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a b s t r a c t

The r-KdV–CH hierarchy is a generalization of the Korteweg–de Vries and Camassa–Holm
hierarchies parameterized by r + 1 constants. In this paper we clarify some properties of
its multi-Hamiltonian structures including the explicit expressions of the Hamiltonians,
the formulae of the central invariants of the associated bihamiltonian structures and the
relationship of these bihamiltonian structures with Frobenius manifolds. By introducing a
class of generalizedHamiltonian structures,we present in a naturalway the transformation
formulae of the Hamiltonian structures of the hierarchy under certain reciprocal
transformations, and prove the validity of the formulae at the level of dispersionless limit.
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1. Introduction

In recent years progress has beenmade in the study of the problemof classification of bihamiltonian structures of a certain
type; the associated bihamiltonian integrable hierarchies include in particular the well-known Korteweg–de Vries (KdV)
hierarchy, the Camassa–Holm (CH) hierarchy, the Drinfeld–Sokolov hierarchies and so on [1–4]. For a given bihamiltonian
structure defined on the formal loop space of an n-dimensional manifold M , a complete set of its invariants under the so-
called Miura type transformations is obtained in [2,4]. It consists of a flat pencil of metrics defined on the manifoldM and n
functions of one variable; these functions are called the central invariants of the bihamiltonian structure. These invariants
enable one to have a better understanding of the bihamiltonian structures and the associated integrable hierarchies. Formost
of the well-known bihamiltonian integrable hierarchies including the Drinfeld–Sokolov hierarchies associated to untwisted
affine Lie algebras, the flat pencil of metrics is given by certain Frobenius manifold structures, and the central invariants
are some constants. In particular, for the bihamiltonian structures of the Drinfeld–Sokolov hierarchies associated to the
untwisted affine Lie algebras of A-D-E type, the central invariants are all equal to 1

24 if one chooses the invariant bilinear
form of the Lie algebra to be the normalized one [5,3]. This property is one of the most important characteristics of the
integrable hierarchies that arise in 2D topological field theory and Gromov–Witten invariants [6,7,5,1,8–10].
On the other hand, to our knowledge the only known bihamiltonian integrable hierarchies with non-constant central

invariants are special cases of the so-called r-KdV–CH hierarchy (see its definition given in the next section). This hierarchy
is a generalization of the KdV hierarchy parameterized by an ordered set of r+1 constantsP = (a0, a1, . . . , ar). Apart from
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the KdV hierarchy, it containsmany other important integrable hierarchies as particular examples, such as the CH hierarchy,
the AKNS hierarchy and the two-component Camassa–Holm (2-CH) hierarchy. In these cases the corresponding parameters
are given by

KdV : r = 1,P = (1, 0),
CH : r = 1,P = (0, 1),
AKNS : r = 2,P = (1, 0, 0),
2-CH : r = 2,P = (0, 0, 1).

The central invariants of the bihamiltonian structures of the KdV hierarchy and AKNS hierarchy are constant, while that of
the CH hierarchy and the 2-CH hierarchy are not [11,12,4].
In some cases, bihamiltonian integrable hierarchies with different central invariants are related via certain type of

transformationswhich change, unlike theMiura type transformations, also the independent variables. Such transformations
are called reciprocal transformations, they are quite important in studying properties of solutions of the related integrable
hierarchies (see [13–19] and references therein). A typical example is given by the relation between the KdV hierarchy and
the CH hierarchy [15], the associated reciprocal transformation provides an efficient way to obtain exact solutions of the CH
hierarchy by using the known solutions of the KdV hierarchy [15,16].
Themain purpose of the present paper is to study, via the example of the r-KdV–CH hierarchy, the transformation rule of

Hamiltonian structures under reciprocal transformations. A better understanding of such transformation rules is important
in particular for the study of properties of the class of bihamiltonian integrable systems of Camassa–Holm type, and for the
study of a generalized classification scheme for integrable hierarchies under reciprocal transformations.
The first step towards the generalization of the KdV hierarchy to the r-KdV–CH hierarchy was made by Martínez Alonso

in [20], where he presented the r-KdV–CH hierarchy with the parametersP = (1, 0, . . . , 0) and proved its integrability by
using the bihamiltonian structure of the hierarchy and the inverse scattering method. Antonowicz and Fordy studied in a
series of important papers (see [21–23] and references therein) the spectral problem associated to the r-KdV–CH hierarchy
with general parameters, they obtained r + 1 Hamiltonian operators associated to the spectral problem and pointed out
that the compatibility of these Hamiltonian operators can be proved by using Fuchssteiner and Fokas’ method of hereditary
symmetry [24]. To fix the notations of the present paper, we first give in Section 2 the explicit formulation of the r-KdV–CH
hierarchy with general parameters P = (a0, . . . , ar), and describe its r + 1 Hamiltonian structures including a formula of
the Hamiltonians.
Properties of the bihamiltonian structures of the r-KdV–CH hierarchy were considered in [2], where a formula for the

central invariants of these bihamiltonian structures was given without a proof. In Section 3 we fill the proof for the formula.
We also specify in this section those bihamiltonian structures of the r-KdV–CH hierarchy which are associated to Frobenius
manifolds. Recall that the bihamiltonian structures of the r-KdV–CH hierarchy admit hydrodynamic limits, and under
certain conditions a bihamiltonian structures of hydrodynamic type is associated to the flat pencil of metrics defined on
certain Frobenius manifold [7,25,1]. Here the notion of Frobenius manifold was invented by Dubrovin as a coordinate free
formulation of the WDVV equation which arises in 2D topological field theory [26,27,6,7]. The rich geometry structures of
Frobenius manifolds reveal in a natural way the close relationship between integrable hierarchies and 2D topological field
theory.
Under reciprocal transformations an evolutionary PDE which possesses a local Hamiltonian structure will in general

be transformed to a system with nonlocal Hamiltonian structures. For a Hamiltonian system of hydrodynamic type, such
transformation properties were studied by Ferapontov and Pavlov in [14] where the nonlocal Hamiltonian structure was
obtained from the expressions of the transformed systems. In order to generalize their results toHamiltonian structureswith
dispersive terms such as the ones for the r-KdV–CH hierarchy, we introduce in Section 4 a class of generalized Hamiltonian
structures which includes in particular the type of nonlocal Hamiltonian structures that we are interested in, and we
also give some important properties of such generalized Hamiltonian structures while leaving their proofs to a separate
publication [28]. We then apply these results in Section 5 to the study of properties of the Hamiltonian structures of the
r-KdV–CH hierarchy under certain reciprocal transformations.
We give some concluding remarks in the last section.

2. The r-KdV–CH hierarchy

In this section we recall the definition of the r-KdV–CH hierarchy and their Hamiltonian structures.
LetM be a contractible manifold with local coordinatesw0, . . . , wr−1, and ϕ be a smooth map from the circle S1 = R/Z

toM

ϕ : S1 → M, x 7→ (w0(x), . . . , wr−1(x)).

We denote the derivatives ∂xwi(x), ∂2xw
i(x), . . . by wix, w

i
xx, . . . , and denote ∂

k
xw
i(x) = wi,k in general. Let Ā be the poly-

nomial ring

Ā = C∞(M)[ε wix, ε
2wixx, . . .].
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There is a natural gradation on Ā given by

deg f (w) = 0, deg
(
ε wix

)
= 1, deg

(
ε2wixx

)
= 2, . . . .

We denote the completion of Āw.r.t. this gradation byA.
By definition, elements ofA are all formal power series of ε, they converge in the formal power series topology. Evolu-

tionary equations that we consider in this paper have the following form in general:

ε wit = X
i, i = 0, . . . , r − 1 (2.1)

for some X i ∈ A. As a typical example of such generalized evolutionary equations, the Camassa–Holm equation [11,12] can
be written as

ε wt = (1− ε2∂2x )
−1K =

∑
k≥0

ε2k∂2kx K ∈ A,

where K = 2 ε3wxwxx + ε3wwxxx − 3 ε wwx − κ ε wx ∈ Ā, and κ is a constant parameter.
Given r ∈ N andP = (a0, a1, . . . , ar) ∈ (Rr+1)×, Antonowicz and Fordy studied the following systemof linear equations

in [23]:

ε2φxx(x, t) = A(w; λ)φ(x, t), A =
Â
â
, (2.2)

φt(x, t) = B(w; λ)φx(x, t)−
1
2
Bx(w; λ)φ(x, t), (2.3)

where

Â = w0 + w1λ+ · · · + wr−1λr−1 + λr , (2.4)

â = a0 + a1λ+ · · · + ar−1λr−1 + arλr , (2.5)

and B(w; λ) ∈ A[λ, λ−1]. The compatibility condition of (2.2) and (2.3) reads

At = 2 A Bx + Ax B−
ε2

2
Bxxx. (2.6)

The isospectral problem (2.2), (2.3) with â = 1 was first studied by Martínez Alonso [20]. Antonowicz and Fordy gener-
alized it to more general form: when ar = 0, this isospectral problem corresponds to the coupled KdV hierarchy [21]; when
â = α−1λr , the corresponding hierarchy is the coupled Harry Dym hierarchy [22].
To define the flows, we introduce two generating functions.

b = 1+
∑
k≥1

bk λ−k ∈ A[λ−1], c = c0 +
∑
k≥1

ck λk ∈ A[λ],

they satisfy

Âb2 −
ε2

4
â(2 b bxx − b2x) = λ

r
; (2.7)

Âc2 −
ε2

4
â(2 c cxx − c2x ) = 1. (2.8)

According to the definition ofA, Eq. (2.7) determines b uniquely, and Eq. (2.8) determines c up to a sign. Note that c0 satisfies
the following equation

c20 w
0
−
ε2

4
a0
(
2 c0 c0,xx − c20,x

)
= 1, (2.9)

so by assuming that c0 has the following Taylor expansion:

c0 =
(
w0
)− 12 +∑

k≥1

εk Ck, Ck ∈ Ā, deg Ck = k,

we can determine c uniquely.
For n ∈ Zwe define

Bn =
{
(λnb)+, n ≥ 0,
(λnc)−, n < 0,

(2.10)
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where (·)± denote the positive or negative part of a Laurent series of λ. According to [21,22], the compatibility condition
(2.6) with B = Bn yields an evolutionary PDE ofw0, . . . , wr−1 for any n ∈ Z. They can be represented as

Âtn =
(
2 Â ∂x + Âx −

ε2

2
â ∂3x

)
Bn, n ∈ Z. (2.11)

When n > 0 or n < 0, we call ∂tn the n-th positive flow or the |n|-th negative flow respectively, and when n = 0 we have
∂t0 = ∂x.

Lemma 2.1. For all n ∈ Z, we have

btn = Bn bx − b Bn,x, (2.12)

ctn = Bn cx − c Bn,x. (2.13)

Proof. We only prove Eq. (2.12), the proof of (2.13) is similar.
Let h = btn − Bn bx + b Bn,x, we need to show that h = 0. The derivative of Eq. (2.7) w.r.t. tn implies

Atn b
2
+

(
2 A b−

ε2

2

(
b ∂2x − bx ∂x + bxx

))
btn = 0,

by using Eqs. (2.6) and (2.7), one can obtain(
1−

ε2

4
â
λr

(
b2 ∂2x − b bx ∂x + b

2
x − b bxx

))
h = 0,

thus we have h = 0. �

The above lemma shows that

Bn,tm − Bm,tn + Bn Bm,x − Bm Bn,x = 0, (2.14)

it implies the commutativity of the flows {∂tn}n∈Z defined in (2.11), so they form an integrable hierarchy which we call the
r-KdV–CH hierarchy associated to P = (a0, . . . , ar).
This hierarchy has infinitely many conserved quantities. In fact, by using Eqs. (2.12) and (2.13) we obtain(

1
b

)
tn

=

(
Bn
b

)
x
,

(
1
c

)
tn

=

(
Bn
c

)
x
.

So we can define local functionals

Hn =


∫ (

2resλ=0
λn

b

)
dx, n ≥ 0,

−

∫ (
2resλ=0

λn

c

)
dx, n < 0,

(2.15)

they are conserved quantities of the r-KdV–CH hierarchy.
The r-KdV–CH hierarchy possesses r + 1 compatible Hamiltonian structures with Hamiltonian operators Pm (m = 0,

1, . . . , r) [21,22] given by

(Pm)ij = f ijmDi+j+1−m, i, j = 0, 1, . . . , r − 1,

whereDi = 2wi ∂x + wix −
ε2

2 ai ∂
3
x , and

f ijm = 1− si−m − sj−m, sk =
{
1, k ≥ 0,
0, k < 0.

Here we assumewr = 1 andwi = ai = 0 when i < 0 or i > r . We have the following theorem:

Theorem 2.2. For any n ∈ Z and m = 0, . . . , r, we have

witn =


P ijr−m

δHn+m
δwj

, n ≥ 0,

P ijm
δHn−m
δwj

, n < 0.
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In the description of the multi-Hamiltonian structures of the r-KdV–CH hierarchy given by Antonowicz and Fordy,
the Hamiltonians of the hierarchy are constructed in an implicit way using multi-Hamiltonian recursion relations. We
give briefly a proof that the explicitly defined local functionals (2.15) serve as the Hamiltonians in the multi-Hamiltonian
structures of the hierarchy, as stated in the above theorem. To this end, we need the following lemma:

Lemma 2.3. Let H =
∫
f dx be a local functional, f0, . . . , fr−1 ∈ A, then

δH
δwi
= fi

if and only if for any X0, . . . , X r−1 ∈ A there exists σ ∈ A such that

∂t(f ) =
r−1∑
i=0

X i fi + ∂x(σ ),

where ∂t is given by Eqs. (2.1).

The proof of the lemma is technical, we omit it here.

Proof of Theorem 2.2. Let us first show that the variational derivatives of the functionals Hn w.r.t. wi are given by the
formulae

δHn
δwi
=

{
bn+1−(r−i), n ≥ 0,
−c−n−1−i, n < 0, n ∈ Z, i = 0, 1, . . . , r − 1. (2.16)

Here we assume b0 = 1 and bk = ck = 0 when k < 0. The above formulae with n ≥ 0 can be encoded into the following
identity:

δ

δwi

∫
2
b
dx = λi−rb. (2.17)

To prove this identity, we only need to prove, due to the above lemma, that for any X i ∈ A there exists σ ∈ A such that(
1
b

)
t
=
Ât b
2 λr
+ σx,

where ∂t is given by (2.1) and Â is defined in (2.4). In fact, by the action of ∂t on Eq. (2.7) one can obtain(
1
b

)
t
=

(
1−

ε2

4
â ∂xb ∂xb

)−1 ( Ât b
2λr

)
=
Ât b
2λr
+ σx,

where

σ =
ε2

4
â b ∂xb

(
∞∑
k=0

(
ε2

4
â ∂xb ∂xb

)k)( Ât b
2λr

)
.

So we proved the formulae (2.16) with n ≥ 0. The proof for the n < 0 case is similar.
Now the theorem follows from the formulae (2.16) and the results of Antonowicz and Fordy representing the r-KdV–CH

flows in terms of the differential polynomials bk, ck [21,22]. �

3. Properties of the bihamiltonian structures

We now consider properties of the bihamiltonian structures given by the r + 1 Hamiltonian structures of the r-KdV–CH
hierarchy. Note that the r-KdV–CH hierarchy is a deformation of certain integrable hierarchy of hydrodynamic type, and the
associated bihamiltonian structures are also deformations of certain semisimple bihamiltonian structures of hydrodynamic
type. We are mainly interested in the following two aspects of these bihamiltonian structures:

1. Are the hydrodynamic limits of the bihamiltonian structures associated to some Frobenius manifolds? As we know
from [7], on the formal loop space of any Frobenius manifold there is defined a natural bihamiltonian structure of
hydrodynamic type.

2. To give a proof of the formulae of the central invariants of these bihamiltonian structures given in [2].
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Let us first recall some notations. We say that a Hamiltonian structure Q defined on the formal loop space of a manifold
Mr is of hydrodynamic type if its components have the form

Q ij = g ij(w) ∂x + Γ
ij
k (w)w

k
x , i, j = 0, . . . , r − 1,

where (g ij(w)) is a symmetric nondegenerate bilinear form on T ∗M which we will call a metric on M . A bihamiltonian
structure (Q1,Q2) of hydrodynamic type

Q ija = g
ij
a (w) ∂x + Γ

ij
k,a(w)w

k
x , a = 1, 2 (3.1)

is called semisimple if the roots of the characteristic equation

det(g2(w)− λ g1(w)) = 0 (3.2)

are not constant and pairwise distinct.
We are to use the following theorem of Ferapontov:

Theorem 3.1 ([29]). Let (Q1,Q2) be a semisimple bihamiltonian structure of hydrodynamic type defined on the loop space of
a manifold Mr , then the roots of the characteristic equation (3.2) form a local coordinate system near every point of M, and the
metrics g1, g2 are diagonal in this coordinate system. These coordinates are called the canonical coordinates of the bihamiltonian
structures.

Any two Hamiltonian structures of the r-KdV–CH hierarchy form a bihamiltonian structure Bk,l = (Pk, Pl), 0 ≤ k 6= l ≤ r ,
it has hydrodynamic limit

Q ija = P
ij
a |ε=0 = f

ij
a

(
2wi+j+1−a∂x + wi+j+1−ax

)
, a = k, l. (3.3)

We will denote the metric associated to Qa by ga as we did in (3.1).
To describe the canonical coordinates of the bihamiltonian structures, we denote by λ1, . . . , λr the roots of the

polynomial

P(λ) = λr + wr−1 λr−1 + · · · + w1 λ+ w0.

Assume that λ1, . . . , λr are pairwise distinct onM , then P ′(λi) 6= 0, i = 1, 2, . . . , r , and λ1, . . . , λr can be used as a system
of local coordinates. In [30], Ferapontov and Pavlov showed that in this coordinate system themetrics g0, . . . , gr are diagonal
and the diagonal components have the expressions

g iim(λ) = −
2λmi
P ′(λi)

.

From this it follows the following proposition.

Proposition 3.2. For any k, l = 0, 1, . . . , r and k 6= l, the bihamiltonian structure (Qk,Ql) is semisimple and has the canonical
coordinates

ui = (λi)l−k, i = 1, . . . , r. (3.4)

In the canonical coordinates the associated metrics gk, gl have the nonzero components

g iik = −2(l− k)
2 λ
2l−k−2
i

P ′(λi)
, g iil = −2(l− k)

2 λ
3l−2k−2
i

P ′(λi)
, i = 1, . . . , r.

We are now prepared to consider the relation of the above bihamiltonian structures with Frobenius manifolds. The
notion of Frobenius manifold was introduced by Dubrovin in [6,7], it gives a geometric description of the WDVV equation
of associativity [27,31] that arises in 2D topological field theory. For a given r-dimensional Frobenius manifold M , let
v1, . . . , vr be its flat coordinates near a point v0 ∈ M which is so chosen that ∂

∂v1
is the unit vector field. Then the potential

F = F(v1, . . . , vr) as a function of the flat coordinates satisfies the WDVV equation of associativity

∂3F
∂v1∂vi∂vj

= ηij = constant, det(ηij) 6= 0,

∂3F
∂vi∂vj∂vk

ηkl
∂3F

∂vl∂vi
′
∂vj
′
=

∂3F
∂vi
′
∂vj∂vk

ηkl
∂3F

∂vl∂vi∂vj
′
, for any fixed indices i, j, i′, j′, here (ηij) = (ηij)−1,

∂EF = (3− d)F + quadratic terms in v.

Here E =
∑r
i=1(div

i
+ ri) ∂∂vi is the Euler vector field, di, ri are some constants, and the constant d is called the charge of the

Frobenius manifold.
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On the formal loop space of a Frobenius manifold there is a bihamiltonian structure of hydrodynamic type (Pfm,Qfm), its
components are given by

P ijfm = η
ij∂x,

Q ijfm = g
ij(v)∂x + Γ

ij
k (v) v

k
x ,

where

g ij(v) =
r∑

k,l,m=1

(dmvm + rm)ηikηjl
∂3F

∂vk∂vl∂vm

are the components of the intersection form of the Frobenius manifold, and

Γ
ij
k = −g

il Γ
j
lk

is given by the Christoffel symbols of the Levi-Civita connection of the metric (gij) = (g ij)−1.
If the Frobenius manifold is semisimple, the associated bihamiltonian structure is also semisimple. The following

proposition gives a relation between the above defined bihamiltonian structures of the r-KdV–CHhierarchywith semisimple
Frobenius manifolds.

Proposition 3.3. The semisimple bihamiltonian structures (Qk,Ql) associated to the r-KdV–CH hierarchy is given by the bihamil-
tonian structure (Pfm,Qfm) of a semisimple Frobenius manifold if and only if (k, l) = (0, 1) and r = 1, 2.

We need the following lemma of Dubrovin to prove the proposition.

Lemma 3.4 ([7]). Let (Pfm,Qfm) be the bihamiltonian structure associated to a semisimple Frobenius manifold Mr . Denote by

g ii1 =
1
ηii
, i = 1, . . . , r

the diagonal components of the flat metric (ηαβ) in the canonical coordinates u1, . . . , ur . Then we must have

∂ηii

∂uj
=
∂ηjj

∂ui
, i, j = 1, . . . , r. (3.5)

Proof of Proposition 3.3. For the bihamiltonian structure Bk,l, the functions ηii read

ηii = −
1

2(l− k)2
P ′(λi)

λ2l−k−2i

.

For i 6= jwe have

∂ηii

∂uj
=
∂λj

∂uj
∂ηii

∂λj
= −

λ1−l+kj λ2−2l+ki

2(l− k)3
∂P ′(λi)
∂λj

.

Note that

P ′(λi) =
∏
k6=i

(λi − λk),

so we obtain

∂P ′(λi)
∂λj

= −

∏
k6=i,j

(λi − λk).

Thus the derivative ∂ηii
∂uj
reads

∂ηii

∂uj
=
λ1−l+kj λ2−2l+ki

2(l− k)3
∏
k6=i,j

(λi − λk).

If the bihamiltonian structure (Qk,Ql) comes from a Frobenius manifold, the equations in (3.5) must hold true, they yield
the conditions

λ1−li

∏
k6=i,j

(λi − λk) = λ
1−l
j

∏
k6=i,j

(λj − λk), 1 ≤ i 6= j ≤ r. (3.6)
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When r ≥ 3, Eq. (3.6) cannot be true, since the left hand side depends on λi while the right hand side does not. When
r = 2, Eq. (3.6) becomes

λ1−li = λ
1−l
j ,

so we have l = 1. Thus we only have the following four possible cases:

(Q0,Q1)(r = 1), (Q1,Q0)(r = 1), (Q0,Q1)(r = 2), (Q2,Q1)(r = 2).

It is easy to verify, by using the explicit form of the potentials of the one-dimensional and two-dimensional Frobenius
manifolds given in [7], that only the first and the third ones come from Frobenius manifolds. The first case corresponds
to the Frobenius manifold with potential

F =
(v1)3

12
, v1 = w0.

The third one corresponds to the Frobenius manifold with potential

F = −
(v1)2v2

4
+
1
4
(v2)2 log v2,

where v1, v2 are flat coordinates of the metric g0 given by

v1 = w1, v2 = w0 −
1
4
(w1)2.

The proposition is proved. �

Let us proceed to consider the central invariants of the bihamiltonian structures of r-KdV–CH hierarchy. The notion
of central invariants were introduced in [2,4] for deformations of semisimple bihamiltonian structures of hydrodynamic
type. Together with the leading terms, they provide a complete set of invariants of the deformations under Miura type
transformations of the form

wi 7→ w̃i = F i ∈ A, i = 0, . . . , r − 1,

where det
(
∂(F i|ε=0)
∂wj

)
6= 0.

To explain the meaning of central invariants, assume we have a semisimple bihamiltonian structure (3.1) of hydrody-
namic type. A deformation of (Q1,Q2) is a bihamiltonian structure (P1, P2) of the following form

P ija = Q
ij
a + ε

[
Aija(w)∂

2
x + B

ij
a,k(w)w

k
x∂x + C

ij
a,k(w)w

k
xx + D

ij
a,kl(w)w

k
xw
l
x

]
+ ε2

[
E ija (w)∂

3
x + F

ij
a,k(w)w

k
x∂
2
x + · · ·

]
+ · · · , a = 1, 2.

A lemma in [2] shows that one can always find a Miura type transformation eliminating the ε-term of (P1, P2), but one can-
not find Miura type transformations to eliminate the ε2-term in general. The central invariants are introduced to measure
the failure to find such transformations. Suppose the ε-term of (P1, P2) has been eliminated by aMiura type transformation,
we denote by f i, E i1, E

i
2 the diagonal components

1 under the canonical coordinates u1, . . . , ur of the tensors g ij1 , E
ij
1 , E

ij
2 in

(P1, P2). The i-th central invariants ci is defined as

ci(u) =
E i2 − u

iE i1
3
(
f i
)2 ,

it is in fact a function of ui only, i.e. we have ∂ci
∂uj
= 0, i 6= j. The main result of [4,2] shows that two deformations of (Q1,Q2)

are equivalent via a Miura type transformation if and only if they possess same central invariants. In particular, if all ci’s
vanish, then one can find a Miura type transformation eliminating all the deformation terms in (P1, P2), not only the ε2-
term. In this sense, we say the central invariants provide a complete set of invariants of the deformations of semisimple
bihamiltonian structures of hydrodynamic type under Miura type transformations.
The central invariants of the bihamiltonian structures Bk,l were considered in [2], where explicit formulae (see (3.7)

below) to compute these invariants were given. We now give a proof of the formulae.

1 The tensors E ij1 , E
ij
2 may not be diagonal under the canonical coordinates in general. In the definition of central invariants, we only use their diagonal

components.
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Theorem 3.5. Let P = (a0, a1, . . . , ar) ∈ (Rr+1)×. Define a polynomial

p(λ) = a0 + a1λ+ · · · + arλr .

Let Bk,l be a bihamiltonian structure of the r-KdV–CH hierarchy associated to P , then the central invariants of Bk,l are given by
the following formulae:

ci(ui) =
p(λi)

24(k− l)λl−1i
, i = 1, . . . , r. (3.7)

Here ui, λi are defined in Proposition 3.2.

Proof. We write the Hamiltonian structure Pm as

Pm = Qm + ε2(Em∂3x + · · ·),

where the dots represent terms with lower order in ∂x. The components of the tensor Em in the coordinates w0, . . . , wr−1
read

E ijm(w) = −
1
2
f ijm ai+j+1−m.

The diagonal components of the tensor Em in the coordinates λ1, . . . , λr have the expressions

E iim(λ) = −
1
2

r−1∑
k,l=0

∂λi

∂wk
f klm ak+l+1−m

∂λi

∂wl
= −

1

2 (P ′(λi))2

r−1∑
k,l=0

f klm ak+l+1−mλ
k+l
i

=
λmi p

′(λi)−mλm−1i p(λi)

2 (P ′(λi))2
,

transform them into canonical coordinates ui = λl−ki we get

E iim(u) =
(
∂ui

∂λi

)2
E iim(λ).

Then we can obtain the formula (3.7) by a simple computation. �

According to the main result of [2,4], the above theorem shows that the bihamiltonian structures Bk,l associated to dif-
ferentP ’s are not equivalent underMiura type transformations. In particular, there do not exist Miura type transformations
that convert the CH hierarchy to the KdV hierarchy.

4. Quasi-local Hamiltonian structures and their reciprocal transformations

Reciprocal transformations are certain type of change of the independent variables of a systemof PDEs, they are important
in the study of the classification problem of integrable systems. For example, the bihamiltonian structure of the KdV
hierarchy and that of the CH hierarchy are different deformations of a semisimple bihamiltonian structure of hydrodynamic
type, in the sense that they have different central invariants, so there is no Miura type transformation that converts one to
another. However it is well known that there is a reciprocal transformationwhich relates these two hierarchies.We consider
in this section the transformation rule of Hamiltonian structures under certain reciprocal transformations.
In [14], Ferapontov and Pavlov investigated the reciprocal transformations of local or weakly nonlocal Hamiltonian

operators of hydrodynamic type (cf. [42]). The general form of the Hamiltonian operators they considered are

J ij = g ij(w)∂x + Γ
ij
k (w)w

k
x +

∑
α,β

ηαβX iα∂
−1
x X

j
β , (4.1)

where X iα (α = 1, . . . ,m) is a family of evolutionary vector fields

X iα = V
i
(α)k(w)w

k
x ,

and ηαβ is a constant nondegenerate symmetric matrix. The reciprocal transformations they considered are in general form,
here we only consider ones with the following form

dy = ρ(w)dx+ σ(w)dt, ds = dt. (4.2)

Note that a general reciprocal transformation can be represented as compositions of linear reciprocal transformations and
the ones having the form (4.2). One of the main results of [14] shows that a reciprocal transformation of the above form
transforms a local Hamiltonian operator

J ij = g ij(w)∂x + Γ
ij
k (w)w

k
x
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to a weakly nonlocal one

J̃ ij = g̃ ij(w)∂y + Γ̃
ij
k (w)w

k
y + Ṽ

i
k(w)w

k
y∂
−1
y w

j
y + w

i
y∂
−1
y Ṽ

j
k(w)w

k
y, (4.3)

where g̃ ij and Ṽ ik are given by g
ij and ρ via the formulae

g̃ ij = ρ2g ij, Ṽ ik = ρ∇
i
∇k(ρ)−

1
2
∇
j(ρ)∇j(ρ)δ

i
k.

Here ∇ is the Levi-Civita connection of the metric (gij) = (g ij)−1. This result shows that the space of local Hamiltonian
operators is not a good space to investigate reciprocal transformations.
We observed that the above formula of Ferapontov and Pavlov can be generalized to reciprocal transformations of

general weakly nonlocal Hamiltonian operators (4.1). Moreover, if the Hamiltonian operator J takes the form (4.3), then
the transformed Hamiltonian operator J̃ has the same form. So the space of weakly nonlocal Hamiltonian operators of the
form (4.3) is a good one to study reciprocal transformations.
Furthermore, we observe that the Hamiltonian operators of the form (4.3) are in fact local in the following sense. Let J be

a Hamiltonian operator of the following form

P ij = αijs ∂
s
x + X

i∂−1x w
j
x + w

i
x∂
−1
x X

j, (4.4)

and F ,G be two local functionals, then it is easy to obtain the following identities:

{F ,G}P =
∫

δF
δwi
P ij
δG
δwj

dx

=

∫ (
δF
δwi

(
αijs ∂

s
x

) δG
δwj
+ X i

(
E(F)

δG
δwi
−
δF
δwi
E(G)

))
dx, (4.5)

where E is the energy operator

E =
∑
s≥0

∑
t≥1

(−1)swi,t∂ sx
∂

∂wi,s+t
− 1, (4.6)

it satisfies the following identities

E ∂x = 0, ∂x E = −wix
δ

δwi
.

Note that E is a local operator (i.e. the value of E(F) only depends on the germ of a chosen density f of the local functional
F ), so { , }P is also a local operation. In the expression (4.5) of the Poisson bracket we do not need to use the inverse of ∂x,
which is a major difficulty in the definition of nonlocal Hamiltonian structures.
We see from the above observations that the Hamiltonian operators of the form (4.4) are interesting objects. They are

similar to local Hamiltonian operators, the only difference is the appearance of an operator E in addition of the operation of
variational derivatives in the definition of a Poisson bracket, and their forms are preserved by reciprocal transformations.
The local Hamiltonian operators and general weakly nonlocal Hamiltonian operators do not have these properties. Due to
the above reason we give the name quasi-local Hamiltonian operators to the Hamiltonian operators of the form (4.4).
In [32,33], Getzler, Kersten, Krasil’shchik and Verbovetsky developed a formulism of local Hamiltonian structures with

the help of super-variables, which is very convenient to compute the Jacobi identities. We find that one can generalize
their construction to quasi-local case, and their reciprocal transformation can be presented by transformations of the super-
variables. We will give the details of these results in a separate publication [28], here in this section we just introduce the
notations and list the main results of [28].
We denote byΛx = A/∂xA the space of local functionals and denote the canonical projectionA→ Λx by f 7→

∫
f dx,

the function f is called a density of the local functional. DefineV
p
x = Altp(Λx,Λx) to be the linear space of p-linear alternating

maps from Λx to Λx. In particular, we denote V0x = Λx, and Vx =
⊕
p≥0 V

p
x . It is easy to see that every local Hamiltonian

structure P = P ijs ∂ sx corresponds to an element of V
2
x via the formula

P(F1, F2) =
∫
δF1
δwi
P ijs ∂

s
x
δF2
δwj
dx, F1, F2 ∈ Λx.

It can be shown [28] that there exists a unique bilinear map

[ , ] : Vpx × Vqx → Vp+q−1x

satisfying the following conditions:

[P,Q ] = (−1)pq[Q , P], (4.7)

(−1)pk[[P,Q ], R] + (−1)qp[[Q , R], P] + (−1)kq[[R, P],Q ] = 0, (4.8)
[P, F1](F2, . . . , Fp) = P(F1, . . . , Fp), (4.9)
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for any P ∈ V
p
x ,Q ∈ V

q
x , R ∈ Vkx , F1, F2, . . . , Fp ∈ Λx. This bilinear map is introduced in [34,35] for any vector space, it is

called the Nijenhuis–Richardson bracket (note that there is a sign difference between the definition of the map given here
and the one given in [34,35]).
Let P ∈ V

p
x be a p-linear alternative map, we say that P is a quasi-local p-vector if the action of P on F1, . . . , Fp ∈ Λx takes

the following form

P(F1, . . . , Fp) =
∫ (
Q i1···ips1···sp · ∂

s1δi1(F1) · · · ∂
spδip(Fp)

+ R
j1···jp−1
t1···tp−1 ·

p∑
k=1

(−1)k−1E(Fk) ∂ t1δj1(F1) · · · F̂k · · · ∂
tp−1δjp−1(Fp)

)
dx,

where Q i1···ips1···sp , R
j1···jp−1
t1···tp−1 ∈ A. If the second term in the above expression vanishes, then we call P a local p-vector.

All quasi-local multi-vectors form a subspace of Vx, and the Nijenhuis–Richardson bracket can be restricted on this
subspace. We need some preparations to describe this procedure.
First we introduce a family of super-variables θ si , ζ , where i = 0, 1, . . . , r − 1, s = 0, 1, 2, . . . , and define

Âx = A⊗∧∗(V ), where V =
⊕
i,s

(
Rθ si

)
⊕ Rζ .

We extend the derivation ∂x onA to a derivation on Âx by the formula

∂x =
∑
s≥0

(
wi,s+1

∂

∂wi,s
+ θ s+1i

∂

∂θ si

)
−
(
wixθi

) ∂
∂ζ
: Âx → Âx,

and we define

Λ̂x = Âx/∂xÂx. (4.10)

The space Λ̂x (as well as Âx) possesses a natural gradation Λ̂x =
⊕
p≥0 Λ̂

p
x which is induced from the gradation of the exte-

rior algebra ∧∗(V ). A coset P ∈ Λ̂x is called local, if it contains an element that does not depend on ζ . The space of all local
elements of Λ̂x is denoted by Λ̂locx , which is a subspace of Λ̂x.
It can be shown [28] that there is an embedding2 ȷ : Λ̂x → Vx defined by

ȷ(P)(F1, . . . , Fp) =
∑
sk≥0

∫ (
∂
ip
sp · · · ∂

i1
s1(α) · δ

s1
i1
(F1) · · · δ

sp
ip (Fp)

+ ∂
ip−1
sp−1 · · · ∂

i1
s1∂ζ (α) ·

p∑
k=1

(−1)k−1E(Fk) δ
s1
i1
(F1) · · · F̂k · · · δ

sp−1
ip−1

(Fp)
)
dx, (4.11)

here ∂ζ = ∂
∂ζ
, ∂ is =

∂
∂θ si
, δsi = ∂

s
x
δ

δwi
, and α ∈ Â

p
x is a representative of P , i.e. P =

∫
α dx, and F1, . . . , Fp ∈ Λx. It is easy to

see that the image of ȷ is just the space of quasi-local multi-vectors, so we also call elements of Λ̂x quasi-local multi-vectors.
From now on, we will identify the space Λ̂x and the image of ȷ, and omit the symbol ȷ.
The restriction of the Nijenhuis–Richardson bracket to Λ̂x ⊂ Vx can be represented by the following formula [28]:

[P,Q ] =
∫ (

δα

δθi

δβ

δwi
+ (−1)p

δα

δwi

δβ

δθi
+
∂α

∂ζ
Ê(β)+ (−1)pÊ(α)

∂β

∂ζ

)
dx, (4.12)

where P =
∫
α dx ∈ Λ̂px,Q =

∫
β dx ∈ Λ̂qx with α ∈ Â

p
x, β ∈ Â

q
x , and the operator Ê is given by

Ê =
∑
s≥0

∑
t≥1

(−1)s
(
wi,t∂ sx

∂

∂wi,s+t
+ θ ti ∂

s
x
∂

∂θ s+ti

)
+ θi

δ

δθi
− 1.

If we restrict the bracket to Λ̂locx further, the above formula coincides with Getzler’s [32] and Kersten, Krasil’shchik,
Verbovetsky’s [33] Schouten–Nijenhuis brackets for local multi-vectors. So we also call the bracket (4.12) defined on the
space of quasi-local multi-vectors the Schouten–Nijenhuis bracket.

2 Note that if we do not introduce the super-variable ζ , then the analogue of the map ȷ no longer gives an embedding, it has a one-dimensional kernel
generated bywixθi .
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Definition 4.1. A bivector P ∈ Λ̂2x is called a Poisson bivector if [P, P] = 0. The Poisson bracket

{F1, F2}P = P(F1, F2), F1, F2 ∈ Λx (4.13)

defined by a Poisson bivector via the formula (4.11) is called a quasi-local Hamiltonian structure.

Example 4.2. Let P0 = 1
2

∫
α
ij
s θiθ

s
j dx be a local bivector, so it corresponds to a skew-symmetric matrix differential operator

(αij) = (α
ij
s ∂
s
x). Let X

i
∈ A (i = 0, . . . , r − 1), consider a Poisson bivector of the form P = P0 +

∫
X iζθi dx. By definition it

gives the following Poisson bracket:

{F ,G}P = P(F ,G) =
∫ (

δF
δwi

αij
δG
δwj
+ X i

(
E(F)

δG
δwi
−
δF
δwi
E(G)

))
dx

=

∫
δF
δwi

(
αij + X i∂−1x w

j
x + w

i
x∂
−1
x X

j) δG
δwj

dx,

so we obtain a usual weakly nonlocal Hamiltonian structure. In particular, if the operators αij of the local bivector P0 and X i
have the form

αij = g ij(w)∂x + Γ
ij
k (w)w

k
x , X i = V ij (w)w

j
x,

then one can easily obtain the conditions satisfied by g ij,Γ ijk , X
i such that P is a Hamiltonian structure by using the formula

(4.12). These conditions coincide with Ferapontov’s results on the Hamiltonian operators associated with conformally flat
metrics [36].

If a linear space V1 is isomorphic to another linear space V2, then there is a canonical isomorphism between Alt∗(V1, V1)
and Alt∗(V2, V2). We will show in the rest of this section that the reciprocal transformations of Hamiltonian structures like
the one between the KdV hierarchy and the CH hierarchy is just the restriction of an isomorphism of this type.
Letρ ∈ A be an invertible element, it defines a derivation ∂y = ρ−1∂x onA. DenoteΛy = A/∂yA andVy = Alt∗(Λy,Λy).

There is an isomorphism between the space of local functionalsΛx andΛy

Φ0 : Λx → Λy,

∫
f dx 7→

∫
ρ−1f dy.

This isomorphism induces an isomorphismΦ : Vx → Vy as follows:

Φ(P)(F1, F2, . . . , Fp) = Φ0
(
P
(
Φ−10 F1,Φ

−1
0 F2, . . . ,Φ

−1
0 Fp

))
,

where P ∈ V
p
x and F1, F2, . . . , Fp ∈ Λy. It is easy to see that the isomorphismΦ preserves the Nijenhuis–Richardson bracket,

we call it the reciprocal transformation w.r.t. ρ.
To derive the transformation formula of quasi-local multi-vectors under reciprocal transformations, we need to use a

new coordinate system onA defined by

w̃i = wi, w̃i,s = ∂ syw
i, s = 1, 2, . . . . (4.14)

The map wi,s 7→ w̃i,s is invertible since ρ is invertible, thus elements ofA (as well asΛy) can be written in terms of differ-
ential polynomials in w̃i,s. One can also define the operators δ

δw̃i
and Ẽ onA by replacingw and ∂x by w̃ and ∂y in the original

definitions of the operators δ

δwi
and E.

Let f ∈ A and f̃ = ρ−1f , then the following formulae can be proved [28]:

δf
δwi
= ρ

δ f̃
δw̃i
−

∑
s≥0

(−∂x)
s
(
∂ρ

∂wi,s
Ẽ(f̃ )

)
, (4.15)

E(f ) = ρ Ẽ(f̃ )−
∑
t≥0

∑
q≥1

wi,q(−∂x)
t
(

∂ρ

∂wi,t+q
Ẽ(f̃ )

)
. (4.16)

By using the above formulae, we can write down an explicit formula for the reciprocal transformations of quasi-local
multi-vectors. To this end, we introduce a new family of super-variables θ̃ si , ζ̃ , where i = 0, 1, . . . , r − 1, s = 0, 1, 2, . . . ,
and define

Ây = A⊗∧∗(Ṽ ), where Ṽ =
⊕
i,s

(
Rθ̃ si

)
⊕ Rζ̃ .

We also extend the derivation ∂y onA to Ây by

∂y =
∑
s≥0

(
w̃i,s+1

∂

∂w̃i,s
+ θ̃ s+1i

∂

∂θ̃ si

)
−

(
w̃ixθ̃i

) ∂

∂ζ̃
: Ây → Ây,

and define Λ̂y = Ây/∂yÂy which can also be regarded as a subspace of Vy.
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Theorem 4.3 ([28]). The reciprocal transformationΦ is an isomorphism between the graded Lie algebras Λ̂x and Λ̂y. More pre-
cisely, for α ∈ Âx, we have

Φ

(∫
α dx

)
=

∫
ρ−1Φ̂(α) dy,

where Φ̂ : Âx → Ây is an isomorphism of super-commutative algebras which is defined by

Φ̂(f ) = f , for f ∈ A,

Φ̂(θ si ) =
(
ρ∂y

)s (
ρ θ̃i −

∑
s≥0

(−ρ∂y)
s
(
∂ρ

∂wi,s
ζ̃

))
,

Φ̂(ζ ) = ρ ζ̃ −
∑
t≥0

∑
q≥1

wi,q(−ρ∂y)
t
(

∂ρ

∂wi,t+q
ζ̃

)
.

Example 4.4. We consider an evolutionary PDE: ε wit = X
i, where X i ∈ A. It corresponds to a local vector X =

∫
X iθi dx.

Let ρ ∈ A be an invertible element, we can define the reciprocal transformationΦ w.r.t. ρ. By Theorem 4.3, we have

Φ(X) =
∫ (
X iθ̃i − ρ−1∂t(ρ)ζ̃

)
dy.

If ρ is a conserved density of ∂t , i.e. if there exists σ ∈ A such that ∂t(ρ) = ∂x(σ ), then

Φ(X) =
∫ (
X i − σ wiy

)
θ̃i dy,

so we obtain another evolutionary PDE:wis = X
i
− σ wiy, it coincides with the result of the following reciprocal transforma-

tion

dy = ρ dx+ σ dt, ds = dt.

Example 4.5. Let αij = g ij∂x + Γ
ij
k w

k
x be a local Hamiltonian structure, it corresponds to a local bivector P =

1
2

∫
θiα

ijθj dx
satisfying [P, P] = 0. Let ρ be a nowhere zero smooth function on M , so we can define the reciprocal transformation Φ
w.r.t. ρ. Theorem 4.3 implies

Φ(P) =
1
2

∫ (
ρθ̃i −

∂ρ

∂wi
ζ̃

)(
g ij∂y + Γ

ij
k w̃

k
y

)(
ρθ̃j −

∂ρ

∂wj
ζ̃

)
dy, (4.17)

which is equivalent to Ferapontov and Pavlov’s transformation formula [36,37,14]. Note that Φ preserves the Schouten–
Nijenhuis bracket

[Φ(P),Φ(P)] = Φ([P, P]) = 0,

soΦ(P) is an quasi-local Hamiltonian structure automatically.

Remark 4.6. One can generalize our approach to include more general weakly nonlocal Hamiltonian structures. In [33],
Kersten, Krasil’shchik, Verbovetsky gave such generalization for someparticular examples. However, the problemof defining
Schouten–Nijenhuis bracket among this kind of nonlocal multi-vectors is still open.

5. Reciprocal transformation of the r-KdV–CH hierarchy

The r-KdV–CH hierarchy possesses an interesting reciprocal transformation which was first introduced by Antonow-
icz and Fordy in [22] for the particular case of P = (0, 0, . . . , 0, α−1). In this section we first generalize their reciprocal
transformation to the general case.

Lemma 5.1. Let w0, w1, . . . , wr−1 be a solution to the r-KdV–CH hierarchy, then the following 1-form

ω = ω0 dx+
∑
n6=0

ωn dtn =
1
c0

(
dx+

∑
n>0

bn dtn −
∑
n<0

c−ndtn

)
(5.1)

is closed. Here bn, cn are defined in (2.7), (2.8).

Proof. This is a direct consequence of Lemma 2.1. �
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This lemma shows that for any given solution w0, w1, . . . , wr−1 of the r-KdV–CH hierarchy we can define a set of new
coordinates (y, {sn}n∈Z) by

dy = ds0 = ω = ω0 dx+
∑
n6=0

ωn dtn, (5.2)

dsn = dt−n, n 6= 0, n ∈ Z. (5.3)

It is called a reciprocal transformation of the r-KdV–CH hierarchy.

Proposition 5.2. Let w0, w1, . . . , wr−1 be a solution to the r-KdV–CH hierarchy and φ be a solution to the linear system of the
associated Lax pair

ε2φxx = Aφ, φtn = Bnφx −
1
2
Bn,xφ, n ∈ Z.

We define

φ̃ =
φ
√
c0
, Ã = c20 A−

ε2

4

(
2 c0 c0,xx − c20,x

)
,

B̃n =

{B−n
c0
− ω−n, n 6= 0,

1, n = 0,

then φ̃, Ã, B̃ satisfy

ε2φ̃yy = Ãφ̃, φ̃sn = B̃nφ̃y −
1
2
B̃n,yφ̃, n ∈ Z. (5.4)

Proof. The reciprocal transformation (5.2), (5.3) implies

∂y = ∂s0 = c0 ∂x, ∂sn = ∂t−n − c0 ω−n ∂x, n 6= 0.

The proposition is proved by a straightforward computation. �

The above reciprocal transformation is invertible, i.e. we can represent x as a function of (y, {sn}n∈Z) from the total
differential equation

dx = c0 dy+
∑
k>0

ck dsk −
∑
k<0

b−k dsk, dtn = ds−n, n 6= 0, n ∈ Z.

Corollary 5.3. Let wi(x, t) (i = 0, . . . , r − 1) be a solution to the r-KdV–CH hierarchy associated to P = (a0, a1, . . . , ar). We
define

vr−i(y, s) =
[
c20 w

i
−
ε2

4
ai
(
2 c0 c0,xx − c20,x

)]
x7→x(y,s)

, ãr−i = ai,

then the functions v0(y, s), . . . , vr−1(y, s) give a solution to the r-KdV–CH hierarchy associated to P ′ = (ã0, ã1, . . . , ãr).

The above proposition and its corollary show that the reciprocal transformation converts the n-th positive flow of the r-
KdV–CH hierarchy associated to P = (a0, a1, . . . , ar−1, ar) to the n-th negative flow of the r-KdV–CH hierarchy associated
to P ′ = (ar , ar−1, . . . , a1, a0).
Now let us consider the transformation rule of theHamiltonian structures of the r-KdV–CHhierarchy under the reciprocal

transformation. Besides the r + 1 local Hamiltonian structures, the r-KdV–CH hierarchy also has infinitely many nonlocal
Hamiltonian structures [21,22], two of which are quasi-local Hamiltonian structures. Let R = Pr · P−1r−1, and define Pr+k =
Rk Pr , k = 1, 2. The components of Pr+1, Pr+2 read

P ijr+1 = Di+j−r −DiD
−1
r Dj,

P ijr+2 = Di+j−r−1 −Di−1D
−1
r Dj −DiD

−1
r Dj−1 +DiD

−1
r Dr−1D

−1
r Dj.

We need to show that Pr+1, Pr+2 ∈ Λ̂2x . Note that

D−1r =

(
2∂x −

ε2

2
ar∂3x

)−1
=
1
2
∂−1x + O(∂x),
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where O(∂x) stands for a differential operator, so we have

−DiD
−1
r Dj = −

1
2
wix∂

−1
x w

j
x + O(∂x),

thus Pr+1 ∈ Λ̂2x (see Example 4.2). Similarly,

DiD
−1
r Dr−1D

−1
r Dj = w

i
x∂
−1
x X

j
+ X i∂−1x w

j
x + O(∂x),

where X i are differential polynomials, so we also have Pr+2 ∈ Λ̂2x .
The reciprocal transformation (5.2), (5.3) converts the r-KdV–CHhierarchy associated toP = (a0, a1, . . . , ar−1, ar) to the

r-KdV–CH hierarchy associated toP ′ = (ar , ar−1, . . . , a1, a0). We denote the flows, the Hamiltonians and the Hamiltonian
structures of the r-KdV–CH hierarchy associated toP andP ′ by εwtn = Xn, Hn, Pm and εw̃sn = X̃n, H̃n, P̃m respectively. Then
by using the notations introduced in Section 4, we have

Φ(Xn) = X̃−n, n 6= 0,
and

Φ(Hn) = −H̃−n−2, n 6= −1.
Here Φ is the reciprocal transformation of the space of quasi-local multi-vectors defined by the function ρ = ω0 in (5.1).
More precisely, for H =

∫
h(w,w′, . . .) dx ∈ Λx,

Φ(H) =
∫
ρ−1h(w,w′, . . .) dy,

and for an evolutionary PDE ε wit = X
i,Φ(X) is given in Example 4.4.

Now let us consider the following identity which is proved in Theorem 2.2:
Xn = −[Pm,Hn−m], m = 0, . . . , r, n < 0,

here [ , ] is the Schouten–Nijenhuis bracket defined by (4.12), and we view the Hamiltonian operator Pm as the associated
Poisson bivector, see Example 4.2. Since the reciprocal transformation preserves the Schouten–Nijenhuis bracket, we have

X̃n = −[Φ(Pm),−H̃n+m−2], n > 0.
On the other hand, we know by Theorem 2.2 that

X̃n = −[−P̃r−m+2,−H̃n+m−2], m = 2, . . . , r + 2, n > 0.

So from the above two expressions of X̃n we can formulate the following conjecture:

Conjecture 5.4. For m = 0, 1, . . . , r + 1, r + 2, we have

Φ(Pm) = −P̃r+2−m.

It seems to us that the trouble in proving the Conjecture 5.4, if it holds true, lies on the fact that the reciprocal transfor-
mation is defined in terms of c0 which does not have an explicit expression. In this paper, we only prove the coincidence of
the leading terms ofΦ(Pm)with that of−P̃r+2−m.
The leading terms P [0]m of Pm (m = 0, 1, . . . , r + 1, r + 2) read

(P [0]m )
ij
= f ijm

(
2wi+j+1−m∂x + wi+j+1−mx

)
, m = 0, 1, . . . , r − 1, r,

(P [0]r+1)
ij
= 2

(
wi+j−r − wiwj

)
∂x +

(
wi+j−r − wiwj

)
x +
1
2
wix∂

−1
x w

j
x,

(P [0]r+2)
ij
= 2U ij∂x + U ijx − V

i∂−1x w
j
x − w

i
x∂
−1
x V

j,

where
U ij = wi+j−r−1 − wi−1wj − wiwj−1 + wr−1wiwj,

V i =
1
2
wi−1x +

1
2
wiwr−1x +

1
4
wr−1wix.

Proposition 5.5. For m = 0, 1, . . . , r + 1, r + 2, we have

Φ(P [0]m ) = −P̃
[0]
r+2−m.

Proof. In the dispersionless case, the reciprocal transformation (5.1) takes the form

dy = ω[0]0 dx+
∑
n6=0

ω[0]n dtn,

where ω[0]n = ωn|ε=0. In particular, ω
[0]
0 =

√
w0. By applying the formula (4.17), the proposition is proved by a straightfor-

ward computation. �



1242 M. Chen et al. / Journal of Geometry and Physics 59 (2009) 1227–1243

6. Conclusion

In this paper, we investigate the reciprocal transformations of the multi-Hamiltonian structures of the r-KdV–CH
hierarchy. We first give an explicit expression of the Hamiltonians for the multi-Hamiltonian structures of the r-KdV–CH
hierarchy, specify those bihamiltonian structures of the hierarchy which are associated to certain Frobenius manifolds
and prove the formulae for the central invariants of the bihamiltonian structures. Then we introduce the space of quasi-
local multi-vectors, define the Schouten–Nijenhuis bracket and reciprocal transformations on this space. By using these
techniques, we give in a natural way the transformation formulae of the Hamiltonian structures of the r-KdV–CH hierarchy
under the reciprocal transformation of the hierarchy, and prove the formulae at the level of its dispersionless limit.
The problem of how to find solutions to the r-KdV–CH hierarchy is still open for a general parameter set P . When

P = (1, 0) and P = (1, 0, 0), the associated hierarchies are the well-known KdV and AKNS hierarchy respectively, the
integration schemes of these hierarchies of evolutionary PDEs are well studied. Note that these two hierarchies are also the
only particular cases among the general r-KdV–CH hierarchies that possess bihamiltonian structures of topological type.3
So we may imagine that the rich properties of these two integrable hierarchies are due to their close relations to topolog-
ical field theory. This fact may also give an explanation on why some well-known integration schemes suitable for these
two hierarchies cannot be applied to the r-KdV–CH hierarchy associated to a general parameter set. When P = (0, 1) and
P = (0, 0, 1), we obtain the CH and 2-CH hierarchy respectively. We can find solutions of these two hierarchies via cer-
tain reciprocal transformations, since they are transformed to the KdV and the AKNS hierarchy after such transformations
[13,15,16]. However, we do not know how to find exact solutions for the general r-KdV–CH hierarchy.
We can regard the r-KdV–CH hierarchy as an energy dependent generalization of the KdV hierarchy. It is natural to ask:

Whether one can perform similar generalizations to other integrable hierarchies that possess Lax pair representations? For exam-
ple, the x-part of the Lax pair for the Gelfand–Dickey hierarchy reads(

∂n+1x + un−1∂n−1x + · · · + u1∂x + (u0 − λ)
)
φ = 0,

if we replace it by((
r∑
i=0

ai λi
)
∂n+1x +

n−1∑
k=0

(
r∑
i=0

wi,kλ
i

)
∂kx

)
φ = 0, (6.1)

where ai’s are some constants, can we obtain some interesting integrable systems? In [38], Antonowicz, Fordy and Liu con-
sidered the n = 2 case. Their results show that the n = 2 case is quite different from the n = 1 case, strong restriction needs
to be imposed on the form of the operator (6.1) in order to obtain integrable hierarchies.
Moreover, note that the Gelfand–Dickey hierarchy is the Drinfeld–Sokolov hierarchy associated to the affine Lie algebra

A(1)n and the fixed vertex c0 of the Dynkin diagram, so canwe formulate a similar question for the Drinfeld–Sokolov hierarchy
associated to general (g, ck)?
We have the following two examples of such a generalization.
Recently the Degasperis–Procesi equation draws much attentions [39], it has the form

mt + 3mux +mx u = 0, m = u− uxx.

Its Lax pair reads

λφxxx − λφx +mφ = 0,

φt + λφxx + uφx −
(
ux +

2λ
3

)
φ = 0.

The x-part has exactly the form of (6.1). It is well known that after a reciprocal transformation the Degasperis–Procesi equa-
tion is transformed to the first negative flow of the Kaup–Kupershmidt hierarchy, which is the Drinfeld–Sokolov hierarchy
associated to (A(2)2 , c1). So we can regard the Degasperis–Procesi equation as a particular case of an energy dependent gener-
alization of the Drinfeld–Sokolov hierarchy associated to the affine Lie algebra A(2)2 and its vertex c1, just like the relationship
between the Camassa–Holm equation and the r-KdV–CH hierarchies.
The second example is the Sawada–Kotera hierarchy [40],which is theDrinfeld–Sokolov hierarchy associated to (A(2)2 , c0).

There is also a reciprocal transformation that transforms the first negative flowof this hierarchy to theNovikov equation [41]

mt + 3muux +mx u2 = 0, m = u− uxx.

The Lax pair of the Novikov equation given in [41] is of matrix form, which is equivalent to a scalar form similar to (6.1). So
the Novikov equation can also be viewed as a particular case of an energy dependent generalization of the Drinfeld–Sokolov
hierarchy associated to the affine Lie algebra A(2)2 and the vertex c0 of its associated Dynkin diagram.
These examples support a positive answer to the above questions; we hope to return to them in subsequent publications.

3 We say a semisimple bihamiltonian structure is of topological type, if its leading term is associated to a Frobenius manifold, and its central invariants
are equal to a single constant.
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