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a b s t r a c t

In the high-energy quantum-physics literature, one finds statements such as ‘‘matrix alge-
bras converge to the sphere’’. Earlier I provided a general precise setting for understanding
such statements, in which the matrix algebras are viewed as quantum metric spaces, and
convergence is with respect to a quantum Gromov–Hausdorff-type distance.

But physicists want evenmore to treat structures on spheres (and other spaces), such as
vector bundles, Yang–Mills functionals, Dirac operators, etc., and theywant to approximate
these by corresponding structures on matrix algebras. In the present paper we treat this
idea for vector bundles. We develop a general precise way for understanding how, for two
compact quantummetric spaces that are close together, to a given vector bundle on one of
them there can correspond in a natural way a unique vector bundle on the other. We then
show explicitly how this works for the case of matrix algebras converging to the 2-sphere.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In several earlier papers [1–4] I showed how to give a precise meaning to statements in the literature of high-energy
physics and string theory of the kind ‘‘matrix algebras converge to the sphere’’. (See the references to the quantum physics
literature given in [1,5–10].) I did this by introducing and developing a concept of ‘‘compact quantum metric spaces’’,
and a corresponding quantum Gromov–Hausdorff-type distance between them. The compact quantum spaces are unital
C*-algebras, and the metric data is given by equipping the algebras with suitable seminorms that play the role of the usual
Lipschitz seminorms on the algebras of continuous functions on ordinary compact metric spaces. The natural setting for
‘‘matrix algebras converge to the sphere’’ is that of coadjoint orbits of compact semi-simple Lie groups, as shown in [1,3,4].

But physicists need much more than just the algebras. They need vector bundles, gauge fields, Dirac operators, etc. In
the present paper I provide a general method for giving precise quantitative meaning to statements in the physics literature
of the kind ‘‘here are the vector bundles over the matrix algebras that correspond to the monopole bundles on the sphere’’
[11–20,6]. I then apply this method to the case of the 2-sphere, with full proofs of convergence. Many of the considerations
in this paper apply directly to the general case of coadjoint orbits. But some of the detailed estimates needed to prove
convergence require fairly complicated considerations (see Section 11) concerning highest weights for representations of
compact semi-simple Lie groups. It appears to me that it would be quite challenging to carry out those details for the
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general case, though I expect that some restricted cases, such as matrix-algebra approximations for complex projective
spaces [21,14,22–24], are quite feasible to deal with.

In [5] I studied the convergence of ordinary vector bundles on ordinary compact metric spaces for the ordinary Gromov–
Hausdorff distance. The approach that worked for mewas to use the correspondence between vector bundles and projective
modules (Swan’s theorem [25]), and by thismeans represent vector bundles by corresponding projections inmatrix algebras
over the algebras of continuous functions on the compact metric spaces; and then to prove appropriate convergence of the
projections. In the present paper we follow that same approach, in which nowwe also consider projective modules over the
matrix algebras that converge to the 2-sphere, and thus also projections in matrix algebras over these matrix algebras.

For this purpose, one needs Lipschitz-type seminorms on all of the matrix algebras over the underlying algebras, with
these seminorms coherent in the sense that they forma ‘‘matrix seminorm’’ . Inmy recent paper [4] the theory of thesematrix
seminorms was developed, and properties of such matrix seminorms for the setting of coadjoint orbits were obtained. In
particular, some general methods were given for obtaining estimates related to how these matrix seminorms mesh with an
appropriate quantum analog of the Gromov–Hausdorff distance. The results of that paper will be used here.

Recently Latrémolière introduced an improved version of quantum Gromov–Hausdorff distance [26], which he calls
‘‘quantum Gromov–Hausdorff propinquity’’. In [4] I showed that his propinquity works very well for our setting of
coadjoint orbits, and so propinquity is the form of quantum Gromov–Hausdorff distance that we use in the present paper.
Latrémolière defines his propinquity in terms of an improved version of the ‘‘bridges’’ that I had used in my earlier papers.
For ourmatrix seminormswe need corresponding ‘‘matricial bridges’’. In [4] natural suchmatricial bridgeswere constructed
for the setting of coadjoint orbits. They will be used here.

To give somewhat more indication of the nature of our approach, we give now an imprecise version of one of the general
theorems thatwe apply. For simplicity of notation, we express it here only for the C*-algebras, rather than formatrix algebras
over the C*-algebras as needed later. Let (A, LA) and (B, LB) be compact quantum metric spaces, where A and B are unital
C*-algebras and LA and LB are suitable seminorms on them. LetΠ be a bridge betweenA and B. Then LA and LB can be used
to measureΠ . We denote the resulting length ofΠ by lΠ . Then we will see, imprecisely speaking, thatΠ together with LA
and LB determine a suitable seminorm, LΠ , on A ⊕ B.

Theorem 1.1 (Imprecise Version of Theorem 5.7). Let (A, LA) and (B, LB) be compact quantum metric spaces, and let Π be a
bridge betweenA and B, with corresponding seminorm LΠ onA⊕B. Let lΠ be the length of Π as measured using LA and LB . Let
p ∈ A and q ∈ B be projections. If lΠLΠ (p, q) < 1/2, and if q1 is another projection in B such that lΠLΠ (p, q1) < 1/2, then
there is a continuous path, t → qt of projections in B going from q to q1, so that the projective modules corresponding to q and q1
are isomorphic. In this way, to the projective A-module determined by p we have associated a uniquely determined isomorphism
class of projective B-modules.

In Sections 7 through 12, theorems of this type are then applied to the specific situation of matrix algebras converging to
the 2-sphere, in order to obtain our correspondence between projective modules over the 2-sphere and projective modules
over the matrix algebras.

Very recently Latrémolière introduced a fairly different way of saying when two projective modules over compact
quantum metric spaces that are close together correspond [27]. For this purpose he equips projective modules with
seminorms that play the role of a weak analog of a connection on a vector bundle over a Riemannian manifold, much as
our seminorms on a C*-algebra are a weak analog of the total derivative (or of the Dirac operator) of a Riemannian manifold.
As experience is gained with more examples it will be interesting to discover the relative strengths and weaknesses of these
two approaches.

My next project is to try to understand how the Dirac operator on the 2-sphere is related to ‘‘Dirac operators’’ on the
matrix algebras that converge to the 2-sphere, especially since in the quantum physics literature there are at least three
inequivalent Dirac operators suggested for the matrix algebras. This will involve results from [28].

2. Matrix Lip-norms and state spaces

As indicated above, the projections representing projective modules are elements of matrix algebras over the basic
C*-algebras. In this section we give some useful perspective on the relations between certain types of seminorms on matrix
algebras over a given C*-algebra and the metrics on the state spaces of the matrix algebras that come from the seminorms.

Let A be a unital C*-algebra. For a given natural number d let Md denote the algebra of d × d matrices with entries in C,
and let Md(A) denote the C*-algebra of d × d matrices with entries in A. Thus Md(A) ∼= Md ⊗ A. Since A is unital, we can,
and will, identifyMd with the subalgebraMd ⊗ 1A of Md(A).

We recall from definition 2.1 of [4] that by a ‘‘slip-norm’’ on a unital C*-algebra A we mean a ∗-seminorm L on A that is
permitted to take the value +∞ and is such that L(1A) = 0. Given a slip-norm LA onA, we will need slip-norms, LAd , on each
Md(A) that correspond somewhat to LA. It is reasonable to want these seminorms to be coherent in some sense as d varies.
As discussed before definition 5.1 of [4], the appropriate coherence requirement is that the sequence {LAd } forms a ‘‘matrix
slip-norm’’. To recall what this means, for any positive integersm and nwe letMmn denote the linear space ofm×nmatrices
with complex entries, equipped with the norm obtained by viewing such matrices as operators from the Hilbert space Cn to
the Hilbert space Cm. We then note that for any A ∈ Mn(A), for any α ∈ Mmn, and any β ∈ Mnm, the usual matrix product
αAβ is inMm(A).
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Definition 2.1. A sequence {LAd } is a matrix slip-norm for A if LAd is a ∗-seminorm (with value +∞ permitted) on Md(A) for
each integer d ≥ 1, and if this family of seminorms has the following properties:

1. For any A ∈ Md(A), any α ∈ Mmd, and any β ∈ Mdm, we have

LAm (αAβ) ≤ ∥α∥LAd (A)∥β∥.

2. For any A ∈ Mm(A) and any C ∈ Mn(A) we have

LAm+n

([
A 0
0 C

])
= max(LAm (A), LAn (C)).

3. LA1 is a slip-norm, in the sense that LA1 (1A) = 0. (But LA1 is also allowed to take value 0 on elements that are not scalar
multiples of the identity.)

We will say that such a matrix slip-norm is regular if LA1 (a) = 0 only for a ∈ C1A.

The properties above imply that for d ≥ 2 the null-space of LAd will contain the subalgebraMd, not just the scalarmultiples
of the identity, so that LAd is a slip-norm . This is why our definition of a slip-norm does not require that the null-space be
exactly the scalar multiples of the identity. When {LAd } is regular, the properties above imply that for d ≥ 2 the null-space
of LAd will be exactlyMd.

In generalization of the relation between Md(A) and Md, let now A be any unital C*-algebra, and let B be a unital
C*-subalgebra of A (1A ∈ B). We let S(A) denote the state space of A, and similarly for S(B). It will be useful for us to
view S(A) as fibered over S(B) in the following way. For any ν ∈ S(B) let

Sν(A) = {µ ∈ S(A) : µ|B = ν}.

Since each ν ∈ S(B) has at least one extension to an element of S(A), no Sν(A) is empty, and so the Sν(A)’s form a partition,
or fibration, of S(A) over S(B). We will apply this observation to view S(Md(A)) as fibered over S(Md).

Now let {LAd } be a matrix slip-norm for A. For any given d the seminorm LAd determines a metric ρLAd (with value +∞

permitted, so often referred to as an ‘‘extended metric’’) on S(Md(A)) defined by

ρLAd (µ1, µ2) = sup{|µ1(A) − µ2(A)| : LAd (A) ≤ 1}. (2.1)

(Notation like ρLAd will be used throughmost of this paper.)We then observe that ifµ1|Md
̸= µ2|Md

then ρLAd (µ1, µ2) = +∞,
because there will exist an A ∈ Md such that LAd (rA) = 0 for all r ∈ R+ while |µ1(rA)−µ2(rA)| = r|µ1(A)−µ2(A)| ̸= 0. Thus
ρLAd can be finite only on the fibers of the fibration of S(Md(A)) over S(Md).

Consistent with definition 5.1 of [29] (which treats the more general case of order-unit spaces) and theorem 1.8 of [30],
we have:

Definition 2.2. Let A be a unital C*-algebra. By a Lip-norm on A we mean a ∗-seminorm L on A (with value +∞ allowed)
that satisfies

1. L is semifinite, i.e. {a ∈ A : L(a) < ∞} is dense in A.
2. For any a ∈ A we have L(a) = 0 if and only if a ∈ C1A.
3. L is lower semi-continuous with respect to the norm ofA, i.e. for any r ∈ R+ the set {a ∈ A : L(a) ≤ r} is norm-closed.
4. The topology on S(A) from the metric ρL, defined much as in Eq. (2.1), coincides with the weak-∗ topology. This is

equivalent to the property that the image of

L1
A = {a ∈ A : a∗

= a, L(a) ≤ 1}

in Ã = A/C1A is totally bounded for the quotient norm ∥ · ∥˜ on Ã. (Or, equivalently, that the image in Ã of
{a ∈ A : L(a) ≤ 1} is totally bounded.)

Definition 2.3. Let A be a unital C*-algebra. By a matrix Lip-norm on A we mean a matrix slip-norm {LAd } for A which has
the property that LA1 is a Lip-norm for A and each LAd is lower semi-continuous.

We remark that from property (1) of Definition 2.1 it follows then that each LAd is semi-finite.

Proposition 2.4. Let A be a unital C*-algebra and let {LAd } be a matrix Lip-norm on A. For each natural number d let

L1
Md(A) = {A ∈ Md(A) : A∗

= A, LAd (A) ≤ 1}.

Then the image of L1
Md(A) in the quotient Md(A)/Md is totally bounded for the quotient norm.

Proof. Let A ∈ Ld
1, with A thematrix {ajk}. Then LAd (A) ≤ 1, and so by property (1) of Definition 2.1 we have LA1 (ajk) ≤ 1 for all

j, k. Thus for each fixed pair (j, k) the set of (j, k)-entries of all the elements of L1
Md(A) lie in {a ∈ A : L(a) ≤ 1}, whose image

in Ã is totally bounded. But the finite product of totally bounded sets is totally bounded for any of the equivalent natural
metrics on the product. □
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Proposition 2.5. Let A be a unital C*-algebra and let {LAd } be a matrix Lip-norm on A. For each natural number d and each
ν ∈ S(Md) the topology on the fiber Sν(Md(A)) in S(Md(A)) determined by the restriction to Sν(Md(A)) of the metric ρLAd , agrees
with the weak-∗ topology restricted to Sν(Md(A)) (and so Sν(Md(A)) is compact).

Proof. This is an immediate corollary of theorem 1.8 of [30] and Proposition 2.4 when one lets Md(A) be the normed space
A = L of theorem 1.8 of [30], lets LAd be the L of that theorem, lets Md be the subspace K of that theorem, and lets the state
ν be the η of that theorem. □

As a consequence, even though ρLAd can take value +∞, it is reasonable to talk about whether a subset Y of S(Md(A)) is
ε-dense in S(Md(A)). This just means that, as usual, for each µ ∈ S(Md(A)) there is an element of Y that is within distance ε
of it. This observation will shortly be of importance to us.

A good class of simple examples to keep in mind for all of this is given next. It is the class that is central to the paper [5].

Example 2.6. Let (X, ρ) be a compact metric space, and let A = C(X). For a fixed natural number d let LAd be defined on
Md(A) = C(X,Md) by

LAd (F ) = sup{∥F (x) − F (y)∥/ρ(x, y) : x, y ∈ X and x ̸= y}

for F ∈ Md(A). Then for d ≥ 2 themetric on S(Md(A)) determined by LAd will take on value +∞. But S(Md(A)) will be fibered
over S(Md) and the metric will be finite on each fiber, and the topology it determines on the fiber will coincide with the
weak-∗ topology there.

Different ways of dealing with seminorms that may have a large null-space can be found in definitions 2.1 and 2.3 of [31]
and in definition 2.3 of [32], but they do not seem to be useful for our present purposes.

3. Quotients of C*-metric spaces

Let (Z, ρZ ) be a compact metric space, and let X be a closed subset of Z . Let C = C(Z) and let A = C(X). By restricting
functions on Z to the subset X we see that A is a quotient algebra of C. We need to consider the corresponding non-
commutative situation. We will mostly use it for the non-commutative analog of the situation in which (X, ρX ) and (Y , ρY )
are two compact metric spaces and Z is the disjoint union of X and Y (with ρZ compatible with ρX and ρY ). Then C = A ⊕ B
where B = C(Y ). We will need the matricial version of this situation.

Accordingly, let A and C be unital C*-algebras, and let π be a surjective ∗-homomorphism from C onto A, so that A is
a quotient of C. Then by composing with π , every state of A determines a state of C. In this way we obtain a continuous
injection of S(A) into S(C), and we will often just view S(A) as a subset of S(C) without explicitly mentioning π .

We think ofA and C as possibly beingmatrix algebras over other algebras, and sowewill consider a slip-norm, L, on C, not
requiring that L take value 0 only on C1C . Thus the metric ρL on S(C) can take value +∞, but we can consider the situation
in which, nevertheless, S(A) is ε-dense in S(C) for some given ε ∈ R+.

The main result of this section is the following proposition, which is a generalization of key lemma 4.1 of [5]. A related
result in a more restricted setting, relevant to our next section, is emphasized in the paragraph before remark 6.5 of [26].
The inequality obtained in our proposition will be basic for later sections of this paper.

Proposition 3.1. Let A and C be unital C*-algebras, and let π be a surjective ∗-homomorphism of C ontoA, so that S(A) can be
viewed as a subset of S(C). Let L be a slip-norm on C, and let there be given ε ∈ R+. If S(A) is ε-dense in S(C) for ρL, then for any
c ∈ C satisfying c∗

= c we have

∥c∥ ≤ ∥π (c)∥ + εL(c).

Proof. Let c ∈ C satisfy c∗
= c. Then there is a µ ∈ S(C) such that |µ(c)| = ∥c∥. By assumption there is a ν ∈ S(A) such that

ρL(ν ◦ π, µ) ≤ ε. This implies that

|ν(π (c)) − µ(c)| ≤ εL(c),

so that

∥c∥ = |µ(c)| ≤ |ν(π (c))| + εL(c) ≤ ∥π (c)∥ + εL(c),

as needed. □

It would be interesting to know whether the converse of this proposition is true, that is, whether the inequality implies
the ε-denseness. It is true for ordinary compact metric spaces.
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4. Bridges and ε-density

We now recall how in [4] we used slip-norms in connection with Latrémolière’s bridges so that we are able to deal
also with matricial bridges. Let A and B be unital C*-algebras, and let Π = (D, ω) be a bridge from A to B in the sense
of Latrémolière [26,33]. That is, A and B are identified as C*-subalgebras of the C*-algebra D that each contain 1D , while
ω ∈ D, ω∗

= ω, ∥ω∥ ≤ 1, and 1 ∈ σ (ω) (which is more than Latrémolière requires, but which holds for our main examples).
Latrémolière calls ω the ‘‘pivot’’ of the bridge. The specific bridges that we will use for the case of SU(2) are described in
Section 6.

Fix a positive integer d. We can view Md(A) and Md(B) as unital subalgebras of Md(D). Let ωd = Id ⊗ ω, where Id is the
identity element of Md, so ωd can be viewed as the diagonal matrix in Md(D) with ω in each diagonal entry. Then it is easily
seen thatΠd = (Md(D), ωd) is a bridge fromMd(A) toMd(B).

Definition 4.1. For each natural number d let ωd = Id ⊗ ω. The bridges Πd = (Md(D), ωd) are called the matricial bridges
determined by the bridgeΠ .

Let LA and LB be Lip-norms on A and B. Latrémolière defines [26,33] how to use them to measure bridges from A to B.
We recall here how in section 2 of [4] I adapted his definitions to the case of matricial bridges, using matrix Lip-norms. Let
{LAd } be a matrix Lip-norm on A and let {LBd } be a matrix Lip-norm on B. Fix d. Then LAd is a slip-norm on Md(A) and LBd is a
slip-norm on Md(B), and they can be used to measure the bridgeΠd, by making only minor modifications to Latrémolière’s
definition. We review how this is done, but for notational simplicity we will not restrict attention to matrix algebras over
algebras. Instead we will work with general unital C*-algebrasA and B, but we will use slip-norms on them. So, letA and B
be equipped with slip-norms LA and LB . We use these slip-norms to measure a bridgeΠ from A to B, as follows.

Set, much as before,

L1
A = {a ∈ A : a∗

= a and LA(a) ≤ 1},

and similarly for L1
B . We view these as subsets of D.

Definition 4.2. The reach ofΠ is defined by:

reach(Π ) = HausD{L1
Aω , ωL

1
B},

where HausD denotes the Hausdorff distance with respect to the norm of D, and where the product defining L1
Aω and ωL1

B
is that of D. We will often write rΠ for reach(Π ). Note that rΠ can be +∞.

We now show that when a slip-norm is part of a matrix Lip-norm, as defined in Definition 2.3, its reach is always finite.
By definition, the metric on the state space determined by a Lip-norm gives the weak-∗ topology. Since the state space is
compact, it therefore has finite diameter for the metric. Given a unital C*-algebra A and a Lip-norm LA on it, we denote the
diameter of S(A) for the correspondingmetric, ρA, by diam(A) (notmentioning LA unless confusionmay arise, as is common
practice).

Lemma 4.3. Let A be a unital C*-algebra, and let LA be a Lip-norm on A. Let ν be a state of A. For any a ∈ A we have

∥a − ν(a)1A∥ ≤ 2 diam(A)LA(a).

Proof. Suppose first that a ∈ A with a∗
= a. For any state µ on A we have

|µ(a − ν(a)1A)| = |µ(a) − ν(a)| ≤ ρA(µ, ν)LA(a) ≤ diam(A)LA(a).

Consequently ∥a − ν(a)1A∥ ≤ diam(A)LA(a). For general a ∈ A, when we apply this inequality to the real and imaginary
parts of awe obtain the desired result. □

Proposition 4.4. Let A and B be unital C*-algebras, and let Π = (D, ω) be a bridge from A to B. Let {LAd } be a matrix Lip-norm
onA and let {LBd } be a matrix Lip-norm on B. Let diam(A) be the diameter of A for the Lip-norm LA1 , and similarly for B. Then for
any natural number d we have

rΠd ≤ 2 d max{diam(A), diam(B)}.

Proof. By definition, 1 ∈ σ (ω), so we can find aψ ∈ S(D) such thatψ(ω) = 1.We fix such aψ . Let d be given. Let A ∈ Md(A)
with A∗

= A and LAd (A) ≤ 1, and A = {ajk}. Define B = {bjk} in Md(B) by bjk = ψ(ajk)1D . Clearly B∗
= B, and Ld(B) = 0 by

conditions 1 and 2 of Definition 2.1. Then

∥Aωd − ωdB∥ = ∥{ajkω − ωψ(ajk)}∥ = ∥(A − B)ωd∥

≤ ∥A − B∥ ≤ dmax{∥ajk − ψ |A(ajk)∥}
≤ 2 d diam(A)max{LA1 (ajk)} ≤ 2 d diam(A),
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where for the next-to-last inequality we have used Lemma 4.3, and for the last inequality we have used condition 1 of
Definition 2.1 and the fact that LAd (A) ≤ 1. In this way we see that Aωd is within distance 2d diam(A) of ωdL1

Md(B). On
reversing the roles of A and B, we see that we have the desired result. □

To define the height ofΠ we need to consider the state space, S(A), of A, and similarly for B and D. Even more, we set

S1(ω) = {φ ∈ S(D) : φ(ω) = 1},

the ‘‘level-1 set of ω ’’. It is not empty because by assumption 1 ∈ σ (ω). The elements of S1(ω) are ‘‘definite’’ on ω in the
sense [34] that for any φ ∈ S1(ω) and d ∈ D we have

φ(dω) = φ(d) = φ(ωd).

Let ρA denote the metric on S(A) determined by LA, defined, much is in Eq. (2.1), by

ρA(µ, ν) = sup{|µ(a) − ν(a)| : a ∈ L1
A}. (4.1)

(Since we now are not assuming we have Lip-norms, we must permit ρA to take the value +∞. Also, it is not hard to see
that the supremum can be taken equally well just over all of {a ∈ A : LA(a) ≤ 1}.) Define ρB on S(B) similarly.

Notation 4.5. We denote by SA1 (ω) the set of restrictions of the elements of S1(ω) to A. We define SB1 (ω) similarly.

Definition 4.6. Let A and B be unital C*-algebras and letΠ = (D, ω) be a bridge from A to B . Let LA and LB be slip-norms
on A and B. The height of the bridgeΠ is given by

height(Π ) = max{HausρA (SA1 (ω), S(A)), HausρB (S
B
1 (ω), S(B))},

where the Hausdorff distances are with respect to the indicatedmetrics determined by LA and LB (with value+∞ allowed).
We will often write hΠ for height(Π ). The length ofΠ is then defined by

length(Π ) = max{reach(Π ), height(Π )}.

Up to now I have not found a proof of the analog for height of Proposition 4.4, namely that when matrix Lip-norms are
involved the height is always finite, though I suspect that this is true. For the ‘‘bridges with conditional expectation’’ that we
will use later (with matrix Lip-norms) the height, and so the length, is always finite.

Anyway, we will now just make the quite strong assumption that length(Π ) < ∞. It is shown in section 6 of [4] that
this assumption is satisfied for the specific class of examples that we deal with in the present paper. This will be somewhat
reviewed later in Section 12. The main consequence of this assumption for our present purposes is a generalization to our
present non-commutative setting of key lemma 4.1 of [5]. This generalization will yield for this case the same inequality
as just found in Proposition 3.1 but with the added information of a relevant value for ε. The core calculations for this
generalization can essentially be found in the middle of the proof of proposition 5.3 of [26]. We will call our generalization
again the Key Lemma. The set-up is as follows. As above, let A and B be unital C*-algebras, and let Π = (D, ω) be a bridge
between them. Let LA and LB be slip-norms on A and B, and let rΠ and hΠ denote the reach and height of Π as measured
by LA and LB . Assume that rΠ and hΠ are both finite. Define a seminorm, NΠ , on A ⊕ B by

NΠ (a, b) = ∥aω − ωb∥.

Notice that NΠ is in general not a ∗-seminorm. Much as in theorem 6.2 of [3], define a ∗-seminorm, N̂Π , on A ⊕ B by

N̂Π (a, b) = NΠ (a, b) ∨ NΠ (a∗, b∗),

where ∨ means ‘‘maximum’’. Of course, N̂Π agrees with NΠ on self-adjoint elements.
Let r ≥ rΠ be chosen. (The reason for not just taking r = rΠ will be given in the fifth paragraph of the proof of

Theorem 12.1.) Define a seminorm, Lr , on the C*-algebra A ⊕ B by

Lr (a, b) = LA(a) ∨ LB(b) ∨ r−1N̂Π (a, b). (4.2)

Then Lr is a slip-norm onA⊕ B, and it determines a metric, ρLr , on S(A⊕ B). Note thatA and B are both quotients ofA⊕ B
in an evident way, so that we can consider the quotient seminorms on them coming from Lr . As discussed around example
5.4 of [3], there are complications with quotients of ∗-seminorms on non-self-adjoint elements. Accordingly, much as for
notation 5.5 of [3], we make:

Definition 4.7. Let A and B, and LA and LB be as above. We say that a ∗-seminorm L on A ⊕ B is admissible for LA and LB if
its quotient on A agrees with LA on self-adjoint elements of A, and similarly for its quotient on B.

Proposition 4.8. With notation as above, if r ≥ rΠ then Lr is admissible for LA and LB .
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The proof of this proposition is implicit in the proof of theorem 6.3 of [26], and amounts to showing that (a, b) →

r−1NΠ (a, b), when restricted to self-adjoint elements, is a ‘‘bridge’’ in the more primitive sense defined in definition 5.1
of [35], and then using the main part of the proof of theorem 5.2 of [35]. For the reader’s convenience we give a short direct
proof here, in particular because we will need related facts in Section 12.

Proof. Clearly Lr (a, b) ≥ LA(a) for every b. It follows that the quotient of Lr on A is no smaller than LA. Let a ∈ A with
a∗

= a and LA(a) = 1. Let ε > 0 be given. By the definition of rΠ there is a b ∈ B with b∗
= b and LB(b) ≤ 1 such that

∥aω − ωb∥ ≤ rΠ + ε. Since r ≥ rΠ it follows that

LB(b) ∨ r−1
∥aω − ωb∥ ≤ 1 + r−1ε = LA(a) + r−1ε.

Since ε is arbitrary, it follow that on a the quotient of Lr is equal to LA(a). By scaling it follows that the quotient of Lr on A
agrees with LA on all self-adjoint elements. Reversing the roles ofA and B, we obtain the corresponding fact for the quotient
of Lr on B. □

The following lemma, which is closely related to the comments in the paragraph before remark 6.5 of [26], shows how
Proposition 3.1 is relevant to the context of bridges.

Key Lemma 4.9. With notation as above, let (a, b) ∈ A⊕B with a∗
= a and b∗

= b. Let r ≥ rΠ be chosen, and let Lr be defined
on A ⊕ B by Eq. (4.2). Then

∥(a, b)∥ ≤ ∥a∥ + (hΠ + r)Lr (a, b),

and similarly with the roles of a and b interchanged.

Proof. By scaling, it suffices to prove this under the assumption that Lr (a, b) = 1, so we assume this. Let ν ∈ S(B). By the
definition of hΠ there is a ψ ∈ S1(ω) such that ρLB (ν, ψ |B) ≤ hΠ . Then, since ψ is definite on ω , and LB(b) ≤ Lr (a, b) ≤ 1,
we have:

|ν(b)| ≤ |ν(b) − ψ(b)| + |ψ(ωb)|
≤ ρLB (ν, ψ |B)L

B(b) + |ψ(ωb) − ψ(aω)| + |ψ(aω)|
≤ hΠ + ∥aω − ωb∥ + |ψ(a)|
≤ hΠ + r + ∥a∥.

Since this holds for all ν ∈ S(B), and since b∗
= b, it follows that ∥b∥ ≤ ∥a∥ + hΠ + r, and so

∥(a, b)∥ ≤ ∥a∥ + hΠ + r,

as needed. □

5. Projections and Leibniz seminorms

Wenowassume that the slip-norms LA and LB onA andB are lower semi-continuouswith respect to the norm topologies
on A and B. It is then clear that Lr , as defined in Eq. (4.2), is lower semi-continuous on A ⊕ B since NΠ is norm-continuous
on A ⊕ B. We now also assume that LA and LB satisfy the Leibniz inequality, that is,

LA(aa′) ≤ LA(a)∥a′
∥ + ∥a∥LA(a′)

for any a, a′
∈ A, and similarly for B. We need to assume in addition that LA and LB are strongly Leibniz, that is, that if a ∈ A

is invertible in A, then

LA(a−1) ≤ ∥a−1
∥
2LA(a),

and similarly for B. Then a simple computation, discussed at the beginning of the proof of theorem 6.2 of [3], shows that Lr
is strongly Leibniz on A ⊕ B. We will also assume that LA and LB are semi-finite in the sense that {a ∈ A : LA(a) < ∞} is
dense in A, and similarly for B. Then Lr is also semi-finite.

With the above structures as motivation, we will now adapt to our non-commutative setting many of the basic results of
sections 2, 3 and 4 of [5]. For notational simplicity we first consider a unital C*-algebra C (such as A ⊕ B) equipped with a
semi-finite lower-semi-continuous strongly-Leibniz slip-norm LC (defined on all of C).

We now consider the relation between the strong Leibniz property and the holomorphic functional calculus, along the
lines of section 2 of [5]. Let c ∈ C and let θ be a C-valued function defined and holomorphic in some neighborhood of the
spectrum, σ (c), of c. In the standard way used for ordinary Cauchy integrals, we let γ be a collection of piecewise-smooth
oriented closed curves in the domain of θ that surrounds σ (c) but does not meet σ (c), such that θ on σ (c) is represented
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by its Cauchy integral using γ . Then z ↦→ (z − c)−1 will, on the range of γ , be a well-defined and continuous function with
values in C. Thus we can define θ (c) by

θ (c) =
1

2π i

∫
γ

θ (z)(z − c)−1dz.

For a fixed neighborhood of σ (c) containing the range of γ the mapping θ ↦→ θ (c) is a unital homomorphism from the
algebra of holomorphic functions on this neighborhood of σ (c) into C [34,36]. The following proposition is the generalization
of proposition 2.3 of [5] that we need here.

Proposition 5.1. Let LC be a lower-semicontinuous strongly-Leibniz slip-norm on C. For c ∈ C, and for θ and γ as above, we
have

LC(θ (c)) ≤

(
1
2π

∫
γ

|θ (z)|d|z|
)
(Mγ (c))2LC(c),

where Mγ (c) = max{∥(z − c)−1
∥ : z ∈ range(γ )}.

Proof. It suffices to prove this for LC(c) < ∞. Now LC is lower-semicontinuous, and so it can be brought within the integral
defining θ (c), with the evident inequality. (Think of approximating the integral by Riemann sums.) Because LC is strongly
Leibniz, this gives

LC(θ (c)) ≤
1
2π

∫
γ

|θ (z)| ∥(z − c)−1
∥
2 LC(c) d|z|.

On using the definition ofMγ (c) we obtain the desired inequality. □

This proposition shows that {c ∈ C : LC(c) < ∞} is closed under the holomorphic functional calculus (and is a
dense ∗-subalgebra of C as seen earlier). The next proposition is essentially proposition 3.1 of [5]. It is a known result (see,
e.g., section 3.8 of [37]). We do not repeat here the proof of it given in [5].

Proposition 5.2. Let C be a unital C∗-algebra, and let C ′ be a dense ∗-subalgebra closed under the holomorphic functional calculus
in C. Let p be a projection in C. Then for any δ > 0 there is a projection p1 in C ′ such that ∥p − p1∥ < δ. If δ < 1 then p1 is
homotopic to p through projections in C, that is, there is a continuous path of projections in C going from p1 to p.

We apply this result to {c ∈ C : LC(c) < ∞}. The next proposition is almost exactly proposition 3.3 of [5]. We will not
repeat the proof here. It involves Proposition 5.1 and a mildly complicated argument involving contour integrals.

Proposition 5.3. Let C be a unital C*-algebra and let LC be a strongly-Leibniz lower-semicontinuous slip-norm on C. Let p0 and
p1 be two projections in C. Suppose that ∥p0 − p1∥ ≤ δ < 1, so that there is a norm-continuous path, t ↦→ pt , of projections in C
going from p0 to p1 [25,38]. If LC(p0) < ∞ and LC(p1) < ∞, then we can arrange that

LC(pt ) ≤ (1 − δ)−1 max{LC(p0), LC(p1)}

for every t.

We now let A be a unital C*-algebra that is a quotient of C, with π : C → A the quotient map (such as the evident
quotient map from our earlier A ⊕ B onto A). We let LA be the quotient of LC on A, and we assume that LA is semi-finite,
lower semi-continuous, and strongly Leibniz (which is not automatic — see section 5 of [3]). Motivated by Key Lemma 4.9,
we will be making hypotheses such as that there is an ε > 0 (such as hΠ + r) such that

∥c∥ ≤ ∥π (c)∥ + εLC(c)

for all c ∈ C. The next proposition is our non-commutative version of theorem 4.2 of [5].

Theorem 5.4. Let C,A, π, LC ,and LA be as above. Suppose given an ε > 0 such that for all c ∈ C with c∗
= c we have

∥c∥ ≤ ∥π (c)∥ + εLC(c).

Let p0 and p1 be projections in A, and let q0 and q1 be projections in C such that π (q0) = p0 and π (q1) = p1. Set

δ = ∥p0 − p1∥ + ε(LC(q0) + LC(q1)).

If δ < 1, then there is a path, t ↦→ qt , through projections in C, from q0 to q1, such that

LC(qt ) ≤ (1 − δ)−1 max{LC(q0), LC(q1)}

for all t ∈ [0, 1].
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Proof. From the hypotheses we see that

∥q0 − q1∥ ≤ ∥π (q0 − q1)∥ + εLC(q0 − q1)
≤ ∥p0 − p1∥ + ε(LC(q0) + LC(q1)) = δ.

Assume now that δ < 1. Then according to Proposition 5.3 applied to q0 and q1, there is a path t → qt from q0 to q1 with the
stated properties. □

If p0 = p1 above then we can obtain some additional information. The following proposition is almost exactly
proposition 4.3 of [5]. We do not repeat the proof here.

Proposition 5.5. With hypotheses as above, let p ∈ A, and let q0 and q1 be projections in C such that π (q0) = p = π (q1). If
εLC(q0) < 1/2 and εLC(q1) < 1/2, then there is a path, t → qt , through projections in C, from q0 to q1, such that π (qt ) = p and

LC(qt ) ≤ (1 − δ)−1 max{LC(q0), LC(q1)}

for all t , where δ = ε(LC(q0) + LC(q1)).

By concatenating paths, we can combine the above results to obtain some information that does not depend on p0 and
p1 being close together. The next proposition is almost exactly corollary 4.4 of [5].

Corollary 5.6. Let p0 and p1 be projections in A, and let q0 and q1 be projections in C such that π (q0) = p0 and π (q1) = p1. Let
K be a constant such that LC(qj) ≤ K for j = 0, 1. Assume further that there is a path p from p0 to p1 such that for each t there is
a projection q̃t in C such that π (q̃t ) = pt and LC(q̃t ) ≤ K . Then for any r > 1 there is a continuous path t ↦→ qt of projections in
C going from q0 to q1 such that

LC(qt ) ≤ rK

for each t. (But we may not have π (qt ) = pt for all t.)

Proof. Given r > 1, choose δ > 0 such that (1 − δ)−1 < r , and then choose an ε > 0 such that 2εK < δ. Then follow the
proof of corollary 4.4 of [5] with N = K . □

Let us now see what consequences the above uniqueness results have when we have a bridge between two C*-algebras
that are equipped with suitable seminorms. Let A and B be unital C*-algebras and let Π = (D, ω) be a bridge from A to B
. Let LA and LB be semi-finite lower-semi-continuous strongly Leibniz slip-norms on A and B. We use them to measureΠ ,
and we assume that rΠ is finite. Let C = A ⊕ B. Let r ≥ rΠ be chosen, and define the seminorm Lr on the C*-algebra C by
Eq. (4.2). Note that Lr is admissible for LA and LB by Proposition 4.8. A projection in C will now be of the form (p, q) where
p and q are projections in A and B respectively. Roughly speaking, our main idea is that p and q will correspond if Lr (p, q) is
relatively small. Notice that which projections then correspond to each other will strongly depend on the choice ofΠ (just
as in [5], where it was seen that which projections for ordinary compact metric spaces correspond depends strongly on the
choice of the metric that is put on the disjoint union of the two metric spaces, as would be expected). We will only consider
that projections correspond (for a given bridgeΠ ) if there is some uniqueness to the correspondence. The following theorem
gives appropriate expression for this uniqueness. It is our non-commutative generalization of theorem 4.5 of [5], and it is an
immediate consequence of Key Lemma 4.9, Proposition 5.5, and then Theorem 5.4. The role of the ε in Proposition 5.5 and
Theorem 5.4 is now played by hΠ + r .

Theorem 5.7. Let A and B be unital C*-algebras, and let Π = (D, ω) be a bridge from A to B. Let LA and LB be lower semi-
continuous strongly-Leibniz slip-norms on A and B. Assume that the length of Π as measured by LA and LB is finite. Let r ≥ rΠ
be chosen, and define Lr on C = A ⊕ B by Eq. (4.2).

(a) Let p ∈ A and q ∈ B be projections, and suppose that

(hΠ + r)Lr (p, q) < 1/2.

If q1 is another projection in B such that (hΠ + r)Lr (p, q1) < 1/2, then there is a path t ↦→ qt through projections in B,
going from q to q1, such that

Lr (p, qt ) ≤ (1 − δ)−1 max{Lr (p, q), Lr (p, q1)}

for all t , where δ = (hΠ + r)(Lr (p, q)+ Lr (p, q1)). If instead there is a p1 ∈ A such that (hΠ + r)Lr (p1, q) < 1/2 then there
is a corresponding path from p to p1 with corresponding bound for Lr (pt , q).

(b) Let p0 and p1 be projections in A and let q0 and q1 be projections in B. Set

δ = ∥p0 − p1∥ + (hΠ + r)(Lr (p0, q0) + Lr (p1, q1)).

If δ < 1 then there are continuous paths t ↦→ pt and t ↦→ qt from p0 to p1 and q0 to q1, respectively, through projections,
such that

Lr (pt , qt ) ≤ (1 − δ)−1 max{Lr (p0, q0), Lr (p1, q1)}

for all t.
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We remark that a more symmetric way of stating part b) above is to define δ by

δ = max{∥p0 − p1∥, ∥q0 − q1∥} + (hΠ + r)(Lr (p0, q0), Lr (p1, q1)).

Let us now examine the consequences of Corollary 5.6. This is best phrased in terms of:

Notation 5.8. Let P(A) denote the set of projections in A. For any s ∈ R+ let

Ps(A) = {p ∈ P(A) : LA(p) < s},

and similarly for B and C.

Now Ps(A) may have many path components. As suggested by the main results of [5], it may well be appropriate, indeed
necessary, to view these different path components as representing inequivalent vector bundles, even if algebraically the
vector bundles are isomorphic. That is the main idea of [5], and of the present paper. (Some additional perspective on this
idea will be given in Section 13.) Let Σ be one of these path components. Let ΦA denote the evident restriction map from
P(C) toP(A) (for C = A⊕B). For a given s′ ∈ R+ with s′ ≥ s it may be thatΦA(Ps′ (C))∩Σ is non-empty. This is an existence
question, which we will not deal with here. But at this point, from Corollary 5.6 we obtain our non-commutative version of
theorem 4.7 of [5], namely:

Theorem 5.9. Let notation be as above, and assume that length(Π ) < ε. Let s ∈ R+ with εs < 1/2. Let Σ be a path component
of Ps(A). Let s′ ∈ R+ with s′ ≥ s and εs′ < 1/2. Let p0, p1 ∈ Σ and suppose that there are q0 and q1 inPs′ (B)with Lr (pj, qj) ≤ s′

for j = 0, 1. Assume, even more, that there is a path p̃ in Σ connecting p0 and p1 that lies in ΦA(Ps′ (C)). Then for any δ with
2εs′ < δ < 1 there exist a path t ↦→ pt in P(A) going from p0 to p1 and a path t ↦→ qt in P(B) going from q0 to q1 such that
Lr (pt , qt ) < (1 − δ)−1s′ for each t. The situation is symmetric between A and B, so the roles of A and B can be interchanged in
the above statement.

Thus, in the situation described in the theorem, if Σ is a connected path component of Ps(A) that represents some
particular class of projective A-modules, then the projections q ∈ Ps(B) paired with ones in Σ by the requirement that
Lr (p, q) < s, will be homotopic, and in particular will determine isomorphic projective B-modules. We emphasize that
the above pairing of projections depends strongly on the choice of Π , and not just on the quantum Gromov–Hausdorff
propinquity betweenA andB. This reflects the fact that quantumGromov–Hausdorff propinquity is only ametric on isometry
classes of quantum compact metric spaces, just as is the case for ordinary Gromov–Hausdorff distance for ordinary compact
metric spaces.

Notice that the homotopies obtained above between q0 and q1 need not lie in Ps(B). We can only conclude that they lie
in Ps′ (B) where s′ = (1 − δ)−1s. But at least we can say that s′ approaches s as ε, and so δ, goes to 0.

The results of this section suggest that the definition of a ‘‘C*-metric’’ given in definition 4.1 of [3] should be modified to
use matrix seminorms, and so should be given by:

Definition 5.10. LetA be a unital C*-algebra. By a C*-metric onAwemean a matrix Lip-norm (as defined in Definition 2.3),
{LAn }, such that each LAn is strongly Leibniz.

We remark that in contrast to the contents of section 6 of [5], in the present paper we do not include here any existence
theorems for bundles on quantum spaces that are close together. It appears that existence results in the non-commutative
case are more difficult to obtain, but this matter remains to be explored carefully.

6. The algebras and the bridges

In this section we will introduce the specific algebras and the bridges to which we will apply the theory of the previous
section. These are described in [4] and in earlier papers on this topic, but in greater generality than we use in the later parts
of the present paper. Nevertheless, here we will begin by reviewing this more general setting, since it gives useful context,
and the main results of this paper should eventually be generalized to the more general setting.

Let G be a compact group (perhaps even finite at first, but later to be SU(2)). LetU be an irreducible unitary representation
of G on a (finite-dimensional) Hilbert spaceH. Let B = L(H) denote the C∗-algebra of all linear operators onH (a ‘‘full matrix
algebra’’, with its operator norm). There is a natural action, α, of G on B by conjugation by U , that is, αx(T ) = UxTU∗

x for x ∈ G
and T ∈ B. Because U is irreducible, the action α is ‘‘ergodic’’, in the sense that the only α-invariant elements of B are the
scalar multiples of the identity operator.

Fix a continuous length function, ℓ, onG (soGmust bemetrizable). Thus ℓ is non-negative, ℓ(x) = 0 iff x = eG (the identity
element of G), ℓ(x−1) = ℓ(x), and ℓ(xy) ≤ ℓ(x) + ℓ(y). We also require that ℓ(xyx−1) = ℓ(y) for all x, y ∈ G. Then in terms of
α and ℓwe can define a seminorm, LB , on B by the formula

LB(T ) = sup{∥αx(T ) − T∥/ℓ(x) : x ∈ G and x ̸= eG}. (6.1)

Then (B, LB) is an example of a compact C*-metric-space, as defined in definition 4.1 of [3]. In particular, LB satisfies the
conditions given there for being a Lip-norm, recalled in Definition 2.2.
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Let P be a rank-1 projection in B (soon to be the projection on a highest weight subspace). Let H be the stability subgroup
of P for α. Form the quotient space G/H (which later will be the sphere). We let λ denote the action of G on G/H , and so
on A = C(G/H), by left-translation. Then from λ and ℓ we likewise obtain a seminorm, LA, on A by the evident analog of
formula (6.1), except that we must now permit LA to take the value ∞. It is shown in proposition 2.2 of [30] that the set
of functions for which LA is finite (the Lipschitz functions) is a dense ∗-subalgebra of A. Also, LA is the restriction to A of
the seminorm on C(G) that we get from ℓ and left translation, when we view C(G/H) as a subalgebra of C(G), as we will do
when convenient. From LA we can use Eq. (4.1) to recover the usual quotient metric [39] on G/H coming from the metric
on G determined by ℓ. One can check easily that LA in turn comes from this quotient metric. Thus (A, LA) is the compact
C*-metric-space associated to this ordinary compact metric space. Then for any bridge fromA to B we can use LA and LB to
measure the length of the bridge in the way given by Latrémolière [26], which we described in Definitions 4.2 and 4.6.

We now describe the natural bridge, Π = (D, ω), from A to B that was first presented in section 2 of [4]. We take D to
be the C*-algebra

D = A ⊗ B = C(G/H,B).

We identify A with the subalgebra A ⊗ 1B of D, where 1B is the identity element of B. Similarly, we identify B with the
subalgebra 1A ⊗ B ofD. In view of many of the calculations done in [1,3] it is not a surprise that we define the pivot ω to be
the function in C(G/H,B) defined by

ω(x) = αx(P)

for all x ∈ G/H , where P is the rank-1 projection chosen above. (It is a ‘‘coherent state’’.) We notice that ω is actually a
non-zero projection in D, and so it satisfies the requirements for being a pivot.

But projective modules over algebras are in general given by projections in matrix algebras over the given algebra, not
just by projections in the algebra itself. This brings us back to the topic of matricial bridges which was introduced early in
Section 4.We now apply the general matricial framework discussed there to themore specific situation described just above
in which A = C(G/H), etc., with corresponding natural bridgeΠ , and then with its associated matricial bridgesΠd defined
as in Definition 4.1. We must specify our matrix slip-norms. This is essentially done in example 3.2 of [40] and section 14
of [3]. Specifically:

Notation 6.1. As above, we have the actions λ and α on A = C(G/H) and B = B(H) respectively. For any natural number d
let λd and αd be the corresponding actions ιd ⊗ λ and ιd ⊗ α on Md ⊗ A = Md(A) and Md ⊗ B = Md(B), for ιd denoting the
identity operator from Md to itself. We then use the length function ℓ and formula (6.1) to define seminorms LAd and LBd on Md(A)
and Md(B).

It is easily verified that {LAd } and {LBd } arematrix slip-norms. Notice that here LA1 = LA and LB1 = LB are actually Lip-norms,
and so, by property 1 of Definition 2.1, for each d the null-spaces of LAd and LBd are exactlyMd.

We remark that, as discussed in [4], the bridge Π = (D, ω) with D = C(G/H,B) considered above is an example of a
‘‘bridge with conditional expectations’’, and that for such bridges theorem 5.5 of [4] gives upper bounds for the reach and
height ofΠd in terms of the choices of ℓ, P , etc. In particular, they are finite.

7. Projections for A

We now restrict our attention to the case in which G = SU(2). We choose our notation in such a way that much of it
generalizes conveniently to the setting of general compact semi-simple Lie groups, though we do not discuss that general
case here. We let H denote the diagonal subgroup of G, which is a maximal torus in G. The homogeneous space G/H is
diffeomorphic to the 2-sphere. As before, we set A = C(G/H).

It is known that for any 2-dimensional compact space every complex vector bundle is a direct sum of complex line
bundles. See theorem 1.2 of chapter 8 of [41]. This applies to the 2-sphere, and so in this and the next few sections we
will concentrate on the case of line bundles. In Section 13wewill discuss the situation for direct sums of projectivemodules.
It is not entirely straight-forward.

In this section we seek formulas for projections that represent the line bundles over G/H . We will follow the approach
given in [42], where formulas for the projections were first given in the global form that we need. (See also [43,44,28].) But
the formulas given in [42] do not seem convenient for obtaining the detailed estimates that we need later, so the specific
path that we follow is somewhat different.

We will often view (i.e. parametrize) H as R/Z. We define the function e on R, and so on H , by e(t) = e2π it . Then each
irreducible representation of H is of the form t ↦→ e(kt) for some k ∈ Z. For each k ∈ Z let Ξk denote the corresponding
A-module defined by:

Notation 7.1.

Ξk = {ξ ∈ C(G,C) : ξ (xs) = ē(ks)ξ (x) for all x ∈ G, s ∈ H},
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where elements of A are viewed as functions on G that act on Ξk by pointwise multiplication. Then Ξk is the module of
continuous cross-sections of a fairly evident vector bundle (a complex line bundle) over G/H . For k ̸= 0 these are the
physicists’ ‘‘monopole bundles’’. Their ‘‘topological charge’’, or first Chern number, is k (or−k depending on the conventions
used). See sections 3.2.1 and 3.2.2 of [42]. We let λ denote the action of G on A, and also on Ξk, by left translation. These
actions are compatible, so that Ξk is a G-equivariant A-module, reflecting the fact that the corresponding vector bundle is
G-equivariant.

In order to apply the theory of Section 5 we need to find a suitable projection from a free A-module onto Ξk. We do
this in the way discussed in section 13 of [5]. The feature that we use to obtain the projections is the well-known fact that
the one-dimensional representations of H occur as sub-representations of the restrictions to H of finite-dimensional unitary
representations of G. Since H is a maximal torus in SU(2), the integers determining the one-dimensional representations
which occur when restricting a representation of G are, by definition, the weights of that representation. We recall [45] that
for each non-negative integerm there is an irreducible representation, (Hm,Um) ofGwhoseweights arem,m−2, . . . ,−m+

2,−m, each of multiplicity 1, and such a representation is unique up to unitary equivalence. In particular, the dimension of
Hm ism+1. The integerm is called the ‘‘highest weight’’ of the representation. For a given integer k (whichmay be negative)
that determines the A-moduleΞk, we choose to consider the representation (H|k|,U |k|).

Then the one-dimensional subspace K of H|k| for the highest weight if k is non-negative, or for the lowest weight if
k is negative, is carried into itself by the restriction of U |k| to the subgroup H , and this restricted representation of H is
equivalent to the one-dimensional representation of H determiningΞk. From now on we simply let V denote this restricted
representation of H on K. Set

ΞV
k = {ξ ∈ C(G,K) : ξ (xs) = V ∗

s (ξ (x)) for x ∈ G, s ∈ H}.

ClearlyΞV
k is a module over A = C(G/H) that is isomorphic toΞk.

We want to show thatΞV
k is a projective A-module, and to find a projection representing it. Set

Υk = C(G/H,H|k|).

Then any choice of basis forH|k| exhibits Υk as a free A-module. For ξ ∈ ΞV
k set (Φξ )(x) = U |k|

x ξ (x) for x ∈ G, and notice that
(Φξ )(xs) = (Φξ )(x) for s ∈ H and x ∈ G, so that Φξ ∈ Υk. It is clear that Φ is an injective A-module homomorphism from
ΞV into Υk. We show that the range ofΦ is projective by exhibiting the projection onto it from Υk. This projection is the one
that we will use in the later sections to represent the projective moduleΞk.

Notation 7.2. We denote the projection from H|k| onto K by Pk.

Note that U |k|
s PkU |k|∗

s = Pk for s ∈ H by theH-invariance ofK. Let Ek denote the C∗-algebra C(G/H,L(H|k|)). In the evident
way Ek = EndA(Υk). Define pk on G by

pk(x) = U |k|
x PkU |k|∗

x , (7.1)

and notice that pk(xs) = pk(x) for s ∈ H and x ∈ G, so that pk ∈ Ek. Clearly pk is a projection in Ek = EndA(Υk).

Proposition 7.3. As an operator on Υk, the range of the projection pk is exactly the range of the injectionΦ .

Proof. If ξ ∈ ΞV , then pk(x)(Φξ )(x) = U |k|
x PkU |k|∗

x U |k|
x ξ (x) = (Φξ )(x), so that Φξ is in the range of pk. Suppose, conversely,

that F ∈ Υk and that F is in the range of pk. Set ηF (x) = U |k|∗
x F (x) = U |k|∗

x pk(x)F (x) = PkU |k|∗
x F (x). Then the range of ηF is in

K, and we see easily that ηF (xs) = U |k|∗
s ηF (x). Thus ηF ∈ ΞV . Furthermore, (ΦηF )(x) = F (x). Thus F is in the range of Φ . This

shows that the range of pk as a projection on Υk is exactly the range ofΦ . □

Thus the range ofΦ , and so alsoΞV
k , are projective A-modules that are isomorphic, and pk is a projection that represents

ΞV
k , and so representsΞk. It is this projection pk that we will use in the later parts of this paper.
To express pk as an element ofMd(A) for d = |k| + 1 we need only choose an orthonormal basis, {ej}dj=1, forH

|k|, and view
the corresponding constant functions as a basis (so standardmodule frame) forΥk, and then express pk in terms of this basis.
Furthermore, if we define gj on G by gj(x) = PkU |k|∗

x ej, then it is easily seen that each gj is in ΞV , and that {gj} is a standard
module frame, as defined in definition 7.1 of [5], for ΞV . The basis also gives us an isomorphism of Ek with Md(A). But it is
more natural and convenient to view pk as an element of Ek = EndA(Υk). To summarize:

Notation 7.4. For pk defined as in Eq. (7.1), we use the identification of Md(A) with Ek = C(G/H,L(H|k|)) to view pk as an
element of Md(A), and we use pk as the projection representing the projective A-moduleΞk.

8. Projections for Bn

Let (Hn,Un) be the irreducible representation of G = SU(2) of highest weight n. Let Bn
= L(Hn), and let α be the action

of G on Bn by conjugation, that is, αx(T ) = Un
x TU

n∗
x for T ∈ Bn and x ∈ G.
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Suitable projective modules for our context seem to have been first suggested in [11]. (See the paragraph after Eq. (40)
there.) See also Eq. (6.6) of [46]. The formulation closest to that which we use here is found in equation 84 of [21]. For each
k ∈ Z letΩn

k denote the right Bn-module defined by:

Notation 8.1.

Ωn
k = L(Hn,Hk+n),

where (Hk+n,Uk+n) is the irreducible representation of highest weight k+n. Thus if k < 0we need n large enough that k+n ≥ 0.

ThenΩn
k is a right Bn-module by composing operators inΩn

k on the right by operators in Bn.
We want to embedΩn

k into a free Bn-module so that we can consider the corresponding projection. Let

Υ n
k = L(Hn,H|k|

⊗ Hn)

with its evident right action of Bn by composing operators. Then Υ n
k is naturally isomorphic toH|k|

⊗ Bn, so that it is indeed
a free Bn-module, of rank the dimension of H|k|, which is d = |k| + 1.

If k > 0 and if ηk and ηn are highest weight vectors inHk andHn, then ηk ⊗ ηn is a highest weight vector of weight k + n
inHk

⊗Hn, for the action Uk
⊗Un, and thusHk

⊗Hn contains a (unique) copy ofHk+n. If k < 0 but k+ n ≥ 0 thenH|k|
⊗Hn

again contains a highest weight vector of weight k + n, but the argument is somewhat more complicated, and we give it in
Lemma 11.1. Thus again H|k|

⊗ Hn contains a (unique) copy of Hk+n. Consequently, for any k we can, and do, identify Hk+n

with the corresponding subspace of H|k|
⊗ Hn. (We always assume that k + n ≥ 0.) Accordingly, we identify Ωn

k with a
Bn-submodule of Υ n

k .
We have an evident left action ofL(H|k|

⊗Hn) onΥ n
k by composing operators inΥ n

k on the left by operators inL(H|k|
⊗Hn).

In fact, Υ n
k is a L(H|k|

⊗ Hn)-L(Hn)-bimodule, and because L(Hn) = Bn there is an evident natural isomorphism

EndBn (Υ n
k ) ∼= L(H|k|

⊗ Hn).

(The bimodule Υ n
k gives a Morita equivalence between L(H|k|

⊗ Hn) and Bn.) But we also have natural isomorphisms

L(H|k|
⊗ Hn) ∼= L(H|k|) ⊗ L(Hn) ∼= Md(Bn),

and we will use these to take L(H|k|
⊗ Hn) as our version ofMd(Bn).

Let pnk denote the projection of H|k|
⊗ Hn onto its subspace Hk+n, and view pnk as an element of L(H|k|

⊗ Hn). Then
composition with pnk on the left gives an evident projection of L(Hn,H|k|

⊗Hn) onto its submoduleL(Hn,Hk+n), that is, from
Υ n

k ontoΩn
k , respecting the right action of Bn. We thus see that the projection pnk is a projection that represents the projective

Bn-moduleΩn
k .

Notation 8.2. Let pnk denote the projection of H|k|
⊗ Hn onto its subspace Hk+n. We use the identification of Md(Bn) with

L(H|k|
⊗ Hn) to view pnk as an element of Md(Bn), and we use pnk as the projection to represent the projective Bn-moduleΩn

k .

Suppose now that, as in Section 6, we have chosen a continuous length-function ℓ on G which we then use to define
slip-norms for various actions. For the proof of our main theorem (Theorem 12.1), concerning the convergence of modules,
we need a bound for LMd(Bn)(pnk) that is independent of n, where d = |k| + 1. That is, we need:

Proposition 8.3. For fixed k there is a constant ck (depending in particular on the choice of the length function ℓ) such that

LMd(Bn)(pnk) ≤ ck

for all n.

Proof. Notice that because the representation ofG onHk+n is a subrepresentation of the representationU |k|
⊗Un onH|k|

⊗Hn,
the operator pnk is invariant under the corresponding conjugation action of G on L(H|k|

⊗ Hn). But the action of G used to
define LMd(Bn), as discussed in Section 6, comes from the action α of G on Bn using the representation Un on Hn, and is the
action βn

= ιd ⊗ α coming from conjugating elements of L(H|k|
⊗ Hn) by the representation Id ⊗ Un onH|k|

⊗ Hn. Thus we
must consider βn

x (p
n
k), and the action βn depends strongly on n.

Now

βn
x (p

n
k) = (Id ⊗ Un

x )p
n
k(Id ⊗ Un∗

x ).

But as said above, pnk is invariant under conjugation by U |k|
⊗ Un, so we can replace pnk in the above equation by

(U |k|∗
x ⊗ Un∗

x )pnk(U
|k|
x ⊗ Un

x ),

from which we find that

βn
x (p

n
k) = (U |k|∗

x ⊗ In)pnk(U
|k|
x ⊗ In),
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where In is the identity operator on Hn. We can express this as

βn
x (p

n
k) = (αk

x−1 ⊗ ιn)(pnk)

where αk is the conjugation action of G on L(H|k|) and ιn is the identity operator on L(Hn) (but this does not work for most
other operators on L(H|k|

⊗ Hn) besides pnk .) Let γ
k denote the action on L(H|k|

⊗ Hn) defined by γ k
x = (αk

x ⊗ ιn). Then we
see that we have obtained

βn
x (p

n
k) = γ k

x−1 (pnk),

(and the action γ k depends only very weakly on n). It follows that

(βn
x (p

n
k) − pnk)/ℓ(x) = (γ k

x−1 (pnk) − pnk)/ℓ(x
−1),

where we have used that ℓ(x) = ℓ(x−1). From this it follows that

Lβ
n
(pnk) = Lγ

k
(pnk).

Consequently, because ∥pnk∥ = 1 for all n, the following lemma will conclude the proof.

Lemma 8.4. For any k there is a constant, ck, such that for any n we have

Lγ
k
(T ) ≤ ck∥T∥

for every T ∈ L(H|k|
⊗ Hn).

Proof. We use a standard ‘‘smoothing’’-type argument. Let f ∈ C(G), and let γ k
f be the integrated form of γ k applied to f .

Then for any x ∈ G and T ∈ L(H|k|
⊗ Hn) we have

γ k
x (γ

k
f (T )) = γ k

x (
∫

f (y)γ k
y (T )dy) =

∫
f (y)γ k

xy(T )dy

=

∫
f (x−1y)γ k

y (T )dy =

∫
(λx(f ))(y)γ k

y (T )dy,

where λ is the action of left-translation on C(G). Now suppose further that Lλ(f ) < ∞, where Lλ is the Lipschitz seminorm
on C(G) using formula (6.1), for the length function ℓ and the action λ. Then

(γ k
x (γ

k
f (T )) − γ k

f (T ))/ℓ(x) =

∫
(((λxf )(y) − f (y))/ℓ(x))γ k

y (T )dy.

On taking norms and then supremum over x ∈ G, we find that

LMd(Bn)(γ k
f (T )) ≤ Lλ(f )∥T∥. (8.1)

It is shown in proposition 2.2 of [30] that the collection of functions f for which Lλ(f ) < ∞ is a norm-dense ∗-subalgebra
of C(G). Thus this sub-algebra will contain an approximate identity for the convolution algebra L1(G). As we let f run through
such an approximate identity, αk

f will converge for the strong operator topology to the identity operator on L(H|k|). But
L(H|k|) is finite-dimensional, and so the convergence is also for the operator norm. Thus we can find f such that αk

f is
close enough to the identity operator that αk

f is invertible, which in turn implies that γ k
f = αk

f ⊗ ιn is invertible, and that
∥(γ k

f )
−1

∥ = ∥(αk
f )

−1
∥. For such a fixed f we have, on using inequality (8.1),

LMd(Bn)(T ) = LMd(Bn)(γ k
f ((γ

k
f )

−1(T )))

≤ Lλ(f )∥(γ k
f )

−1(T )∥ ≤ Lλ(f )∥(γ k
f )

−1
∥∥T∥.

Thus, with notation as just above, we can set

ck = Lλ(f )∥(γ k
f )

−1
∥ □

This concludes the proof of Proposition 8.3. □

9. Bridges and projections

In this section we begin to apply the general results about bridges and projections given in Section 5 to the specific
algebras, projections and bridges for G = SU(2) described in Sections 6–8 . We fix the positive integer n and the integer k, to
be used as in the sections above, and we set d = |k| + 1. We let Dn

= A ⊗ Bn, and we letΠn
d = (Md(Dn), ωn

d) for ω
n
d defined

as in Definition 4.1, so that Πn
d is a bridge from Md(A) to Md(Bn). We let pk ∈ Md(A) and pnk ∈ Md(Bn) be the projections

defined in the previous two sections, and we view them as elements of Md(Dn) via the injections of Md(A) and Md(Bn) into
Md(Dn) given earlier. For this purpose we use the identification ofMd(A) with C(G/H,L(H|k|)), ofMd(Bn) with L(H|k|

⊗Hn),
and the identification ofMd(Dn) with C(G/H,Md ⊗ Bn) = C(G/H,L(H|k|

⊗ Hn)). Thus:



M.A. Rieffel / Journal of Geometry and Physics 132 (2018) 181–204 195

Notation 9.1. When viewed as elements of C(G/H,L(H|k|
⊗ Hn)), the projection pk is defined by

pk(x) = U |k|
x PkU |k|

x
∗
⊗ In

for x ∈ G/H, while the projection pnk is defined as the constant function

pnk(x) = pnk
on G/H.

Then, as discussed in [4] and in Section 5, we need to obtain a useful bound for

∥pkωn
d − ωn

dp
n
k∥.

Now

pk(x)ωn
d(x) = (U |k|

x PkU |k|
x

∗
⊗ In)(Id ⊗ Un

x P
nUn∗

x )

= (U |k|
x ⊗ Un

x )(P
k
⊗ Pn)(U |k|

x
∗
⊗ Un

x
∗),

while

ωn
d(x)p

n
k(x) = (Id ⊗ Un

x P
nUn∗

x )pnk .

But the subspace Hk+n of H|k|
⊗ Hn is carried into itself by the representation U |k|

⊗ Un, and so

pnk = (U |k|
x ⊗ Un

x )p
n
k(U

|k|∗
x ⊗ Un∗

x ),

so that

(Id⊗Un
x P

nUn∗
x )pnk

= (Id ⊗ Un
x P

nUn∗
x )(U |k|

x ⊗ Un
x )p

n
k(U

|k|∗
x ⊗ Un∗

x )

= (U |k|
x ⊗ Un

x )(Id ⊗ Pn)pnk(U
|k|∗
x ⊗ Un∗

x )

Thus

pk(x)ωn
d(x) − ωn

d(x)p
n
k(x)

= (U |k|
x ⊗ Un

x )(P
k
⊗ Pn

− (Id ⊗ Pn)pnk)(U
|k|∗
x ⊗ Un∗

x ),

and consequently

∥pk(x)ωn
d(x) − ωn

d(x)p
n
k(x)∥ = ∥(Pk

⊗ Pn) − (Id ⊗ Pn)pnk∥,

which is independent of x. Thus

∥pkωn
d − ωn

dp
n
k∥ = ∥(Pk

⊗ Pn) − (Id ⊗ Pn)pnk∥. (9.1)

The next two sections are devoted to obtaining suitable upper bounds for the term on the right.

10. The core calculation for the case of k ≥ 0

We treat first the case in which k ≥ 1. The case in which k ≤ −1 is somewhat more complicated, and we treat it in the
next section. (The case for k = 0 is trivial.) Fix k ≥ 1. Let T n

k be the negative of the operator whose norm is taken on the
right side of Eq. (9.1). Notice that Pk

⊗ Pn
= (Pk

⊗ Pn)pnk (which is false for k ≤ −1), and that Pk
⊗ Pn commutes with pnk .

Consequently

T n
k = ((Id − Pk) ⊗ Pn)pnk .

It is an operator onHk
⊗Hn. To understand the structure of this operatorweuse theweight vectors of the two representations

involved. For this purpose we use the ladder operators in the complexified Lie algebra of SU(2). There are many conventions
for them used in the literature. Since the calculations in this section are crucial for our main results, we give in Appendix 1 a
careful statement of the conventions we use, and of the consequences of our conventions. As explained in more detail there,
we let H span the Lie subalgebra of our maximal torus, and we let E and F be the ladder operators that satisfy the relations

[E, F ] = H, [H, E] = 2E, and [H, F ] = −2F .

For each n these elements of the complexified Lie algebra of SU(2) act on Hn via the infinitesimal form of Un, but as is
commonly done we will not explicitly include Un in our formulas. As operators on Hn they satisfy the relation E∗

= F .
Let fn be a highest-weight vector for the representation (Hn,Un), with ∥fn∥ = 1. The weights of this representation are
n, n − 2, n − 4, . . . ,−n + 2,−n. Set

fn−2a = F afn
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for a = 0, 1, 2, . . . , n. These vectors form an orthogonal basis for Hn. As shown in the Appendix, we have

∥fn−2a∥
2

= ∥F afn∥2
= a!Πa−1

b=0 (n − b).

for a = 0, 1, 2, . . . , n.
Much as above, let ek be a highest-weight vector for the representation (Hk,Uk) , with ∥ek∥ = 1. Set

ek−2a = F aek

for a = 0, 1, 2, . . . , k. These vectors form an orthogonal basis for Hk.
Set vk+n = ek ⊗ fn. It is a highest weight vector of weight k + n in Hk

⊗ Hn for the representation Uk
⊗ Un. Notice that

∥vk+n∥ = 1. Then set

vk+n−2a = F avk+n

for a = 0, 1, 2, . . . , k + n. These vectors form an orthogonal basis for a sub-representation of (Hk
⊗ Hn,Uk

⊗ Un) that is
unitarily equivalent to the irreducible representation (Hk+n,Uk+n), and we will identify it with the latter. The span of these
vectors is the range of the projection pnk , and so from the form of T n

k we see that we only need to calculate the norm of T n
k on

the span of these vectors. For a given awe have

F a(ek ⊗ fn) = (F aek) ⊗ fn + lower order terms,

where the lower-order terms are of the form F a−bek ⊗ F bfn for some integer b ≥ 1. But each of these lower-order terms is in
the kernel of (Id − Pk) ⊗ Pn because Pn(F bfn) = 0 for b ≥ 1. The highest weight vector ek ⊗ fn is also in that kernel, because
Pk is the projection onto the span of ek. Thus we find that T n

k (ek ⊗ fn) = 0, while

T n
k (F

a(ek ⊗ fn)) = (F aek) ⊗ fn

for a = 1, . . . , k. But the terms (F aek) ⊗ fn are orthogonal to each other for different a’s. Because ∥(F aek) ⊗ fn∥ = ∥F aek∥ for
each a, it follows that

∥T n
k ∥ = max{∥F aek∥/∥F a(ek ⊗ fn)∥ : a = 1, . . . , k}.

But from Eq. (A.3) of the Appendix we see that for each awe have

∥F aek∥2
= a!Πa−1

b=0 (k − b),

while

∥F a(ek ⊗ fn)∥2
= a!Πa−1

b=0 (k + n − b).

Thus

∥F aek∥2/∥F a(ek ⊗ fn)∥2
= Πa−1

b=0 (k − b)/(k + n − b).

Since (k − b)/(k + n − b) < 1 for each b = 1, . . . , k, it is clear that the maximum of these products depending on a occurs
when a = 1 and so we find that

∥T n
k ∥ = (k/(k + n))1/2.

We thus obtain:

Proposition 10.1. In terms of our notation in Section 9, and by Eq. (9.1), for any k ≥ 0 we have

∥pk(x)ωd(x) − ωd(x)pnk(x)∥ = ∥(Pk
⊗ Pn) − (Id ⊗ Pn)pnk∥ = (k/(k + n))1/2

for each x.

Crucially, this goes to 0 as n → ∞, for fixed k.

11. The core calculation for the case of k ≤ −1

We now treat the case in which k ≤ −1, for which we must assume that k + n ≥ 1. Again we set

T n
k = (Pk

⊗ Pn) − (Id ⊗ Pn)pnk .

We use the same basis vectors ei and fj forH|k| andHn as in the previous section. But now k+ n < n, and pnk is the projection
on the subspace ofH|k|

⊗Hn generated by the highest weight vector vk+n of weight k+n. This vector has amore complicated
expression in terms of the basis vectors ei ⊗ fj than for the case of k ≥ 0. Specifically, vk+n will be a linear combination of
those basis vectors ei ⊗ fj that are of weight k + n.
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Lemma 11.1. For k ≤ −1 a highest weight vector of weight k + n in H|k|
⊗ Hn is given by

vk+n =

−k∑
b=0

αb e−k−2b ⊗ fn+2k+2b ,

where

αb = (−1)b
(n + k + b)!
(n + k)!b!

for 0 ≤ b ≤ −k.

Proof. Wemust determine the coefficients αb for vk+n of the general form given in the statement of the lemma. In order for
vk+n to be a highest weight vector it must satisfy Evk+n = 0, that is,

0 = Evk+n =

−k∑
b=0

αb (Ee−k−2b ⊗ fn+2k+2b + e−k−2b ⊗ Efn+2k+2b).

For each bwith 0 ≤ b < −k the term in this sum that is a multiple of

e−k−2b ⊗ fn+2k+2(b+1)

is

αb+1 Ee−k−2(b+1) ⊗ fn+2k+2(b+1) + ab e−k−2b ⊗ Efn+2k+2b .

By Eq. (A.1) in the Appendix,

Ee−k−2(b+1) = (b + 1)(−k − (b + 1) + 1)e−k−2(b+1)+2,

while

Efn+2k+2b = Efn−2(−k−b) = (−k − b)(n − (−k − b) + 1)fn+2k+2(b+1) .

It follows that

0 = αb+1(b + 1)(−k − b) + αb(−k − b)(n + k + b + 1).

Thus for 0 ≤ b ≤ −k − 1 we have

αb+1 = −(n + k + b + 1)(b + 1)−1αb ,

that is, if 1 ≤ b ≤ −k then

αb = −(n + k + b)b−1αb−1.

We are free to set α0 = 1. On doing that, we find by induction that

αb = (−1)b
(n + k + b)!
(n + k)!b!

for 0 ≤ b ≤ −k. □

Much as in the case in which k ≥ 0, we set

vk+n−2a = F avk+n

for a = 0, 1, . . . , n+k. These vectors formanorthogonal basis for a sub-representation of (H|k|
⊗Hn,U |k|

⊗Un) that is unitarily
equivalent to the irreducible representation (Hk+n,Uk+n), and we will identify the latter with this sub-representation. The
span of these vectors is, by definition, the range of the projection pnk .

We seek to determine ∥T n
k ∥, and to show that, for fixed k, it goes to 0 as n goes to ∞. Recall that Pk is the rank-one

projection on ek, which for k ≤ −1 is the lowest weight vector in H|k| (and is not of norm 1). Since the range of Pk
⊗ Pn is

spanned by ek ⊗ fn whereas the only vectors in the range of pnk that are of weight k+n aremultiples of vk+n, it is clear that the
range of Pk

⊗ Pn is not included in the range of pnk , in contrast to what happens for k ≥ 0. LetW be the subspace ofH|k|
⊗Hn

spanned by the vectors vk+n, . . . , v−k−n together with ek ⊗ fn. If u is any vector in H|k|
⊗ Hn that is orthogonal to W , then

both Pk
⊗ Pn and pnk take u to 0, and thus so does T n

k . Consequently in order to determine ∥T n
k ∥ it suffices to view T n

k as an
operator fromW into H|k|

⊗ Hn.
We consider now the action of T n

k on the vectors vk+n−2a. Let us assume first that a ≥ 1. Since each term in the formula
for vk+n−2a must involve an elementary tensor of weight k + n − 2a, it is clear that (Pk

⊗ Pn)(vk+n−2a) = 0 for a ≥ 1, and so

T n
k (vk+n−2a) = (Id ⊗ Pn)(F a(vk+n)).
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Since F lowers weights, the only term in the formula for vk+n given in Lemma 11.1 on which (Id ⊗ Pn)F a has a possibility of
being non-zero is the term for b = −k, that is α−k ek ⊗ fn. But because ek is the lowest weight vector in H|k|, we see that
F (ek ⊗ fn) = ek ⊗ fn−2, which is in the kernel of Id ⊗ Pn. We conclude that for all a ≥ 1 we have T n

k (vk+n−2a) = 0.
Thus it suffices to determine the norm of the restriction of T n

k to the subspace spanned by vk+n and ek ⊗ fn. Now

T n
k (vk+n) = (Pk

⊗ Pn)(vk+n) − (Id ⊗ Pn)pnk(vk+n)

= ((Pk
− Id) ⊗ In+1)(Id ⊗ Pn)(vk+n)

= ((Pk
− Id) ⊗ In+1)(α−kek ⊗ fn) = 0.

Thus, finally, it comes down to determining T n
k (ek ⊗ fn). Now clearly

T n
k (ek ⊗ fn) = ek ⊗ fn − (Id ⊗ Pn)pnk(ek ⊗ fn).

The weight vectors vk+n−2a form an orthogonal basis for the range of pnk , and all of these vectors except the one for a = 0 are
of different weight than the weight of ek ⊗ fn and so are orthogonal to ek ⊗ fn. It follows that

pnk(ek ⊗ fn) =
⟨ek ⊗ fn, vk+n⟩

∥vk+n∥
2 vk+n.

But from the formula for vk+n given in Lemma 11.1 we see that

(Id ⊗ Pn)(vk+n) = α−k ek ⊗ fn =
⟨ek ⊗ fn, vk+n⟩

∥ek ⊗ fn∥2 ek ⊗ fn.

Thus

T n
k (ek ⊗ fn) =

(
1 −

⟨ek ⊗ fn, vk+n⟩
2

∥ek ⊗ fn∥2∥vk+n∥
2

)
ek ⊗ fn,

so that

∥T n
k ∥ =

∥vk+n∥
2

− ⟨
ek⊗fn

∥ek⊗fn∥
, vk+n⟩

2

∥vk+n∥
2 = ∥v′

k+n∥
2/∥vk+n∥

2,

where v′

k+n denotes vk+n with its last term (involving ek ⊗ fn) removed. We want to show that the above expression goes to
0 as n → ∞ .

Now

∥vk+n∥
2

=

−k∑
b=0

α2
b ∥e−k−2b∥

2
∥fn−2(−k−b)∥

2,

while ∥v′

k+n∥
2 is the same sum but with the upper limit of summation being −k − 1. Since each ∥e−k−2b∥ is independent of

n, to show that ∥v′

k+n∥
2/∥vk+n∥

2 converges to 0 as n → ∞, it suffices to show that for each bwith 0 ≤ b ≤ −k− 1 the term

α2
b ∥fn−2(−k−b)∥

2/∥vk+n∥
2

goes to 0 as n → ∞. (Note that αb does depend on n.) To show this it suffices to show that this holdswhen vk+n is replaced by
the b = −k term in its expansion, which is the termmissing in v′

k+n. On noting that ek is independent of n and that ∥fn∥ = 1
for all n, we see that we must show that for each b with 0 ≤ b ≤ −k − 1 the term

α2
b ∥fn−2(−k−b)∥

2/α2
−k

goes to 0 as n → ∞.
From the formula in Lemma 11.1 we find that for each bwith 0 ≤ b ≤ −k − 1 we have

|αb|/|α−k| =
(n + k + b)!
(n + k)!b!

/
n!

(n + k)!(−k)!
=

(−k)!
b!

(n + k + b)!
n!

,

while from formula (A.3) of the Appendix we have

∥fn−2(−k−b)∥
2

=
(−k − b)!n!
(n + k + b)!

.

Thus

α2
b ∥fn−2(−k−b)∥

2/α2
−k =

( (−k)!
b!

)2(−k − b)!
( (n + k + b)!

n!

)2 n!
(n + k + b)!

≤ (−k)3
(n + k + b)!

n!
≤

(−k)3

n
since (k + b) ≤ −1. The power of n can not be improved, as seen by considering the case b = −k − 1.
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We conclude from these estimates that ∥T n
k ∥ → 0 as n → ∞, and consequently that:

Proposition 11.2. In terms of our earlier notation in Section 9, and by Eq. (9.1), for any fixed k ≤ −1

∥pk(x)ωd(x) − ωd(x)pnk(x)∥ = ∥(Pk
⊗ Pn) − (Id ⊗ Pn)pnk∥

converges to 0 as n → ∞.

I have not managed to extend the results of this section to the case of general coadjoint orbits of compact semisimple Lie
groups.

12. The main theorem and its proof

We are now in position to state and prove the main theorem of this paper. We will recall some of the notation at the
beginning of the proof.

Theorem 12.1. Let notation be as above, for G = SU(2) and a chosen continuous length function ℓ, etc. Fix the integer k (and set
d = |k| + 1). Let Lnk be defined as in Eq. (4.2) for r = rn = lΠn

d
. Then Lnk(pk, p

n
k) goes to 0 as n → ∞. Furthermore, we can find a

natural number Nk large enough that for every n ≥ Nk we have

(hΠn
d

+ lΠn
d
)Lnk(pk, p

n
k) < 1/2 ,

so that if q is any other projection in Md(Bn) that satisfies this same inequality when pnk is replaced by q, then there is a continuous
path of projections in Md(Bn) going from pnk to q, which implies that the projective Bn modules determined by pnk and q are
isomorphic. In this sense the projective Bn-moduleΩn

k is associated by the bridgeΠn
d to the projective A-moduleΞk.

Proof. We recall some of our earlier notation and results. We haveA = C(G/H) and Bn
= L(Hn). Then we letDn

= A⊗Bn,
and we let Πn

= (Dn, ωn), a bridge from A to Bn. Let rΠn denote the reach of the bridge Πn as measured by LA and LB
n
, as

defined in Definition 4.2. Define a seminorm, NΠn , and then a ∗-seminorm N̂Πn onA⊕Bn much as done just before Eq. (4.2),
and then, much as in Eq. (4.2), define, for some rn ≥ rΠn , a seminorm Lnrn on A ⊕ Bn by

Lnrn (a, b) = LA(a) ∨ LB(b) ∨ (rn)−1N̂Πn (a, b).

Then Lnrn is an admissible seminorm on A ⊕ Bn, according to Proposition 4.8.
We need the matricial version of this seminorm. We set Πn

d = (Md(Dn), ωn
d), where ωn

d is defined, much as in
Definition 4.1, by

ωn
d(x) = Id ⊗ αx(Pn)

for all x ∈ G. ThenΠn
d is a bridge from Md(A) to Md(Bn). We measure it with the seminorms LAd and LB

n

d , defined much as at
the end of Section 6. We now denote the resulting reach and height ofΠn

d by rΠn
d
and hΠn

d
.

Define, on Md(A) ⊕ Md(Bn), a seminorm, Nn
d , by Nn

d (a, b) = ∥aωn
d − ωn

db∥, and then a ∗-seminorm N̂n
d , much as done just

before Eq. (4.2). Then, for any rn ≥ rΠn
d
define a seminorm, Lnd,rn , by

Lnd,rn (a, b) = LAd (a) ∨ LB
n

d (b) ∨ (rn)−1N̂n
d (a, b). (12.1)

Then Lnd,rn is an admissible seminorm for LAd and LB
n

d , by Proposition 4.8, because rn ≥ rnd .
Let pk and pnk be the projections defined in Notation 9.1 for the projective modulesΞk andΩn

k . Then

Lnd,rn (pk, p
n
k) = LAd (pk) ∨ LB

n

d (pnk) ∨ (rn)−1N̂n
d (pk, p

n
k).

According to part (a) of Theorem 5.7, in order for pnk to be a projection associated to pk up to path connectedness, we need
that

(hΠn
d

+ rn)Lnd,rn (pk, p
n
k) < 1/2.

Thus each of the three main terms in the formula for Lnk,rn (pk, p
n
k) must satisfy the corresponding inequality.

We examine the third term first. Because pk and pnk are self-adjoint, this term is equal to

(hΠn
d

+ rn)(rn)−1
∥pkωn

d − ωn
dp

n
k∥ .

We now use theorem 6.10 of [4] (where q there is our k, and m is our n), which is one of the two main theorems of [4]. It
tells us the quite un-obvious fact that lΠn

d
, and so both rΠn

d
and hΠn

d
, go to 0 as n → ∞, for fixed k. This theorem furthermore

gives quantitative upper bounds for lΠn
d
in terms of the length function ℓ chosen for G.

We also now see the reason for allowing rn to possibly be different from rΠn
d
in defining Lnd,rn , namely that if rΠn

d
goes to 0

more rapidly than does hΠn
d
, then their ratio goes to +∞, so that the term (hΠn

d
+ rn)(rn)−1 in the displayed expression
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above goes to +∞. There are many ways to choose rn to avoid this problem, but the simplest is probably just to set
rn = max{rΠn

d
, hΠn

d
}, which is just the definition of lΠn

d
. We now make this choice, and for this choice we write Lnd instead of

Lnd,rn . Then we have 1 + hΠn
d
/lΠn

d
≤ 2, and so

(hΠn
d

+ lΠn
d
)(lΠn

d
)−1

∥pkωn
d − ωn

dp
n
k∥ ≤ 2∥pkωn

d − ωn
dp

n
k∥.

From Propositions 10.1 and 11.2 it follows that for fixed k this term goes to 0 as n goes to ∞.
We examine next the first term, (hΠn

d
+ lΠn

d
)LAd (pk). Since LAd (pk) is independent of n, and we have seen that (hΠn

d
+ lΠn

d
)

goes to 0 as n → ∞, it follows that this first term too goes to 0 as n → ∞, for fixed k.
Finally, we examine the second term,

(hΠn
d

+ lΠn
d
)LB

n

d (pnk).

In examining above the first termwe have seen that hΠn
d
and lΠn

d
go to 0 as n → ∞, so the only issue is the growth of LB

n

d (pnk)
as n → ∞. But Proposition 8.3 tells us exactly that, for fixed k, there is a common bound for the LB

n

d (pnk)’s.
We now apply Theorem 5.7 to the present situation, and this concludes the proof. □

As mentioned at the end of Section 6, upper bounds for hΠn
d
and lΠn

d
in terms of just the data forΠ , LA, and LB are given

in theorem 5.5 of [4].

13. Bridges and direct sums of projective modules

In this sectionwe discuss how to dealwith direct sums of projectivemodules, andwe indicate inwhat sense it is sufficient
for us to deal in detail here only with the line-bundles on the 2-sphere.

It is well known that every complex vector bundle over the 2-sphere is isomorphic to the direct sum of a line bundle with
a trivial bundle. (Use e.g. Proposition 1.1 of chapter 8 of [41].) We can see this in part as follows.

Proposition 13.1. With notation as in Notation 7.1, for any j, k ∈ Z we have a natural module isomorphism

Ξj ⊕Ξk ∼= Ξj+k ⊕Ξ0.

Proof. To simplify notation, we identify SU(2) with the 3-sphere in the usual way, so that (z, w) ∈ S3 ⊆ C2 corresponds
to the matrix ( z −w̄

w z̄ ). If we set et = e(t) for each t ∈ R, then right multiplication of elements of SU(2) by the matrix ( et 0
0 ēt )

corresponds to sending (z, w) to (zet , wet ). Thus elements ofΞk can be viewed as continuous functions ξ on S3 that satisfy

ξ (zet , wet ) = ēkt ξ (z, w)

for all t ∈ R.
Let j, k ∈ Z be given. Define a GL(2,C)-valued functionM on S3 by

M(z, w) =

(
z̄k −w̄j

wj zk

)
.

For any ( f
g ) ∈ Ξj ⊕Ξk setΦ( f

g ) = M( f
g ), so that

Φ

(
f
g

)
(z, w) =

(
z̄kf (z) − w̄jg(w)
wjf (z) + zkg(w).

)
It is easily checked that Φ( f

g ) is in Ξj+k ⊕ Ξ0, and that Φ is an A-module homomorphism. Furthermore, Φ has an inverse,
obtained by using the inverse ofM . ThusΦ is an isomorphism, as needed. □

This proposition can be used inductively to show that the direct sum of any finite number of theΞk’s is isomorphic to the
direct sum of a singleΞj with a trivial (i.e. free) module.

The corresponding result for theΩn
k ’s is even easier:

Proposition 13.2. With notation as in Notation 8.1, for any j, k ∈ Z and for any n ≥ 1with n+j ≥ 0, n+k ≥ 0, and n+j+k ≥ 0,
we have a natural module isomorphism

Ωn
j ⊕Ωn

k
∼= Ωn

j+k ⊕Ωn
0 .

Proof. We have

Ωn
j ⊕Ωn

k = L(Hn,Hj+n) ⊕ L(Hn,Hk+n)
∼= L(Hn,Hj+k+2n) ∼= L(Hn,Hj+k+n) ⊕ L(Hn,Hn)
= Ωn

j+k ⊕Ωn
0 . □
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But if one wants to show these correspondences by using projections associated to the projective modules, there are
substantial complications. Let us consider the general case first.

Let A and B be unital C*-algebras, and let Π = (D, ω) be a bridge from A to B. Let {LAn } and {LBn } be matrix Lip-norms
on A and B (as defined in Definition 2.3). For a given d we can use LAd and LBd to measure the length of Πd. One significant
difficulty is that it seems to be hard in general to obtain an upper bound for the length of Πd in terms of the length of Π
(though we will see that for the case of the ‘‘bridges with conditional expectation’’ that are discussed in [4] we can get some
useful information). But the following little result will be useful below.

Proposition 13.3. Let Π = (D, ω) be a bridge from A to B, and let {LAn } and {LBn } be matrix slip-norms on A and B, used to
measure the length of Πd for any d. If e is another natural number such that d < e then rΠd ≤ rΠe .

Proof. Let A ∈ Md(A) with A∗
= A and LAd (A) ≤ 1, so that A ∈ L1

d(A). Then ( A 0
0 0 ), with the 0’s of correct sizes, is in L1

e (A) by
property (2) of Definition 2.1. Let δ > 0 be given. Then by the definition of rΠe there is a C ∈ L1

e (B) such that

∥

[
A 0
0 0

][
ωd 0
0 ωe−d

]
−

[
ωd 0
0 ωe−d

]
C∥ ≤ rΠe + δ.

Compress the entire term inside the norm symbols by the matrix E = ( Id 0
0 0 ), and define B by ECE = ( B 0

0 0 ) to obtain

∥Aωd − ωdB∥ ≤ rΠe + δ.

Note that B∗
= B and that LBd (B) ≤ 1 by property (1) of Definition 2.1, so that B ∈ L1

d(B). Since δ is arbitrary, it follows that the
distance from Aωd to ωdL1

d(B) is no greater than rΠe . In the same way we show that for any B ∈ L1
d(B) there is an A ∈ L1

d(A)
such that the distance from ωdB to L1

d(A)ωd is no greater than rΠe . It follows that rΠd ≤ rΠe as desired. □

For any natural number d let Nd be the seminorm onMd(A) ⊕ Md(B) defined much as done shortly before Eq. (4.2), by

Nd(A, B) = ∥Aωd − ωdB∥

for A ∈ Md(A) and B ∈ Md(B). Suppose now that for natural numbers d and ewe have a1 ∈ Md(A) and a2 ∈ Me(A) as well as
b1 ∈ Md(B) and b2 ∈ Me(B), so that[

a1 0
0 a2

]
∈ Md+e(A) and

[
b1 0
0 b2

]
∈ Md+e(B).

Then

Nd+e(
[
a1 0
0 a2

]
,

[
b1 0
0 b2

]
) = ∥

[
a1ωd − ωdb1 0

0 a2ωe − ωeb2

]
∥

= Nd(a1, b1) ∨ Ne(a2, b2).

Next, much as done shortly before Eq. (4.2), for each d we define a ∗-seminorm, N̂d, by

N̂d(A, B) = Nd(A, B) ∨ Nd(A∗, B∗),

for A ∈ Md(A) and B ∈ Md(B). It then follows from the calculation done just above that

N̂d+e(
[
a1 0
0 a2

]
,

[
b1 0
0 b2

]
) = N̂d(a1, b1) ∨ N̂e(a2, b2),

for a1 ∈ Md(A) and a2 ∈ Me(A), and b1 ∈ Md(B) and b2 ∈ Me(B).
Next, assume that rΠd < ∞ for each d, as is the case for matrix Lip-norms as seen in Proposition 4.4. Let some choice of

finite rd ≥ rΠd be given for each d. Set, much as in Eq. (4.2),

Lrdd (A, B) = LAd (A) ∨ LBd (B) ∨ r−1
d N̂Πd (A, B)

for A ∈ Md(A) and B ∈ Md(B). It then follows from the calculations done above that

Lrd+e
d+e (

[
a1 0
0 a2

]
,

[
b1 0
0 b2

]
) = Lrd+e

d (a1, b1) ∨ Lrd+e
e (a2, b2),

for a1 ∈ Md(A) and a2 ∈ Me(A), and b1 ∈ Md(B) and b2 ∈ Me(B). Because rΠd+e ≥ rΠd ∨ rΠe according to Proposition 13.3,
one can check quickly that Lrd+e

d is admissible (Definition 4.7) for LAd and LBd , and similarly for Lrd+e
e .

Suppose now that p1 ∈ Md(A) and p2 ∈ Me(A) are projections representing projective A-modules, and that q1 ∈ Md(B)
and q2 ∈ Me(B) are projections representing projective B-modules. Then

Lrd+e
d+e (

[
p1 0
0 p2

]
,

[
q1 0
0 q2

]
) = Lrd+e

d (p1, q1) ∨ Lrd+e
e (p2, q2).

From Theorem 5.7a we then obtain:
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Proposition 13.4. Let notation be as just above, and assume that lΠd+e < ∞. If

(hΠd+e + rd+e)max{(Lrd+e
d (p1, q1), L

rd+e
e (p2, q2))} < 1/2,

and if there is a projection Q ∈ Md+e(B) such that

(hΠd+e + rd+e)L
rd+e
d+e (

[
p1 0
0 p2

]
, Q ) < 1/2,

then there is a path through projections in Mm+n(B) going from Q to ( q1 0
0 q2

).

This uniqueness result means that ( q1 0
0 q2

) is a projection in Md+e(B) corresponding to the projection ( p1 0
0 p2

) . Thus the
consequence of this proposition is that for suitable bounds, if the projective modules for p1 and q1 correspond, and if those
for p2 and q2 correspond, then the direct sum modules correspond. This suggests a further reason for saying that when
considering complex vector bundles over the 2-sphere it suffices for our purposes to consider only the line bundles.

The difficulty with using this proposition is that I have not found a good way of bounding in general the reach and height
of Πd in terms of those of Π . However, the specific bridges that we have been using for matrix algebras converging to the
sphere are examples of ‘‘bridges with conditional expectations’’, as defined in [4]. For such a bridge, bounds are obtained in
terms of the conditional expectations. More specifically, there is a constant, γ̊Π , (equal to 2max{γA, γ B

} in the notation of
theorem 5.4 of [4]) such that

rΠd ≤ dγ̊Π

for all d, and there is a constant, δ̊Π , (equal to 2max{min{δA, δ̂A}},min{δB, δ̂B} in the notation of theorem 5.4 of [4]) such
that

hΠd ≤ dδ̊Π

for all d. Then if we choose s ≥ γ̊Π we have

(d + e)s ≥ (d + e)γ̊Π ≥ rΠd+e ,

so we can set rd+e = (d + e)s and apply Proposition 13.4 to obtain:

Proposition 13.5. Assume that Π is a bridge with conditional expectations, and let notation be as just above. Choose s ≥ γ̊Π . If

(d + e)(δ̊Π + s)max{(L(d+e)s
d (p1, q1), L(d+e)s

e (p2, q2))} < 1/2,

and if there is a projection Q ∈ Md+e(B) such that

(d + e)(δ̊Π + s)L(d+e)s
d+e (

[
p1 0
0 p2

]
, Q ) < 1/2, (13.1)

then there is a path through projections in Md+e(B) going from Q to ( q1 0
0 q2

).

Thus again, if the inequality (13.1) is satisfied, then if the projective modules for p1 and q1 correspond, and if those for p2
and q2 correspond, then the direct summodules correspond. But notice that the factor d + e at the beginning means that as
d or e get bigger, the remaining term must be smaller in order for the product to be< 1/2. Thus, for example, suppose that
p and q correspond. This will not in general imply that ( p 0

0 0e ) and ( q 0
0 0e ) correspond, where 0e denotes the 0 matrix of size e.

We can now apply the above results to our basic example in which A = C(G/H) and Bn
= L(Hn), and we have the

bridge Πn between them, as in the previous section and earlier. From the discussion leading to propositions 6.3 and 6.7
of [4], which is strongly based on the results of [3], it can be seen that the constants γ̊Πn and δ̊Πn converge to 0 as n → ∞.
If in Proposition 13.5 one sets sn = max{γ̊Πn , δ̊Πn}, then for fixed d and e the term (d + e)(δ̊nΠ + sn) in inequality (13.1) will
converge to 0 as n → ∞. Consequently, for projections p1 and p2 as above, one can find a sufficiently large N that if n ≥ N
and if q1 and q2 are corresponding projections in Md(Bn) and Me(Bn) respectively, then inequality (13.1) is satisfied, so that
( p1 0

0 p2
) and ( q1 0

0 q2
) correspond.
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Appendix. Weights

We give here a precise statement of the conventions we use concerning weights, weight vectors, etc., and of their
properties, including some proofs (all basically well-known, e.g. in section VIII.4 of [45]).

At first we assume only that H is a finite-dimensional vector space over C, and that H is a non-zero operator on H while
E and F are operators on H satisfying the relations

[E, F ] = H, [H, E] = 2E, and [H, F ] = −2F .

Let ξ be an eigenvector of H with eigenvalue r . Then

H(Eξ ) = E(Hξ ) + [H, E]ξ = rEξ + 2Eξ = (r + 2)Eξ,

so that if Eξ ̸= 0 then Eξ is an eigenvector for H of eigenvalue r+2. In the same way, Fξ , if ̸= 0, is an eigenvector of H of
eigenvalue r −2. (So E and F are often called ‘‘ladder operators’’.) SinceH is finite-dimensional, it follows that there must be
an eigenvector, ξ∗, for H such that Eξ∗ = 0 (a highest weight). Fix such a ξ∗, and let r be its eigenvalue. Then for each natural
number awe see that F aξ∗ will be an eigenvector of eigenvalue r − 2a unless F aξ∗ = 0. Since H is finite-dimensional, there
will be a natural numberm such that F aξ∗ ̸= 0 for a ≤ m but Fm+1ξ∗ = 0. Now E(Fξ∗) = [E, F ]ξ∗ = rξ∗. In a similar way we
find by induction that

E(F aξ∗) = EF (F a−1ξ∗) = (H + FE)(F a−1ξ∗)

= a(r − a + 1)F a−1ξ∗.

Consequently, since Fm+1ξ∗ = 0, we have

H(Fmξ∗) = −F (EFmξ∗) = −m(r − m + 1)Fmξ∗.

But also H(Fmξ∗) = (r − 2m)Fmξ∗. Since Fmξ∗ ̸= 0, it follows that r = m, and so it is appropriate to denote ξ∗ by em. With
this notation, set

em−2a = F aem

for a = 0, . . . ,m. Each of these vectors is an eigenvector of H with corresponding eigenvalue m − 2a. These eigenvectors
span a subspace ofH of dimensionm+1. From the calculations done above, it is clear that this subspace is carried into itself
by the operators H, E and F , and that furthermore, we have

E(em−2a) = a(m − a + 1)em−2a+2. (A.1)

From this we immediately obtain

FE(em−2a) = a(m − a + 1)em−2a.

Since EF = H + FE, it then follows that

EF (em−2a) = (a − 1)(m − a)em−2a. (A.2)

Now assume thatH is a finite-dimensional Hilbert space, and let em be a highest weight vector of weightm as above, and
for each a = 1, . . . ,m define em−2a as above. Assume now that F = E∗ (the adjoint of E). This implies that H is self-adjoint,
so that its eigenvectors of different eigenvalue are orthogonal. Consequently the em−2a’s are orthogonal vectors, that span a
subspace of H that is carried into itself by the operators H , E, and F (giving an irreducible unitary representation of SU(2)).
Assume further that ∥em∥ = 1. We need to know the norms of the vectors em−2a. Notice that from Eq. (A.1) we see that for
a ≥ 1 we have

∥em−2a∥
2

= ⟨Fem−2a+2, em−2a⟩ = ⟨em−2a+2, Eem−2a⟩

= a(m − a + 1)∥em−2a+2∥
2.

A simple induction argument then shows that

∥F aem∥
2

= ∥em−2a∥
2

= a!Πa−1
b=0 (m − b) =

a!m!

(m − a)!
(A.3)

for a = 1, . . . ,m. (We find it convenient not to normalize the em’s to length 1.)
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