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1. Introduction

Since three dimensional Einstein gravity is locally trivial, one considers to add some higher-derivative terms that is
responsible for the presence of a single propagating massive graviton. One possible choice is to supplement Chern-Simons
action via Levi-Civita connection given by [6,11,12,22]

1 3 Ay P o 2 o
S[gl = Gt /W d’xy/|detg|e*" 1) (8, T, + §ru,rvfp), (1.1)

where €**" is the 3-dimensional epsilon tensor, equal to ¢**"/./[detg[, **" being the alternating symbol with £°1? = 1,
and Gs stands for the 3-dimensional gravitational constant and ¢ is a constant with dimension of mass. This action can
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be viewed as a boundary term of topological Hirzebruch-Pontryagin action on the bulk manifold
Sbulk = / d*xe™ RypegRer ™.
M4

Another approach to the Chern-Simons action is produced with the spin connection based on the gauge group SU(2) or
SL(2,R).Letw = %a)'jy,»j denote the 3-dimensional spin connection, and e = e'y; denote the dreibein 1-form, where y stand
for the 3-dimensional gamma matrices. Then the torsion 2-form and the curvature 2-form are given by T' = de' + a)]'- N
and R} = da);'< A w](‘ respectively. For the torsion-free connection, we have the following action

) . 2 . .
Ife] = ——— i(e)dal(e) + = wi(e)w,(e)wk(e). 1.2
e = S5z | ell@delte)+ Sejedtenice) (1.2)
We note that these two actions are not identical. However, by the relation between spin connection and the Levi-Civita
connection (w})u = —8ﬂe§)ej“ + Flj\ve’kej”, one can connect them via the WZW action [5], up to a boundary term,
1 ) —_— .
Ile] — S[g] = %nCit /1\/13 el'de] el del e deje} dej . (1.3)

Einstein-Hilbert action plus Chern-Simons action describes so-called topologically massive gravity, although intro-
ducing Chern-Simons term leads to instability for general parameter ¢ except a special value called chiral point [16]. In
this paper, we focus on pure Chern-Simons-like gravity based on the action (1.1), whose geometric aspect will be studied
detailed. The vacuum of Chern-Simons gravity is provided by three dimensional conformally flat manifold. In Section 2 we
reduce a special vacuum to a two dimensional system (M2, h, @) consisting of metric h and scalar field @. For this system
we define the quasi-local mass. An interesting observation is that this system contains certain two dimensional dilaton
gravity at the classical level. Chern-Simons-like gravity admits asymptotically AdS solutions so one can apply AdS/CFT
correspondence. We check the Weyl anomaly and diffeomorphism anomaly for the boundary CFT. In Section 3, we study
the linearization of Chern-Simons-like gravity around the background with constant scalar curvature via linear Cotton
tensor. If the background manifold is of positive constant scalar curvature, we show that there is no solutions for linearized
vacuum equation. To find the solutions of the linear gravity with respect to the background with negative constant
scalar curvature, we need to solve some Schrédinger-type equations. Related to supersymmetric quantum mechanics,
one can find some exact solutions and some dualities between different components or modes of solutions. And it is
also can be related to Seiberg-Witten theory via Picard-Fuchs equation in terms of WKB approximation. We discuss the
ADM-type charge under the context of Chern-Simons-like gravity. In the final section, we extend the Chern-Simons-
like gravity to the supermanifolds by embedding the structure group of three-manifold into the body of othosymplectic
supergroup.

2. The first-order variation

The first-order variation of the action (1.1) with respect to the metric g gives rise to the equations of motion plus the
boundary terms

1
8S[g] = —7/ d*xy/|det g|8g,, C*" + 21 + 3, (2.1)
167 G3¢ Jys
where

o CM" is exactly the Cotton tensor defined by
1 ) 1
= 5(eﬂ‘*ﬁvaR; + " “PVRE) = PV (R — Z125;,), (2.2)

which is symmetric, traceless, and covariantly conserved, and which vanishes if and only if the metric is locally
conformally flat in three dimensions;

e the boundary term X is given by

1
= — d*x,/|det h|8g,,, O 2.3
1S T6Gor S x¢/|deth|dg, (2.3)

with the induced metric h on the boundary dM?> (space-like or time-like surface), namely,
ho guv +nyn,,  3M?3 is space-like,
" guw — muny.  OM3 is time-like,

for a unit normal vector n with respect to the boundary 3M3, whose direction depends on dM?> being space-like or
time-like; and the symmetric tensor

1
O" = (" nyRj, + €y Ry ); (2.4)
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e the boundary term X, is given by
1
Yy= I° 8" (V8816 + Vobgin — Vidguo )dx" A dx". 25
2 64nc3;/w3 1087 (Viégis + Vi dg 7080 ) (2.5)
Therefore the equations of motion read as

Cow =0 (2.6)

or equivalently,
1
Cuvy = VR — ViR, — Z(gMV;,R - g,/ VyR)=0. (2.7)
The solutions of EOMs are called vacuum configurations of Chern-Simons-like gravity.
2.1. Newman-Penrose formalism

There are several approaches to express the Newman-Penrose formalism of EOMs.
Representation A: We introduce an orthonormal frame {eg, e1, e;}, and then define a frame {eg,e;,e_} by ex =

-1 0 0
%fz(eo + ieq) such that the Lorentzian metric takes the matrix form (g;) = ( 0 0 1 ) where the indices i, j range
0 1 0

over 0, 4+, —. The complex Ricci rotation coefficients are defined by
o = V,(e)u(e) (er)”

with the anti-symmetries wjjx = —wji. The following notations are employed to denote the independent components of
Ricci rotation coefficients:

P =W40-,0 = W40+, T = W4——, K = W100, € = W40,
and the following operators are introduced:
D = (e0)'dy, 8 = (€)' 9y, 8 = (e~ )8

By some tedious calculations, we express the components of the Ricci tensor and the scalar curvature with the above
notations as follows:

Roo = Dp + Dp — 8k — 8K + Tk + Tk + 2K — 200 — p* — p* — P2,
Riy =8k — Do +2e0 + Tk — k> +0p + po,
Rot+ = —80 4+ 8p +2t0 —Kkp + kP,
Ry = —8¢ + Dt — kG + pk + €T + €K +To — 1,
Ry_ =68k —Dp + 68t +3T —€p+€p —kk — kT + pp + p? — 21T,
%R: 20K — 2Dp 4 8T + 8T — 2K — 2KT + 2p° + 0G —€p + €p + pp — 217,
and we have the following identities that reflect the symmetries of the curvature tensor:
—Dp + 8k — kT + p? = —Dp + 6k — KT + p°,
86 —8p —To +kp =208 —DT + kG — €T — €k + Tp.
Hence, we get the Newman-Penrose formalism as follows:
Im[5(—380 +8p + 210 —kp + kp) + p(Dp — 8K + Tk + kk —0G — P> + 8T + 38T — €p + €p + pp — 277)
— 1(=80 +8p + 210 —kp +kP) + 7 (8k — Do + 2€0 + Tk — k% +0p)] =0,
8(8k — Do + 2€0 +Tk — k% +0p + po) — %5(&—}-5?—6,0—{—65—}- 0P — 21T — 67T
+ 2p(—80 4+ 8p 4210 —kp + «kp) — 21(8k — Do + €0 +Tk — k% + 207P)

— (=80 +8p—kp+kp)—0(—86 +Dt — kG + pk+ert+ek+T0 +1p) =0,

1 - _
ED(&'—l—S?—ep+eﬁ+pﬁ—2t?—a€)—8(—86 4+ Dt — k0 + pk + €T+ €Kk +To —TP)
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— 0(Dp — 8K +TK + kK — 05 — p° + 8T —€p + €p + pp — 21T) — p(8k — DG — 25 — k> + 1k + 5 p + po)
+ 2Re[k(—8€ + Dt — kG + pk + €T + €k +T0 — 1p)] + T(—8€ + DT — kO + pK + €T + €k +To —1p) =0,
D6k — Do +2e0 — Tk — k2 +0p + po) — 8(—=80 + 8p + 210 — kp + kP)
+ 2k —T) =80 +8p + 210 —kp +kp) — (26 + p)(6k — Do + 2e0 — Tk — k> + 0P + po)
— o(Dp — 8k +TK + KK — 00 — p° + 8T + 6T —€p +€p + pp — 217) = 0.

Representation B: One takes the frame {e,, e, e_} = {es, %(:{:eo +e1)}, which produces a real version of the Newman-
Penrose formalism [10]. Compared with Representation A, the number of independent Ricci rotation coefficients is double
by interchanging the null vectors E.. but leaving the space-like vector e, invariant.

Representation C: Let (V, ¢) be a two-dimensional symplectic real vector space with a standard symplectic form ¢. The
group of automorphisms preserving the symplectic form is isomorphic to SL(2; R). Then the space U = S?V, the symmetric
tensor product of V, carries a natural Lorentzian metric g given by g = £2. The group of automorphisms preserving this
metric is isomorphic to O(1, 2). Thus V can be viewed as a space of spinors and U as a space of vectors. We take two
normalized spinors o, ¢, and define three vectors form a frame:

1
90202761:7(O®L+[®O)762:L2'

V2
0 0 1
The metric takes the matrix form (g) = 0 —1 0 |. The remaining things are similar [1].
1 0 O

2.2. Dimensional reduction

As a warm-up example, one assumes the spacetime (M3, g,,,dx*dx") has the form of warped product.
Type | : (M3, g, dx"dx”) > (M2, hapdx?dx®) x (R!, dt?).

It is endowed with the static metric

gudxXdx’ = —®2dt* + hypdxdx®, (2.8)
for a smooth function @ on M2. Then the non-trivial components of Ricci tensor and the scalar curvature are given by
Ry =0 AW,
1 vy
Rag == hpR™ 45
2 @
(h)
R =M _ 22 ®
>

where symbol (h) indicates that the corresponding calculation works on M? via the metric h, and the EOMs (2.7) reduce
to
1
0 :V[ARB]C + ZgC[AVB]R

h)
P hepoaAND PV 3C¢_A(”)cbhc[38A]qD

(] 29 P2 292

3

1 hC[B
— (h) (h)
= hels?aR" + RV =

thus we have,
1
8A(5R(h)q§2 + ®AWe — |do|2) = 0. (2.9)

The scalar R"®? + ® AN — |dd|; and Gauss curvature 1R™ on two-dimensional manifold (M?, h) are denoted by L
and Q respectively. Hence the vacuum configuration of Chern-Simons-like gravity reduces to the two dimensional system
(M?, h, @) characterized by constant L.

Proposition 2.1. Assume that M? is a closed manifold so that (M?, h, @) forms a vacuum configuration of Chern-Simons-like
gravity.

(1) If M? is of negative (or positive) Euler number x, and L is non-negative (or non-positive), @ cannot be a sign-definite
function.
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(2) If @ is a positive-definite (or negative-definite) function, we have the inequality

1
f/ dun Q@ APe? < (or z)/ dup|de 2 AW,
5 MZ MZ

(3) Assume Q is constant, if @ is a positive-definite (or negative-definite) function, we have the inequality
Q/Z dun[40(AM @) + 3|de|2AN @]
M
> (or 5)/’\/’2 dunl[|d®2(AMYd + %IHess(h)q)liA(h)q) + @ (Hess"(AM @), HessW ),
- %(A(h)q§)3 — |HessM 71,

where |Hess(’”¢>|i = HERBPhF (Hess" @ )4p(Hess"™ @ )cp(HessM @ ).
Proof. (1) If & is sign-definite, we write ® = 4¢', f € C*°(M?), then

L=e¥(a"f + Q).
Therefore by compactness of M? we have

0= / dup AMf = / dun(le ™ —Q),

M2 M2

thus

2 x =f duple™,

M2

which means that the signs of y and L must be the same.
(2) Firstly, we calculate the following integral

/2 dpn®[|HessWo|* — (AW @Y

M

= /M 2 dup®(HPhP¢ — BRIV vy e

=— % /M dun@ (R — R IRY peo Vi oV
- /M (P — WMERPYW o vo vV e

1 E
=-3 f  dunQ (' — HhP ) hapher — hachep) vy VI
M

1
-5 | dmdo.daopy+ [ duidoiavo
2 MZ MZ
3
=~ [ dmaower+ ] [ duiderave)
M2 2 Ju2
where Hess"@ = vVt (d®). Thereby, it follows from (2.9) that
0 =/ dun(Q@? + @AM d — |do|H) AN e
M2
5
:/ dpp[QO(@ AN D + |ddb|2) + & |HessV |, — 5|dq>|§A<’”q>]
MZ
1 5
:/ dunl5Q@A"D? + ®Hess" | — Sldefatel.
MZ

(3) The following identity is valid in two dimensions, which can be easily checked pointwisely under the normal
coordinates

1 1
(VA'VE'® = Shas A" 0)AMS = (VIVI DYV @) — g lHess V.
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Then from (2.9) we obtain
0 :(Hess”')L, Hess(h)cp)h
=2V, oV e + zvz(ah)‘pVl(ah)A(h)q5)V(h)AV(h)B¢ + (@HessW(AW @) — Hess™(|d®|2), HessV @),
1 1
+ 200 |Hess" @ |} — 5|Hess<”)q>|§A””q> + E(A“‘><1>)3 + [Hess"o|;.
On the other hand, for any one form o € A'(M?), Weitzenbéck formula implies
/ dpn VP o v P g — / dun e, VO VO (d)),
M2 M2
= / dun[ VP AW ® — Qat vV ).
M2
Then for @ = 2Q®d® + 20dAN® — d|d®|%, we have

/ dyy VP v v g
M2
= /MZ dun[—20|dAP B[} — |do X APR D — 2Q20|dd|? + 4QD(AP D) + 3Q|dd2AP D]
1 1
=/2 duh[E|Hess<h)cp|§A<h)q> + @ (Hess"(A"), Hess ")y — S(AV ) - Hess" |71,
M

We complete the proof. O

Type Il : (M3, g, dx“dx") >~ (M2, hapdx?dx®) x (S, d6?).

The metric is given by

guvdx dx” = hypdx*dx® 4+ &2d6?. (2.10)
Now h is a two-dimensional Lorentzian metric, which can be locally expressed in terms of double-null coordinates as

hapdx*dx® = 2F(u, v)dudv, (2.11)
for two null vectors - and . The EOMs then reduce to

1.1 1. 320 — 9,logFd,®

—0,(=8,0, log F) — —,(— - “y=0, 2.12

2 u( F o ogF) F W( > ) ( )

1 2 — 9, logFavd)) B

1 1.0
=0,(<0udy log F) — —,(—* 0. 2.13
5 0u( 7 0ud log F) — —au( > (2.13)

Proposition 2.2. Let (M?, h, @) form a vacuum configuration. Assume V(W& is a null vector, then the Gauss curvature of h
is sign-definite.

Proof. Since V("@ is a null vector, thus |[d®|? = 0, one can choose @ = ®(u) without loss of generality, then AW® = 0.
Therefore EOMs are simplified to
& dQ +20 do —0
du du =

Hence Q @2 is a constant, and Q is sign-definite. O
Including the contribution of the matter to the action, the EOMs become
Cuv = 8L G3T, (2.14)

where T, is the energy-momentum tensor for matter fields. For the metric form (2.10) and the energy-momentum
tensor T, dx"*dx" = 2T4edx*d6, we explicitly write down the EOMs

J|deth
- %V“”L =87 GsToy, (2.15)

J]deth
%V“‘)OL —87¢GsTy. (2.16)

The Kodama vector V associated with the metric (2.10) is defined as [14]

a
_ (ABg(h)
V=c¢ VB ¢W (2.17)
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It follows immediately the following properties of Kodama vector from the definition: V and V("'@ are orthogonal to each
other, i.e. h(V, VIW@) = 0, and V is a local conserved current, i.e. Vf,h)VA =0.
We define a vector J via

a
= —VAVETp —, 2.18
J B A (2.18)
which is a conserved current if and only if
(V ® VL, Hessd), = VAVIIYMpv®PL — o, (2.19)
Under the constraint (2.19), one has the conserved charge O for a space-like surface ¥ in (M3, g) defined as
Qy = f *g) ", (2.20)
bl

where JV is the dual 1-form with respect to the metric h, which is naturally viewed as a 1-form on M3. By virtue of
(2.15)-(2.20), we can define a function 9t over M?, called quasi-local mass associated to the system (M?, h, @), as follows

Mm=—2r / Vdetg[(VOVOTyy + VOVIT p)dx! — (VIVOToe + VIVITy,)dx°]

87, /(dd>, dL)pd®, (2.21)

hence,

(dIn|®|, dL),dS, (2.22)

M =
1672G;

where S = 7 @? stands for the areal volume. It is immediately seen that (2.19) is exactly the compatibility condition of
(2.22).

Example 2.3. For the Eddington-Finkelstein-like metric
c
g=—(1— ;)du2 + 2dudr + r*de?

with a positive constant ¢, we directly calculate

1 d 2c c
m=8§G3 f(a(T_l))(]_;)dr
1 2 c?

T8Gsr 2

Proposition 2.4. Under the Ricci flow on (M?, h)

oy _ —2R™,
at v
the quasi-local mass 9 associated to the system (M2, h, @) evolves by
om
8;(;3W = 4/ Q(d®, dL)ydd + 2/L<d<p, dQ)pdd + /(dcp, d(®2AMQ + 4Q|dP|2))pd®.

Proof. Under the Ricci flow, the scalar L obeys
% —(AMRM 4 R“”URE}” — V(h)l'V(h)iRth))q)z
+ @(ZREJ{?)v(h)iV(h}i(p + zvi(h)R(h)ikleh)q) _ Vi(h)R(h)V(h)i(p) n ZV(h)iév‘h)’q>R§]h)
=RML + %@24(’”1%“‘) + 2R |do 7,
which leads to the conclusion. O
2.3. Dilaton gravity in two dimensions

For the 2(= 14 1)-dimensional system (M2, h, @), one constructs a model of dilaton gravity governed by the action [20]

1
Sth, @] :/ dzx,/|deth|(§R<“>4>3 —20|dd|? 4 cd) (2.23)
M2
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with a constant c. The variations with respect to the metric h and the dilaton field @ yield EOMs respectively
®(h, A" = VOV + 3(dd |3, — 4VPOVID — %hw =0, (2.24)
RN@? 4 40 AN @ +2|d®|2 +c = 0. (2.25)
Taking the trace of the first equation leads to
oANG +2|dd|2 =,
substituting which into the second equation gives us
RMe? + 30 AMp = —2c.

Therefore the vacuum configurations of the 2-dimensional dilaton gravity can be embedded into those of the
3-dimensional Chern-Simons-like gravity. Then we immediately see that for the vacuum configuration (M2, h, @), where
M? is a closed manifold and @ is sign-definite, the Euler number x of M? and the constant ¢ have the opposite signs.

Example 2.5. Assume (M?, h, ®) is a vacuum configuration with flat metric h,.w = 1., then the dilaton field @ is subject
to the following EOMs in terms of local light-cone coordinates £+ = 0%+ 01,6~ = —6% 40,

D2 + 43, 0) =0,
D0’ D + 40_P)* =0,

1

¢8+3_<D = _EC,
5

0,.PI0_P = —c,
+ 24

0 4 _ @
7 0- = 7

where 94 =

e If M? is a torus, these equations only admit the solution of constant @ with zero c.

1 1
e If M? = R2, one finds solutions ® = asj , b&> with zero c, where a, b are constants.

First-order formalism

The zweibein and the spin connection on M? are denoted by e, wfj = wej = wcepeC respectively, where eff = n"Cecy
(€01 = —€®! = 1). The torsion form and the curvature form are given by T4 = de” +eg‘Ba)/\eB and Rj} = efdw, respectively.
Introducing the auxiliary fields X4 and Y, let us consider the general first-order action constructed by Cartan variables
e, w, and their first-order derivatives as follows [3]

Sto. = / nasX T8 + Ydw + eV(XX,, Y), (2.26)
M2
where the volume form ¢ = —%eABeA A eB. The EOMs from the variation of XA read
Vv
T"+e— =0,
X4
thus
v
*«Th = —— = xde® — .
0X4
Reinserting it into the action (2.26) gives rise to
S / x, Y +Ydo —dy —e 8V+ 1% (2.27)
= —Xp—¢€ w—dY —es— + €V, .
o= | hax, A 9Xa
where @ = e, * de” denotes the torsion-free part of the connection. The variation of X; once again provides EOMs
0%V
dY Aec + Xce)——— =
( c +Xc )BXC X
Assume det( 3)?3’)(/‘) # 0, then we arrive at

Y
sf,o,:/ Yd@+eV(XAXA,Y):—f ,/|deth|{§R(h)+V(—|dY2|h,Y)}. (2.28)
MZ MZ
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As a consequence, if we choose

2 XAXE 3
Y= 203 vixix,, )= M2 Y 2y,
3 3Y 2
the action (2.23) of dilaton gravity is recovered.
Liouville formalism
We introduce the following transformations of fields: T = a¥?2, h = e=2’h with ¥ = %@3 and p = §¥? + %ln v,
then
A 1 PNV 1
S[h, r1 = f/ xy/ |det AIRDY + ~|dY 2 + ceZ T), (2.29)
a Juy2 2 h
where ¢’ = v/3c. It gives rise to the EOMs
A ; P P P ~ 1
2y A® — VYD) 4 vipyhiy Bl 5 1AT R + ez T) =0, (2.30)
; ; T
R — Ay 1 o7 (1 4 5)=0. (2.31)

It is easily seen that thls formallsm eliminates the vacuum configurations with constant scalar curvature unless ¢ = 0.
However, we let h = e 7 h & = 1?’ then the action (2.29) is further simplified to

Sth. 21= | d®x/|deth|(RPE +c'& 2.32
[,]/Mz x/ [det FIRD 2 + ¢'5), (2.32)

whose vacuum configuration (M2, h, Z) consists of a surface with constant scalar curvature —c’, i.e. uniformization of
surfaces, and a function = governed by equation

c

o (h) = S
VEL)V](} 5 = Ehlw.:. (2.33)
In particular, when M? is a closed manifold, one finds that
. timelike, 5 negative,
if the vector field VW2 is { spacelike, then the scalar curvature of his { positive,
lightlike, zero.

In terms of locally conformally flat coordinates under which fl,w = e N, EQ. (2.33) is rewritten as
/

Cc
8,0,8 — 8,03, 8 — 8, 5,0 — n,w(iezf’s — 0,50%) =0,

where the local function p satisfies Liouville equation

C/
(=33 +37)p = 5ezﬂ.
Canonical formalism

It requires that M? has a (1 + 1)-decomposition M? >~ ¥ x R topologically, and we write the metric in terms of ADM
form

ds* = —N2dt? + o%(dx + ndt)? (2.34)
for the lapse function N and the shift function n. The Lagrangian density £ of the action (2.23) is given by
P2P5 @2, _ndino)®' _nd*6d _ndi(no)d
L=-2 — 2N( Yy —2 2 + 2
] o ) N N
n zacb(q))2 4nad>(d>)/<b n 2¢(q§/)2(02n2 —N?) 4 coN®
_ oN®,
N N No
which shows N and n play the role of Lagrange multipliers. After introducing the canonical momenta for ¢ and @ as
L 20 _nole’
n, = —= s
do N N
oL %5 d%(noY ocdd nodd’
ey = — = -2 +2 +4 -4 ,

0P N N N N
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up to a boundary term, the action (2.23) is reexpressed as
S= /dt / dx(ITy6 + e ® — NHg — nH4), (2.35)

which exhibits the secondary constraints in the Dirac sense given by

H 1 nn Jrz((pzqy)’Jrz(p(qy)2 59 2 ep ~0
= - o - e —Cod =0,
0 202 ? o o 203

Hi =H¢,¢/—O’H(/T ~ 0.

More conveniently, working with the action (2.32), we have

]

’

X

Qb

Ho = —%n(,ns +2(=Y —coa,
Hy=Mg& —oll),
which form a closed Poisson bracket algebra
{o(X)Ho(x), o) Ho()} = —8'(x — y)(H1(X) + Ha(¥)),
(109, oMo} = — 28X — Yo (M) + 0 (HoV),
{H1(x), Hi(0)} = =8'(x — Y)(H(X) + Ha ().

2.4. Boundary terms

We consider a radial foliation of the spacetime M3 such that metric near the boundary surface {r = constant} is written
as

guodxtdx” = N2(r)dr? + hy(r, x)dx'dx’ (2.36)
Then the unit normal vector n is given by n = %% and the extrinsic curvature of the boundary reads
1 1 ohy
Ki = =Lphjj = — — 2.37
P27 TN or (237)

By Gauss—Codazzi-Ricci equations

1 1 0K;

Ry = o hiR™ — KyK + 2Kink]" — ar”,
K 2

Ry = —N=— — N°KIK].

Ry = NVK] — NV{"K,
where K/ = Kyh', K = K;jhY, we have
@rr — 0’
ij 1 i pjk j pik
® = —E(EICR +€kR )

= 5(e'k(Kﬂ‘K — 2KIMKK 4 £, K) 4 W (K*K — 2K™KE 4 £,K™)),

. 1, 1 . , P
@T! — —761 Rrk — —761 v(h)l<k] _ V(h) I( ,
7€k oN €Y )

where €/ = \/mszitm Therefore, we have

Proposition 2.6. If the variation of the metric preserves the form in (2.36), the boundary terms are rewritten as

1 L ) )
X =16Cot / . d*xy/|det hle' (K*K — 2K™K¥ + £,K*)sh;;,
IM
1 i
% =g /8 » dxy/|det h[eT(rM ) RV hyy + V0 shy — V(" shym)

1 )
/ d*x/|det h|TK} 8K,
am3

167G
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In particular, if M3 is an asymptotically AdS; manifold, in a finite neighbourhood of M3, the metric takes the form
gudx"dx’ = dp? + hy(x, p)dx'dx, (2.38)
where h admits Fefferman-Graham expansion [7]
hy = e hY) + e hl) + P + e Y + e hl) + (=) (2.39)

with the regular induced metric h® on the boundary dM> (p — oo). We calculate the Christoffel symbols, Ricci tensor
and Ricci scalar in terms of Fefferman-Graham expansion

I, =8 — e () — e Y - Z(HOPY) + 0™,
ry =—eh — %eﬂhﬁj” + %e—phgﬁ + e—ZPnng + 0(e™3),
1 =0 4 et HOY O + V) — ROy
+ e O 12y 4 75Dy~ vy
— (KO HOY, + VRO, = VIR + ofe )
R = — 280 + 1e*ﬂ[(h(”);i + (Trh)s]] + e’zp[E(R(h( D4 2men® — Tr(hm)z)a!‘ - %(Trh“))(h“))}] + o),
RC %e LTeh® — ) + e [arTeh® — V@) + )y
+ 5(h“))""v;h“’“(h“hki — 2Py Z(h(“){aﬂrh D]+ 0e ),
R :%e’3/’[v(h(0))iTrh“) — GO RO 4 e[ Teh® — GO RD)i (WD) (D
S OPTIROY  2HOE 0y 2 HO P TH) + 0e),

0
Rp

1 1
-2+ Ee*ﬂnh“) - Ze’z”Tr(h(”)z + 0(e%),
5 1
R=— 6+ 2eTrh) + e~2/[R") 4 2Trh® — ZTr(h“))2 - Z(Trh(”)z] T+ 0(e73),

where on the right hand side of the equalities all indices are raised or lowered by h® and Tr denotes the contraction
with h(®. Let us assume M?> be a vacuum configuration of Chern-Simons-like gravity, then substituting these expansions
into EOMs 94R = ZVBRﬁ up to the second-order term leads to the constraint that the second-order component of the
expansion of scalar curvature

1
R? .= R 4 oTrh@ — 4Tr(h<”)2 - Z(Trh<”)2 (2.40)
is a constant.! More generally, we propose the following conjecture.

Conjecture 2.7. If (M3, g) is a vacuum configuration of Chern-Simons-like gravity, then the even-order components R?*) of
the Fefferman-Graham expansion of scalar curvature R would be constant.

Also due to Fefferman-Graham expansion, one finds that the value of the action vanishes tending to the boundary.
Indeed, we have

Sig] Nsz PxeV(20)0i Ty — 2150, 155 — T, I + 205 T Tt + 20515, )

- /MB d*xe"(—2I350, 1) — Iy 0,13y)
~ / d*x0(e™").
M3

1 Here we assume that Witten-Yau conjecture that asserts that there exists a metric with non-negative curvature on the boundary is valid, which
implies the connectedness of the boundary [23,24].
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Only the boundary terms contribute to the on shell variation of the action, which gives rise to the Brown-York stress,
namely we can define

2 8( X1+ Xy)
Jdet [h@]|  8(h(®);

Omitting the term 81", we have the Fefferman-Graham expansion by virtue of Proposition 2.6

(TBY) = (2.41)

. 1 o
(TBYYi = e 20(MONKIK — 2K K™ + £,KD + KDY + (i <> )
3
1
= m( )k (er (KDY, + Trh” (hVY, + 3(h@Y, — 2((KM Y, + (i <> J)) + O(e™").
3

We need to introduce the additional counterterm to kill the divergence. A suitable choice is given by

1 .
Selh] = ——— V|det h|e' K c,KF,
Ct[ ] ]67TG3;L /8M3 | | kN nly

which causes the stress tensor.
1

- (0)y.; i j j . . -
(T = ——— (") (e (K, + 2(h?Y, — (V) + (i < )+ O(e™).
87TG3§
As a result, the total stress tensor given by
" 1 ON i i i . . —
(T = m( e )”‘( Trh(h VY, + (B2, — (K )) + (i < j) + O(e™)
3

is finite on the boundary. Obviously, it leads to no Weyl anomaly, but diffeomorphism anomaly for the boundary CFT by
AdS/CFT correspondence:

(T) =0,

V1) = VLR GO + (B, — () + G )

! 87Gs |
Define a (1, 1)-tensor 7 = 1Trh(”(h“))§< + (K@Y, — ((hV)2).. The vanishing of diffeomorphism anomaly requires the
equations

(0)y. (0)y _j (0)yj (0)
(WY 4 (DY OTET = 0.

Obviously, the trace Tr7" = 4(Trh™M)? + Trh® — Tr(h™W)? is a constant if and only if d ), 7 = 0. In particular, if 7
is trace-free and R® vanishes, RH*) = 3((TrhM)? — Tr(hM)?) = 3f|dethV| > 0 for a positive local function f when
hY can be viewed as a metric on the boundary with the same signature as h®, which agrees with the Witten-Yau
conjecture.

3. The higher-order variation
3.1. Linear cotton operator

To consider the linear gravity, we should linearize the Cotton tensor with respect to a fixed background metric g
around which there is a small perturbation b, thus we write g,, = &,., + b,,. For simplicity, the background metric is
usually chosen to be a constant curvature space as the special vacuum configuration of Chern-Simons-like gravity.

Lemma 3.1. Let D be the set of symmetric (0, 2)- tensors and D' be a subset od D consisting of traceless and transverse
tensors, ie. D' .= {T € D : TiT = g"'T,, = 0,V*T,, = 0}. We define three operators on D: L = A— %R and
(1)) = %(E M“ﬂﬁaTﬂv +E .9V, Tg,.) and the composition =& = 1L o IT called the linear Cotton operator with respect to
the background metric of constant curvature, where all the barred quantities are taken with respect to the fixed background

metric,

(1) & is a third-order self-adjoint differential operator on D’ with respect to the global inner product induced by the
background metric,

(2) if T € D' is generated by a vector field X via T, = VX, + V,X,, then E(T) = 1RII(T),

1
3
(3) if h € D/, then —= ’“(h) is exactly the first-order approximation of Cotton tensor.
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Proof. (1) Firstly, we show that & is an operator on D', namely Z(T) is also traceless and transverse. The tracelessness
is evident. We check the transversality, which is implied by the following identities

€ PN ATy, = & P (AN Tpy + V[, V|V Tp + VPV, VY, Tp0)
. wBrae - - - s = s == A -
=€ 4 ﬂ(AVaTﬁv —R apxpv)tTﬂv +R app Vkav +R apv VpTﬂA + Vp(R app Tkv +R apv TMB))
=& ,“P AV, Ts,,
and
Tz af 1‘#“/3_ )” R A
VH#(e " vaTﬂv) = 56 (R uap D + R pav TAB) =0,
= e aB 1_ wBE At _
VM(G v ﬂVaTﬂu) = 56 v ﬁ(R naf T)IL +RaATg) =0,

where we have noted that the background metric is of constant curvature, thus

_ R _ _ -
Ru,uaﬁ = g(g/wzgvﬁ _gptﬂgua)- (3])

Next we reformulate the operator &. Let (ITo(T)),, = € M“ﬂ @(,Tﬂv, then
_1 1-
(E(T)w = —Sgn(detg)i((HS(T))w + (IT5(T))y) + gR(H(T)),w- (3.2)
Indeed, by definitions, we have

—sgn(det g)(IT3(T)),w = — sgn(detg)é ,*Pe g7 ,/*VuV, V, Ty,
= — gy (8182 — 818%)E NG VIV, Ty,

_ - - - - 1 - - -
=& P AV, T, — €V V[,V T — fwkv[avp]vﬂnv
=2 ,"P AV, Tp, — P V(R 1ipp" Tow + R upu” To2)
1_, ., - - _ _ - _
- Eeap)h(R [xppt(rvnT)Lv + R apAaV/LTnv + R apv(rV//.T)m)
By means of (3.1), we arrive at
_ _ - = 1-_ - 1-_ _
—sgn(detg)(IT3(T ) = € ,*P AV, Tp, — ke WPV, g, — ke VPV, Ty,
Therefore, we only need to show ITj is self-adjoint, which easily follows from
/ dﬂg'(no(T), S)g = / d/Vng ;LaﬁﬁaTﬂvslw = / dlLETﬂvg ﬂauﬁaslw = / dM§<Ta HO(s»g_v
M3 M3 M3 M3

for S, T € D. ~ ~
(2) The vector field X should satisfy the conditions AX = V - X = 0. Then

€ PV AVEX, 4+ ViXg) = € PV, (VPV — [pﬁﬂ]xv +V— [pﬁﬁ]wxu +(8 < 1))
2_ _ _
= §Ré 1P (Vo ViuXp + Vo VeX,).
(3) We calculate the Cotton tensor up to the first-order of h
_ 1 _ 1 - _ _ _
2Cu =Cuy = TGy + 0, P VoRg, + 7€ 1PVau(Vo Vb + Vo V,h5 — Abg, — VgV, Trh)
1. a5, - -
- 56 " ﬂRg(Vahpv + Vvh,na - Vphav) + (M <~ U)~ (33)
Working in the transverse traceless gauge, we get
_ S = 1. 4= _ _ - _ -
2Cuy =Cpuy + 0P VaRg, + € PVa(3(Rpib} + Runbs) — Rbp, — 285,R 00" — Abg,)
1_ gm0, - -
- 5‘5 " ﬂRz(Vahpv + Vibpa — fo]m,) + (1 < ). (3.4)
Moreover for the background of constant curvature, we have
1 e 1z - L
Cuv = Ze m Va(thﬂv - Ahﬂu) +(n )= Zf m (gR - A)vahﬂv + (< v). (3.5)

We complete the proof. O
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Definition 3.2. For a perturbation h € D, it is called the stable (unstable, marginal) perturbation if Z(h) is negative
(positive, zero) everywhere. In particular, for the Lorentzian background manifold, a marginal perturbation is called the
linear vacuum configuration of Chern-Simons-like gravity under the transverse-traceless gauge.

Proposition 3.3. Assume M? is a closed manifold and g is a Riemannian metric of non-zero constant curvature. b is a marginal
perturbation on (M3, g) if and only if dgh = 0, where b is viewed as a 1-form valued in TM>,

Proof. Case I: R is positive. Since

) )
/dug<5(b),n(h)>g=—/ d/tglvn(h)lg—*/ duig| (B,
M3 M3 3 M3

when R > 0, b is a marginal perturbation if and only if I7(h) = 0.
Case II: R is negative. We note that

- R
(Hg(h));w = (HO ° Hé(h))uv = _Ah;w + Ehuw

where (J75(h)),w = € ,oP @aTﬂﬂ. Take advantage of the identity (3.2), we find that
R
/ dug (Z(b), IT(h))z = — f dug (IT3(0), TT(H)z + — f dug| IT(h)|2
M3 M3 6 M3

R
= _2/ dug|n§(h)|§+f/ dug | IT()|3.
M3 6 M3

from which, we see that I7(h) has to vanish for the marginal perturbation b if R < 0.
In either case, we have I1(h) = 0, thereby

8 & |- s G
SO = o o | VL] 8 8L 8B |V,
B o Bk 5)» 8;
v [*3
— 29l — o

where h being traceless and transverse plays a role, thus dgh =0. O
Corollary 3.4 (Rigidity Theorem). If M? is simply connected, there is no non-trivial marginal perturbation.

Proof. Firstly, we note that following identities

N R
/dugmo(hn;:/ dugmo(h),na(h»g:f dug|Vh|§+5f dpg b3,
M3 M3 M3 M3

which means that there is no non-trivial marginal perturbation if R is positive. When M? is simply connected, any
symmetric (0, 2)-tensor T whose covariant derivative is totally symmetric is generated by a function f via [17]

R__
T = Hessf + gfg.
If T € D', the function f is subject to the equation
- R
which implies }__2 has to be positive if f is non-zero. However, we have shown that there is no non-trivial marginal
perturbation if R > 0. O
We consider the so-called linear Cotton flow, namely the small perturbation h(t) evolves by equations

ah;w (=
T = (E(H))uv- (3.6)

From the above corollary it follows that the flow has fixed points only when the background metric is of non-positive
constant curvature (assuming the long time existence of solutions for initial data).

Proposition 3.5. Assume the background manifold (M3, g) is a closed manifold of non-positive constant curvature, and we
define the energy functional of perturbation b as

E(h) =f dpug|Z(h)[3. (3.7)
M3
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Then under the linear Cotton flow, there is a positive constant C such that

dE
T s CUIEM)2,2)

where || e ||2.2 denotes the Sobolev norm.
Proof. For any T € D/, we consider the integrals

/Ma dug|V o II(T) + VT[; = — /MB dpg (24 o II(T) + AT, T)g + /MB gV VT, VevleTelr,
and

A;mﬁﬁwﬁm+ﬁﬂm§:—Aﬂwgyun+31rﬁ+{aﬂ%n@

The following identity can be checked

o o 5._
/ dugVyVpT,, VOVATA = fR/
M3 6

- 1-
dug(AT T)g + *RZ/SdMgITlé
M M

3
Therefore, if R < 0, we obtain the inequality
. 1 Ro-.2 - - 5 2R
/ dpg(E(T), T)g < —f dpgl(1 = D)IVTI; + |V o VT|; — = [T2] (38)
M3 2 M3 3 3

On the other hand, we have

dE
=2 [ dustEo 200
t M3
Substituting T = Z(h) into (3.8) leads to the inequality
dE 2R R - 2 - - 5
— < ——E dus[(1— =)|VE()|; Vo VE(W);],
r="3 +/M3 ugl( 3)I (h)lz + 1V o VED)E]

which yields the conclusion. O

Next we consider a family background metric g(t) with parameter ¢ € [0, 00), and let x,, = d‘i‘[“’, X" =ght'g

—%w. Suppose T € D is an eigentensor of the linear Cotton operator for the eigenvalue A4, i.e. (Z(T)),, = AT,,, with

the normalized condition fM3 |T|§ = 1. Then by these set-ups, we reach

vB dgaﬁ —
dt

dA d= dr dr
=/ dug((——(T), T)g + (E(—-). T)g + (E(T), —);¢
M3

dt dr dt dt
dT
(8, x T 24T, S+ AT )
= dT
_ /M (S, 1+ TN (39)

where
(X—‘T);w :XuotTSt + XvaTg,
1. o 1- o oo
(Y ()0 :5{6 WP(—REVETS, + ERVﬁTO,,, + Ry V*Tgy — ROV, Tip

- 1 - - -
= Va(RiTi) + 5 Vp(RTw) + V' (R Tpp) = ViR Top)) + (1 < )}
Therefore we need to determine the variation of linear Cotton operator. Indeed, the lengthy calculations show

d(Ao )

_ _ 1 - 1- _ 1 -
o (M =~ V(X" Vi (I(T))) — STX(A 0 Iy + 5 VT Vo (T + 5 {xun(4 0 (7)),

(

1— A o Y. o Nid 1— Y. Y. o y o Vid VY
- 56 /l_aﬂA((vaa + VD(XU -V Xau)Tﬂrr) - 56 /Aaﬂvl(vkxa + votX)L -V Xal)vaTﬂv

1. e , - _ 1. e - B, B, -
56 /Laﬂvk(vkxg + VﬂX)ir - VUXﬂA)vaTav - 56 uaﬂvk(V/\Xf + VUX)(Ly - VUXM)VaTﬂrr
— € uaﬂ(ﬁkxg + ﬁax;j - 6aXut)»)ﬁ)tﬁo"rfh) —€ uaﬁ(ﬁkxg + 6ﬂ)()[j - 6a)(ﬂ)\)ﬁ)\ﬁm’rav

— € ﬂaﬂ(ﬁkx\? + 6VX)? - ﬁaXU)»)ﬁkﬁaTﬂo + (,LL <~ l))},



16 S. Hu and Z. Hu / Journal of Geometry and Physics 145 (2019) 103482

and

d(Ro IT) 1- - - . 1.
(T(T));w = - (ERTFX + XP)LR/)A + ATFX - VPV)LX/J)»)(H(T))[LV + ER{X/A.)»(H(T))::

1. _ _
- 56 n ﬂ(va)(f + Vu)(g - VaXav)Tﬁa + (/’L <~ V)}

As a consequence, we have

Proposition 3.6. If the initial data are taken as follows: g(0) is a metric of constant curvature and T(0) is a marginal
perturbation with respect to g(0), i.e. (I1(T))(0) = 0, then we have

dA
e [M dug ((0), (OO0, (3.10)
where
1 = Y. A v = VYT A = AL v - VB Y.
(O(T)ao = — Z{e an’ Vi Tpe ATH — & o PTYV, ATE — & ., AV — [0y, T )+ € BV, Vu(V — [aTﬁ]AT“’\)

+ E i VIV (VT TY) = & o,  Vp Vo (VTS T + 2€ 0, P Vi (VAV — [0 T, TH)

— 26 PNV V = [0Ty ), T) = 2€ 0P VA (Vo ViTpu T) + 2€ 5, V(Y ViTITH)

R - R -
- 3¢ an? VoTpe TH + 3¢ ail’ T VITH + (@ < o).
3.2. ADM-type charges

In this section, the background manifold (M3, g) is still a closed Riemannian manifold of constant curvature.

Lemma 3.7.
(1) Let C stand for the first-order approximate of Cotton tensor around the background metric, then C™) is also covariantly
conserved and traceless.

(2) Let & be a Killing vector with respect to g, and one introduces a new vector field éﬁ = evPV, &, associated to &. Then
& is also a Killing vector field with respect to g. Therefore we can define an operator « on the space & of Killing vector
fields on (M3, g) by k(&) = £ for any & € &, then

K(§) = 1*(§) = —L(&),
hence A€ is also a Killing vector field.
Proof. (1) Let G denote the Einstein tensor defined by G = Rl — %(SU’LR and GV denote the first-order approximate of
G with respect to g, which is given by

R 1. _ - _ o 1_ R _ _ o
c* = -3 —(VV*hy, + VOV, h* — V4V, Trh) + Eag(gm] + ATrh — V*VPhup).

vV

N

Then we calculate

70 R' R'u T ALK
v/tv \% hav - EvuTrh - év hu.u + v/lAhuv
VARAVLAVA YA R S5e Iz VAAVLAVL
V. VoV,hl = —gvarh + ERVuhu + V, V¥V g,

- R- - -
AV,Trh = 5varh + V, ATrb.
Combining these identities leads to V,,G'""" = 0. Then the conclusions can be easily derived from the definition of Cotton

tensor and the abgvg conglu§ion.
(2) Let App = Voép + Vpé,, then we have

- =2 -2
/dllg’|Aa/3|§=4/ dMg|V0V§|g—4/ dpg| A
M3 M3 M3

= _4/ dug(VE, AVE); —4/ d,ug|A§|§
M3 M3
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2 - - - - 1- 1-

= —fR/ dugV, &, V"E* — 4R/ dugV,E,(ZVHE" + —V"EH)
3 M3 M3 3 6

=0,

where the third equality follows from commuting the operators V and A. Therefore Aqy = 0, which means that £isa
Killing vector field. The last claim follows from the following calculations

(K(E)Y =&°e s*PV, NV, &y = Vo VPE" — ALY
R i}
= 5%‘" — AEP = —(1(§)).
We complete the proof. O

By ADM’s approach [2] one can define a conserved charge Q:(ly) associated to the fixed Killing vector field £ as

1 - - v - - «
d*xy/ |det h|n, (&,e*P GV PG 4 g P
871;63%2 y/ Idet hng (& pté pt§ B

— E,VUQM 4 £, VG — EYVITH + EXVOTrh + £9V, 51 — EXV, 5
+ §PVEE, — hOVVRE, + TrHVIEY), (3.11)

(Qe(0)) =

for a closed surface ¥ in M3 with the unit normal vector n and the induced metric h.
Proposition 3.8. The conserved charge Q¢ (bh) is gauge invariant with respect to the diffeomorphisms.

Proof. The diffeomorphism generated by a vector X causes the infinitesimal transformation of the perturbation § given
by 8xh,w = VX, + V,X,, then

_ _ 2_ _ _ _ _ _ o _
VOV bxhoy + VO Vubxbl; = SROVAX, + VuX) + AVAX, + VuXH) 4294V, V - X,

R - -
§Tr8xb + ATréxh — V*VP8xhap = 0.
Hence 8xG'" = 0, which implies the gauge invariance. O

We first deal with the case of asymptotically flat Riemannian manifold, namely (M3, g) is diffeomorphic to the
complement of a ball in Euclidean space outside a compact set, and in the coordinates given by this diffeomorphism,
the metric satisfies the asymptotic conditions

8uv = 8;/.\) + hp.vs

with appropriate decay of § and its higher order derivatives as |x| — oo. One chooses a Killing vector & such that
& = (1,0,0) in terms of the Cartesian coordinates on the limit ends of the manifold, then we define the ADM-type
mass M via the limit of (Qg(h))o as follows

1 o 0
M = lim dusin G
=00 477Gy §€; RO

jéz du[n(9992bh21 + 0201h02 — 9292h01 — 9pd1h22)
Sr

lim
r—o0 8¢ G3
— (8001012 + 9102h01 — 9101h0o2 — od2h11)], (3.12)

where S? is a Euclidean sphere with radius r, and du denotes the measure on S? induced by the Euclidean metric, and
the indices i, j runs over 1, 2.

Example 3.9. Let us consider 3-dimensional Schwarzschild-like manifold endowed with the metric with a parameter M
dr? + r*(d6? + sin? 0dp?)
M
VT2 —2Mr+r—M

Under the asymptotical Cartesian coordinates, g,,, = §,,(1 + %). Then from (3.12) we find that

E= 1M

) (dxg + dx7 + dx3).

M~ lim (2 + o1y =0

r—oo 1 r
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More complicatedly, we next consider the asymptotically hyperbolic Riemannian manifold (M3, g), thus there exists
a diffeomorphism ¢ from the complement of a compact set in M into the complement of a ball B* in 3-dimensional
space H> equipped with the background hyperbolic metric § = dr? + sinh? r(d9? + sin? dy?) in terms of geodesic polar
coordinates such that (¢ ~!)*g and g are uniformly equivalent on H \ B> and some decay conditions should be imposed.
With respect to background metric, the Killing vector fields on H> are generated by

d ad
M = — cos® — + cothrsin—
5 ar + 30’
@ d d 9
&) =sinf cos ¢ — + cothr cosh cosp— — cothrcsch singp—,
ar 96 3y
3) . .0 .0 a
&Y = —sin6 singp— — cothr cos @ singp— — cothr csch cosp—,
or 90 1%
£W = cos<pi — cotf sin<pi
20 ¢’

d 0
®) = sing— + cotH cos ¢ —,
& ingos + wa(p
6 — 9
g’

among which, there exist some duality relations via the operator x, more precisely, we have

k(EW) =260 k(£0)) = 26D
k(@) =260, k(E®) = —26@),
k(D) =269, k(W) = —20),

which imply the Killing vector fields £V, ..., £©) are all eigenvectors of the Laplacian A belong to the same eigenvalue
2. Then we consider the limits of ADM-type charges (Q:w(h))*,i = 1,...,6, for an asymptotically hyperbolic manifold
as the same manner as the case of asymptotically flat manifold, where the integral domain is chosen the surface defined
by the equation r = constant. As an example, for Killing fields £V, we express explicitly

MD* — rlLr&((Qg(l)(h))M)

0, u=0,
1 2
lim / / dode[cos 6G Vg, — cothrsin Gy,
4r Gz =00 Jo  Jo _ _
= +sin0(Vihoy — Vohi2) + cothr sinhq; — cos Ohp;], uw=1,

1 T 2
872G, rlinolc/ / dodp[—2 cos 6G Vg, + sinhr coshr sin 6’(—6“)3 + G(”} - G“ﬁ)
—>*Jo Jo

+2 Sil’le(?oh]] — 6]1)01) — 2C0thr5iﬂ9h]1 + 2C059h01], M= 2.

Example 3.10. We modify the Schwarzschild-like metric by introducing a new parameter ¢ with the dimension of length
as follows

1
= dr? + r?(d9? + sin® 6dy?
&= oyt g g Ao ¢")
1+ 122 dr? 1—-2Mr=' 41272, .
= r2(do? + sin® 0dg?
M e 14 e T 142 (467 + sin” "))
== (1+ 2me Ye2[dx? + sinh? x(d6? + sin? 0dy?)]
e UL X @)l

. . 2 _ —
where r = ¢sinh x. Then by taking b,, = %gw = Wgw

coordinates {x, 0, ¢}, straightforward calculations show M vanishes.

in terms of the asymptotical geodesic polar

Based on the above examples, we propose the following conjecture.

Conjecture 3.11. If a conformally flat manifold (M3, g) admits nontrivial ADM-type mass defined as above, then the Ricci
curvature cannot be parallel with respect to g.
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3.3. Linear gravity and supersymmetric quantum mechanics

We return to the case with the metric signature (—1, 1, 1) in this section. Around the background manifold (M3, g) of
negative constant curvature, to find a marginal perturbation h € D', one can consider the first-order equations

—R e [—R
((HO + ?)h)/w =€ uaﬁvahﬁv + ?huv =0, (313)

acting on both sides of which with the operators € ,”* ﬁp F/ %8’; leads to

w | =

(Lb)uv = (A - )huv =0. (3.14)

Definition 3.12.
(1) If a perturbation h € D’

e satisfies Eq. (3.13), it is called a type-I vacuum,;
e satisfies Eq. (3.14), but not Eq. (3.13), it is called a type-II vacuum.

(2) If a marginal perturbation h € D’ can be expressed as the matrix form in terms of separated variables

Hoo(r) Hoi(r) Hopa(r)
h= ( Hoi(r) Hu(r) Hipp(r) )
Hox(r) Hip(r) Hpl(r)

with additional conditions that

gt elky 3.15
(3.15)

e w, k € R, it is called a real mode, and in particular, when k = 0, it is called an s-mode;
e the diagonal components all vanish, it is called an axial mode;
e the components Hy, = Hy; = 0, it is called a polar mode.
We will choose the following two common vacuum configurations of Chern-Simons-like gravity as the background
manifolds.
e AdS3; manifold endowed with metric
1
14712

The isometry group is O(2, 2) whose identity component is exactly isomorphic to (SL(2, R) x SL(2, R))/Z, with the
left and right moving sectors of generators

Zags = —(1 4+ r2)dt* + dr? + r’de?. (3.16)

i i r . V14712
Lo = E(Sf +9,), Ly = Eﬁl(w)(ﬁa +iv 14120, + faw),

Iy = 50 =)L = 5™ ta /T4 - L)
each of which forms Lie algebra si(2, R), thus

[Lo, Le] = £Ly, [Ly, L] = 2o,

[Lo. Ls] = £Ls, [Ly, L] = 2Lo.
For a marginal perturbation  with the form (3.15), we have Ly(h) = —“’T“‘h, Lo(h) = —“’T’"b, where w =+ k is called

the left(right)-weight of the mode, and the acting of L. on § changes the left(right)-weight to w + k &= 2 and leaves
the right(left)-weight invariant.

e Non-rotating BTZ black hole endowed with the metric
1
Sprz = —(—M + r?)dt? + ————dr® + r’dy?, 3.17
81z (=M +r7)dt” + Mo +ride (3.17)

with a positive parameter M that describes ADM mass of the black hole. The BTZ black hole can be viewed as the
quotient space of AdSs, i.e. locally AdSs space, and then the survived global Killing vector fields are only generated
by Lo, L().
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Proposition 3.113. Unde1r the AdSs or BTZ background metric, if there exists a non-trivial axial mode such that Eq. (3.14) is
satisfied and r~2Hyy, r~2Hqy, r2Hyy are square-integrable over definition domains, then it must be a type-II vacuum and an

s-mode.

Proof. For AdS; background metric, Eq. (3.14) reduces to
—2r*(1+ r??Hpy — 2r(1 — rYH{, — (—2k* + 2r’w?® — 5r®)Hoo + 4r*(1 + r?)*Hyy — 8iwr>(1+ r*)Hp; = 0,
—r(1+r*PHgy, — r*(1+r?P(1 4 3r*)Hg, — r(1 4 1) (=1 = 3r* = k(14 1%) + r’w?)Hyy
+2ik(1 + r2)*Hyy — 2iwr*Hoo — 2iwr*(1 + r2)*Hy; = 0,
r2(14r2?Hy, — r(1 4+ r2)*Hf, + (—k*(1 4+ 1) + r’w?)Hoy + 2ikr(1 + 12)*Hoy + 2iwr®(1 4 r*)Hy; = 0,
—r* (14 r?)*HY, — (1 + r2P(1 + 7r%)Hyy — (14 P (=2+ 2r° + 6r* — k(1 4 1%) 4+ &’r*)Hyy
+2r®Hgo — 4iwr>(1 + r2)Hoy — 2(1 4 r?)*Hyy + 4ikr(1 +12)*Hy, = 0,
—r(1 4+ r?PHY, — r2(1+ (=14 3r)H}, — r(1+r*)(=3(1 + r*) — kK*(1471%) + ’r?)Hy,
—2ikr*(1 + r%)*Hyy — 2iwr*Ho, + 2ik(1 + r2)?Hy, = 0,
r’(1+r22HY, — r(14r2)3 + r)Hy, + (—(1 + 1)K — 2) + &’r*)Hy + 2r*(1+ r*P’Hyy
+4ikr(1 +r?)?Hy, = 0,
and the transverse-traceless gauge conditions are given by
r2(1 4 r2)?Hy, +r(1+ r?)(1 + 3r®)Ho; + ik(1 + r*)Hg + iwr?Hoo = 0,
—r(1+r*PH}y — (14 1%)*(1 + 4r*)Hyy — r*Hoo + (14 1%)*Ha
+iwr3(1 + r>)Hy; — ikr(1 + r?YHy, = 0,
—r2(1 4+ r?H}, — (14 r*)(1 + 3r*)Hyy — ik(1 4 r*)Hp, + ior*Hp, = 0,
r*Hoo — r*(1+ 1*)*Hy; — (14 1%)Hp, = 0.

One easily finds that k = 0 for the non-trivial axial modes. Then the non-trivial Hy;-component is subject to equations

r’(1+r*Hg; + r(1+r*)(1+ 3r*)Hy, — (14 3r*)Hy =0,
r(1+r?)Hy, + (14 3r*)Hp; = 0,
which are not compatible with each other. Therefore Eq. (3.14) and gauge conditions remain
r(1+r*YHg, — (1+ 1r*Hg, + ro*Hop + 2ior?(1 4 1*)Hy, = 0,
—r2 (1 +r*PHY, — r(1 4+ (=14 3r)H}, — (1 + r2)(=3(1 + r?)* + &*r*)Hy, — 2ior*Hp = 0,
—r(14r%?H), — (1 +r?)(1+ 3r*)Hy; + iwrHp, = 0,

thus the non-zero components respectively satisfy the equations

I 1-r2 [ 4 »? 1Hop = 0
27 p(14r2) 2T N g2 Q2R 2T
., 1-=-5r2 3 2(1+3r%) w?
127 2 Tl T 2 2y H12 =0,
r(1+4r1?) r (14712%) (1412%)

and they are connected by a compatibility relation
) 2 ,
— l(x)le = ;Hoz — HOZ'

By introducing the new variable 7aqs = arctanr and new fields

~ 1

HAC]S — —H ,
02 \/TT 02

- 1412

HYS = SV Hia,

we get the Schrodinger-type equations

d2I:IAdS B

— +[0* — VasslHgy® =0,
drjgs

dZI:IAdS

dlez + [0® — Unas]H{S® = 0,
AdS

(3.18)

(3.19)

(3.20)
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where the potential functions Vpgs, Uags are given by

3 - 1

Vadgs = —(1 4 tan® fags)(5 + —55—).
4 tan raqs
3 - 5

Unas = —(1 + tan® Fags (1 + —=—)
4 tan< rads

which are both positive.
Similarly, for the case of BTZ metric, we only need to substitute

- 1 | |r - «/M|
gz = ——In ,
T UM r+ VM
- - - —M +12
AR = A, B = = T Ho,
3 1
“M(tanh* (vVMferz) — 1)(5 — ——————), 0<r1 < +/M;
4 o tanhz(\/ MFBTZ)
Verz = 3 1
ZM(coth®(vMfgrz) — 1)(5 = —————), 1> /M,
4 or COShZ(\/ MFBTZ)
3 5
“M(tanh*(VMfgrz) — 1)(1 - ————), 0 <1 < /M;
4 o tanhz(«/ MFBTZ)
Uprz = 3 5
ZM(coth® (VMfgrz) — 11— ————), 1 > /M,
4 oz COShz(\/ MFBTZ)

within the final Schrédinger-type equations.
To confirm it is an s-mode, we still need to show w is a real number. Generally, let C5°(I), where I = {r : 7; < T < 1},
denote the set of smooth real functions over I with compact support, acting on which we define the Schrodinger operators

Ay = —% 4+ Vand Ay = —% + U. Then these operators can be extended to self-adjoint operators on L,(I) by the
Friedrichs extension. Hence since

o = (Hoz, AvHop) _ Hiy, Ay
(Ho2, Hoz) (H12, Hi2)

)

where the pair (-, -) is defined by (A, B) = frrlz drAB for A, B € Ly(I), we have
(¢, Avp) . . (¢, Auyd)

®® > max{ inf , inf ).

¢EC(())O (¢7 ¢) ¢€C§° (¢a ¢)

On the other hand, by Stokes theorem, we have

(¢, Avp) = (Dy @, Dy@) + (¢, Vo),

where

b= L4
NPT

with S-deformed potential function [15]
ds 9
dr
for any smooth function S(7) over I. This argument indicates that w? cannot be negative under the assumptions in the
proposition.
Finally, we should show that the axial s-mode cannot be made into a type-I vacuum. Indeed, we explicitly write the
(2,2)-, (0,0)- and (1, 2)-components of Eq. (3.13)

1
H(/)Z - *Hoz — in]z = O,
r
r

1412
2

r
Hppy F mHoz =0,

Hg, — Hpy =0,

which only admit zero solution. O
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Similarly, the type-II polar modes must have null k. The component Hy, satisfies the equation
5r% — 13Mr? 4 2M? — @*(7r?> — M)

2 2\ g/ ’
r°—2M — o )H H
( w”)Hp; + M1 1) 01
(3r2 —2M)(r* — 4Mr? — M?) 4+ w*(M? — 61* — ’r?)
+ 5 oIV Ho1 =0,
r?(—M + r?)
where M = —1 correspondences to the AdS; metric, and M > 0 corresponds to the BTZ metric. By defining
- V(=M +1?)
HO] = —Hm,
|12 — 2M — w?|
we once again obtain the Schrédinger-type equation
d*H, -
= * + [w? — W]Hor =0, (3.21)

where 7 is taken 7445 Or Tz depending on the value of M, and the w-dependent potential W is given by

3M (=M +12)(—r? 4+ 8M + 40?)
W=(-M+r?)[- - = )
(=M + )[ az T (r2 —2M — w?)? ]

Asymptotical behaviour

When 7 tends to zero (i.e. r — 0), we should clonsicler the asymgtotical Schrédinger-type equations with potentials
Vags = 3 cot? 7 or Upas = %2 cot? 7. Let HyS® = sin™2 7y, HfS® = sin™2 7y, and 5o = cos? 7, then we obtain the following
hypergeometric equations satisfied by ¥, and ¥:

vy, 1
no(1 = 10)—— + =(20* + 1)¥ = 0,
dno 8
d>yo | dio

1
+ o 4 220" +3)o =
dno dno 8 0

no(1 — no)

o - . . ~ 3 ~ 1. s s

Similarly, when 7 — Z (i.e. 1 — 00), one introduces Hj§® = cos™2 FW, HS® = €0~ 2 oo, and 1o = sin’ 7, where

Y., and v, satisfy the same equations control /o and ¥, respectively. By virtue of the Gauss hypergeometric functions
r'(s)

F(a, B, v; z) and the function 7°(s) = ) we have

Wy ~F( 1 1/2+ + | +3 ) ( 1/2 3 1l2+3 3. )
2 ) w 22 =5 1o 2 [ 4 2 w s ,770,

3 1 3 1 1 15 1
~F(—— — —, ==+ —, = F—*—* 0+ —,—=+ = =
Yo i \/ 4 ~3 2\/ 3 10)> /M0 (4 3 A + + ,/ ;10

3 1
V 1213

—_

5

2+ =1, 1= 1),

In(1 ,/ 2+E 2o+ B )+ i
Noo)F 173 47 T T 4T 01 — )
64 Zr(s—g—% @+ B)ris-3+1 /0 + )

(17 = 202)(53 — 202)(1 — no )2 + sIr(3+s)

3 11 1 15
T(s—>— = o?+ T(is—= 7,/2 =)-71@3 YA +5s)—V(—— — =/0? + —
x {T(s 10} +s4+ w+ +5s)—T(1+5s) (4 2w+4)
11 1
- Y(=—+ /o +f)+T(1)+T(2)}
4 2
e 3 1 103
2 4 4 2
In(1 — neo)F _,_,‘,w2+, _,_,_,‘,wz 8
(11—2w2)(1—noo)

(1 =10
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+im_%_% it ULk bk 'k YO )S{T(s—l—lﬁ)
ar SIT(2+5) oo 42 4
1 3 5 1 3 5 1 3
Y= 4 o J0?+ )= TR +5) = T(A+5) = V(=2 — = Ja? + )= V(=2 + = [? + 2)+27(1
+ T(s 4+2 a)—l—4) (2+5s) (1+5) (4 5 w+4) (4+2 a)—l—4)+ (1)}

Related to supersymmetric quantum mechanics

We reformulate the potential functions V, U as the deformed potentials of constant ones, namely we write

dSy
V=s-
VodF
dSy
U=Ss2 =
U dr
where there are various choices of superpotentials
5 M £ 2|M|
Srae 0
S, = 2 2r ol = —10M F 6|M|,
v 3 +Mﬂ:2|M| v —2M +2|M|,
2 2r
3 M =+ 4|M|
T+ —,
S = 2r ol = —8M F 8|M|,
v 1 +M:l:4|M| u —4M.
2 2r
Then the corresponding supersymmetric partner potentials are given by
35 7M £ 8|M|
V&_52+dSV+w2_ (=M +r )(4 4r2 ’
VT aF v ( M+r2)(9 7Mj:8|M|)
4 4r2 ’
M 15 19M + 16|M]|
PRI Ny~
N df uT ,, 1 19M + 16|M]|
M+ r?)(= - —————).
(=M +r°)(3 P )
The original Schrodinger problems are translated into the following forms
& ,_dS ATAY 2 2
g S ;E)w:{ aaty =@ —@)WY
by introducing the operators
Azl +S,A" = d +5S
I

with the commutation relation [A, AT] = 2%. In particular, one immediately obtains some type-II s-modes with special

values of w*(= @, or @}) via

Hoy = /1 exp{— /dr }

M+2
or

d Jr Su —M + 3r? Su
Hoy = (—M Y _expi— [ d — | dr————=},
0 =(= +r)d[ ~M +r 7 exol / r_M+r2}]+ Jr X / r—M+r2}

for example,

SMEIM| v

|-M 42 ™M w? = —10M F 6|M;
M=x|M| M|
|—M 42| 20 5 w? = —2M + 2|M|;
Ho, = , MMy
[—M +r?| M =, w? = —8M F 8|M|;
M| | +4M| +2M
I—M +r |:FM :tzW’( | 1\|/1+ P OM T 2MD. o = —4M.
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One can observe some duality relations by virtue of supersymmetric quantum mechanics.

e Choosing superpotential Sy = %r - % whatever the sign of M is, since V. = U®*, if Hy, is a solution of the

corresponding Schrodinger-type equation for axial mode, then AyHy, is a solution of the equation govern Hos.
Conversely, the same thing occurs by acting on Hp, with the operator AL. This is nothing but a reinterpretation
of the relation (3.18).

o Under the case of BTZ background metric, one is restricted to the region inside of the horizon, then when w? is very
large, there is an approximation W ~ %V" by fixing Sy = %r — % Indeed, one should resume a hidden parameter
= ‘/—% with dimension of length in AdS; or BTZ metric, where A stands for the cosmological constant, and is
assumed to be —1 previously. Then after the following rescaling that does not affect the horizon

_ _ 1
t—>E=vV5M—>M=—M,
V5
the I:Ioz—component of the supersymmetric _partner of axial mode is subject to the Schrodinger-type equation with
potential %V(‘ZM) so it corresponds to the Hos- component of the original polar mode, thus AV([ M)Hég produces a
polar mode with large w?.
o We expand 1:102 in terms of Laurent series as
- I
Hop = -+ + 137 + 1512 +11f+10+ + + 3-l—

At the spatial infinity r — oo, substituting it into the Schrodinger-type equation gives rise to the recurrence relations
among the coefficients

15 oM 3M?
(n(n—l)—Z)InJr( +7)In2_ 1 —Ih4s=0,n€Z,

meanwhile, at r — 0 the recurrence relations are given by

3 oM 15
mm+1%—pm+M”wﬂ+4—mH

5 _4M2"+4 0,neZ.

The similar asymptotic expansion can be done for the supersymmetric partner I:ISg with coefficients J,. Then the
relations

d -
(T + Sv)Hoz = (@ — @y )Hpy,

d ~
(_* +SV)H()2 = (w + @y )Hoy,

connect these coefficients. For example, adopting Sy = r + M“‘M | we have
5 M +2|M
m—ﬂh———JJM4=4w+mM+&WM4,
r— o0 2 2
5 M + 2|M|
(n+ 5)]11 ——Jn2 = (0 — 10M — 6|M|)I_1,
M + 2|M| 5 w + 10M + 6|M|
M+ ———h+ == —————Jn1,
r—o0 2M 2M M
(n M+2|M|)] 5] B w—lOM—6|M|I
2 T oM T M A

e The operator A can be reformulated as the Kac-Schwarz-type operator [13]

1 d Wi
— AW.Q) _ - _
A=A = W a  Swiee T

for W(r) = #(r), Q(r) = S(r) — 2cr and the constant ¢, whose dual operator is given by

"
Godem_ 14 Q0
Qndr QP
The difference from the standard Kac-Schwarz operators is that our W, Q are not polynomials. Complexifying the
parameter r as the coordinate on the complex plane removed zero point, we apply the theory of local Fourier
transformations. In this theory, we need the category C of vector spaces with connections over the field K = C((r)),
where a connection V on a d-dimensional vector space V over K is a C-linear operator V : V — V satisfying Leibniz
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rule, and then V can be written as V = + A for the connection matrix A € gly(K) with respect to a fixed basis
of V.Let K, = (C((rp )) be the umque exten51on of K of degree p > 1 and f be an element in K}, then one defines
an object Ey ) € C by E p) = (Kp, 7 ) The 1somorph15m class of Eg ) depends only on the equivalent class of f

under the equivalent relation f ~ g iff — g € rP(C[[rP N+ EZ' Now for A = ﬁ + S, near the point ¥ = 0, since the
order of f(7¥) = 7S is zero for Vp, we get

b
A"\’*~"‘.~

for a constant b, and hence
~ d 2c—b

~ —_— —

a7

. Then choosing p = 1, the local Fourier transformation of A is given by [8]

~_ b
forr_f

4

FORM = G+ =A

where the dual parameter i is determined by f = —§

Related to Seiberg--Witten theory

For the Schrodinger-type equatlons (3. 19) (3.20), (3.21), we can consider the quantum correction to the Bohr-
Sommerfeld integrals. Write H= exp(+ f P(7)dr) with a parameter A and expand P in terms of A as P = ), _,(ix)"Py,

then by considering the power of A, we have the recurrence equations
P = w(F).
Pé — 2P1Py =0,
P} — P} — 2PoP, = 0,

w'” /\2 . . . . . .. . . .
thus, Py = p, = w3y Substituting the first order solution into the original equations gives rise to the
2w 8w3

equation satisfied by tfle function w:

=[w® —V]— %{/ wdrF; Fls,

where {-; -}s denotes the Schwartz derivative defined by

Hence the fewer lower order approximations are explicitly given by

16(w? — V)3 —4V"(w? — V) = 5(V’')?
pg°>:/w2—v,pg”:¢ (w ) (o ) —5( )’

4 w? —V)
PO _ %4 ph _ 8(w? — VPV 4+ 2(w? — VRV" + 7(w? — VIV'V" +5(V')
4?2 —-V) ! 2(w? — V)(16(w? — V)3 — 4V"(w? — V) — 5(V')2)
PO _ V" (@? — V) +5(V')?
2 32(w? — V)3
1
PV = — [2(w?® — V)(16(w?® — V) — 4V (0? — V) — 5(V')?)

2w? — V)(16(w? — V)3 — AV"(w? — V) — 5(V')2)3
(—24(w® = VR(V'P? + 8(w? — VPV + 7(w? — VYV + 3(0? — VIV'V" 4 2(w* — VPV +8(V')PV")
— (8(? = VPV +7(w* — VIV'V" + 2(w? — V2V +5(V'))
(—4V'(16(w?® — V)® — 4V (w? — V) = 5(V')?) + (0 — V)(—48(w? — VYV’ — 4(w® — V)V —6V'V"))
+ 3(8(w? — VIV + 7(w? — VIV'V" + 2(w?® — V)2V + 5(V')3)],
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The “quantized” Bohr-Sommerfeld integral is given by

b b b b
a a a a

b 2 b 1" 2 ’
. A A % . 5SA 1%
~ f Va2 —VdF + = (log|w? — V)b — —/ S A N R R N
a 4 48 J, (w2 —V)2 48 (w2 —V)2

For our cases V = Vjgs or Uags, we express the lowest order Bohr-Sommerfeld period 17(()0) as

17(()0) zyg\/E—utanzf— v cot? Fdf

with a parameter triple (E, u, v) € R3, which satisfies the following series of Picard-Fuchs-type equations
[(E — 20)82 — Edgdy + 2v9:9,1115") =0,
[(E — 4v)82 — (E + 2u)d20, 4 4v920, — 2udp92111" =0,
[(E — 6v)3 — (E + 4u)d2d, + 6v920, — 4ud2d21I1S" =0,

due to the identities

tant n 27 nt3 n+1
d - e =(—1)"T ————[(E—(n+ )37 —(E+(n— 1w, 3,
(E—utan?7 — v cot? )2 [Tz (2k—1)
n+3 n-1
+ (n+1)dg 2 8, — (n— 1)ud, > 83]\/E —utan? 7 — v cot? Fdf
for an odd number n. We denote the parameters E, u, v by ty, t, t3 and write the Picard-Fuchs-type equations as the form
9 L 9%
(0) J1°Ja (0)
7 = G %t b, t3) —1I1,7,
at;, - - ot 0 A Z ‘ '1'-'la( 1, %2 3)3% -t 0
« U1seesd )15 s 00r) o
where the coefficients C are all rational functions of tq, t5, t3, and o = ”TH is called the level. By these coefficients, one
writes a 4 x 4-matrix C®), called Picard-Fuchs matrix at level o,
0 t1+(n—1)t; _ (n+ 1t (n—1)t;
I'1—(Tl+1)f3 tl—(n+1)t3 t1—(n+l)t3
1¢ t1 —(n+ i3 0 (n+ 1)t; _ (n=1t
@ 19712 t1 +(n— 1t t1 +(n— 1t t +(n— 1t
1¢-13 tH—Mm+1Dts  H+0m—1) 0 (n— 1), ’
197222 (n+ 1)t; (n+ 1) (n+ 1)t;
t1—(n+1)t3 _t1+(n—1)t2 (n+1)t3 0
(n— 1Nty (n— 1tz (n— 1t

whose determinant is —3 independent of parameters and level. Then one can consider the characteristic polynomial of
symmetric matrix ¢ = ()T it is given by

C(x; t1, to, t3) == det(€®) — x) = x* + A(t)x> + B(t)x* + C(t)x + D(t),
with coefficients
PP+c?4+d> ad+c2+d® bP+a+d> b+ +d

Alt) = a? b2 c2 d? '

B(t) == 5= a0 + ¢ + &)@ + ¢* + d°) + b*d*(b* + ¢* + d°)(a® + b* + )
a2b?c?d?
4 bzcz(b2+cz+d2)(az+b2+cz)+azd2(az+b2+d2)(az+C2+d2)+azcz(az+b2+C2)(az+C2+d2)
+ aZbZ(GZ+b2+d2)(a2+b2+C2)_C2d2(c2+d2)2_bZdZ(b2+d2)2_bZCZ(b2+C2)2_aZCZ(a2+C2)2
_ a2d2(02+d2)2—azbz(az-i-bz)z],

C(t) {(az+C2)2[a2(az+b2+d2)+cz(b2+C2+d2)]+(b2+d2)2[b2(a2+b2+C2)+d2(az+C2+d2)]

T 2pcd?
+ (b2+C2)2[C2(02+C2+d2)+b2(az+b2+d2)]+(az+d2)2[d2(b2+C2+d2)+az((12+b2+cz)]
+ (@ + P*PID*(D? + ¢ + d*) + a(@® + ¢ + d°)] + (¢ + d*V[d*(a® + b* + d*) + c*(a® + b* + ¢?)]
_ dZ(CZ+d2)(a2+d2)(b2+d2)_a2(a2_I_CZ)(aZ+d2)(a2+b2)_c2(b2+c2)(c2+d2)(a2+C2)
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— b2
— b
— d?
—_ p?

b% + d*)(a* + b*)(b* + c?) — d*(b* + d*)(c* + d*)(a* + d*) — c*(c* + d*)(a® + ¢*)(b? + ¢?)
bz+CZ)(b2+d2)(a2+b2)—a2(a2+d2)(a2+cz)(a2+b2)
b2+C2+d2)(a2+cz+d2)(a2—|—b2+d2)—c2(b2+c2+d2)(a2+cz~|—d2)(a2+b2+c2)
bz+c2+d2)(a2+b2+d2)(a2+b2+cz)—a2(a2+cz+d2)(a2+b2+d2)(a2—|—b2+c2)},

—
— o~~~

D(t) =5 [(0° + d)(@ + ) + (b + V(@ + &) +(¢* + &)(a@ +b7)

— 2(c* + d°)(d® + @®)(@® + b*)(b* + ) — 2(b* + d*)(d® + 2)(c* + a®)(@® + b?)

— 2(b? + d*)(d* + )@ + c*)(c* + b?) — (b? + % + d?)(@® + b* + d?)(a® + c?)?

— (@ 4 2 + d?)a® + b? + )b + d*)? — (a® + 2 + d?)(a® + b + d*)(b? + )

— (B® + 2+ ) a® + b? + ) a® + B — (b + 2 + d?)(a® + ¢ + d?)(a® + b?)?

— (@ 4+ b + d*)a® + b? + ) + P + 2(c? + d®)a® + d®)(b? + d?)a@® + b? + ¢?)

+ 2(a® 4 )@ + d*)(a® + b*)(b* + ¢ + d?) + 2(b* + )a® + ) + d*)a* + b* + d?)

+ 2(b% + d?)(@® + DP)(b? + )@ + 2 + dP) + (b? + 2 + d*)(@® + ¢ + d)(a® + b® + d*)(a® + b + 2],
wherea=t; —(n+ Dt;, b =t +(n— Dtz, c = (n+ 1)t3, d = (n — 1)ty. Obviously, C'¥)(x; t;, ty, t3) is invariant under the
action of the product S, x S3 of 2-order and 3-order symmetry groups on the parameter space {ti, t,, t3}. When o > 2, for

generic values of parameters, one associates C*)(x; t;, t,, t3) with a hyperelliptic curve viewed as a Seiberg-Witten curve
defined by

3

Y=t t t) =x* — A] Jx—my)
r=1

in A = 2 supersymmetric SU(2) Yang-Mills theory with three hypermultiplets carrying masses m;.
Finally, let us consider the extreme case v — 0 corresponding to r — co. By substituting the formal series [18]

~ 1 u
My (e) = 11y + elly” + 0(e?) = E2**(14 3 sa())
n>0
into the Picard-Fuchs equation of level 2, we have the recursion relation

(2n—1—-2&)2n+1—2¢) 4n% —1 24n +1 )
Sny1 = Sp=[— + > &+ O(e%)lsn,
2(=2n—3+2)(n+1) 22n+3)n+1)  (2n4+32(n+1)

which yields the expansion

1 u
n(e) =vVEQ1 Tu_Lun,
=VE(L+ oo = 56(5P )
Tu 1 u lu 1 u
ElogE(1+ == — —(=) E(=— — —(=)
+ elVEIOgE(1+ oo — (0 )+ VE(G — s (5 VP + )]
Let k = 17(0) = M = VE(1 + 14 — L(uy ), from which it follows that

1 u 27 u
Eox(o LB 7 up
“-Toa T 1m0l T

hence we have
dr{®(e )| e lo lo s v, 27 qu L 73 731 u? N
= 2K K — — _ J— ey
de 07 & BN T 36k | 640 28800 «3

which produces the Seiberg-Witten prepotential F via 2 W = 17((]0), thus

~0) _
HO

o X Rl L og)? — 2 ulo 27 (ogils - 2677w
-2 Bl 16BN T 3g 0B T g0 98K 2 T 115200 &2

4. Chern-Simons-like gravity on supermanifolds

Let us first briefly recall some basic materials for supermanifold [ 19]. Roughly speaking, a supermanifold X of dimension
plq is a manifold with local coordinates {x!,...,x", 0!, ..., 69} where 6 are Grassmannian variables. Mathematically,
one defines a supermanifold of dimension p|q as a ringed space (X, Ox), where X is a topological space, and Oy is
a sheaf of supercommutative ring, locally isomorphic to RPY = (RP, C®(RP)[8',...,H89]). An r|s-vector bundle on
a supermanifold p|g-supermanifold (X, Ox) is the quadruple ((E, Og), 7w, (X, Ox), V) where (E, Og) — (X, Ox) is a
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submersion of supermanifolds, V is a r|s-dimensional supervector space, and at each point x € X lies in a coordinate
neighbourhood U C X, for which isomorphism ¥y, the following diagram commutes:

(7= (U), Oklp-10) —2— (U, Oxly) x V
ﬂl Pll
(U, Oxlu) = (U, Oxly).

There is an open covering {U,}, a locally free sheaf £ of Ox-supermodule of rank r|s and sheaf isomorphism £|y,+>
(Ox(Ua))" @ (Ox(Uy))* such that on each Uy N Ug # @, gup = a8 ' : (Ox(Us N Uplo) @ (Ox(Us N Uph)* — (Ox(Ua N

Cop  Dag
whereAaﬁ (S (Ox(U ﬂUf;) )r><r Baﬁ (S (Ox(U ﬂUf;) )rxs' af € (Ox(U ﬂUf;) )SXT Aaﬁ (S (Ox(U ﬂUf;) )SXS and E ~ E. ®E;
where E; and E; are vector bundles over X of rank r and s given by cocycles Ayg and Dyg respectlvely The supertangent

Uglo) @ (Ox(Uy NUg) ) is an Ox(Uy N Ug)-supermodule isomorphism. Thus g,z is of the form g, = Aup Bup >

A

30 a0}
?X—ﬂ), Dop = (% £). Locally,
{- 9,, oea} forms a basis of Ox(U)-module STX(U). An even Ox-bilinear map G : STX ® STX — Ox is called a supermetrlc
1f G(R T) = (—1)RITIG(T, R), G(R, -) defines an isomorphism between Ox-modules STX and (STX)*, and the restriction of
G to TX ® TX is a Riemannian metric. We can express the supermetric locally as G = Gjdx'd¥ + G, dx'd6* + Gaﬁde"‘deﬁ ,
where Gj = Gji € Ox(U)o, Giy = Gai € Ox(U)o, Gop = —Gga € Ox(U);. One writes the supermetric as the form of block
matrix as

Gun = ( /%]T @;; )7 (4.1)

then the inverse matrix is given by

axi ox
bundle STX over (X, Ox) is a supervector bundle with A, = (ﬁ), B, = (agﬁ) Cop = (

o=l A@—1 AT\=15—1 1o A1 AT\ 15=1 A -1
G_1:< ( (1—g a0 'AT) g (1—g a0 1'AT) g7 40 ) (42)

—(1— @—1A7g—1A)—1@—1ATg—1 (1 _ @_]ATg_1A)_1@_1
and the superdeterminant is given by
Sdet(G) = det(g — A®@ ' AT)det(®)!

The supermetric G is preserved by the othosymplectic supergroup OSp(p|q) for even g whose underlying manifold is
SO(p) x Sp(q). The notion of connection and covariant derivative have their corresponding supergeometric counterpart.
Two conditions of vanishing of the covariant derivative of the supermetric vanishes and graded-symmetric of the lower
indices of superconnection coefficients uniquely determine the superconnection given by the super Christoffel symbols

1
FNI\7> — 5(—1)‘QIGMQ(GQN,P + (—1)‘NHP‘GQP,N _ (-U‘QMMHPDGNP,Q)-

To define the integration over supermanifold X, the top form in usual manifold has to be replaced by the section of
Berezinian line bundle Ber(X) [21].
We can naturally consider the following action on the supermanifold X3

2
S = /X y dPxd*0(— 1) (ragrE + = 3 FEreng). (4.3)

Explicitly write the expansion of supermetric in terms of superfield formalism [9]
8ij =hlj +fijp,v9ﬂeuv
Aip. =tip_a9av
@p.u =Yuv +pﬂvaﬂ9a9'ﬂ;
then the components of the inverse of supermetric are given by
Gij =hU + himhﬂ(tmp,atlvﬁyuv _fmlaﬂ)eaeﬂ = hij + (tmatjuﬂ _fijaﬁ )9019;3’
Giv =hutj ay,uVQOt — ti\) got
G =y" + Y YP (tiaptipyh? — Pappy )0°07 = Y1 — (6o t™ g — PV 0p)0%07,

where the indices in t, f denoted by latin letters i, j running over x', x2, x> are raised or lowered by h and those in ¢, p
denoted by Greek letters w, v running over 0!, 62 are raised or lowered by y, and the super Christoffel symbols are
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decomposed as
1
L =M + S Th™ Onfia + 0fines — Ofines) + (€™t p = F™ g XOnhi + ilun — Dihin)
— ™ (Bntinp + Bitupp — 2finup 1007,

1
Ty =5[r“‘a(anhu + 3ihin — Athin) — ¥ (Bntivee + itnve — 2fime)10%,

1
i :E[hmn(zfniua + 8itnua - antiy.a) - tmva(tivu + aiyvu + ti;w )]90[7

in
1 1
1-;5 = Eyﬂy(tiyv + aiyyv + tivy) + E[tma(zflivﬂ + 8i’:lvﬂ - altivﬁ) + (tlltatlyﬂ - pltyaﬁ)

(tiyv + 31'}/;/” + tivy) - yuy aipyuaﬁ]9a95~

The integral over d?6 picks up #%-terms, then the action (4.3) reduces to the usual integral over X. Apparently, if one
fixes the gauge y,,, = €, and puuap = €084, the bosonic degree of freedom coincides with the fermionic one. Then we

explicitly express the action with superfields

S= / 3 dPxe T (MY i h™ (Bfie® + Ofina® — Btfena®) + (E™ ot — F™ N Buhik + dchin — Sihyn)
X

1
- tmua(antkua + Bktnua - 2fknua )] + i[hmn(zfnma + aitnua - antma) - tmva(tivu, + tiuv )]

1
1- E(tiuu + tw")
8j[tlvtx(2flkua + aktlua - altkua) + (tlvatlya —2e" )(tkyu + tlmy )] + (F(h))g(r(h))]sm

(B (Bnfica® + Ofina® — Wfina™) + (€™t — F™ o Y Onhikc + chin — dihn)

1
- tmua(antkp,a + aktnp,a - kanua)] + E(F(h))?m[hml(zﬁjua + ajtluoz - altj;wz) - tmva(tjvp, + tjuv)]

8j[tlmx(amhlk + akhlm - alhkm) + (amtkua + aktmua - 2fkmlw)

1
[tsﬂa(anhsk + Okhgn — 8shkn) + (antkﬂa + aktnlw( - sznua)] + 6(1-1'#1; + tivﬂ)[tlvot(anhlj + a]'hln - alhjﬂ)
+ (antjua + 8jl-LnUoz - zf}'nva)][hmn(zfmkua + aktmua - amtkptot) - tnva(tkvu + tk/,w)]
1

= g 6+ 6 i + Bty = it ) + (0t = 267 Wty + iy ).

To include the contribution of the original bosonic action, one should consider the action
S= /m Pxd?0e’ (— 1)k A8 + 5123‘1}21‘,&)
1 . 1 .
=5+S— y /){3 e (6 + 6 )0t Vb ) + 5 /){3 e G+ G, T Y )
Another approach is to introduce the supervielbein e#(z) = dz™ey*(z) on supermanifold X*?" with coordinates

A =0 :i=123a=12]1=1,---,N} satisfying esMey® = 57, ey ea" = 5} for the inverse supervielbein

ea = eM {’M, and introduce the covariant superderivatives on N|2-vector bundle on X3V with the structure group
OSp(N|2)

1 1
Va=(Ve, V) =es— E-QAbCMbc - E(DAPQNPQ — QL

where M are the Lorentz operators carrying two vector indices as Mg, = —M],, one vector indices as M, = %s"”CMbc, and
two spinor indices as Myg = (¥*)opMa = Mp, for ¥ = (1d, 01, 03), N are generators of so(3), and Q are odd generators.
The Lie superalgebra relations are given by

[Mgp, Meg]l = 207cgMpg + 2napMac — 21c6Maa — 21daMpe,
[Ny, Nt ] = 281Ny + 28Ny — 28Ny — 28, Nk,
{Q. Q) = 28"Mlup — 264N, (4.4)
Mgy, Q)] = £apQ), + €0y Qj,
[N, QL1 = 25;Qak — 28 Qqys
and the (anti-)commutation relations of superderivatives are given by

1 1
[Va, Vgl = —Tag" Ve — ER(M)AB“’MCd - ER(N)AB”NU — RQ)us QL
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where T, R denote torsion and curvature respectively

T = %eB AT = de® + e A 2,°,
T = %eB A ATt = def + %ef ARy )" + e AD +e" A W (va)p?,
(ROV))™ = %eB A SRM)a = dRP + 2% A 28+ e AU (Y )ope™, (4.5)
(RN = %eB A RN = do? + ™ Ao + e AWl — e AWl

1 1
(RQ)) = EGB A S (RQ)asf = ¥ + E'I/,"‘ A 2%ya)s® + ¥ A Dy,

one also chooses a Killing form on osp(N|2)

Tr(Mab, Mcd) = 27}uc77bd - znadnbm
Tr(Ny, Nxi) = 28 8j — 281.djk , (4.6)
THQ,, @) = 6¥eqp.

Then we can define Chern-Simons-like action via (4.4)-(4.6) as follows [4]

5= / {6°6°(d0)} A {Tr(R(MI) A 2 + R(N) A @ + R(Q) A ¥)
X3I2N
- %Tr([QAQ]/\(QW)Hcp APIA(D + W)+ ([WAW]+2[¥ AQ]+2W AP)A (Y + 2 + D))}
= | {TH(RM)A 2 +RIN)A @ +RQ) A¥)
X3

- %Tr([.Q AQINLQAW)+[@APIA(D + W)+ (¥ AW]+2[¥ A R]+2[¥ A DA (Y 4+ 2 + D)o—o. (4.7)
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