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A NEW CHARACTERIZATION OF THE BERGER SPHERE IN
COMPLEX PROJECTIVE SPACE

HAIZHONG LI, LUC VRANCKEN, AND XIANFENG WANG

Abstract. We give a complete classification of Lagrangian immersions of homogeneous
3-manifolds (the Berger spheres, the Heisenberg group Nil3, the universal covering of the
Lie group PSL(2, R) and the Lie group Sol3) in 3-dimensional complex space forms. As
a corollary, we get a new characterization of the Berger sphere in complex projective
space.

1. Introduction

Let φ : Mn → M̄n be an isometric immersion from an n-dimensional Riemannian
manifold into a complex n-dimensional Kähler manifold M̄n. Mn is called a Lagrangian
submanifold if the almost complex structure J of M̄n carries each tangent space of Mn

into its corresponding normal space.

In this paper we study Lagrangian submanifolds of the 3-dimensional complex space
forms. In the last decades many results about Lagrangian submanifolds have been obtained
characterizing several classes of submanifolds. Some are valid in all dimensions, while
others are only valid in dimension 2 or 3. For a recent survey, we refer to the books of
B.-Y. Chen (see [2] and [5]). Nevertheless, even in low dimensions, many open problems
remain.

On the other hand, also in the last decades, many people have started to study the
geometry of some special 3-dimensional homogeneous spaces. In particular many works
have been devoted to study surfaces in such manifolds, see among others the very nice
survey by Fernández and Mira [15]. In the simply connected case, the classification of
3-dimensional homogeneous manifolds is well-known. Such manifolds can be divided into
several classes depending on the dimension of the isometry group. They include

(1) the spaces with 6-dimensional isometry group (Euclidean space R3, standard sphere
S3 and hyperbolic space H3).

(2) the spaces with 4-dimensional isometry group (which consist of S2 × R, H2 × R,
the Berger spheres, the Heisenberg group Nil3 and the universal covering of the
Lie group PSL(2, R)).

(3) the spaces with 3-dimensional isometry group (which are a certain class of Lie
groups, of which the Lie group Sol3 is specially important, since it is the only
Thurston geometry among them).
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From another point of view, equally interesting questions are whether any of these
3-dimensional homogeneous spaces can be isometrically immersed (locally or globally)
as a Lagrangian submanifold in a 3-dimensional complex space form, and whether such
immersions (if they exist) are necessarily unique. In this paper, we will investigate the
Lagrangian immersions of homogeneous 3-manifolds in complex space forms.

A first result which can be formulated within this framework is the well known result
by Ejiri ([13]).

Theorem 1.1 ([13]). Let φ be a minimal Lagrangian immersion of a 3-dimensional mani-
fold with constant sectional curvature in a 3-dimensional complex space form. Then either

• M3 is totally geodesic, or
• M3 is congruent to a flat torus in CP3.

Note that without the assumption of minimality, as far as the authors know, the answer
is not known. Even assuming that the immersion is a global one. Some partial results with
respect to this question were obtained in [21] and [7]. In this paper, we will be interested
in the existence and uniqueness of Lagrangian immersions of the homogeneous 3-manifolds
(the Berger spheres, the Heisenberg group Nil3, the universal covering of the Lie group
PSL(2, R), the Lie group Sol3, the product spaces S2 × R and H2 × R) in 3-dimensional
complex space forms. Note that all these spaces have a common property, that is, the
Ricci tensor has exactly two different eigenvalues at every point, this property will play
an important role in the proof of our main results.

We will first show that, in contrast to Lagrangian immersions of real space forms in com-
plex space forms, a Lagrangian isometric immersion (even locally) of one of the following
homogeneous 3-manifolds (the Berger spheres, the Heisenberg group Nil3, the universal
covering of the Lie group PSL(2, R) and the Lie group Sol3) in a 3-dimensional complex
space form is always minimal. Moreover the only possibility is a unique isometric La-
grangian immersion of the Berger sphere S3

b(4/3, 1) in CP3(4). As a corollary, we get a
new characterization of the Berger sphere in complex projective space.

Theorem 1.2. Let φ be a Lagrangian isometric immersion from (an open part of) one
of the homogeneous 3-manifolds M3 (the Berger spheres, the Heisenberg group Nil3, the
universal covering of the Lie group PSL(2, R) and the Lie group Sol3) to a 3-dimensional
complex space form M̄3(4c), c ∈ {−1, 0, 1}. Then c = 1, φ is minimal and M3 is the
Berger sphere S3

b(4/3, 1). And up to an isometry of CP3(4), the immersion φ is unique.

Remark 1.3. In Theorem 1.2, for simplicity, we assume that c ∈ {−1, 0, 1}. If we do not
assume this, we get that c > 0, φ is minimal and M3 is a Berger sphere S3

b(4c/3, c). And
up to an isometry of CP3(4c), the immersion φ is unique.

In the proof of Theorem 1.2, one of the key ingredients is trying to choose a good
local frame such that the second fundamental form has a simple form under this frame.
To achieve this, we first deal with a more general case. We consider M3 to be a quasi-
Einstein manifold immersed in a complex space form M̄3(4c). Here quasi-Einstein means
that the Ricci tensor of M3 has an eigenvalue of multiplicity at least 2 at every point,
hence quasi-Einstein manifold is a generalization of Einstein manifold. If M3 is quasi-
Einstein and not Einstein, then at every point of M3 the Ricci tensor Ric has exactly two
different eigenvalues. In this case, we find a very nice property of M3, that is, at each
point p of M3, if e3 is a unit eigenvector corresponding to the simple eigenvalue of Ric,
e1 and e2 are arbitrary orthonormal vectors belonging to the 2-dimensional eigenspace
of Ric, then e1, e2 and e3 are also eigenvectors of AJe3 , with e1 and e2 belonging to the
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same eigenspace of AJe3 . Since {e1, e2, e3} are eigenvectors of Ric, we can always find
local vector fields {E1, E2, E3} such that at each point, E1, E2 and E3 are eigenvectors of
Ric, with E3 corresponding to the simple eigenvalue of Ric. Thus under the local vector
fields {E1, E2, E3}, the second fundamental form has a simple form. This will be done in
Proposition 4.1, which is the key step in the proof of our main results.

When the immersion is moreover minimal, we get Corollary 4.2 from Proposition 4.1,
we find a better local frame such that the second fundamental form has an easier form.
Using Corollary 4.2, we prove the following classification theorem for minimal Lagrangian
quasi-Einstein submanifolds in a complex space form M̄3(4c).

Theorem 1.4. Let M3 be a minimal Lagrangian quasi-Einstein submanifold in a complex
space form M̄3(4c), c ∈ {−1, 0, 1}. Assume that M3 has constant scalar curvature, then
locally M3 is congruent to one of the following

• M3 is totally geodesic.
• M3 is a flat torus in CP3.
• M3 is the Berger sphere S3

b(
4
3 , 1) with the immersion given by φ : S3

b(
4
3 , 1) →

CP3(4), (z, w) 7→ [z̄3+3z̄w̄2,
√

3(z̄2w+w̄|w|2−2w̄|z|2),
√

3(z̄w2+z|z|2−2z|w|2), w3+
3z2w].

• M3 is locally isometric with S2×R, M̄3(4c) = CP3, and the immersion is obtained
as the Calabi product of the totally geodesic immersion of S2 into CP2 and a point.

Remark 1.5. Since quasi-Einstein manifold is a generalization of Einstein manifold, The-
orem 1.4 can be regarded as a generalization of Ejiri’s result (see Theorem 1.1).

Finally, for other two types of homogeneous 3-manifolds (the product spaces S2×R and
H2 × R), in order to be able to reach a conclusion, as in the constant sectional curvature
case, we assume that the immersion is minimal. In this case, we have

Theorem 1.6. Let φ be a minimal Lagrangian isometric immersion from (an open part
of) S2 × R to a 3-dimensional complex space form M̄3(4c), c ∈ {−1, 0, 1}. Then c = 1, φ
is obtained as the Calabi product of the totally geodesic immersion of S2 into CP2 and a
point.

Theorem 1.7. There exists no minimal Lagrangian isometric immersion from an open
part of H2 ×R into a 3-dimensional complex space form M̄3(4c), c ∈ {−1, 0, 1}.
Remark 1.8. Notice that both S2 × R and H2 × R are quasi-Einstein and have constant
scalar curvatures, hence Theorems 1.6 and 1.7 could be viewed as direct consequences of
Theorem 1.4.

The paper is organized as follows. In section 2, we recall the basic formulas for La-
grangian submanifolds of complex space forms. In section 3, we review some basic proper-
ties of the homogeneous 3-manifolds with isometry group of dimension 4 or 3. In section
4, we first prove Proposition 4.1, which is the key step in the proof of our main results.
Finally, we prove Theorems 1.2, 1.4, 1.6 and 1.7.

2. Preliminaries

In this section, M will always denote an n-dimensional Lagrangian submanifold of
M̄n(4c), which is an n-dimensional complex space form with constant holomorphic sec-
tional curvature 4c. We denote the Levi-Civita connections on M , M̄n(4c) and the normal
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bundle by ∇, D and ∇⊥X respectively. The formulas of Gauss and Weingarten are given
by (see [1], [2] and [8])

DXY = ∇XY + h(X,Y ), DXξ = −AξX +∇⊥Xξ,

where X and Y are tangent vector fields and ξ is a normal vector field on M .

The Lagrangian condition implies that

∇⊥XJY = J∇XY, AJXY = −Jh(X,Y ) = AJY X,

where h is the second fundamental form and A denotes the shape operator.

We denote the curvature tensors of ∇ and ∇⊥X by R and R⊥ respectively. The first
covariant derivative of h is defined by

(∇h)(X,Y,Z) = ∇⊥Xh(Y,Z)− h(∇XY,Z)− h(∇XZ, Y ), (2.1)

where X, Y , Z and W are tangent vector fields.

The equations of Gauss, Codazzi and Ricci for a Lagrangian submanifold of M̄n(4c) are
given by (see [3] and [4])

〈R(X,Y )Z,W 〉 = 〈h(X,W ), h(Y,Z)〉 − 〈h(X,Z), h(Y,W )〉
+ c (〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉), (2.2)

(∇h)(X,Y,Z) = (∇h)(Y,X,Z), (2.3)

〈R⊥(X,Y )JZ, JW 〉 = 〈[AJZ , AJW ]X,Y 〉
+ c (〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉),

(2.4)

where X, Y Z and W are tangent vector fields. Note that for a Lagrangian submanifold
the equations of Gauss and Ricci are mutually equivalent.

The Lagrangian condition implies that

〈R⊥(X,Y )JZ, JW 〉 = 〈R(X,Y )Z,W 〉, (2.5)

〈h(X,Y ), JZ〉 = 〈h(X,Z), JY 〉, (2.6)
for tangent vector fields X, Y , Z and W . From (2.3) and (2.6), we also have

〈(∇h)(W,X, Y ), JZ〉 = 〈(∇h)(W,X,Z), JY 〉, (2.7)

for tangent vector fields X, Y , Z and W .

3. Homogeneous 3-manifolds with isometry group of dimension 4 or 3

In this section, we review some basic properties of the homogeneous 3-manifolds with
isometry group of dimension 4 or 3.

3.1. Homogeneous 3-manifolds with isometry group of dimension 4. Any simply
connected homogeneous 3-manifold with 4-dimensional isometry group admits (see [15]
and [9]) a fibration over M2(κ) (a 2-dimensional space form of constant sectional curvature
κ), for some κ ∈ R. These manifolds can be parameterized in terms of the base curvature
κ and the bundle curvature τ , that satisfying κ − 4τ2 6= 0. We will use the notation
E3(κ, τ) for these homogeneous 3-manifolds.

• When τ = 0, the corresponding spaces are the product spaces S2 ×R and H2 ×R.
• When τ 6= 0 and κ > 0, we obtain the Berger spheres.
• When τ 6= 0 and κ = 0, the corresponding space is the Heisenberg group Nil3.
• When τ 6= 0 and κ < 0, we obtain the universal covering of the Lie group PSL(2, R).
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The Berger spheres and the exotic Lagrangian immersion of S3 in CP3. A Berger
sphere is a usual 3-dimensional sphere S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1} endowed with
the metric (see [23])

g(X,Y ) =
4
κ

[
〈X,Y 〉+

(
4τ2

κ
− 1

)
〈X,V 〉 〈Y, V 〉

]
,

where 〈 , 〉 stands for the usual metric on the sphere, V(z,w) = (iz, iw), for each (z, w) ∈ S3

and κ, τ are real numbers with κ > 0, τ 6= 0 and κ 6= 4τ2. From now on we will denote
the Berger sphere (S3, g) by S3

b(κ, τ).

On a Berger sphere S3
b(κ, τ), there exist three natural orthonormal vector fields

E1 =
√

κ

2
(−w̄, z̄), E2 =

√
κ

2
(−iw̄, iz̄), E3 =

κ

4τ
(iz, iw). (3.1)

The Levi-Civita connections are given by
∇EiEi = 0, i = 1, 2, 3,
∇E1E2 = −τE3, ∇E1E3 = τE2,

∇E2E1 = τE3, ∇E2E3 = −τE1,

∇E3E1 = (τ − κ

2τ
)E2, ∇E3E2 = (

κ

2τ
− τ)E1.

(3.2)

The Riemannian curvature tensor R of S3
b(κ, τ) is given by

R(E1, E2)E2 = (κ− 3τ2)E1, R(E1, E2)E3 = 0,

R(E1, E3)E3 = τ2E1, R(E1, E3)E2 = 0,

R(E2, E3)E3 = τ2E2, R(E2, E3)E1 = 0.

(3.3)

The Ricci curvature is given by

R11 = R22 = κ− 2τ2, R33 = 2τ2, Rij = 0, i 6= j. (3.4)

It was shown in [6] that there exists an exotic minimal Lagrangian immersion of the
topological S3 in CP3. From a geometric point of view, this is a Lagrangian isometric
immersion of the Berger sphere S3

b(
4
3 , 1) into CP3(4), with the second fundamental form

satisfying that

h(E1, E1) =
2√
3
JE1, h(E2, E2) = − 2√

3
JE1,

h(E1, E2) = − 2√
3
JE2, h(E2, E3) = 0,

h(E1, E3) = 0, h(E3, E3) = 0.

(3.5)

We mention that the above example has an analytic expression, which is given by φ :
S3

b(
4
3 , 1) → CP3(4), (z, w) 7→ [z̄3 + 3z̄w̄2,

√
3(z̄2w + w̄|w|2 − 2w̄|z|2),

√
3(z̄w2 + z|z|2 −

2z|w|2), w3 + 3z2w]. For more details on how to get the analytic expression, see [18] or
[14].

The Heisenberg group Nil3. The Heisenberg group is the Lie group (see [9])

Nil3 = {




1 x z
0 1 y
0 0 1


 ; (x, y, z) ∈ R3}

endowed with a left invariant metric:

ds2 = dx2 + dy2 + (τ(ydx− xdy) + dz)2.
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The canonical frame {E1, E2, E3} is given by

E1 = ∂x − τy∂z, E2 = ∂y + τx∂z, E3 = ∂z.

The Levi-Civita Riemannian connection is determined by

∇EiEi = 0, i = 1, 2, 3,
∇E1E2 = τE3, ∇E1E3 = −τE2,

∇E2E1 = −τE3, ∇E2E3 = τE1,

∇E3E1 = −τE2, ∇E3E2 = τE1.

(3.6)

The Riemannian curvature tensor R of (Nil3, ds2) is given by

R(E1, E2)E2 = −3τ2E1, R(E1, E2)E3 = 0,

R(E1, E3)E3 = τ2E1, R(E1, E3)E2 = 0,

R(E2, E3)E3 = τ2E2, R(E2, E3)E1 = 0.

(3.7)

The Ricci curvature is given by

R11 = R22 = −2τ2, R33 = 2τ2, Rij = 0, i 6= j. (3.8)

The universal covering of the Lie group PSL(2, R): ˜PSL(2, R). We use the descrip-
tion in [22]. It is the Lie group

˜PSL(2, R) = {(z, w) ∈ C2; |z|2 − |w|2 = 1}
endowed with the metric

g(Fi, Fj) = δij
4
−κ

, g(V, V ) =
16τ2

κ2
, g(V, Fj) = 0, i, j = 1, 2,

where κ and τ are real numbers such that κ < 0, τ 6= 0, and {F1, F2, V } is a global frame
defined by

F1 = (w̄, z̄), F2 = (iw̄, iz̄), V = (iz, iw).

Set

E1 =
√−κ

2
(w̄, z̄), E2 =

√−κ

2
(iw̄, iz̄), E3 =

κ

4τ
(iz, iw), (3.9)

we get a canonical frame on ˜PSL(2, R). The Levi-Civita connections are given by

∇EiEi = 0, i = 1, 2, 3,
∇E1E2 = −τE3, ∇E1E3 = τE2,

∇E2E1 = τE3, ∇E2E3 = −τE1,

∇E3E1 = (τ − κ

2τ
)E2, ∇E3E2 = (

κ

2τ
− τ)E1.

(3.10)

The Riemannian curvature tensor R of ( ˜PSL(2, R), g) is given by

R(E1, E2)E2 = (κ− 3τ2)E1, R(E1, E2)E3 = 0,

R(E1, E3)E3 = τ2E1, R(E1, E3)E2 = 0,

R(E2, E3)E3 = τ2E2, R(E2, E3)E1 = 0.

(3.11)

The Ricci curvature is given by

R11 = R22 = κ− 2τ2, R33 = 2τ2, Rij = 0, i 6= j. (3.12)
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3.2. Homogeneous 3-manifolds with isometry group of dimension 3. The Lie
group Sol3 is the only Thurston geometry among all homogeneous 3-manifolds with 3-
dimensional isometry group. We will use the descriptions in [10]. The Lie group Sol3 can
be viewed as R3 endowed with the Riemannian metric

ds2 = e2x3dx2
1 + e−2x3dx2

2 + dx2
3.

The canonical frame is defined by

E1 = e−x3∂x1 , E2 = ex3∂x2 , E3 = ∂x3 .

The Levi-Civita connections are given by
∇E1E1 = −E3, ∇E2E1 = 0, ∇E3E1 = 0,
∇E1E2 = 0, ∇E2E2 = E3, ∇E3E2 = 0,
∇E1E3 = E1, ∇E2E3 = −E2, ∇E3E3 = 0.

(3.13)

The Riemannian curvature tensor R of (Sol3, ds2) is given by

R(E1, E2)E2 = E1, R(E1, E2)E3 = 0,

R(E1, E3)E3 = −E1, R(E1, E3)E2 = 0,

R(E2, E3)E3 = −E2, R(E2, E3)E1 = 0.
(3.14)

The Ricci curvature is given by

R11 = R22 = 0, R33 = −2, Rij = 0, i 6= j. (3.15)

4. Proof of Theorems 1.2, 1.4, 1.6 and 1.7

We start by dealing with a more general case. We assume that M3 is quasi-Einstein
(i.e. the Ricci tensor has an eigenvalue of multiplicity at least 2 at every point). If M3

is Einstein, since the dimension of M3 is 3, by Schur Lemma, it follows that M3 has
constant sectional curvature. As this is excluded by the assumptions of our theorems, we
will mainly consider the case when M3 is not Einstein. By restricting, if necessary to an
open dense subset of M3, this means that we may assume that the Ricci tensor of M3 has
exactly two different eigenvalues at every point p.

First, we prove the following key proposition, which is the most important step in
the proof of our main results. The idea to prove Proposition 4.1 is to exploit as more
information as possible from the property that the Ricci tensor has exactly two different
eigenvalues.

Proposition 4.1. Let M3 be a Lagrangian quasi-Einstein submanifold in a complex space
form M̄3(4c), c ∈ {−1, 0, 1}. Assume that M3 is not Einstein. Let p ∈ M be a non-totally
geodesic point, then there exists a neighborhood U of p such that the Ricci tensor Ric of M3

has exactly two different eigenvalues at each point of U . Under this assumption, we have
that there exists an open subset V of U and local orthonormal vector fields {E1, E2, E3}
such that at each point of V , E1, E2, E3 are eigenvectors of Ric, with E1 and E2 belonging
to the 2-dimensional eigenspace and E3 belonging to the 1-dimensional eigenspace. More-
over, at each point of V , E1, E2, E3 are eigenvectors of AJE3, with E1 and E2 belonging to
the same eigenspace of AJE3. And there exist local functions a1, a2, b1, b2, b3, c3 such that
at each point of V , we have that





h(E1, E1) = a1JE1 + a2JE2 + b3JE3, h(E2, E2) = b1JE1 + b2JE2 + b3JE3,

h(E1, E2) = a2JE1 + b1JE2, h(E2, E3) = b3JE2,

h(E1, E3) = b3JE1, h(E3, E3) = c3JE3.

(4.1)
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Moreover, if we change E1 and E2 in the 2-dimensional eigenspace of the Ricci tensor,
the second fundamental form has the same form.

Proof. Since p is not a totally geodesic point, we can choose e1 ∈ TpM such that f(v) =
〈h(v, v), Jv〉, |v| = 1 attains its maximum at e1. Hence 〈h(e1, e1), Jv〉 = 0, ∀ v⊥e1.
Thus we can choose an orthonormal basis {e2, e3} in the space which is orthogonal to
e1 such that e2 and e3 are eigenvectors of AJe1 . Under this basis {e1, e2, e3}, the second
fundamental form has the following form.

h(e1, e1) = a1Je1, h(e2, e2) = b1Je1 + b2Je2 + b3Je3,

h(e1, e2) = b1Je2, h(e2, e3) = b3Je2 + c2Je3,

h(e1, e3) = c1Je3, h(e3, e3) = c1Je1 + c2Je2 + c3Je3.

(4.2)

Using the Gauss equation (2.2), we get the matrix form of the Ricci curvature.

(Rij) =




λ1 µ1 µ2

µ1 λ2 0
µ2 0 λ3


 ,

where
λ1 = 2c− b2

1 − c2
1 + a1(b1 + c1), µ1 = c2(b1 − c1), µ2 = b3(c1 − b1),

λ2 = 2c + b1(a1 + c1 − b1) + c2(b2 − c2) + b3(c3 − b3),

λ3 = 2c + c1(a1 + b1 − c1) + c2(b2 − c2) + b3(c3 − b3).

(4.3)

Since Ric has two different eigenvalues, according to Cayley-Hamilton theorem, we know
that ei, Ric(ei), Ric(Ric(ei)), ∀ i = 1, 2, 3 are linearly dependent. Hence we get µ1µ2 = 0,
i.e. −c2b3(b1 − c1)2 = 0. We discuss the following three cases.

Case 1: b1 = c1. In this case, λ1, λ2, λ3 are the three eigenvalues of Ric, with λ2 = λ3

and λ1 − λ2 = b1(a1 − 2b1)− c2(b2 − c2) + b3(b3 − c3). Since Ric has exactly two different
eigenvalues, we have λ1−λ2 = b1(a1−2b1)−c2(b2−c2)+b3(b3−c3) 6= 0, and e1 corresponds
to the simple eigenvalue of Ric. Since b1 = c1, from (4.2) we know that e1, e2 and e3 are
eigenvectors of AJe1 , with e2, e3 belonging to the same eigenspace of AJe1 . Moreover, the
second fundamental form has the following form.

h(e1, e1) = a1Je1, h(e2, e2) = b1Je1 + b2Je2 + b3Je3,

h(e1, e2) = b1Je2, h(e2, e3) = b3Je2 + c2Je3,

h(e1, e3) = b1Je3, h(e3, e3) = b1Je1 + c2Je2 + c3Je3,

(4.4)

where b1(a1 − 2b1)− c2(b2 − c2) + b3(b3 − c3) 6= 0.

Case 2: c2 = b3 = 0, b1 6= c1. In this case, λ1, λ2, λ3 are the three eigenvalues of Ric.
We have that

λ1 − λ2 = c1(a1 − b1 − c1),

λ1 − λ3 = b1(a1 − b1 − c1),

λ2 − λ3 = (b1 − c1)(a1 − b1 − c1).
(4.5)

Since Ric has exact two different eigenvalues, we have a1− b1− c1 6= 0, b1c1 = 0. Without
loss of generality, we may assume that c1 = 0. Then λ1 = λ2 6= λ3. Hence e3 corresponds
to the simple eigenvalue of Ric. Since c1 = c2 = b3 = 0, from (4.2) we know that e1, e2

and e3 are eigenvectors of AJe3 , with e1, e2 belonging to the same eigenspace of AJe3 .
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Moreover, the second fundamental form has the following form.
h(e1, e1) = a1Je1, h(e2, e2) = b1Je1 + b2Je2,

h(e1, e2) = b1Je2, h(e2, e3) = 0,

h(e1, e3) = 0, h(e3, e3) = c3Je3,

(4.6)

where b1 6= 0, a1 6= b1. Hence we conclude like in the previous case that if v spans the 1-
dimensional eigenspace of Ric, then v is an eigenvector of AJv. Moreover on the orthogonal
complement of v, AJv is a multiple of the identity.

Case 3: c2b3 = 0, c2
2 + b2

3 6= 0, b1 6= c1. Without loss of generality, we may assume that
c2 = 0, b3 6= 0, b1 6= c1. Then e2 is an eigenvector of Ric, with the corresponding eigenvalue
λ2. And the other two eigenvalues of Ric are given by

η1 =
1
2
(4c + (a1 − b1)b1 + (2a1 + b1)c1 − 2c2

1 + b3(−b3 + c3)−
√

η0),

η3 =
1
2
(4c + (a1 − b1)b1 + (2a1 + b1)c1 − 2c2

1 + b3(−b3 + c3) +
√

η0),
(4.7)

where
η0 =a2

1b
2
1 + b4

1 + 2b3
1c1 + b2

3(4c
2
1 + (b3 − c3)2) + 2b1b3c1(−5b3 + c3)

− 2a1b1(b1(b1 + c1) + b3(−b3 + c3)) + b2
1(c

2
1 + 2b3(b3 + c3)).

(4.8)

Hence η1 = η3 if and only if η0 = 0. However, we observe that we can rewrite η0 in the
following way: η0 = (b1(b1 + c1 − a1)− b3(b3 − c3))2 + 4b2

3(b1 − c1)2. Since in this case we
have b3 6= 0 and b1 6= c1, then η0 > 0, which means that η1 6= η3. Since Ric has exactly
two different eigenvalues, it follows that either λ2 = η1 or λ2 = η3. Hence λ2 satisfies the
equation (λ2 − η1)(λ2 − η3) = 0, which is equivalent to

η := a2
1c1 + c1(−2b2

3 + (b1 + c1)2) + b3c3(b1 + c1) + a1(b2
3 − 2c1(b1 + c1)− b3c3) = 0. (4.9)

We observe the following relation between η0 and η:

η0 = 4(b1 − c1)η + ((b1 − 2c1)(b1 + c1 − a1) + b3(b3 − c3))2. (4.10)

Hence, under the condition that η = 0, if necessary by changing the order of η1 and η3,
we can simplify η1 and η3.

η1 = 2c + b1(a1 + c1 − b1) + b3(c3 − b3),

η3 = 2c + 2c1(a1 − c1).
(4.11)

And the corresponding eigenvectors are given by

ẽ1 =
(b1 + c1 − a1)e1 + b3e3√

b2
3 + (b1 + c1 − a1)2

, ẽ3 =
b3e1 − (b1 + c1 − a1)e3√

b2
3 + (b1 + c1 − a1)2

, (4.12)

Since η = 0, we have η1 = λ2 6= η3, hence ẽ3 corresponds to the simple eigenvalue of
Ric.

Under the orthonormal basis {ẽ1, e2, ẽ3}, the second fundamental form has the following
form.

h(ẽ1, ẽ1) = ã1Jẽ1 + b̃3Jẽ3, h(e2, e2) = b̃1Jẽ1 + b2Je2 + b̃3Jẽ3,

h(ẽ1, e2) = b̃1Je2, h(e2, ẽ3) = b̃3Je2,

h(ẽ1, ẽ3) = b̃3Jẽ1, h(ẽ3, ẽ3) = c̃3Jẽ3.

(4.13)

So we know that ẽ1, e2 and ẽ3 are eigenvectors of AJẽ3 , with ẽ1, e2 belonging to the same
eigenspace of AJẽ3 , which leads to the same conclusions as in the previous two cases.

Summarizing the above arguments, in all the three cases, if necessary by renaming the
basis, we get an orthonormal basis {e1, e2, e3} of TpM , such that e1, e2, e3 are eigenvectors
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of Ric, with e1 and e2 belonging to the 2-dimensional eigenspace and e3 belonging to the
1-dimensional eigenspace. At the same time, e1, e2, e3 are eigenvectors of AJe3 , with e1 and
e2 belonging to the same eigenspace of AJe3 . In fact, in case 1, we can rename {e3, e2, e1}
as {e1, e2, e3}. In case 2, {e1, e2, e3} already satisfies the desired property. In case 3, we
can rename {ẽ1, e2, ẽ3} as {e1, e2, e3}.

Finally, in order to get the vector fields {E1, E2, E3} in a neighborhood V of the point p,
it is sufficient to take E3 in the 1-dimensional eigenspace which is determined by the simple
eigenvalue of the Ricci tensor (it is well known that E3 is a differentiable vector field),
and then choose E1 and E2 which are local differentiable vector fields belonging to the 2-
dimensional eigenspace of the Ricci tensor. For more details on how to get such vector fields
{E1, E2, E3}, we refer to the book of Kobayashi and Nomizu [19] (page 38) and Lemmas
1.1-1.2 of [20]. In view of the above remarks this implies that at each point of V , E3 is an
eigenvector of AJE3 and that the restriction of AJE3 to the orthogonal complement of E3

is a multiple of the identity. It is then clear from the symmetry properties of the second
fundamental form of a Lagrangian submanifold in M̄3(4c) that the frame {E1, E2, E3} is
the required local frame. ⊓⊔

Proof of Theorem 1.2: First, we consider that M3 is one of the homogeneous 3-
manifolds (the Berger spheres, the Heisenberg group Nil3 and the universal covering of the
Lie group PSL(2, R)). From the properties of these homogeneous 3-manifolds described
in Section 3, there exists a canonical frame {E1, E2, E3}, with respect to which, the Levi-
Civita connections are given by

∇EiEi = 0, i = 1, 2, 3,
∇E1E2 = −τE3, ∇E1E3 = τE2,

∇E2E1 = τE3, ∇E2E3 = −τE1,

∇E3E1 = (τ − κ

2τ
)E2, ∇E3E2 = (

κ

2τ
− τ)E1,

(4.14)

where τ 6= 0 and κ 6= 4τ2.

From Section 3, we know that the Ricci tensor of M3 has exactly two different eigenval-
ues, E1, E2, E3 are eigenvectors of the Ricci tensor, with E3 corresponding to the simple
eigenvalue. Hence, using Proposition 4.1, the second fundamental form of M3 in M̄3(4c),
c ∈ {−1, 0, 1} has the following form.





h(E1, E1) = a1JE1 + a2JE2 + b3JE3, h(E2, E2) = b1JE1 + b2JE2 + b3JE3,

h(E1, E2) = a2JE1 + b1JE2, h(E2, E3) = b3JE2,

h(E1, E3) = b3JE1, h(E3, E3) = c3JE3.

(4.15)

From the Codazzi equation (∇h)(E1, E2, E3) = (∇h)(E2, E1, E3) we have

(a1 + b1)τ + E2(b3) = 0, (a2 + b2)τ − E1(b3) = 0, c3 = 2b3. (4.16)

From (∇h)(E1, E3, E3) = (∇h)(E3, E1, E3) we have

E3(b3) = E1(c3) = 0. (4.17)

From (∇h)(E2, E3, E3) = (∇h)(E3, E2, E3) we have

E2(c3) = 0. (4.18)

From (∇h)(E1, E2, E1) = (∇h)(E2, E1, E1) we have

4b3τ − E2(a1) + E1(a2) = 0. (4.19)
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From (∇h)(E1, E2, E2) = (∇h)(E2, E1, E2) we have

4b3τ − E2(b1) + E1(b2) = 0. (4.20)

Combining the above equations, we immediately get that

b1 = −a1, b2 = −a2, b3 = c3 = 0. (4.21)

The above relations show that φ is minimal in this case.

Using (4.21), from (∇h)(E1, E2, E1) = (∇h)(E2, E1, E1) we have

E2(a1) = E1(a2), E1(a1) = −E2(a2). (4.22)

From (∇h)(E1, E3, E1) = (∇h)(E3, E1, E1) we have

E3(a1) =
4τ2 − 3κ

2τ
a2, E3(a2) =

3κ− 4τ2

2τ
a1. (4.23)

Using the Gauss equation (2.2), we have

〈R(E1, E2)E2, E1〉 = κ− 3τ2 = c− 2(a2
1 + a2

2),

〈R(E1, E3)E3, E1〉 = τ2 = c.
(4.24)

Hence, we get c = τ2 > 0, then c = 1 and τ2 = 1.

Moreover, we get that a2
1 + a2

2 = 2 − κ
2 is constant, which means that Ei(a2

1 + a2
2) =

0, ∀ i = 1, 2, 3. Then using (4.22) we obtain that E1(a1) = E2(a1) = E1(a2) = E2(a2) = 0.

Next it follows from [E1, E2] = −2τE3 and E1(a1) = E2(a1) = E1(a2) = E2(a2) = 0
that E3(a1) = E3(a2) = 0. So we get that both a1 and a2 are constants. This together
with (4.23) implies that κ = 4

3 > 0 and a2
1 + a2

2 = 2− κ
2 = 4

3 . Hence we get that M3 is the
Berger sphere S3

b(
4
3 , 1). Moreover, since a1 and a2 are constant, we can rotate E1 and E2

in the subspace which is orthogonal to E3, to make a2 = 0 and a1 = 2√
3
. Then using the

uniqueness theorem, we obtain that the immersion is congruent with the immersion given
in Section 3.

Second, we consider that M3 is the Lie group Sol3. We use the frame given in Section 3,
together with the expression of the second fundamental form. After an analogous argument
to that for the homogeneous 3-manifolds (the Berger spheres, the Heisenberg group Nil3
and the universal covering of the Lie group PSL(2, R)), using Codazzi equations we deduce
that a2 = b1 = b3 = c3 = 0. It then follows from the Gauss equations that 1− c = 0 and
1 + c = 0, which is a contradiction.

This completes the proof of Theorem 1.2. ⊓⊔
If the immersion is moreover minimal, using Proposition 4.1 together with its proof, we

get the following corollary.

Corollary 4.2 (c.f. [11]). Let M3 be a minimal Lagrangian quasi-Einstein submanifold in
a complex space form M̄3(4c), c ∈ {−1, 0, 1}. Let p ∈ M be a non-totally geodesic point.
Then either M3 is Einstein, or there exists local orthonormal vector fields {E1, E2, E3},
local positive function λ and local function a such that either

(i) h(E1, E1) = λJE1, h(E2, E2) = −λJE1,

h(E1, E2) = −λJE2, h(E2, E3) = 0,

h(E1, E3) = 0, h(E3, E3) = 0.
(4.25)
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or
(ii) h(E1, E1) = 2λJE1, h(E2, E2) = −λJE1 + aJE2,

h(E1, E2) = −λJE2, h(E2, E3) = −aJE3,

h(E1, E3) = −λJE3, h(E3, E3) = −λJE1 − aJE2.

(4.26)

Using Corollary 4.2, we prove the following classification theorem for minimal La-
grangian quasi-Einstein submanifolds in a complex space form M̄3(4c), c ∈ {−1, 0, 1}.
Theorem 4.3 (Same with Theorem 1.4). Let M3 be a minimal Lagrangian quasi-Einstein
submanifold in a complex space form M̄3(4c), c ∈ {−1, 0, 1}. Assume that M3 has constant
scalar curvature, then locally M3 is congruent to one of the following

• M3 is totally geodesic.
• M3 is a flat torus in CP3.
• M3 is the Berger sphere S3

b(
4
3 , 1) with the immersion given by φ : S3

b(
4
3 , 1) →

CP3(4), (z, w) 7→ [z̄3+3z̄w̄2,
√

3(z̄2w+w̄|w|2−2w̄|z|2),
√

3(z̄w2+z|z|2−2z|w|2), w3+
3z2w].

• M3 is locally isometric with S2×R, M̄3(4c) = CP3, and the immersion is obtained
as the Calabi product of the totally geodesic immersion of S2 into CP2 and a point.

Proof. We will explore the Codazzi equations (2.3) and Gauss equations (2.2) to determine
the submanifold M3, by using Corollary 4.2,

Case 1: M3 is Einstein.

In this case, M3 has constant sectional curvature, then it follows from Theorem 1.1 (see
also [16]) that either M3 is totally geodesic or M3 is a flat torus in the complex projective
space CP3.

Case 2: The second fundamental form of M3 has the form of (i) in Corollary 4.2.

In this case, since M3 has constant scalar curvature, we can deduce directly from Co-
dazzi equations and Gauss equations that λ2 = 4c

3 . Hence we get c = 1 and λ = 2√
3
. Then

the second fundamental form of M3 has the same form with the example given in Section
3. The immersion moreover satisfies Chen’s equality and has constant scalar curvature.
Applying now the classification result of [6] we deduce that M3 is locally isometric with the
Berger sphere S3

b(
4
3 , 1) and the immersion is unique. Then using the analytic expression

obtained in [18] or [14], we get that the immersion is locally congruent to the immersion
φ : S3

b(
4
3 , 1) → CP3(4), (z, w) 7→ [z̄3 + 3z̄w̄2,

√
3(z̄2w + w̄|w|2 − 2w̄|z|2),

√
3(z̄w2 + z|z|2 −

2z|w|2), w3 + 3z2w].

In the following two cases, we assume that M3 is not Einstein, we introduce local
functions x1, x2, x3, y1, y2, y3, z1, z2, z3 by

∇E1E1 = x1E2 + x2E3, ∇E1E2 = −x1E1 + x3E3, ∇E1E3 = −x2E1 − x3E2,

∇E2E1 = y1E2 + y2E3, ∇E2E2 = −y1E1 + y3E3, ∇E2E3 = −y2E1 − y3E2,

∇E3E1 = z1E2 + z2E3, ∇E3E2 = −z1E1 + z3E3, ∇E3E3 = −z2E1 − z3E2.

(4.27)

Case 3: The second fundamental form of M3 has the form of (ii) in Corollary 4.2 with
a = 0.

In this case, from (∇h)(E1, E2, E3) = (∇h)(E2, E3, E1) = (∇h)(E3, E1, E2) we get that
E2(λ) = 0 = x1λ and E3(λ) = 0 = x2λ, hence x1 = x2 = 0.
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From (∇h)(E1, E2, E1) = (∇h)(E2, E1, E1) we get that E1(λ) = −4y1λ and y2λ = 0,
hence y2 = 0.

From (∇h)(E2, E3, E3) = (∇h)(E3, E2, E3) we get that y1λ = z2λ and 3y2λ = z1λ,
hence z1 = y2 = 0 and y1 = z2.

Using Corollary 4.2, we know that the scalar curvature of M3 is R = 6c − 10λ2. Since
M3 has constant scalar curvature, we get that λ is constant, which leads to E1(λ) = 0.
Then from the information above we have that y1 = z2 = 0. It then follows immediately
that M3 has parallel second fundamental form. Moreover, from Gauss equations, we have
that λ2 = c

3 . Then we get c = 1 and λ2 = 1
3 .

Hence according to Theorem 1.6 in [17] (cf.[12]), the immersion is a Calabi product
of a 2-dimensional minimal parallel Lagrangian submanifold in CP2 and a point. Note
that a parallel surface has constant Gaussian curvature. Applying Ejiri’s classification
result ([13]) gives that the surface is either flat (in which case M3 is flat as well, which we
excluded) or totally geodesic. This means that M3 is locally isometric with S2 × R, and
the immersion is obtained as the Calabi product of the totally geodesic immersion of S2

into CP2 and a point.

Case 4: The second fundamental form of M3 has the form of (ii) in Corollary 4.2 with
a 6= 0.

In this case, from (∇h)(E1, E2, E1) = (∇h)(E2, E1, E1) we get that

E2(λ) = 2x1λ,

E1(λ) = −4y1λ− x1a,

4y2λ = x2a.

(4.28)

From (∇h)(E1, E2, E3) = (∇h)(E2, E3, E1) = (∇h)(E3, E1, E2) we get that

x2a = 4y2λ = 4z1λ,

3x3a− x2λ = y2a = −E3(λ)− c!a,

− E1(a)− x1λ = −E2(λ) + y1a = z2a.

(4.29)

From (∇h)(E1, E3, E1) = (∇h)(E3, E1, E1) we get that

E3(λ) = 2x1λ. (4.30)

From (∇h)(E1, E2, E2) = (∇h)(E2, E1, E2) we get that

E2(λ) = −E1(a) + 3x1λ− y1a. (4.31)

From (∇h)(E2, E3, E3) = (∇h)(E3, E2, E3) we get that

E2(a) = −y1λ + z2λ− 3z3a,

E3(a) = −z1λ + 3y2λ + 3y3a.
(4.32)

By analyzing the equations above, we get that
x1 = x2 = x3 = y2 = z1 = 0, y1 = z2,

E1(λ) = −4y1λ = −4z2λ,

E2(λ) = E3(λ) = 0,

E1(a) = −y1a, E2(a) = −3z3a, E3(a) = 3y3a.

(4.33)

From Corollary 4.2, we know that the scalar curvature of M3 is R = 6c − 4a2 − 10λ2.
Since M3 has constant scalar curvature, we have that Ei(R) = 0, ∀ i = 1, 2, 3, using
(4.33), we immediately obtain that y1 = z3 = y3 = 0. Then it follows that both λ and a



14 H. LI, L. VRANCKEN, AND X. WANG

are constant. Moreover, it follows from Gauss equations that λ2 = c
3 and a2 = 2c

3 . Hence,
we have in this case that c = 1 and M3 is flat which we excluded.

Therefore, we complete the proof of Theorem 4.3. ⊓⊔

Proof of Theorem 1.6 and Theorem 1.7: Note that both S2 × R and H2 × R are
quasi-Einstein and have constant scalar curvatures. Since in Theorem 1.6 and Theorem
1.7, we assume that the immersion is minimal, we obtain Theorem 1.6 and Theorem 1.7
immediately from Theorem 4.3.

References

[1] Bang-Yen Chen, Geometry of submanifolds, Pure and Applied Mathematics 22, Marcel Dekker, New
York, 1973.

[2] Bang-Yen Chen, Riemannian geometry of Lagrangian submanifolds, Taiwanese J. Math. 5 (2001),
no. 4, 681–723.

[3] Bang-Yen Chen, Classification of Lagrangian surfaces of constant curvature in complex projective
plane, J. Geom. Phys. 53 (2005), 428–460.

[4] Bang-Yen Chen, Classification of Lagrangian surfaces of constant curvature in complex hyperbolic
plane, J. Geom. Phys. 55 (2005), 399–439.

[5] Bang-Yen Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific Pub-
lishing Co. Pte. Ltd., Hackensack, NJ, 2011.

[6] Bang-Yen Chen, Franki Dillen, Leopold Verstraelen, and Luc Vrancken, An exotic totally real minimal
immersion of S3 in CP3 and its characterisation, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 1,
153–165.

[7] Bang-Yen Chen, Franki Dillen, Leopold Verstraelen, and Luc Vrancken, Lagrangian isometric immer-

sions of a real-space-form Mn(c) into a complex-space-form M̃n(4c), Math. Proc. Cambridge Philos.
Soc. 124 (1998), no. 1, 107–125.

[8] Bang-Yen Chen and Koichi Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974),
257–266.
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[10] Benôıt Daniel and Pablo Mira, Existence and uniqueness of constant mean curvature spheres in Sol3,
J. Reine Angew. Math. 685 (2013), 1–32.

[11] Ryszard Deszcz, Franki Dillen, Leopold Verstraelen, and Luc Vrancken, Quasi-Einstein totally real
submanifolds of the nearly Kähler 6-sphere, Tohoku Math. J. 51 (1999), no. 4, 461–478.

[12] Franki Dillen, Haizhong Li, Luc Vrancken, and Xianfeng Wang, Lagrangian submanifolds in complex
projective space with parallel second fundamental form, Pacific J. Math. 255 (2012), no. 1, 79–115.

[13] Norio Ejiri, Totally real minimal immersions of n-dimensional real space forms into n-dimensional
complex space forms, Proc. Amer. Math. Soc. 84 (1982), no. 2, 243–246.

[14] Jie Fei, Chiakuei Peng, and Xiaowei Xu, Equivariant totally real 3-spheres in the complex projective
space CPn, Differential Geom. Appl. 30 (2012), no. 3, 262–273.

[15] Isabel Fernández and Pablo Mira, Constant mean curvature surfaces in 3-dimensional Thurston ge-
ometries, Proceedings of the International Congress of Mathematicians. Volume II (New Delhi), Hin-
dustan Book Agency, 2010, 830–861.

[16] An-Min Li and Guosong Zhao, Totally real minimal submanifolds in CPn, Arch. Math. (Basel) 62
(1994), no. 6, 562–568.

[17] Haizhong Li and Xianfeng Wang, Calabi product lagrangian immersions in complex projective space
and complex hyperbolic space, Results Math. 59 (2011), no. 3-4, 453–470.

[18] Zhen Qi Li and Yong Qian Tao, Equivariant Lagrangian minimal S3 in CP3, Acta Math. Sin. (Engl.
Ser.) 22 (2006), no. 4, 1215–1220.

[19] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of Differential Geometry, Volume II, Inter-
science Publishers, New York, 1963.
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