
Journal of Geometry and Physics 71 (2013) 53–57

Contents lists available at SciVerse ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

On families of lagrangian tori on hyperkähler manifolds
Ekaterina Amerik a,b,∗, Frédéric Campana c,d

a Université Paris-Sud, Campus d’Orsay, Bât. 425, 91405 Orsay, France
b National Research University Higher School of Economics, Department of Mathematics, Laboratory of Algebraic Geometry, Vavilova 7,
117332, Moscow, Russia
c Institut Elie Cartan, Université Henri Poincaré, BP 239, F-54506 Vandoeuvre-les-Nancy, France
d Institut Universitaire de France, France

a r t i c l e i n f o

Article history:
Received 4 April 2013
Accepted 7 April 2013
Available online 17 April 2013

MSC:
14J99
32J27

Keywords:
Holomorphic symplectic variety
Lagrangian torus
Fibration

a b s t r a c t

This is a note on Beauville’s problem (solved by Greb, Lehn, and Rollenske in the non-
algebraic case, and by Hwang and Weiss in general) whether a lagrangian torus on an
irreducible holomorphic symplecticmanifold is a fiber of a lagrangian fibration.Weprovide
a different very short solution in the non-algebraic case, and make some observations
suggesting a different approach in the algebraic case.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recall that an irreducible holomorphic symplectic manifold is a simply connected compact Kähler manifold X such that
the space of holomorphic 2-forms H2,0(X) is generated by a symplectic, that is, nowhere degenerate, form σ . It is well
known that suchmanifolds are exactly the compact hyperkähler manifolds from differential geometry. There are two series
of known examples, namely the Hilbert schemeHilb[n](X) of length-n subschemes of a K3surface X and the Kummer variety
associated to an abelian surface A (recall that this is defined as the fiber over zero of the summationmapΣ : Hilb[n](A) → A),
and two sporadic examples in dimensions 6 and 10 due to O’Grady. All known irreducible holomorphic symplecticmanifolds
are deformations of those.

In order to study the classification problem for irreducible holomorphic symplectic manifolds and their geometry, it
is important to understand how such an X can fiber over lower-dimensional varieties. Several results are known in this
direction. The first, very striking one was obtained by Matsushita.

Theorem 1 ([1,2]). Let X be an irreducible holomorphic symplectic variety, and let f : X → B be a map with connected fibers
from X onto a normal complex space B, 0 < dim(B) < n. Then all fibers of f are lagrangian (in particular, they are of dimension
n), and the smooth fibers are tori.1

∗ Corresponding author at: National Research University Higher School of Economics, Department of Mathematics, Laboratory of Algebraic Geometry,
Vavilova 7, 117332 Moscow, Russia. Tel.: +7 9055165680.

E-mail addresses: Ekaterina.Amerik@math.u-psud.fr (E. Amerik), frederic.campana@univ-lorraine.fr (F. Campana).
1 More precisely, this is proved for X and B projective in [1], and it is remarked in [2] that the arguments work in the Kähler case (that is, with X an

arbitrary irreducible holomorphic symplectic manifold and B a normal Kähler space). In general, by [3], B is birational to a Kähler manifold B′ , and it follows
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Strong restrictions on B are known. First, the results of Varouchas [3,6] imply the existence of a smooth Kähler model B′

of B, and B′ does not carry any non-zero holomorphic 2-form (since its lift to X would not be proportional to σ ), so Kodaira’s
embedding theorem shows that B′ is projective.

Much more is true. Matsushita proved that the base B of such a fibration is ‘‘very similar’’ to Pn. Later, Hwang showed in
[7] that, if B is smooth, then indeed B ∼= Pn (the general case is open).

In [4], we partially extended this to themeromorphic setting. Since there are alwaysmeromorphic fibrations by complete
intersections of hypersurfaces if X is projective, we assumed that the general fiber of f : X 99K B is not of general type; in
this case, we proved, among other things, that dim(B) ≤ n (Proposition 3.4 of [4]).

When X is non-projective, our assumption on the fibers is automatically satisfied, since the total space of a fibration with
Moishezon base and general type fibers is Moishezon; see [8], 2.10.

In fact the general fiber of f is not of general type if and only if f is defined by sections of a line bundle with zero
Beauville–Bogomolov square ([4], Proposition 3.1). This is related to a famous and difficult conjecture about lagrangian
fibrations.

Conjecture 2 (‘‘Lagrangian Conjecture’’). Let L be a non-trivial nef line bundle on X, such that q(L) = 0. Then some power of L
is base-point free; that is, the sections of some power of L define a holomorphic lagrangian fibration.

Under the additional assumption that X is covered by curves C such that LC = 0, this was proved by Matsushita [9]. The
main idea of the proof is to use the nef reduction from [10], which in this case yields a non-trivial meromorphic fibration.

Recently, Beauville asked the following question.

Question 3. Let X be an irreducible holomorphic symplectic variety and A ⊂ X a lagrangian torus. Is it true that A is a fiber of a
(meromorphic) lagrangian fibration?

This is plausible, since it is known that the deformations of A in X are unobstructed and that the smooth ones are again
lagrangian tori. The symplectic form defines an isomorphism between the normal bundle of a lagrangian torus and its
cotangent bundle, so this bundle is trivial. Hence, locally in a neighbourhood of A, there is a lagrangian fibration, and the
question is whether it globalizes. Another reformulation is as follows: one knows that through a general point of X passes a
finite number d of deformations of A, and one wants to know whether d = 1.

When X is non-projective, the affirmative answer was given by Greb, Lehn, and Rollenske in [11]. Moreover, they proved
that, if the pair (X, A) can be deformed to a pair (X ′, A′), where X ′ is non-projective and A′ is still a lagrangian torus on X ′,
then the answer is also positive (because the lagrangian fibration on X ′ deforms back to X). Finally, they observed that, by
deformation theory of hyperkähler manifolds, the existence of a non-projective deformation of the pair (X, A) is equivalent
to the existence of an effective divisor D on X such that its restriction to A is zero.

In [12], the first author gave a very simple solution of Beauville’s problem in dimension 4, by combining a lemma from
linear algebra with the above-mentioned proposition from [4].

In [13], the existence of an effective divisor D restricting trivially to A is established, so that the affirmative answer to
Question 3 is obtained in full generality. The argument, which proceeds by the study of the monodromy action on the total
space of the family of deformations of A, uses some highly non-trivial finite group theory.

This solution of Beauville’s question, as well as several other important proofs in holomorphic symplectic geometry,
depends in an essential way on deforming from projective to non-projective data.

The purpose of this note is to give another, very simple, proof in the non-projective case (the original one from [11]
uses results about algebraic reduction of hyperkähler manifolds from [14] and involves some case-by-case analysis) and to
explain a possible algebro-geometric approach to Beauville’s question (not relying on deformations or on group theory). We
aim to explicitly construct a linear system which, possibly after some flops, would give us a lagrangian fibration f : X → B
with generic fiber meeting the generic member or our lagrangian family A along a positive-dimensional subvariety. Then
hopefully one can show that this implies that A is a fiber of f (which is indeed the case if A is assumed to be a fiber of some
fibration).2

Unfortunately, our algebro-geometric argument does not, at the moment, give a general answer: we can produce a
lagrangian fibration in a special case (Corollary 8), and only a weaker statement (Theorem 7) is obtained in general.

2. The non-projective case

Let us start with the following observation, which is an immediate consequence of the argument in [15], Prop. 2.1.

Proposition 4. A smooth lagrangian subvariety of an irreducible holomorphic symplectic manifold is projective.

from Kodaira’s embedding theorem that B′ is projective. Replacing f : X → B by f ′
: X 99K B′ , and considering an ample H ′ on B′ , one shows (as in [4],

Prop. 3.1) that (f ′)∗H ′ is isotropic with respect to the Beauville–Bogomolov form. One then proves as in [1] that a general fiber of f ′ , and therefore of f , is
lagrangian. By [5], f is equidimensional, and therefore B is normal Kähler by [6].
2 Let f : X → B and g : X → C be two lagrangian fibrations. Then either f = g , or the generic fibers of f and g have finite intersections. This can be

proved by observing that otherwise the Beauville–Bogomolov form vanishes on the subspace generated by divisors coming from B and C .
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By [16], there is an almost holomorphic fibration φS associated to any compact and covering family Zs, s ∈ S, of
subvarieties in X: the fiber of φS through a sufficiently general point x ∈ X consists of all points y such that there is a
chain of subvarieties from S joining x and y. Moreover, again by [16], if Zs are projective varieties, then so are the fibers of φS .

Throughout the paper, we shall also need the following simple lemma, which may be seen as an analog of our problem
for tori.

Lemma 5. Let Z be an irreducible subvariety of a complex torus T . Assume that an open neighbourhood U of Z admits a proper
holomorphic fibration gU : U → V having Z as one of its fibers. Then Z is a complex subtorus of T , so that the local fibration
yields a global fibration g : T → B.

Proof. The generic fiber of gU is a smooth connected complex submanifold Z ′ of T . By adjunction, its canonical bundle is
trivial. By Ueno’s theorem ([8], Theorem 10.3), Z ′ is a complex torus; thus so is Z . Indeed, Z is a translate of Z ′, since the
translates of Z ′ form a connected component of the Barlet–Chow space of T . �

Theorem 6. Let X be a non-algebraic irreducible holomorphic symplectic manifold and A a lagrangian torus on X. Then X admits
an almost holomorphic lagrangian fibration such that A is a fiber.

Proof. Consider the family of deformations At , t ∈ T , of A and the fibration φT associated to At (note that T is compact
since X is compact Kähler). We claim that its relative dimension is n; that is, that At is a fiber of φT for general t . Indeed, the
relative dimension is obviously at least n. If it is 2n, that is, φT is a constant map, then X , being a fiber of φT , is projective
because the At are projective. If it is strictly between n and 2n, consider, for a general x, all tori A1, . . . , Ad passing through
x. By assumption, d ≥ 2. The tori A1, . . . , Ad are contained in the fiber Fx of φT through x; in particular, the dimension of the
subspace Vx ⊂ TX,x generated by TA1,x, . . . , TAd,x is strictly less than 2n.

From the fact that, in a neighbourhood of a general torus, our family is a fibration, we can easily deduce that, if x ∈ X is
general, the tori A1, . . . , Ad are not tangent to each other at x.

Indeed, since through a general point of X there is only a finite number of tori, we can first choose a y ∈ X such that all tori
A′

1, . . . , A
′

d through y are ‘‘general’’, meaning that, near each of them, the family is a fibration. Now fix, say, A′

1: it can happen
that A′

2 is tangent to A′

1 at y, but, because we have a local fibration near A′

2, a general small deformation of A′

2 is nowhere
tangent to A′

1, so that the set of tangency points is contained in a proper analytic subvariety in A′

1 (a union of subtori, by
the preceding lemma). Similarly, the set of tangency points of small deformations of A′

1 and those of A′

2 will be contained in
a proper analytic subvariety W1,2 of a small analytic neighbourhood U of y. So it suffices to pick an x ∈ U outside of Wi,j,
1 ≤ i < j ≤ d: the Ai through x are small deformations of A′

i through y, and x is chosen in such a way that these are not
tangent at x.

This means that their intersection has only one component Zx through x, and that n ≥ dim(Zx) = dimTZx,x = dim∩i TAi,x.
But ∩i TAi,x is exactly the σ -orthogonal to Vx and thus it is strictly positive dimensional, meaning that so is the component
of the intersection of Ai through x. One thus obtains a meromorphic fibration of X by such components; call them Ex. If one
knows that Ex is not of general type, then, by Proposition 3.4 of [4], one concludes that dim(Ex) = n. By definition of Ex, this
means that d = 1 and the family At fibers X . �

The fact that Ex is not of general type is easily deduced by induction on d: indeed we know that the family At gives a local
fibration near its general member, so the samemust be true for intersections At ∩As for fixed general As and varying general
At intersecting As. But, by Lemma 5, a torus can only be locally fibered in subtori. If x is general, then so are A1 and A2, so the
component of A1 ∩A2 through x is a torus. Continuing in this way, we conclude that also A1 ∩· · ·∩Ad is a torus. This finishes
the proof.

3. The projective case: some results

Consider the family of lagrangian tori At , t ∈ T , which are deformations of a certain lagrangian torus A ⊂ X . Recall that
these deformations cover X , and that there exists a number d such that exactly d members of this family pass through a
generic point of X . Assuming that this does not yield a meromorphic fibration, that is, d > 1, we are going to construct
two large families of subvarieties of X of complementary dimensions e and 2n− e, such that the intersection number of the
corresponding cycles in the cohomology is zero.

Recall that the intersection As ∩ At has no zero-dimensional components (this follows from the fact that our family
is a local fibration; see [12], Lemma 1). For fixed t , the tori intersecting At form a finite number of irreducible families
S1, . . . , SN ⊂ T . Fix one of them, and call it S: for s ∈ S general, As ∩ At is an equidimensional ([12], Lemma 1) union of
disjoint subtori by Lemma 5. We shall see very soon that all these subtori are translates of each other in At .

Set e = eS , the dimension of As ∩ At for general s ∈ S. Denote by Es,t a component of As ∩ At , and by Zs,t the union of As,
s ∈ S, which is thus of dimension 2n − e.

Our main result is the following theorem.

Theorem 7. [Es,t ] · [Zs,t ] = 0 in the cohomologies of X.
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Before proving the theorem, let us state a corollary which partially answers Beauville’s question in the case e = 1 (i.e. in
the case when there exists an S as above such that eS = 1). Notice that the ‘‘opposite’’ case when e = n − 1 for all S has a
completely elementary treatment ([12], Remark 4). Unfortunately, we did not succeed in proving an analog of this corollary
for arbitrary e.

Corollary 8. Suppose that e = 1. Then, for some m ≥ 0, the linear system |mZ | = |mZs,t | gives an almost holomorphic map
φ : X 99K B, which has a holomorphic model φ′

: X ′
→ B′ (and therefore is a lagrangian fibration).

Proof. This would follow at once from Theorem 7 and the main theorem of [9] if the divisor Z had been nef: indeed X is
covered by curves C = Es,t with CZ = 0. In general, one cannot affirm that Z is nef. But it is mobile; that is, it has no base
components. Such a divisor on a hyperkähler manifold can be made nef by a sequence of flops (see [17]). That is, there is a
birational transformation h : X 99K X ′ which is an isomorphism in codimension 1, and such that h∗Z is nef.

To see that the sections of some power of h∗Z give a lagrangian fibration φ′
: X ′

→ B′, it suffices now to remark that a
general member of the family of deformations of Es,t does not intersect the locus W ⊂ X , where h is not an isomorphism.
This follows easily from the observation that a neighbourhood Us ⊂ X of As is fibered not only by lagrangian tori which are
small deformations of As, but also by deformations of the subtorus Es,t : the local lagrangian fibration fs : Us → Bs factors
through gs : Us → Ds, which has Es,t for a fiber. The locusW , being of codimension at least 2, cannot dominate Us, and so we
can deform Es,t away from it and then take the image by h to obtain a dominating family of curves which do not intersect
h∗Z . With all this done, we conclude by [9].

The proof of the theorem uses several preliminary lemmas related to the following construction (‘‘the characteristic
foliation’’).

Consider the local lagrangian fibration fs : Us → Bs in a neighbourhood of As. Then At ∩Us projects onto a codimension-e
analytic subvariety Cs ⊂ Us. Take D0

= f −1
s (Cs). This is the ‘‘principal branch’’ of the subvariety Zs,t in the neighbourhood of

As. It is clear that we can move Es,t away from D0 by replacing it on some neighbouring As′ with s′ ∉ Cs. But there are other
branches D1, . . . ,Dl of Zs,t intersecting As and all of its neighbours, and we must show that Es,t can be moved away from
them, too.

For this, we look at the kernel of the restriction of the symplectic form σ to the smooth part of Zs,t : this is a distribution
F of rank e, often called characteristic foliation in the literature. �

Lemma 9. The restriction of F to As is trivial (as a subbundle of TAs ).

Proof. The symplectic form σ defines in the usual way an isomorphism between the restriction ofF toD0 and the conormal
bundle to D0 in X: indeed the latter one is the kernel of the restriction map from the dual of TX |D0 to the dual of TD0 . We
claim that the restriction of the normal bundle ND0,X to As is trivial. This is clear from the exact sequence

0 → NAs,D0 → NAs,X → ND0,X |As → 0 :

the first term is a trivial vector bundle since D0 is a fibration, the second one is trivial because As is lagrangian, and therefore
NAs,X is isomorphic to the cotangent bundle of As, and the third one is trivial because it therefore has e everywhere linearly
independent global sections. �

Corollary 10. The distribution F is tangent to a fibration of Zs,t by deformations of Es,t .

Proof. The restriction of F to As has at least one algebraic leaf, that is, Es,t (being a component of the intersection of
lagrangian As and At , it is orthogonal to both). Since it is trivial as a vector bundle, all leaves are translates of Es,t in As.
Since As is generic, all leaves on Zs,t are algebraic.

The following lemma, which seems to be an explicit geometric analog of Hwang–Weiss’ ‘‘pairwise integrability’’ (though
we obtained it independently around the same time), is crucial. �

Lemma 11. There is only a finite number of Zs,t passing through a general point x ∈ X. In particular, if At ′ is a small deformation
of At which still intersects As, then Zs,t = Zs,t ′ and At ′ ⊂ Zs,t . Therefore, through a general translate of Es,t in As (and not only in
At ), there is a lagrangian torus contained in Zs,t .

Proof. Indeed, each Zs,t is a union of tori As and their degenerations (which do not cover X). Therefore a Zs,t passing through
a general x should contain such a torus As through x, and its tangent space at xmust be σ -orthogonal to that of a subtorus of
dimension e in As. But there is only a countable number of possibilities for those. Sincewe are dealingwith bounded families,
we conclude that there are in fact only finitely many possibilities for TxZs,t . Since x is general, an application of standard
results (either the unicity theorem for solutions of differential equations on a suitable covering of X or Sard’s lemma on a
suitable fibered product) shows that there is also only a finite number of Zs,t through x.

The second assertion follows from the first since Zs,t through x does not deform. The third one follows from the second
by taking closure. �

As an immediate corollary, we obtain an assertion already announced before the statement of Theorem 7.
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Corollary 12. The intersection As ∩ At for s general is a union of translates of Es,t both in As and in At .

Indeed, this intersection must be tangent to the kernel of the restriction of σ , and, as we have seen above, this kernel is
tangent to the fibration given by the translates.

Proof of Theorem 7. The subvariety Zs,t is the union of As, where As varies in an irreducible (n − e)-parametric family S of
tori intersecting At . As we have just seen, As ∩ At for s general is a union of translates of Es,t in At : our first claim is that the
same is true for any s (but the union can a priori be infinite, that is, of greater dimension than e). This is easily seen from the
factorization of the local fibration fs : Us → Bs through gs : Us → Ds from the proof of Corollary 8.

Next, let s be general and u ∈ S arbitrary. We claim that Au ∩ As is again a union of translates of Es,t in As. Suppose first
that Au passes through a point y ∈ Es,t ⊂ As ∩ At . Then, by what we have just observed, Au contains Es,t (indeed Au ∩ At is a
union of translates of Es,t , so if this contains a point y ∈ Es,t , then it contains the whole of Es,t ). Now, we can repeat the same
argument, supposing that Au passes through a point y′ on a translate E ′ of Es,t in As: indeed, by Lemma 11, we can find an At ′

contained in Zs,t such that E ′
= Es,t ′ is a component of the intersection As∩At ′ , and just replace t by t ′. In conclusion, together

with each of its points, Au ∩ As contains the whole translate of Es,t passing through this point. This proves our second claim.
Now we are able to show that Es,t · Zs,t = 0. Recall that we have denoted by D0 the principal branch of Zs,t around As, so

that D0 is a union of fibers of the local fibration fs, and by D1, . . . ,Dl the other branches. It is clear that a general deformation
of Es,t is disjoint fromD0: it suffices tomove Es,t to a neighbouring torus not contained inD0. But nowwe see that it is disjoint
from D1, . . . ,Dl as well: indeed Di

∩ As is a union of translates of Es,t , and so, replacing Es,t by a suitable translate in As, we
can make it disjoint from Di.

This finishes the proof of Theorem 7. �
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