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a b s t r a c t

Categorical bundles provide a natural framework for gauge theories involving multiple
gauge groups. Unlike the case of traditional bundles there are distinct notions of triviality,
and hence also of local triviality, for categorical bundles. We study categorical principal
bundles that are product bundles in the categorical sense, developing the relationship
between functorial sections of such bundles and trivializations. We construct functorial
cocycleswith values in categorical groups using a suitable family of locally defined functors
on the object space of the base category. Categorical product bundles being too rigid to give
a widely applicable model for local triviality, we introduce the notion of a twisted-product
categorical bundle. We relate such bundles to decorated categorical bundles that contain
more information, specifically parallel transport data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Thepurpose of this paper is to explore the nature of product categorical bundles andpropose the notion of twisted-product
categorical bundles, a richer andmorewidely applicable notion that could be used to formulate local triviality for categorical
principal bundles. Themainmotivation for this exploration arises from there beingmore than one useful notion of triviality,
and hence also of local triviality, for categorical bundles. For this reason the definition of categorical principal bundle we
work with does not include a local triviality requirement. In these introductory paragraphs we present a discussion of our
investigations phrased in broadly understandable terms, leaving exact definitions to later sections.

The language of category theory has proved very useful in the formulation of gauge theories that involve multiple gauge
groups, each such gauge group describing the interaction of gauge fields with particles or higher-dimensional entities. Thus
such ‘‘higher gauge theories’’ inspire a categorical formulation of the notions of principal bundles and parallel transport. In
the simplest case we would view the points of a manifold as objects of a category and paths would be the morphisms (this
is a naive first view). At the next higher level, paths would be the objects and morphisms would be paths of paths. Thus a
traditional bundle has as counterpart a projection functor

π : P → B,

where P and B are categories that are counterparts of the bundle space and the base space, respectively. The geometry of
a categorical principal bundle also includes a categorical group in place of the traditional structure group; in a categorical
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group there is both a group comprised of objects and a group comprised of morphisms, with these structures intertwined
in a consistent way. A principal categorical bundle is then given by a surjective functor P → B along with a right action (in
a suitable sense) of the categorical group G on P, satisfying conditions analogous to those satisfied by traditional principal
bundles. In Section 2 we state the basic definitions for categorical principal bundles, along with a review of other related
notions.

As noted above, thinking of the morphisms of P simply as arbitrary paths on P is a naive first view. There is far too much
freedom and to little structure in such a large space for our objectives. In the examples of most interest to us a morphism of
P corresponds to a path γ on P that is horizontalwith respect to some connection A on P (thus describing parallel-transport
along some path on B), decorated by an element h drawn from the second gauge group H . Fig. 4 illustrates such a morphism
(γ , h). The geometric information, coming from parallel transport, is encoded in the categorical structure in the target of
this morphism and therefore in the way composition is defined.

The simplest example of a principal categorical comes from the categorical product U × G; it is given by the projection
onto the base category U:

U × G → U,

alongwith the obvious action ofG onU×G. In classical bundle theory, the product bundle, despite its bare and simple nature,
is important in that it serves as a local model for more general locally trivial bundles. For categorical principal bundles the
notion of local triviality is less obvious. A major motivation for our investigations in this paper lies in providing such a local
model for categorical principal bundles.

In Sections 3 and 4 we explore categorical product bundles and prove results that are the categorical counterparts of
results on traditional product topological bundles. As we have noted above, the motivation is not so much the focus on
product bundles as the understanding of what happens locally in more general bundles. For example, traditionally, sections
of a product bundle U × G → U , where G is a group, correspond to mappings U → G. We show in Proposition 3.4 that in
the categorical setting the collection of sections forms a categorical group whose objects are functors U → G and whose
morphisms are natural transformations between such functors. The proof involves all aspects of the structure categorical
group G.

A traditional principal bundle is given by a smooth projection map

π : P → B,

along with a free right action of a Lie group G on P , acting transitively on each fiber π−1(b). Moreover, such a bundle is
locally trivial in the sense that there is an open covering {Uα}α∈I of B such that the bundle viewed over any Uα is trivial; this
means that there is a diffeomorphism

φα : Uα × G → π−1(Uα) (1.1)

that respects the action of G and maps the fiber {x} × G onto the fiber π−1(x) for each point x ∈ Uα . Switching from Uα to
Uβ , which intersects Uα , is described then by a mapping

gαβ : Uα ∩ Uβ → G,

specified by

φ−1
α


φβ(x, e)


= (x, e)gαβ(x), (1.2)

for all x ∈ Uα ∩ Uβ . The system of functions {gαβ} is a cocycle, satisfying the condition

gαβ(x)gβγ (x) = gαγ (x) (1.3)

for all x ∈ Uα ∩ Uβ ∩ Uγ . Section 5 is devoted to studying a functorial counterpart of this notion of cocycle.
We turn next, in Section 6, to the study of a type of categorical principal bundle that is richer in structure than product

categorical bundles. For a twisted-product categorical bundle

U×η G → U,

the object and morphism sets of U×η G are the same as for the product category U × G; however, the target maps and
composition are defined differently. There is more structure; the idea is that the ‘twist’ η encodes a connection form on a
traditional product bundle U × G → U .

Let us note that we do not use the term ‘twist’ to mean topological nontriviality of a bundle; it is, instead, a more subtle
notion that is expressed, for instance, in the way compositions of morphisms of P is defined. Our objective here is to create
a concept that is a useful categorical counterpart of product bundles to be used for local triviality of categorical principal
bundles.

There is too extensive a literature in category theoretic geometry to offer a comprehensive review here. Broadly related
to our work are those of Abbaspour andWagemann [1], Aschieri et al. [2], Attal [3,4], Baez et al. [5,6], Barrett [7], Bartels [8],
Breen and Messing [9], Gawędzki and Reis [10], Murray [11], Picken et al. [12–14], Parzygnat [15], Schreiber and Waldorf
[16,17], Soncini and Zucchini [18], and Viennot [19].
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2. Categorical principal bundles

In this section we review the fundamentals of the theory of categorical principal bundles and categorical connections in
the framework developed in our work [20,21]. Let us note once and for all that for our categories, objects and morphisms
form sets; thus, associated to a category C there is the object set Obj(C) and the morphism set Mor(C).

2.1. Categorical groups

We begin with a summary of the essentials of categorical groups. The concepts and results we discuss here are standard.
References that may be consulted for more information include [22–24].

By a categorical group Gwe mean a category G along with a functor

G × G → G (2.1)

that makes both Obj(G) and Mor(G) groups. Useful consequences include the following: (i) the identity-assigning map

Obj(G) → Mor(G) : x → 1x

is a homomorphism, (ii) the source and target maps

s, t : Mor(G) → Obj(G) (2.2)

are both homomorphisms; (iii) the following exchange law, expressing functoriality of (2.1), holds

(φ2ψ2) ◦ (φ1ψ1) = (φ2 ◦ φ1)(ψ2 ◦ ψ1) (2.3)

for all φ1, φ2, ψ1, ψ2 ∈ Mor(G).
A categorical Lie group is a categorical group G for which both Obj(G) and Mor(G) are Lie groups and the maps s, t and

x → 1x are smooth.
A crossed module is a pair of groups G and H , along with maps

α : G × H → H : (g, h) → αg(h) and τ : H → G,

where τ is a homomorphism,αg is an automorphismofH for each g ∈ G, and themap g → αg ∈ Aut(H) is a homomorphism.
The target map τ and the map α interact through the relations

τ

αg(h)


= gτ(h)g−1 for all g ∈ G, h ∈ H;

ατ(h)(h′) = hh′h−1 for all h, h′
∈ H .

(2.4)

We can also write the second relation as

τ(h)h′τ(h)−1
= hh′h−1 for all h, h′

∈ H . (2.5)

When G and H are Lie groups, and α and τ are smooth, (G,H, α, τ ) is called a Lie crossed module.
There is a one-to-one correspondence between categorical (Lie) groups and (Lie) crossed modules. Given a categorical

group G, we take G = Obj(G), H = ker s, τ = t|H , and

αg(h) = 1gh1−1
g

for all g ∈ G and h ∈ H . Then Mor(G) is isomorphic to the semidirect product H oα G via the map

Mor(G) → H oα G : φ →

φ1s(φ)−1 , s(φ)


. (2.6)

The target map t , viewed as a mapping H oα G → G, is given by

t(h, g) = τ(h)g for all (h, g) ∈ H oα G. (2.7)

Let us also note that the binary operation in the semidirect product H oα G is given by

(h2, g2)(h1, g1) =

h2αg2(h1), g2g1


(2.8)

for all (h2, g2), (h1, g1) ∈ H oα G.
It will be convenient to identify h ∈ H with (h, e) ∈ H oα G and g ∈ Gwith (e, g) ∈ H oα G; then

hg = (h, g) (2.9)

and the product (2.8) becomes

h2g2h1g1 = h2αg2(h1)g2g1. (2.10)

The automorphism αg : H → H is then just conjugation:

αg(h) = ghg−1 for all h ∈ H and g ∈ G. (2.11)
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From the product formula in (2.10) we see then that

the H-component of (h2, g2)(h1, g1) is h2g2h1g−1
2 . (2.12)

The composition of morphisms in Mor(G) ≃ H oα G is given by

(h2, g2) ◦ (h1, g1) = (h2h1, g1); (2.13)

this composition is defined only for those (h2, g2), (h1, g2) ∈ H oα G for which

τ(h1)g1 = t(h1, g1) = s(h2, g2) = g2.

2.2. Categorical principal bundles

A right action of a categorical group G on a category P is a functor

P × G → P

which at the object level gives a right action of Obj(G) on Obj(P) and on the morphism level gives a right action of Mor(G)
on Mor(P). We say that this action is free if it is free both at the object level and at the morphism level.

A categorical principal bundle comprises categoriesP andB alongwith a right action of a categorical groupG onP satisfying
the following conditions:

(b1) π is surjective both at the level of objects and at the level of morphisms;
(b2) the action of G on P is free on both objects and morphisms;
(b3) the action of Obj(G) preserves the fiber π−1(b) and its action on this fiber is transitive, for each object b ∈ Obj(B); the

action of Mor(G) preserves the fiber π−1(φ) and its action on this fiber is transitive, for each morphism φ ∈ Mor(B).

(This definition is from [20].)
In the central examples of interest both Obj(P) andObj(B) aremanifolds, while themorphisms arise from certain types of

paths on thesemanifolds. (Themanifold itself might be a space of paths). In this context, of course, the functors all arise from
continuous maps. However, we do not explicitly use any topological results and therefore have not spelled out a topology
in this work.

A categorical principal bundle contains much more than just the projection functor: the action of the categorical group
G on P includes a considerable amount of structure because it operates on both morphisms and objects in a way that is
consistentwith the source and targetmaps. In examples of interest the source and targetmaps themselves contain nontrivial
data such as information onparallel transport arising froma connection. This is discussed inmore detail in Section 6.3. Unlike
the case of classical bundles there are multiple distinct notions of triviality; for this reason we do not build a requirement of
local triviality into the definition of a categorical principal bundle.

3. The product categorical bundle

Our definition of categorical principal bundle does not require local triviality. In order to formulate a notion of local
triviality we need to study a categorical counterpart of a trivial bundle. Traditionally a principal bundle is trivial if it is
isomorphic, as a principal bundle, to a product bundle. Moreover, in the traditional setting, a principal bundle is trivial if and
only if it has a global section (of the relevant degree of smoothness). In this section we will study the categorical analog of
a product bundle and related ideas and results.

A product categorical principal bundle is given by the projection on the first factor

U × G → U,

where U is any category and G is a categorical group acting on the right on U × G in the obvious way.
An object of U × G is of the form

(a, g) ∈ U × G = Obj(U)× Obj(G).

A morphism of U × G is of the form

(γ , h, g) ∈ Mor(U)× (H oα G).

Its source and target are given by

s(γ , h, g) =

s(γ ), g


and t(γ , h, g) =


t(γ ), τ (h)g


. (3.1)

The right action at the level of objects is given by

(a, g)g1 = (a, gg1)
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and, recalling (2.8), at the level of morphisms by

(γ , h, g)(h1, g1) =

γ , hαg(h1), gg1


, (3.2)

which we can also display as
(γ , hg)h1g1 = (γ , hgh1g1). (3.3)

Composition of morphisms is given by composition in each component:
(γ2, h2, g2) ◦ (γ1, h1, g1) = (γ2 ◦ γ1, h2h1, g1), (3.4)

where we have used the composition law in G, given by (2.13), in the second component, with g2 = τ(h1)g1.
A section of a traditional product bundle
π : U × G → U : (a, g) → a

is a mapping
s : U → U × G

for which π ◦ s(a) = a for all a ∈ U . Thus a section is of the form
U → U × G : a →


a, ψ(a)


,

where ψ : U → G is a mapping. The set of all mappings U → G is a group under pointwise multiplication.
Analogously, for the categorical product bundle

U × G → U
we can view sections as corresponding to functors

U → G.
Wewill study the nature of such functors and show that these functors along with natural transformations between them form
a categorical group.

We discuss our results first, collecting the proofs all together after this discussion.
Our first step is to specify a concrete way of encoding functors U → G. As we see in the following proposition, such a

functor Ψ can be understood completely in terms of a function g : Obj(U) → G and a function h : Mor(U) → H .

Proposition 3.1. Let U be any category and G a categorical group. Let U = Obj(U), G = Obj(G) and H = ker s : Mor(G) → G,
as usual, so that Mor(G) = H oα G, for a homomorphism α : G → Aut(H). For notational convenience we write the target and
source of a morphism as

γ1 = t(γ ) and γ0 = s(γ ).

Suppose

Ψ : U → G

is a functor. Then there are functions

g : U → G and hΨ : Mor(U) → H (3.5)

such that

Ψ(a) = g(a) for all a ∈ Obj(U)

Ψ(γ ) =

hΨ (γ ), g(γ0)


for all γ ∈ Mor(U),

(3.6)

wherein γ0 = s(γ ); moreover, the function hΨ has the following properties:

hΨ (γ
′
◦ γ ) = hΨ (γ

′)hΨ (γ ) (3.7)

for all γ , γ ′
∈ Mor(U) for which the composite γ ′

◦ γ is defined, and

τ

hΨ (γ )


= g


γ1


g

γ0

−1
. (3.8)

In the converse direction, suppose h : U → H is a function and g : U → G the function given by

g = τ ◦ h : U → G.

Then the assignments:

Ψ(a) = g(a) for all a ∈ U;

Ψ(γ ) =

h(γ1)h(γ0)−1, g(γ0)


for all γ ∈ Mor(U)

(3.9)

specify a functor Ψ : U → G.
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Our next observation is that the pointwise-defined product of two functors U → G is another such functor, and indeed
the such functors form a group under this pointwise multiplication.

Proposition 3.2. Suppose

Ψ 1,Ψ 2 : U → G

are functors, where U is any category and G is a categorical group. Then the pointwise product

Ψ 2Ψ 1 : U → G

is also a functor. The functors U → G form a group under pointwise multiplication.

A natural transformation T from a functor Ψ 1 : U ⇒ G to a functor Ψ 2 : U → G is, by definition, an assignment to each
object a ∈ Obj(U) a morphism

T(a) : Ψ 1(a) → Ψ 2(a)

such that the diagram

Ψ1(a)

T(a)

��

Ψ1(f ) // Ψ1(b)

T(b)

��
Ψ2(a)

Ψ2(f )
// Ψ2(b)

(3.10)

commutes for all morphisms f : a → b in Mor(U).
The following result gives an explicit description of such transformations; every such transformation arises from a

function Obj(U) → H .

Proposition 3.3. Suppose

Ψ 1,Ψ 2 : U → G

are functors, where U is a category and G is a categorical group, and suppose

T : Ψ 1 ⇒ Ψ 2

is a natural transformation. Let (G,H, α, τ ) be the crossed module associated to G, so that Mor(G) = H oα G and Obj(G) = G.
Then there is a function

hT : Obj(U) → H

such that

Ψ 2(a) = τ

hT(a)


Ψ 1(a) (3.11)

and

hΨ2(f ) = hT(b)hΨ1(f )hT(a)−1 (3.12)

for all morphisms f : a → b in Mor(U), where the notation hΨ i(f ) is specified by denoting the morphism Ψ i(f ) ∈ Mor(G) =

H oα G as

hΨ i(f ), gΨ i(f )


:

Ψ i(f ) =

hΨ i(f ), gΨ i(f )


.

Now let us consider natural transformations T : Ψ 1 ⇒ Ψ 2 and T′
: Ψ ′

1 ⇒ Ψ ′

2 between functors U → G. Then we can
define a pointwise product T′T that associates to each object a ∈ Obj(U) the morphism

(T′T)(a) def
= T′(a)T(a) : Ψ ′

1(a)Ψ 1(a) → Ψ ′

2(a)Ψ 2(a).

From the two commuting diagrams in Mor(G)

Ψ1(a)

T(a)

��

Ψ1(f ) // Ψ1(b)

T(b)

��
Ψ2(a)

Ψ2(f )
// Ψ2(b)

Ψ ′

1(a)

T′(a)
��

Ψ ′
1(f ) // Ψ ′

1(b)

T′(b)
��

Ψ ′

2(a)
Ψ ′
2(f )

// Ψ ′

2(b)

(3.13)



134 S. Chatterjee et al. / Journal of Geometry and Physics 98 (2015) 128–149

we obtain the ‘pointwise product diagram’

Ψ1(a)Ψ ′

1(a)

T′(a)T(a)
��

Ψ1(f )Ψ ′
1(f ) // Ψ1(b)Ψ ′

1(b)

T′(b)T(b)
��

Ψ2(a)Ψ ′

2(a)
Ψ2(f )Ψ ′

2(f )
// Ψ2(b)Ψ ′

2(b)

. (3.14)

Functoriality of the group operation G × G → G implies that this diagram commutes.
Thus we have a product operation on the natural transformations between functors U → G.
If

T1 : Ψ 1 ⇒ Ψ 2 and T2 : Ψ 2 ⇒ Ψ 3

are natural transformations then the composite

T2 ◦ T1 : Ψ 1 ⇒ Ψ 3

is defined by

(T2 ◦ T1)(a) = T2(a) ◦ T1(a) : Ψ 1(a) → Ψ 3(a) for all a ∈ Obj(U). (3.15)

With the composition law (3.15) we obtain a category

GU (3.16)

where objects are functors U → G and morphisms are natural transformations between such functors. As we have already
seen, both Mor(GU) and Obj(GU) are groups.

If T1,T2 and T′

1,T
′

2 are natural transformations for which the composites T2 ◦ T1 and T′

2 ◦ T′

1 are defined then

(T′

2T2) ◦ (T′

1T1) = (T′

2 ◦ T′

1)(T2 ◦ T1). (3.17)

We prove this by applying to any object a ∈ Obj(U):

[(T′

2T2) ◦ (T′

1T1)](a) = (T′

2T2)(a) ◦ (T′

1T1)(a)

=

T′

2(a)T2(a)

◦


T′

1(a)T1(a)


=

T′

2(a) ◦ T′

1(a)


T2(a) ◦ T1(a)


(because the group operation on G is functorial)

= [(T′

2 ◦ T′

1)(T2 ◦ T1)](a). (3.18)

It is well known [24, page 42] that there are two compositions, satisfying the exchange law (3.17), for certain categories
whose objects are morphisms and whose arrows are natural transformations. However, our situation here is different and
the second operation between natural transformations is defined using the group structure on G.

The exchange law (3.17) says that the group operation

GU
× GU

→ GU

is functorial.
Thus we have proved:

Proposition 3.4. GU is a categorical group.

We now present the proofs of the results of this section.

Proof of Proposition 3.1. We define the function g by the first equation in (3.6). Then, writing Ψ(γ ) as

Ψ(γ ) =

hΨ (γ ), gΨ (γ )


, (3.19)

we have

s

hΨ (γ ), gΨ (γ )


= sΨ(γ ) = Ψ s(γ ) = g


γ0


t

hΨ (γ ), gΨ (γ )


= tΨ(γ ) = Ψ t(γ ) = g(γ1).

(3.20)

From the first equation we have

gΨ (γ ) = g(γ0). (3.21)
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The second equation says

τ

hΨ (γ )


gΨ (γ ) = g


γ1


. (3.22)

Using the value gΨ (γ ) = g(γ0)we then obtain

τ

hΨ (γ )


= g


γ1


g

γ0

−1
. (3.23)

Since Ψ is a functor we also have

Ψ(γ ′
◦ γ ) = Ψ(γ ′) ◦ Ψ(γ ),

whenever the composite γ ′
◦γ is defined in Mor(U) and so, focusing on what this says about the H-component, we see that

hΨ (γ
′
◦ γ ) = hΨ (γ

′)hΨ (γ ). (3.24)

Now we verify the converse implication. Suppose Ψ : U → G is given on objects and morphisms by (3.9). It is clear that Ψ

carries identity morphisms to identity morphisms. Next we verify that Ψ respects sources and targets:

sΨ(γ ) = g(γ0) = Ψ(sγ )

tΨ(γ ) = τ

h(γ1)h(γ0)−1


g(γ0)

= g(γ1)
= Ψ(tγ ).

(3.25)

Finally, we verify that Ψ preserves compositions: if γ , γ ′
∈ Mor(U) are such that t(γ ) = s(γ ′) then

Ψ(γ ′) ◦ Ψ(γ ) =


h(γ ′

1)h(γ
′

0)
−1, g(γ ′

0)


◦


h(γ1)h(γ0)−1, g(γ0)


=


h(γ ′

1)h(γ0)
−1, g(γ0)


using h(γ ′

0) = h(γ1)

= Ψ(γ ′
◦ γ ). (3.26)

Thus Ψ is a functor. �

Proof of Proposition 3.2. First we check the behavior of sources and targets; for the source we have

s


Ψ 2Ψ 1

(γ )


= s


Ψ 2(γ )


s

Ψ 1(γ )


= Ψ 2


s(γ )


Ψ 1


s(γ )


=


Ψ 2Ψ 1


s(γ )


for all γ ∈ Mor(U), and similarly for targets. Next we check compositions:

Ψ 2Ψ 1

(γ2 ◦ γ1) = Ψ 2(γ2 ◦ γ1)Ψ 1(γ2 ◦ γ1)

=


Ψ 2(γ2) ◦ Ψ 2(γ1)


Ψ 1(γ2) ◦ Ψ 1(γ1)


=


Ψ 2(γ2)Ψ 1(γ2)


◦


Ψ 2(γ1)Ψ 1(γ1)


(3.27)

where the last equality follows on using the fundamental property of a categorical group that the group operation

G × G → G

is a functor. Hence
Ψ 2Ψ 1


(γ2 ◦ γ1) =


Ψ 2Ψ 1


(γ2)


◦


Ψ 2Ψ 1


(γ1)


.

Next, for any object a ∈ Obj(U)we have
Ψ 2Ψ 1


(1a) = Ψ 2(1a)Ψ 1(1a) = 1Ψ2(a)1Ψ1(a) = 1Ψ2(a)Ψ1(a).

Thus Ψ 2Ψ 1 is a functor.
If a functor E : U → G is to be the identity under pointwise multiplication its value on every object must be the identity

element e ∈ Mor(G) and its value on every morphism must be the identity element 1e ∈ Mor(G). It is readily checked E is
indeed a functor. Next, we verify that the pointwise inverse Ψ inv of a functor Ψ is also a functor. For the source we have, for
any morphism γ of U,

s

Ψ inv(γ )


= s


Ψ(γ )−1


= s


Ψ(γ )

−1
= Ψ inv


s(γ )


, (3.28)
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because s : Mor(G) → Obj(G) is a homomorphism and we have denoted the multiplicative inverse of Ψ(γ ) in the group
Mor(G) by Ψ(γ )−1 (let us note that this denotes the multiplicative inverse, not compositional inverse). Thus

s ◦ Ψ inv
= Ψ inv

◦ s.

Replacing s by t in the argument used above we see that Ψ inv also respects targets. Now consider morphisms γ1, γ2 ∈ U for
which the composite γ2 ◦ γ1 is defined. Then

Ψ inv(γ2) ◦ Ψ inv(γ1)


Ψ(γ2) ◦ Ψ(γ1)


=


Ψ inv(γ2)Ψ(γ2)


◦


Ψ inv(γ1)Ψ(γ1)


(since multiplication G × G → G is a functor)

= 1e ◦ 1e where e is the identity element in Obj(G)
= 1e. (3.29)

Therefore,
Ψ inv(γ2) ◦ Ψ inv(γ1)


=


Ψ(γ2) ◦ Ψ(γ1)

−1

= Ψ inv(γ2 ◦ γ1). (3.30)

Finally,

Ψ inv(1a) = Ψ(1a)
−1

= 1−1
Ψ(a) = 1Ψ(a)−1 = 1Ψ inv(a),

(with f −1 denoting themultiplicative inverse of any f ∈ Mor(G)) because

Obj(G) → Mor(G) : x → 1x

is a homomorphism. Thus Ψ inv is in fact also a functor U → G.
Finally, it is clear that pointwise multiplication on functors U → G is an associative operation. �

Proof of Proposition 3.3. For any a ∈ Obj(U), the values Ψ 1(a) and Ψ 2(a) are objects of G, which means that they are
elements of G, and T(a) : Ψ 1(a) → Ψ 2(a), being a morphism of G, is given by some


hT(a), gT(a)


∈ H oα G = Mor(G):

T(a) =

hT(a), gT(a)


∈ H oα G. (3.31)

Then

Ψ 1(a) = s

hT(a), gT(a)


= gT(a)

Ψ 2(a) = t

hT(a), gT(a)


= τ


hT(a)


gT(a).

(3.32)

This proves (3.11).
Next, working with any morphism

f : a → b

in U, we write

Ψ i(f ) =

hi(f ), gi(f )


for i ∈ {1, 2},

where the source gi(f ) is, as we have already observed in (3.32), given by gT(a) if i = 1 and by τ

hT(a)


gT(a) if i = 2. Using

the commuting diagram (3.10), expressed more explicitly as

Ψ 2(f ) ◦ T(a) = T(b) ◦ Ψ 1(f ), (3.33)

we have
h2(f ), g2(f )


◦ T(a) = T(b) ◦ Ψ 1(f ). (3.34)

Using the expression T(a) =

hT(a), gT(a)


and similarly for T(b)we then have

h2(f )hT(a), gT(a)


=

hT(b)h1(f ), gT(a)


. (3.35)

From this we see that

h2(f ) = hT(b)h1(f )hT(a)−1,

which is the same as (3.12). �
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4. Sections and product structure

As before, we work with a principal categorical bundle

π : P → B,
having structure categorical group G. Let U be a subcategory of B. A section σ of the bundle π : P → B over U is a functor

σ : U → P
for which π ◦ σ is the identity functor. Now let

PU
def
= π−1(U)

be the subcategory of Pwhose objects and morphisms project down to objects and morphisms, respectively, of U. Then the
functor

πU : PU → U
given by restriction of π is a principal categorical bundle with structure categorical group G, as can be readily verified.
Consider then

Ψσ : U × G → PU (4.1)

defined on objects by

Ψσ (a, g) = σ(a)g for all a ∈ Obj(U) and g ∈ Obj(G), (4.2)

and on morphisms by

Ψσ


γ ,ψ


= σ(γ )ψ for all γ ∈ Mor(U) and ψ ∈ Mor(G). (4.3)

It is apparent that Ψσ is equivariant with respect to the action of G both on objects and on morphisms; for example, at the
object level,

Ψσ


(γ , ψ)ψ1


= Ψσ (γ , ψψ1)

= σ(γ )ψψ1

= Ψσ (γ , ψ)ψ1. (4.4)

Moreover,

πU ◦ Ψσ = pU : U × G → U,
which is the projection on the first factor. The conditions (b2) and (b3) defining a categorical principal bundle require that
the action ofG be free (condition (b2)) and transitive (condition (b3)) on each fiber both for objects and formorphisms. These,
along with the observations we have just made, imply that Ψσ is bijective, again both on objects and on morphisms. Let us
state the argument for objects (the case formorphisms being exactly analogous). First, if p ∈ P and a = π(p) then p and σ(a)
lie on the same fiber and so p = σ(a)g for some g ∈ G; thusΨσ is surjective on objects. Next, supposeΨσ (a, g) = Ψσ (a′, g ′);
applying π we have

a = π

Ψσ (a, g)


= π


Ψσ (a′, g ′)


= a′,

and then from

Ψσ (a)g = Ψσ (a)g ′

it follows that g = g ′ because the action of G is free. Thus Ψσ is also injective.
Finally, let us verify that Ψσ preserves composition of morphisms. Consider the composite morphism

(γ2, ψ2) ◦ (γ1, ψ1) ∈ Mor(U × G);
then

Ψσ


(γ2, ψ2) ◦ (γ1, ψ1)


= Ψσ (γ2 ◦ γ1, ψ2 ◦ ψ1)

= σ(γ2 ◦ γ1)(ψ2 ◦ ψ1)

=


σ(γ2) ◦ σ(γ1)


(ψ2 ◦ ψ1)

(because σ is a functor)

=


σ(γ2)ψ2


◦


σ(γ1)ψ1


(because the action P × G → P is a functor)

= Ψσ (γ2, ψ2) ◦ Ψσ (γ1, ψ1). (4.5)

To summarize, we have proved the ‘if’ part of the categorical analog of a basic observations about bundles:
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Proposition 4.1. Suppose π : P → U is a principal categorical bundle with structure categorical group G. Then π admits a
section if and only if there is an isomorphism of categories

Ψ : U × G → P

that is equivariant with respect to the action of G and preserves fibers in the sense that

pU ◦ Ψ = π,

where pU : U × G → U is the functor that projects on the first factor.

The ‘only if’ part is readily verified: it is clear that

U → U × G : u → (u, e),

with obvious meaning, is a section of pU.
Let us now consider the case in the preceding Proposition when P is itself also the product categorical bundleU×G; thus

consider a categorical principal bundle isomorphism functor

Φ : U × G → U × G; (4.6)

it is equivariant with respect to the G-action and preserves the first component. Consequently, it is given on objects and
morphisms by

Φ(a, g) = Φ(a, e)g =

a, σΦ(a)g


for all (a, g) ∈ Obj(U)× Obj(G)

Φ(γ , ψ) = Φ(γ , e)φ =

γ , σΦ(γ )φ


,

for all (γ , φ) ∈ Mor(U)× Mor(G),

(4.7)

where e in the first line is the identity in Obj(G) and in the second line it is the identity in Mor(G). Functoriality ofΦ means,
in particular, that it preserves sources and targets in the sense thatΦs = sΦ andΦt = tΦ; applying this in (4.7) with g = e
and ψ = e = 1e we have

sσΦ(γ ) = σΦs(γ )
tσΦ(γ ) = σΦ t(γ ),

(4.8)

where σΦ is as given by (4.7). It is also clear from the functoriality of Ψ that σΨ takes compositions to compositions and
identity morphisms to identity morphisms. Thus σΦ is a functor U → G. We summarize this observation now.

Proposition 4.2. Suppose U is a category, G a categorical group, and

Φ : U × G → U × G; (4.9)

is a functor that preserves the first component and is equivariant under the right action of G on U × G. Then there is a functor

σΦ : U → G (4.10)

such that Φ is given on objects and morphisms by (4.7). Conversely, if σ : U → G is a functor then Ψ , as specified by (4.7) with
σ replacing σΨ , is a functor that preserves the first component and is G-equivariant.

Proof. We have already established the direct implication. The converse is readily verified. �

Continuing with the notation σΨ we can see that if

Ψ 1,Ψ 2 : U × G → U × G

are functors then Ψ 2 ◦ Ψ 1 is also a functor. The corresponding functor U → G is given by

σΨ2◦Ψ1 = σΨ2σΨ1 . (4.11)

Thus the product operation in the categorical group GU corresponds to composition of functorial automorphisms of U × G.

5. Functorial cocycles

We continue working with a principal categorical bundle

π : P → B

with structure categorical group G.
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Fig. 1. A morphism of Uj
i .

Now suppose that the ‘object’ bundle

π : P = Obj(P) → B = Obj(B)

is a principal G-bundle in the usual sense. In particular, P and B are topological spaces.
Let

{Ui}i∈I

be an open covering of B for which the bundle π : P → B trivializes over each Ui in the sense that there is a G-equivariant
diffeomorphism

φi : Ui × G → π−1(Ui) (5.1)

for which any point of the form (u, g) is mapped to a point on the fiber in P lying over u ∈ Ui.
We denote by

Uj
i

the categorywhose objects are the points ofUi labeledwith i alongwith the points ofUj, labeledwith j, andwhosemorphisms
are the morphisms γ of Bwith source in Ui and target in Uj, along with all the needed identity morphisms. Thus

Obj(Uj
i) = ({i} × Ui) ∪ ({j} × Uj)

Mor(Uj
i) = {γ ∈ Mor(B) : s(γ ) ∈ Ui, t(γ ) ∈ Uj} ∪ {idx : x ∈ Obj(Uj

i)}.
(5.2)

Source and target mappings are defined by requiring that source of any γ ∈ Mor(Uj
i) be


j, s(γ )


and the target be


j, t(γ )


.

Note that, technically, these source and target maps depend on i and j. In the object set Obj(Uj
i)we are labeling the points of

Ui with i, a tracking mechanism that is useful when considering transition functions. Fig. 1 illustrates a typical morphism.
In the notation used for the categoriesUk

i subscripts indicate the source and superscripts indicate the target.Wewillmaintain
this convention in our notation for categories whose morphisms begin and end in potentially different subsets of a given
object space.

If we elevate φi to a local product structure at the categorical level then we should have, by analogy, an isomorphism of
categorical principal bundles

Φ
j
i : Uj

i × G → Pj
i, (5.3)

where Pj
i is the part of P that projects down to Uj

i. Let us be more precise about what this means: the objects of Pj
i are of the

form (i, p) with p ∈ π−1(Ui) and of the form (j, q) with q ∈ π−1(Uj); a morphism of Pj
i is either an identity morphism or a

morphism γ ∈ Mor(P)whose source lies in π−1(Ui) and whose target lies in π−1(Uj). Thus

Obj(Pj
i) = {(i, p) : p ∈ π−1(Ui)} ∪ {(j, q) : q ∈ π−1(Uj)}, (5.4)

and morphisms are given similarly. The source and target maps are defined in the obvious way.
Let us now consider what happens on the overlap category

Ujl
ik, (5.5)

whose object set and morphism set are given as follows. The object set of Ujl
ik consists of all points of the form (ik, u) with

u ∈ Ui ∩ Uk, along with all points of the form (jl, v)with v ∈ Uj ∩ Ul:

Obj(Ujl
ik) = {(ik, u) : u ∈ Ui ∩ Uk} ∪ {(jl, v) : v ∈ Uj ∩ Ul}. (5.6)

Aside from the identity morphisms, a morphism γ of Ujl
ik is a morphism of Bwith source in Ui ∩ Uk and target in Uj ∩ Ul; the

source of γ in Ujl
ik is then


ik, s(γ )


and the target is


jl, t(γ )


. (More technically, the ‘intersection’ (5.5) is a product in the
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Fig. 2. A morphism of Ujl
ik .

category given by the partially ordered set whose elements are of the form Uβα , with α and β being n-tuples of indices and
n ≥ 1, and the ordering relation is obtained by inclusions.) Fig. 2 illustrates the idea.

A local product structure of Pl
k is expressed through a functorial isomorphism of categorical bundles

Φl
k : Ul

k × G → Pl
k. (5.7)

Transitioning from this trivialization of Pl
k to the corresponding trivialization of Pj

i, assuming that Ui ∩ Uk and Uj ∩ Ul are
nonempty, we obtain the functor

Σ
jl
ik : Ujl

ik × G → Ujl
ik × G, (5.8)

obtained by first applying Φl
k and then applying the inverse of Φ

j
i. Note that the functor Σ

jl
ik describes transition from the

trivialization labeled
l

k
to the one labeled

j

i
.

By the method of Proposition 4.2 (specifically (4.7)) this corresponds then to a functor

σ
j l
i k : Ujl

ik → G. (5.9)

For example, at the object level this is obtained from the functor Σ
j l
i k by picking out the second component:

Σ
j l
i k


x, e


=


x, σ j l

i k(x)


(5.10)

where x is either of the form (ik, u)with u ∈ Ui ∩ Uk or of the form (jl, v)with v ∈ Uj ∩ Ul. Taking x to be a morphism γ of
Ujl

ik and e the identity in Mor(G) produces the definition of σ j l
i k(γ ).

Thus,

Φ
j
i
−1

Φl
k


x, e


= (x, e)σ j l

i k(x) (5.11)

for all x for which the expression on the left makes sense. This is the exact functorial counterpart of the definition of the
classical transition function gαβ given in (1.2).

Even more explicitly, taking x to be an object of the form (ik, u)we first apply Φl
k to


(k, u), e


to obtain an object

(k, p∗) = Φl
k


(k, u), e


∈ Obj(Pl

k) (5.12)

and then take σ j l
i k(x) to be the element of the group Obj(G) for which

Φ
j
i


(i, u), σ j l

i k(x)


= (k, p∗). (5.13)

Thus at the object level the transition functor σ j l
i k is given by an Obj(G)-valued function on Obj(Uk

j ):

{(ik, u) : u ∈ Ui ∩ Uk} ∪ {(jl, v) : v ∈ Uj ∩ Ul} → Obj(G), (5.14)

a counterpart to the traditional function that is made up of a bundle transition function over Ui ∩ Uk along with a bundle
transition function over Uj ∩ Ul.

We turn now to discuss the behavior of transition functors in a triple overlap of the categories Uj
i. For this we need to

first specify some necessary notation for triple overlaps.
We define triple overlap categories Ujln

ikm entirely analogously to the double overlaps we have considered before. We take
the object set of Ujln

ikm to be Uikm ∪Ujln, where a typical point of Uikm is of the form (ikm, a)with a ∈ Ui ∩Uk ∩Um. Morphisms
are all the identity morphisms along with the morphisms of U that have source in Ui ∩ Uk ∩ Um and target in Uj ∩ Ul ∩ Un,
as illustrated in Fig. 3.

Restricting the transition functor σ j l
i k to the triple overlap category Ujln

ikm we obtain

σ
j l |n|
i k |m|

: Ujln
ikm → G. (5.15)
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Fig. 3. A morphism γ ∈ Mor(Ujln
ikm)with source (ikm, u) and target (jln, v).

Thus for an object (ikm, u) of Ujln
ikm we set

σ
j l |n|
i k |m|

(ikm, u) = σ
j l
i k(ik, u)

σ
j l |n|
i k |m|

(jln, v) = σ
j l
i k(jl, v),

(5.16)

and for a morphism γ ∈ Mor(Ujln
ikm)we set

σ
j l |n|
i k |m|

(γ ) = σ
j l
i k(γ ). (5.17)

Restricting the other transition functors σ .... in different ways we have the functor

σ
|j| l n
|i| km : Ujln

ikm → G (5.18)
and the functor

σ
j |l| n
i |k|m : Ujln

ikm → G. (5.19)
Consistency of transitions requires that

σ
j l |n|
i k |m|

σ
|j| l n
|i| km = σ

j |l| n
i |k|m. (5.20)

This equation is more easily understood by simplifying the notation:

σ
j l
i kσ

l n
km = σ

j n
i m, (5.21)

where it is understood that each functor σ .... has been restricted to the triple overlap Ujln
ikm. This is just as in the classical

cocycle relation (1.3):
gαβgβγ = gαγ (5.22)

for transition functions gαβ defined on Uα ∩Uβ , and in this relation it is understood that the functions g.. are all restricted to
Uα ∩ Uβ ∩ Uγ . The analogy between the classical cocycle relation (5.22) and the functorial one (5.21) is seen more sharply

on thinking of the index α as


j
i


, the index β as


l
k


and γ as

 n
m


.

To establish the cocycle relation (5.20) we apply the relation
(Φ

j
i)

−1
◦ Φl

k


◦


(Φl

k)
−1

◦ Φn
m


= (Φ

j
i)

−1
◦ Φn

m (5.23)

to (x, e)which is either an object or a morphism of Ujln
ikm; however, in order to apply the double-indexed functors σ .... to xwe

need to restrict them first, for example as

σ
|j| l n
|i| km(x).

Thus the right side of (5.23) applied to (x, e) gives:

(Φ
j
i)

−1
◦ Φn

m(x, e) =

x, σ j |l| n

i |k|m(x)

. (5.24)

We apply the left side of (5.23) to (x, e) by repeating this procedure:
(Φ

j
i)

−1
◦ Φl

k


◦


(Φl

k)
−1

◦ Φn
m


(x, e) =


(Φ

j
i)

−1
◦ Φl

k

 
x, σ |j| l n

|i| km(x)


=


(Φ

j
i)

−1
◦ Φl

k

 
x, e


σ

|j| l n
|i| km(x)

=

x, σ j l

i k(x)

σ

|j| l n
|i| km(x)

= (x, e)σ j l |n|
i k |m|

(x)σ |j| l n
|i| km(x). (5.25)

This establishes the consistency relation (5.20) among transition functors.
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The system of functors {σ .... } forms a special type of functorial cocycle. We will return to this shortly, after exploring
G-valued cocycles directly, without involving bundles in the definition.

5.1. Cocycles

Consider as given the following data:

(gh2) for every i, j ∈ I a smooth function

hij : Ui ∩ Uj → H

(gh3) for every i, j, k ∈ I a smooth function

hijk : Ui ∩ Uj ∩ Uk → H

satisfying the following cocycle condition

hijkhik = hijhjk on Ui ∩ Uj ∩ Uk, (5.26)

for all i, j, k ∈ I; thus applying hijk to hik has the effect of splitting it into two factors with the subscripts ij and jk.
As we have seen above, it will sometimes be necessary to label a point of Ui ∩ Uj with ij to encode the information about

the indices i and j; to this end we write

Uij = {ij} × (Ui ∩ Uj), (5.27)

and define Uijk analogously. Moreover, we use the notation

U j
i = {γ ∈ Mor(B) : s(γ ) ∈ Ui, t(γ ) ∈ Uj}. (5.28)

and

U jl
ik and U jln

ikm,

defined analogously; for example,

U jl
ik = {γ ∈ Mor(B) : s(γ ) ∈ Ui ∩ Uk and t(γ ) ∈ Uj ∩ Ul}. (5.29)

Let us recall from (5.5) the categories Ujl
ik specified by:

Obj(Ujl
ik) = Uik ∪ Ujl (5.30)

and

Mor(Ujl
ik) = U jl

ik ∪ {ida : a ∈ Ujl ∪ Uik}, (5.31)

where ida is the identity morphism a → a. The source and target maps are defined in the obvious way: if γ ∈ Mor(Ujl
ik) then

sjlik(γ ) =

ik, s(γ )


and t jlik(γ ) =


jl, t(γ )


. (5.32)

Thus the overlap category Ujl
ik is ‘almost’ Uj

i ∩Ul
k, except that the objects are labeled with ik or jl; or else, if for example i ≠ k,

the intersection Uj
i ∩ Ul

k would be empty.

5.2. Functorial cocycles

Now let us define functors

θ
j l
i k : Ujl

ik → G (5.33)

given on objects by

θ
j l
i k(mn, a) = gmn(a)

def
= τ


hmn(a)


(5.34)

for all a ∈ Umn, wheremn ∈ {ik, jl}, and on morphisms by

θ
j l
i k(γ ) =


hjl(γ1)hik(γ0)

−1, gik(γ0)


(5.35)

where γ0 = s(γ ) and γ1 = t(γ ). When γ = ida we take

θ
j l
i k(ida) =


e, gik(a)


. (5.36)
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The categoryUjln
ikm can be viewed as a subcategory ofUjn

im in the obviousway (with objects identified using the appropriate
indices).

On the triple overlap category Ujln
ikm, assumed non-empty, we have the ‘‘restricted’’ functors (as in (5.16))

θ
j l |n|
i k |m|

= θ
jl
ik|U

jln
ikm : Ujln

ikm → G

θ
|j| l n
|i| km = θ lnkm|Ujln

ikm : Ujln
ikm → G.

(5.37)

We also have the restricted functor

θ
j |l| n
i |k|m = θ

jn
im|Ujln

ikm : Ujln
ikm → G. (5.38)

There is a fundamental consistency relation between these restrictions, as we explain in the following result.

Proposition 5.1. With framework and notation as above, there is a natural transformation

T :

θ
j l |n|
i k |m|


θ

|j| l n
|i| km


→ θ

j |l| n
i |k|m (5.39)

for which the function hT of Proposition 3.3 is given on Uikm by (ikm, a) → hikm(a) and on Ujln by (jln, a) → hjln(a).

Comparing with (5.20), we see that in the earlier context T is simply equality in that case. We can also state (5.39) as we
did (5.21) by simplifying the notation:

T : θ
j l
i kθ

l n
km → θ

j n
i m. (5.40)

Proof. We work with any γ ∈ U jln
ikm. We have

θ
j l |n|
i k |m|

(γ ) =


hjl(γ1)hik(γ0)

−1, gik(γ0)


θ
|j| l n
|i| km(γ ) =


hln(γ1)hkm(γ0)

−1, gkm(γ0)

.

(5.41)

Using the formula (2.12) we see that the H-component of the product

θ
j l |n|
i k |m|


θ

|j| l n
|i| km


is

hjl(γ1)hik(γ0)
−1gik(γ0)hln(γ1)hkm(γ0)

−1gik(γ0)−1. (5.42)

‘Gauge-transforming’ by the values of the function hikm and hjln at the source and target points, respectively, produces:

hjln(γ1)
−1hjl(γ1)hik(γ0)

−1gik(γ0)hln(γ1)hkm(γ0)
−1gik(γ0)−1hikm(γ0). (5.43)

Now for any h ∈ H and any g1 ∈ G for which τ(g1) = h1 we have

g1hg−1
1 = α


τ(h1)


(h) = h1hh−1

1 (5.44)

by the crossed module relation (2.5).
Using this we have

hjln(γ1)
−1hjl(γ1)hik(γ0)

−1gik(γ0)hln(γ1)hkm(γ0)
−1gik(γ0)−1hikm(γ0)

= hjln(γ1)
−1hjl(γ1)hik(γ0)

−1hik(γ0)hln(γ1) hkm(γ0)
−1hik(γ0)

−1hikm(γ0)

= hjln(γ1)
−1hjl(γ1)hln(γ1)hkm(γ0)

−1hik(γ0)
−1hikm(γ0)

= hjn(γ1)

hikm(γ1)

−1hik(γ0)hkm(γ0)
−1 using (5.26)

= hjn(γ1)him(γ0)
−1, (5.45)

which we recognize to be the H-component of

θ
j |l| n
i |k|m(γ ) =


hjn(γ1)him(γ0)

−1, gim(γ0)

. (5.46)

Thus the function hT is indeed the functionwhich implements the natural transformation as described in Proposition 3.3. �

5.3. Functorial cocycles in the large

The functorial cocycle given by the system of functors {θ
jn
ik } is a categorical analog of the traditional G-valued cocycle

{gij}i,j∈I , a family of G-valued (suitably regular) functions Ui → G, with i running over an indexing set and {Ui}i∈I an open
covering of a space B. In thisworkwewill not pursue the task of constructing the global categorical structure as a counterpart
to the traditional principal bundle that arises from a traditional G-valued cocycle.



144 S. Chatterjee et al. / Journal of Geometry and Physics 98 (2015) 128–149

6. Twisted-product categorical bundles

Consider a categorical principal G-bundle P → U that is a topological principal bundle both at the object and at the
morphism levels. Suppose, moreover, that both the object bundle and the morphism bundle are trivial. Nonetheless, the
composition of morphisms may still be nontrivial in the sense that P → U is not isomorphic to the categorical bundle
U×G → U. A product category has a very special structure and a general categorical bundle need not be locally isomorphic,
in a functorial way, to a product categorical bundle. For this reason we explore now a different type of local structure for
categorical bundles.

6.1. Twisted triviality

Consider a categorical principal bundle

π : P → U

with structure categorical Lie group G, where the object bundle P → U , where P = Obj(P) and U = Obj(U), is a smooth
principal bundle. As usual, there is the associated Lie crossed module (G,H, α, τ ). The base category U has as morphisms
paths on U . Suppose now that P → U is isomorphic to the product bundle U × G → U by means of a G-equivariant
diffeomorphism

F : U × G → P. (6.1)

Furthermore, we assume that there is a bijection

F : Mor(U)× Mor(G) → Mor(P) (6.2)

(we use the same notation F as before) which is equivariant in the sense that

F(γ , hg)h1g1 = F(γ , hgh1g1) (6.3)

and satisfies

π ◦ F(γ , hg) = γ

for all γ ∈ Mor(U) and h, h1 ∈ H and g, g1 ∈ G. The latter condition means that F and the projection maps π satisfy

π ◦ F = π, (6.4)

where π on the left is from P → U and on the right it is U × G → U. There is still considerable freedom in the choice of F ;
for example, we could replace it by F1 given by

F1(γ , hg) = F(γ , xγ )hg

where xγ is some arbitrary element in H oα G. To fix this degree of freedom we impose the further restriction that F maps
the usual source of (γ , e) to the source of F(γ , e):

sF(γ , e) = F

s(γ ), e


(6.5)

for all γ ∈ Mor(U). In view of the equivariance of F this implies

sF(γ , hg) = s

F(γ , e)hg


= s


F(γ , e)


s(hg)

= F

s(γ , e)


g

= F

s(γ , e)g


, (6.6)

wherein the second equality follows from the functorial nature of the right action of G on P:

P × G → P.

When all these conditions are satisfied we will say that F provides a trivialization for the categorical principal bundle
π : P → U and we say this bundle is twisted-trivial.

Let us note a crucial distinction between trivial categorical bundles and those that are twisted-trivial. There need
not be a functorial isomorphism between a twisted-trivial categorical bundle and a categorical product bundle. Thus
different twisted-trivial categorical bundles over the same category with the same categorical structure group need not
be categorically isomorphic. The point is that the mapping F discussed above is not required to be such that the target of
F(γ , hg) is F


t(γ ), t(hg)


.
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6.2. Twisted-product categorical principal bundle

Using F from (6.1) we form a category

U×F G,

with object set and morphism set given by

Obj(U×F G) = Obj(U)× Obj(G) = U × G
Mor(U×F G) = Mor(U)× Mor(G) = Mor(U)× (H × G),

(6.7)

and source/target maps and composition defined by requiring that F be a functor

U×F G → P.

(Let us note again that F is not meant to be a functor from the product category U × G to P.) In more detail, this means that
the source and target maps for U×F G are defined by

sF (γ , hg)
def
= F−1sF(γ , hg) =


s(γ ), g


(using (6.6))

tF (γ , hg)
def
= F−1tF(γ , hg) = F−1t


F(γ , e)hg


= F−1tF(γ , e)τ (h)g.

(6.8)

Since π : P → U is a functor it commutes with the target maps:

π tF(γ , e) = tπF(γ , e) = t(γ ), (6.9)

where we also used the condition π ◦ F = π noted in (6.4). From this we have

πF−1tF(γ , e) = π tF(γ , e) = t(γ ). (6.10)

Thus the object F−1tF(γ , e) in U×F G is of the form

t(γ ), ηF (γ )


for some element

ηF (γ ) ∈ G.

In other words,

F−1tF(γ , e) =

t(γ ), ηF (γ )


∈ U × G. (6.11)

Consequently

tF (γ , hg) =

t(γ ), ηF (γ )τ (h)g


. (6.12)

Let us now understand composition of morphisms in U×F G. Consider morphisms

(γ1, e) and (γ2, g),

where we have source–target matching:

ηF (γ1) = g.

The projection of the composite

(γ2, g) ◦ηF (γ1, e)

onto Mor(U) should be γ2 ◦ γ1, and the source of the composite should be sF (γ1, e) =

s(γ1), e


. Thus the composite is of

the form

(γ2 ◦ γ1, h′),

where h′ is some element of H determined by γ1 and γ2. The target of the composite should be the same as the target of
(γ2, g) and so

ηF (γ2 ◦ γ1)τ (h′) = ηF (γ2)g = ηF (γ2)ηF (γ1). (6.13)

Thus this is a restriction on the element h′.
More general composites can then obtained by using the requirement that the usual right action

(U×F G)× G → U×F G, (6.14)

is functorial. Thus the composite

(γ2, h2g2) ◦ηF (γ1, h1g1) (6.15)
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is meaningful if the source–target match

ηF (γ1)τ (h1)g1 = g2 (6.16)

holds, and then the composite can be computed as follows, writing g = ηF (γ1),

(γ2, h2g2) ◦ηF (γ1, h1g1) = (γ2, g)g−1h2g2 ◦ηF (γ1, e)h1g1

=


(γ2, g) ◦ηF (γ1, e)


(g−1h2g g−1g2) ◦ h1g1


=


(γ2, g) ◦ηF (γ1, e)


g−1h2gh1g1

(using the composition law (3.4) in Mor(G))

= (γ2 ◦ γ1, h′g−1h2gh1g1). (6.17)

The element h′
∈ H is determined by γ1 and γ2. The associative law for composition of morphisms puts a restriction on the

behavior of this element.
Let us focus on the case where h′

= e for all γ1 and γ2. In view of (6.13) this means that the mapping

ηF : Mor(U) → G

is a ‘homomorphism’ in the sense that it carries composition of morphisms to the composition law in G.

Proposition 6.1. Let U be a category, G a categorical group with associated crossed module (G,H, α, τ ). Let

η : Mor(U) → G = Obj(G)

be a map satisfying

η(γ2 ◦ γ1) = η(γ2)η(γ1) (6.18)

for all γ1, γ2 ∈ Mor(U). Then there is a category U×η G whose object set is Obj(U) × Obj(G), with morphism set Mor(U) ×

Mor(G), source and target maps given by

sη(γ , hg) =

s(γ ), g


tη(γ , hg) =


t(γ ), η(γ )τ (h)g


,

(6.19)

and composition by

(γ2, h2g2) ◦η(γ1, h1g1) = (γ2 ◦ γ1, g−1h2gh1g1), (6.20)

where g = ηF (γ1), and the source sη(γ2, h2g2) is the target tη(γ1, h1g1). Moreover, the projection on the first factor

πη : U×η G → U,

along with the usual right action of G on U×η G, makes πF a categorical principal bundle.

Let us explore the η-twisted productU×η G of Proposition 6.1 a bit further before looking at the example ofmain interest.
There is an ‘action’ of the category U on the category G given by means of the mapping

Eη : Mor(G)× Mor(U) → Mor(G) : (φ, γ ) → 1η(γ )−1φ, (6.21)

where on the right we have the multiplication in the group Mor(G) and 1g denoted the identity morphism at any object
g ∈ Obj(G). This is an action in the sense that it has the following properties:

(i) Behavior of the identity in U:

Eη

φ, ida) = φ,

which holds because the homomorphism property of η implies that η(ida) is the identity in the groupMor(G) for every
object a in U.

(ii) Behavior of the identity in G:

Eη(1g , γ ) = 1η(γ )−1g .

(iii) Behavior of composition in U:

Eη(φ, γ2 ◦ γ1) = Eη

Eη(φ, γ2), γ1


.
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Fig. 4. The decorated bundle, showing a morphism (γ , h)with its source and target.

(iv) Behavior of composition in U:

Eη

φ2 ◦ φ1, γ ) = Eη(φ2, γ ) ◦ Eη(φ1, γ ),

which we can verify using the interchange law:

1g(φ2 ◦ φ1) = (1g ◦ 1g)(φ2 ◦ φ1) = (1gφ2) ◦ (1gφ1).

The composition law in U×η G is given by

(γ2, φ2) ◦η(γ1, φ1) =

γ2 ◦ γ1, Eη(φ2, γ1) ◦ φ1


. (6.22)

This structure is a slightly more general form of the twisted semi-direct product introduced in [25, sec. 6].

6.3. Decorated bundles

Let us review the notion of a decorated bundle from our earlier work [20]. Consider a principal G-bundle π : P → B
with a connection A. Let PĀP be the set of all A-horizontal paths on P and P (B) the set of all paths on B. (For expository
convenience we omit technical details in this summary description; very briefly, the paths here are C∞ maps with domain
[t0, t1], constant near t0 and t1, and two paths that differ by a translation of the domain t → t + k are identified.) Thus there
is the projection map

πA : PĀP → P (B) : γ → γ = π ◦ γ ,

and the group G has a natural right action onPĀP by right translations: (γ , g) → γ g . In this wayPĀP is a principal G-bundle
over PM . From this we construct a categorical principal bundle

Pd
→ B, (6.23)

the decorated bundle, with structure categorical groupG; this is illustrated in Fig. 4. At the object level this is just the principal
G-bundle π : P → B. At the morphism level, Mor(B) = P (B) and Mor(Pd) = PĀP × H , a typical element being of the form
(γ , h)where γ is an A-horizontal path on P and h ∈ H . The action of Mor(G) = H oα G is given by

(γ , h)h1g1 = (γ g1, g−1
1 hh1g1), (6.24)

with obvious notation. The projection of (γ , h) onto Mor(B) is just π ◦ γ . Source and target are given by

s(γ , h) = s(γ ) = γ (t0)
t(γ , h) = γ (t1)τ (h)

(6.25)

and composition is given by

(γ 2, h2) ◦ (γ 1, h1) = (γ 3, h1h2), (6.26)

whenever t(γ 1, h1) = s(γ 2, h2), where γ 3 is the composite of γ 1 with the right translate γ 2τ(h1)
−1:

γ 3 = γ 2τ(h1)
−1

◦ γ 1. (6.27)

For more we refer to [20] and (with notation as here) [26].
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6.4. Decoration of product bundles

We focus now on the case when

P = B × G,

as a product bundle over B. A connection form can then be specified by an L(G)-valued 1-form A0. The horizontal lift of a
path γ : [t0, t1] → B, with initial point


γ (t0), g


∈ P is the path

γ g : [t0, t1] → P : u → γ g(u)
def
=


γ (u), gγ (u)g


, (6.28)

where [t0, t1] → G : u → gγ (u) is the solution of the differential equation

g ′

γ (u)gγ (u)
−1

= −A0

γ ′(u)


, (6.29)

with gγ (t0) = e. We will denote by γ̃ the specific horizontal lift of γ with initial point

γ (t0), e


; thus

γ̃ (u) =

γ (u), gγ (u)


. (6.30)

6.5. Decorated products as twisted products

We continue to work with the preceding framework. Let us construct a mapping η : Mor(B) → G satisfying (6.18). Let
η(γ ) be parallel-transport along γ by A0. In more detail, for a path

γ : [t0, t1] → B,

we take

η(γ ) = gγ (t1).

An object of B×F G is of the form (b, g) ∈ B × G, and a morphism is of the form

(γ , hg) ∈ Mor(B)× (H oα G).

Now let

γ : [t0, t1] → B × G : t →

γ (t), gγ (t)


be the horizontal lift, initiating at


γ (t0), e


, of γ to the principal bundle B × G by means of the connection specified by A0.

Consider the bijection

Θ : Mor(Pd) → Mor(B×η G) = Mor(B)× Mor(G) : (γ g, h) → (γ , gh). (6.31)

We can check that this preserves sources and targets:

sη(γ , gh) =

γ (t0), g


= s(γ g, h)

tη(γ , gh) =

γ (t1), gγ (t1)t(gh)


=


γ (t1), gγ (t1)gτ(h)


= t(γ g)τ (h).

(6.32)

It carries identity morphisms to identity morphisms. Let us now verify that it also preserves composition of morphisms. We
will need to use the composition law (6.20) with gh in place of hg; noting that gh = ghg−1

· g , we have from (6.20):

(γ2, g2h2) ◦η(γ1, g1h1) = (γ2 ◦ γ1, η(γ1)
−1g2h2g−1

2 η(γ1)g1h1g−1
1 g1)

(using (6.20)) (6.33)

where, to ensure source–target matching,
s(γ2), g2


=


t(γ1), gγ (t1)g1τ(h1)


=


t(γ1), η(γ )g1τ(h1)


.

Inserting this relation in the second component of the right side in (6.33) we obtain for the second component:

η(γ1)
−1

· η(γ1)g1τ(h1)h2

η(γ1)g1τ(h1)

−1
η(γ1)g1h1 = g1τ(h1)h2τ(h1)

−1g−1
1 g1h1

= g1h1h2h−1
1 h1

= g1h1h2. (6.34)

Thus

(γ2, g2h2) ◦η(γ1, g1h1) = (γ2 ◦ γ1, g1h1h2). (6.35)
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On the other, we have

(γ 2g2, h2) ◦ (γ 1g1, h1) =

(γ 2g2) ◦ (γ 1g1), h1h2


(using (6.26)). (6.36)

The path (γ 2g2) ◦ (γ 1g1) is A-horizontal, projects down to γ2 ◦ γ1, and has initial point γ 1(t0)g1 =

γ (t0), g1


. Hence

(γ 2g2) ◦ (γ 1g1) = γ2 ◦ γ1g1, (6.37)

where γ2 ◦ γ1 is the A-horizontal lift of γ2 ◦ γ1 starting at

γ1(t0), e


. Then from the definition (6.31) ofΘ we have

Θ


γ 2g2, h2


◦


γ 1g1, h1


= Θ


(γ 2g2) ◦ (γ 1g1), h1h2


= Θ


γ2 ◦ γ1g1, h1h2


(by (6.37))

= (γ2 ◦ γ1, g1h1h2) (using (6.31))
= (γ2, g2h2) ◦η(γ1, g1h1) (by (6.35))

= Θ(γ 2g2, h2) ◦η Θ(γ 1g1, h1). (6.38)

Thus we have proved:

Proposition 6.2. There is an isomorphism Θ from the decorated product categorical bundle Pd
→ B to the twisted-product

categorical bundle B×η G → B specified on morphisms by (6.31) and on objects by the identity map on Obj(Pd) = B × G.

7. Concluding remarks

In this paper we have (i) explored the nature of product categorical principal bundles B × G → B, (ii) studied functorial
cocycles analogous to group-valued cocycles used as transition functions for traditional principal bundles, (iii) introduced
the notion of a twisted-product categorical bundle, and (iv) proved that every categorical principal bundle arising from
a traditional trivial principal bundle by decorating (by means of a connection, for example) is categorically isomorphic
to a twisted-product categorical bundle. These ideas should be useful in developing a fruitful notion of local triviality for
categorical principal bundles.
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