi

kh ∈ R. Then

ω =
√
−1

∑
λs ∧ λ̄s +

∑
k<h

Pp
kh(ζ

(p)
k ∧ ζ̄

(p)
h + ζ̄

(p)
k ∧ ζ

(p)
h )+ · · · +

∑
k<h

P1kh(ζ
(1)
k ∧ ζ̄

(1)
h + ζ̄

(1)
k ∧ ζ

(1)
h )

is a pseudo-Kähler structure, because
∑

k<h P
i
kh(ζ

(i)
k ∧ ζ̄

(i)
h + ζ̄

(i)
k ∧ ζ

(i)
h ) =

∑
k<h P

i
kh(ξ

(i)
k ∧ ξ

(i)
h + η

(i)
k ∧ η

(i)
h ) (see [27]). �

Remark 4.3. We can prove that J is integrable without the assumption that b1 is abelian.

Let ω be the pseudo-Kähler structure on GD defined in the proof of the above proposition. We define an indefinite inner
product 〈 , 〉 on gD by 〈X, Y〉 = ω(JX, Y). We also denote the induced pseudo-Riemann metric on GD by 〈 , 〉. Then we have:

Proposition 4.4. The curvature tensor R corresponding to 〈 , 〉 vanishes.

Proof. Let ∇ be the Levi-Civita connection of 〈 , 〉. Since ω is closed, we have the following relations for each i, j, k, h, s.

∇Us = ad(Us), ∇Vs = 0, ∇
X
(i)
k
X(j)
h = [X

(i)
k , X(j)

h ], ∇
Y
(i)
k
Y(j)
h = ∇Y

(i)
k
X(j)
h = 0,

∇
X
(i)
k
Y(j)
h =

{
[X(i)

k , Y(j)
h ] for i > j,

0 otherwise.

Note that [X(i)
k , Y(j)

h ] = 0 for i < j. Indeed, for example, let X, Y ∈ b+ Jb, then

0 = dω(Us, X, Y) = −ω([Us, X], Y)+ ω([Us, Y], X)+ 0
= 〈JY, [Us, X]〉 + 〈[Us, JY], X〉.

Hence,

2〈∇UsX, JY〉 = 〈JY, [Us, X]〉 − 〈[Us, JY], X〉

= 2〈[Us, X], JY〉.

By using the above relations and the Jacobi identity, we see that the curvature tensor vanishes. �

Remark 4.5. Since ∇Us = ad(Us), ∇ is not natural reductive.

Example 4.6. Let us consider a solvable Lie group

G =




e−t 0 e−2tx1 0 z1
0 et 0 e2tx2 z2
0 0 e−2t 0 y1
0 0 0 e2t y2
0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣
t, x1, x2, y1, y2, z1, z2 ∈ R


.

The Lie algebra g corresponding to G is g = span{t1, x1, y1, z1, x2, y2, z2}, where

[x1, y1] = z1, [t, x1] = x1, [x, y1] = −2y1, [t, z1] = −z1,
[x2, y2] = z2, [t, x2] = −x2, [t, y2] = 2y2, [t, z2] = z2.

Let {t∗1, x∗1, y∗1, z∗1, x∗2, y∗2, z∗2} be the dual basis of {t1, x1, y1, z1, x2, y2, z2}. Consider a decomposition a2 = span{t}, b2 =

{y1, y2}, b1 = {x1, z1, x2, z2}. Then ωb1 = y∗1 ∧ y∗2 and ωb2 = x∗1 ∧ z∗1 + x∗2 ∧ z∗2 satisfy the condition in the above theorem.
Then the modification GD of complexification of G has a left-invariant pseudo-Kähler structure. Indeed, we see

GD
=





e−
1
2 (w+w̄) 0 e−(w+w̄)x1 0 0 0 z1
0 e

1
2 (w+w̄) 0 e(w+w̄)x2 0 0 z2

0 0 e−(w+w̄) 0 0 0 y1 + ȳ1
0 0 0 e(w+w̄) 0 0 y2 + ȳ2
0 0 0 0 e−(w+w̄) 0 y1
0 0 0 0 0 e(w+w̄) y2
0 0 0 0 0 0 1




,
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where w, x1, x2, y1, y2, z1, z2 ∈ C. The derived Lie subgroup of GD is not abelian. The Lie group GD has a basis
{λ,µ1,µ2, ν1, ν2, ζ1, ζ2} of left-invariant (1, 0)-forms on GD which satisfies the following relations:

dµ1 = −(λ+ λ̄) ∧ µ1, dν1 = 2(λ+ λ̄) ∧ ν1, dζ1 = (λ+ λ̄) ∧ ζ1 − µ1 ∧ (ν1 + ν̄1),

dµ2 = (λ+ λ̄) ∧ µ2, dν2 = −2(λ+ λ̄) ∧ ν2, dζ2 = −(λ+ λ̄) ∧ ζ2 − µ2 ∧ (ν2 + ν̄2).

Then we see that

ω =
√
−1λ̄ ∧ λ+ (ν̄1 ∧ ν2 + ν1 ∧ ν̄2)+ (µ̄1 ∧ ζ1 + µ1 ∧ ζ̄1 + µ̄2 ∧ ζ2 + µ2 ∧ ζ̄2)

is a left-invariant pseudo-Kähler structure on GD. The Lie group GD has a lattice Γ (see [22]), hence we have a compact
pseudo-Kähler solvmanifold (GD/Γ ,ω) as desired, i.e. the derived Lie subgroup [GD,GD

] is not abelian.

5. Dolbeault cohomology groups of compact complex parallelizable pseudo-Kähler solvmanifolds

In this section, we consider Dolbeault cohomology groups of compact complex parallelizable pseudo-Kähler manifolds.
A complex manifold M is said to be complex parallelizable if the holomorphic tangent bundle of M is holomorphically trivial.
Wang [24] proved that a complex parallelizable manifold M is of the form G/Γ , where G is a complex Lie group and Γ is
a lattice of G. Thus in the case where M is complex parallelizable, we can investigate the details of Dolbeault cohomology
groups of M.

Let G be a complex Lie group and G = S · R a Levi decomposition, where S is a semi-simple Lie subgroup, and R is the
radical. We denote derived Lie subgroups of G, N and R by G′, N′ and R′, respectively. Winkelmann has proven:

Theorem 5.1 ([25]). Let G,Γ , N, S, R, G′, N′ and R′ be as above. Let A = [S, R] · N′. Furthermore let W denote the maximal linear
subspace of the Lie algebra Lie(R′A/A) of R′A/A such that Ad(γ)|W is a semi-simple linear endomorphismwith only real eigenvalues
for each γ ∈ Γ . Then

dimH1(G/Γ ,O) ≤ dimG/G′ + dimH1(G/RΓ ,C)+ dimW.

In the previous paper [28], we have:

Theorem 5.2. Let G/Γ be an n-dimensional compact complex parallelizable manifold which admits a pseudo-Kähler structure.
Then

hp,q(G/Γ) ≥

(
n
p

)
·

(
n
q

)
.

The following theorem is well known:

Theorem 5.3 ([16,19]). Let G be a complex semi-simple Lie group and Γ a discrete subgroup of G with a compact quotient G/Γ .
If G has no simple factors of dimension 3, then H1(G/Γ ,C) vanish.

Thus we have:

Corollary 5.4 (cf. [9]). Let (G/Γ ,ω) be an n-dimensional compact complex parallelizable pseudo-Kähler manifold. Let G = S · R
be a Levi decomposition. If S has no simple factors of dimension 3, then G is solvable.

Proof. By Theorems 5.1–5.3, we see

n ≤ dimG/G′ + dimW ≤ dimG− dimG′ + dim R′A/A

= dimG− dimG′ + dim R′/R′ ∩ A

≤ dimG− dimG′ + dim R′ ≤ n,

which implies G = R. �

Remark 5.5. In the paper [9], Guan proved that if a compact complex parallelizable manifold G/Γ has a pseudo-Kähler
structure, then G is a complex solvable Lie group (see also [10]).

Let F −→ M
π
−→ B be a holomorphic fiber bundle such thatM, B, F are connected and F is compact. We denote the higher

direct image sheaf ofO by Rqπ∗OM . PutHp,q(F) =
⋃

b∈B H
p,q

∂̄
(Fb). ThenHp,q(F) becomes the total space of a differentiable vector

bundle over B. If every connected component of the structure group of π : M −→ B acts trivially on Hp,q(F), then the vector
bundle is a holomorphic vector bundle (for details, see [1,11]).

Let G/Γ be a compact complex parallelizable solvmanifold, π : G/Γ −→ B = G/G′Γ the Albanese mapping and F its
fiber [12,25]. Note that π : G/Γ −→ B = G/G′Γ is a locally trivial holomorphic fiber bundle [23]. If the compact complex



T. Yamada / Journal of Geometry and Physics 58 (2008) 1211–1220 1219

parallelizable solvmanifold G/Γ has a pseudo-Kähler structure, then F is a complex torus [29]; in particular, we see that
Hp,q(F) is a holomorphic vector bundle. Moreover, we see that H0,q(F) is holomorphically trivial in this case. Indeed, let us
consider the Albanese mapping π : G/Γ −→ G/G′Γ . Note that

G/Γ = G×G′Γ F,

where F = G′/ΓG′ , and ΓG′ = G′ ∩ Γ (cf. also [12], p. 165). Thus by an argument of Lescure ([14], Proposition 3), we see that

Rqπ∗O = H0,q(F),

where the equality means that the bundle over G/G′Γ corresponding to Rqπ∗O is H0,q(F). Assume in addition that F is a
complex torus Tn−s

C , i.e., G′ is abelian. If H0,1(Tn−s
C ) is holomorphically trivial, then H0,q(Tn−s

C ) is also holomorphically trivial.
Indeed, consider Tn−s

C as a Kähler manifold. Hence, H0,q
∂̄

(Tn−s
C ) = H0,q(Tn−s

C ), where H0,q(Tn−s
C ) is the space of all harmonic

forms of type (0, q). Let ω̄1, . . . , ω̄n−s be a basis of the global sections of H0,1(Tn−s
C ). Then {ω̄i1 ∧ · · · ∧ ω̄iq } becomes a basis of

the global sections of H0,q(Tn−s
C ).

Since Tn−s
C is a Kählerian manifold, we see that

R1π∗O = G×G′Γ H0,1
∂̄

(Tn−s
C ) = G/G′×G′Γ/G′ H

0,1
∂̄

(Tn−s
C ).

Recall that the following exact sequence

0 −→ H1(B,O) −→ H1(G/Γ ,O) −→ H0(B, R1π∗O).

In particular, we see that

dimH1(G/Γ ,O) ≤ dimH1(B,O)+ dimH0(B, R1π∗O).

Therefore, since h0,1(G/Γ) = n, and since dimH0(B, E) = dim E0 − dim B, where E = R1π∗O, and E0 is a subbundle of E such
that E0 is holomorphically trivial (see [25], Proposition 6.2.5), we see that E is holomorphically trivial by Theorem 5.2. Thus
we have:

Theorem 5.6 (cf. [29]). If a compact complex parallelizable solvmanifold admits a pseudo-Kähler structure, then the bundle over
G/G′Γ corresponding to Rqπ∗O is trivial as a holomorphic vector bundle.

By the above theorems, we see that if a compact complex parallelizable solvmanifold G/Γ admits a pseudo-Kähler
structure, then the lattice Γ satisfies a strong condition:

Proposition 5.7 (cf. [1], Section 6). Let G/Γ be a compact complex parallelizable solvmanifold which admits a pseudo-Kähler
structure. Then the eigenvalues of Ad(γ) are non-zero real for each γ ∈ Γ .

Proof. Let a be a subspace such that g = a + g′, and a(t) = exp tA for A ∈ a. Since Ad(γ)A = d
dt |t=0aγ(exp tA) =

d
dt |t=0γa(t)γ

−1a(t)−1 + d
dt |t=0a(t), and since W = g′ by our assumption, where W is the same one in Theorem 5.1, we have

our proposition. �

By Theorems 5.1 and 5.2, we have that if a compact complex parallelizable solvmanifold G/Γ has a pseudo-Kähler
structure, then h0,q(G/Γ) =

(
n
q

)
(see [29] for details). Let (Er, dr) be the Leray spectral sequence converging to H∗(G/Γ ,O)

whose second term is given by Ep,q2 = Hp(B, Rqπ∗O) (for details, see [1,14]). We now have:

Theorem 5.8. Let G/Γ be a compact complex parallelizable pseudo-Kähler solvmanifold, and π : G/Γ −→ G/G′Γ be as above.
Then the spectral sequence (Er, dr) satisfies d2 = d3 = · · · = 0.

Proof. Note that in general dim Es2 ≥ dim Es3 ≥ · · · ≥ dim Es
∞
, where Esr =

∑
p+q=s E

p,q
r . By our assumption, we see

Ep,q2 = Hp(B, Rqπ∗O) = Hp(B,O)⊗ Hq(F,O). Hence, dim Es2 =
(
n
s

)
= dim Es

∞
, which implies d2 = 0. �

Remark 5.9. (1) There exists a fiber bundle π : G/Γ −→ B = G/G′Γ such that the vector bundle corresponding to Rqπ∗O is
not holomorphically trivial but differentially trivial (cf. [17], case III-(3a) and [25], Proposition 7.9.2).

(2) Let G be the complex 3-dimensional Heisenberg group and Γ a lattice of G. Then the typical fiber ofπ : G/Γ −→ G/G′Γ
is a complex torus. However, we see that the Leray spectral sequence (Er, dr) converging to H∗(G/Γ ,O) satisfies d2 6= 0.

(3) Let G/Γ be a compact complex parallelizable manifold. Considering a fiber bundle G/Γ −→ G/NΓ , the fibers of
which are compact complex parallelizable nilmanifold, we can investigate the Dolbeault cohomology group of G/Γ (see [25],
Proposition 7.9.2 and [21], Theorem 1).



1220 T. Yamada / Journal of Geometry and Physics 58 (2008) 1211–1220

6. Example

Finally, we give an example which has the hard Lefschetz property.

Example 6.1 ([1,14,17]). Let us consider a representation ϕ : C −→ GL(2,C) given by ϕ(z) =
(
e−z 0
0 ez

)
. Let B ∈ SL(2,Z)

be a unimodular matrix with distinct real eigenvalues, say, λ, 1/λ. Take t0 = Logλ, i.e., et0 = λ. Then there exists a matrix
P ∈ GL(2,R) such that

PBP−1 =

(
λ 0
0 λ−1

)
.

Put

L1 = t0Z+ 2π
√
−1Z, L2 =

{
P
(
µ
ν

)∣∣∣∣µ, ν ∈ Z[
√
−1]

}
.

Let $2 : C2
−→ T2C = C

2/L2 be the natural projection. Consider M = C1
×L1 T

2
C = C

1
× T2C/ ∼, where the equivalence

relation is defined by (z,$2(w)) ∼ (z′,$2(w′)) ⇐⇒ z′ = z + γ and $2(w′) = $2(ϕ(−γ)(w)) for some γ ∈ L1. Note that
C3
= {(z,w1,w2)|z,w1,w2 ∈ C} is the universal covering of M. Then M is a compact complex parallelizable solvmanifold,

and ω =
√
−1dz ∧ dz̄ + dw1 ∧ dw̄2 + dw̄1 ∧ dw2 induces a pseudo-Kähler structure on M. Let us consider the Albanese

mapping π : M −→ C1/L1. Then the bundle corresponding to Rqπ∗O is holomorphically trivial. Indeed, {e−zdw̄1, ezdw̄2} and
{dw̄1∧ dw̄2} are bases of global sections of R1π∗O and R2π∗O respectively. For each γ = (γ0, γ1, γ2) ∈ Γ = L1n L2, we obtain
the eigenvalues of Ad(γ) as follows.

Ad(γ)

(
∂

∂w1

∣∣∣∣
(0,0,0)

)
= eγ0

∂

∂w1

∣∣∣∣
(0,0,0)

, Ad(γ)

(
∂

∂w2

∣∣∣∣
(0,0,0)

)
= e−γ0

∂

∂w2

∣∣∣∣
(0,0,0)

,

Ad(γ)

(
∂

∂z

∣∣∣∣
(0,0,0)

)
=

∂

∂z

∣∣∣∣
(0,0,0)

− γ1
∂

∂w1

∣∣∣∣
(0,0,0)

+ γ2
∂

∂w2

∣∣∣∣
(0,0,0)

.

It is easily to check that (M,ω) has the hard Lefschetz property with respect to Dolbeault cohomology groups (see [29],
Corollary 3.5).
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