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Abstract

Starting with a vertex algebra V, a finite group G of automorphisms of V, and a suitable collection of
twisted V-modules, we construct (twisted) D-modules on the stack of pointed G-covers, introduced by Jarvis,
Kaufmann, and Kimura. The fibers of these sheaves are spaces of orbifold conformal blocks defined in joint
work with Edward Frenkel. The key ingredient is a G-equivariant version of the Virasoro uniformization
theorem.
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1. Introduction

It is by now well-understood that conformal field theories (CFT’s) in two dimensions give rise
to sheaves with projectively flat connection over the moduli stack of n-pointed genus g curves,
Mg,n. Mathematically, this process can be described as follows (see for instance the book [12] for
more details). Given a vertex algebra V, which corresponds to a choice of CFT model, a collection
of V-modules

M = (M1, · · · ,Mn),
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and an n-pointed curve (X,p),p = (p1, · · · , pn), pi ∈ X, one obtains the vector space of confor-
mal blocks, denoted CV (X,p,M). Elements of this vector space can be used to construct chiral
correlation functions in the CFT, which are sections of certain sheaves on powers of X with
pairwise diagonals removed. As (X,p) varies in Mg,n, one obtains a sheaf with a projectively
flat connection, known as the Knizhnik-Zamolodchikov (KZ) connection. In certain cases, when
the CFT is rational, the spaces CV (X,p,M) are finite-dimensional. The sheaf is then a vector
bundle that extends to the Deligne-Mumford compactificationMg,n, and the connection to one
with logarithmic singularities along the boundary divisor.

In several cases, the space of conformal blocks is related to a moduli problem. For instance,
when V = Lk(g), the integrable basic ĝ-module of level k ∈ Z+, we have the isomorphism

CLk(g)(X,p,Lk(g)) ∼= H0(BunG(X),�k)

where BunG(X) is the moduli stack of G-bundles on X, G is the simply-connected algebraic group
with Lie algebra g, and � is the theta line bundle on BunG(X), In this case, the KZ connection
yields a non-abelian analogue of the heat equation satisfied by abelian theta functions.

In recent years, much attention has been paid to the construction of CFT’s by orbifolding. At
the level of vertex algebras, this procedure can be described as follows. We are given a vertex
algebra V, and a finite group G of automorphisms of V that also acts on the category of V-modules.
To construct the orbifold model, one adjoins so called twisted modules {M[g]}, for each conjugacy
class [g] in G. Geometrically, orbifold models possess the new feature of twist fields. These are
objects that cause vertex operators to become multivalued, with monodromies given by elements
of G.

In [13], the notion of conformal block was extended to include twisted modules. A key ingre-
dient is the notion of a pointed G-cover. Let (X,p) be a an n-pointed smooth projective curve. A
pointed G-cover of (X,p) is a set of data

(π : C �→ X,p,q), q = (q1, . . . , qn)

where C is a smooth projective curve (not necessarily connected) with an effective action of
G, such that X = C/G, the quotient map π : C �→ X makes C in to a principal G-bundle over
X\{pi}, and qi ∈ π−1(pi). The space of orbifold conformal blocks, denoted

CGV (C,X,p,q,M) (1.1)

is attached to a G-cover, and a collection of V-modules M = (M1, · · · ,Mn), whereMi is twisted
by the monodromy generator mi at qi. Orbifold conformal blocks can be used to construct chiral
orbifold correlators, which are G-invariant sections of sheaves on powers of C with certain divisors
removed. For a detailed treatment of this construction, see our forthcoming paper [22].

In [16], following earlier work by [1], the authors introduce a smooth Deligne-Mumford stack
MG
g,n parameterizing smooth n-pointed G-covers. Given an appropriate collection M of (twisted)

V-modules, it is a natural question how the spaces (1.1) vary as (π : C �→ X,p,q) moves inMG
g,n.

In this paper, we construct sheaves with a projectively flat connection over (certain components
of) MG

g,n, whose fibers at a G-cover (π : C �→ X,p,q) are the corresponding spaces (1.1). In
other words, we construct a localization functor

� : (V − mod) −→ (D̃MG
g,n

− mod)

where D̃MG
g,n

is a sheaf of twisted differential operators on MG
g,n, depending on the Virasoro

central charge. This yields an orbifold generalization of the KZ connection. The resulting sheaves
should be useful in constructing G-modular functors (see [18]).
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In the untwisted case, the key theorem in the construction is the so called Virasoro uniformiza-
tion ofMg,n (see [2,8,19,23]). Roughly, this theorem states thatMg,n carries a transitive action
of the Virasoro algebra. We extend the approach to G-covers.

Just asMg,n can be compactified toMg,n, so doesMG
g,n have a compactificationMG

g,n. In this

paper we do not address the behavior of the D-modules on the boundaryMG
g,n\MG

g,n. Just as in
the untwisted case, the existence of a logarithmic extension requires the finite-dimensionality of
conformal blocks. It is natural to conjecture that such an extension is possible for WZW models of
positive integer level, when V = Lk(g), and where the twisted modules are realized as integrable
representations of appropriate twisted affine algebras.

The structure of the paper is as follows. In Section 2 we quickly review the notion of vertex
algebra and vertex algebra module/twisted module. Section 3 recalls some facts about the stack
of pointed G-covers from [16]. In Sections 4 and 5 we review the construction of the space of
orbifold conformal blocks CGV (C,X,p,q,M) following [13]. Section 6 is devoted to reviewing
Beilinson-Bernstein localization, which is the technique used to produce D-modules on MG

g,n.
Our treatment is essentially a condensed version of that in [12]. Section 7 contains a proof
of the G-equivariant Virasoro uniformization of MG

g,n and the construction of the localization
functor. Finally, Section 8 gives a formula for the orbifold KZ connection along the fibers of
the projection

MG
g,n �→Mg

sending (π : C �→ X,p,q) to X, i.e. the locus of pointed G-covers with a fixed base curve.

2. Vertex algebras and twisted modules

In this paper we will use the language of vertex algebras, their modules, and twisted modules.
For an introduction to vertex algebras and their modules see [15,17,12], and for background on
twisted modules, see [14,10,11,7].

We recall that a conformal vertex algebra is a Z+-graded vector space

V =
∞⊕
n=0

Vn,

together with a vacuum vector |0〉 ∈ V0, a translation operator T of degree 1, a conformal vector
ω ∈ V2 and a map

Y : V → EndV [[z±1]],

A �→ Y (A, z) =
∑
n∈Z

A(n)z
−n−1.

These data must satisfy certain axioms (see [15,17,12]). In what follows we will denote the
collection of such data simply by V.

A vector space M is called a V-module if it is equipped with an operation

YM : V → EndM[[z±1]],

A �→ YM(A, z) =
∑
n∈Z

AM(n)z
−n−1
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such that for any v ∈ M we have AM(n)v = 0 for large enough n. This operation must satisfy the
following axioms:

• YM(|0〉, z) = IdM ;
• For any v ∈ M there exists an element

fv ∈ M[[z,w]][z−1, w−1, (z− w)−1]

such that the formal power series

YM(A, z)YM(B,w)v and YM(Y (A, z− w)B,w)v

are expansions of fv in M((z))((w)) and M((w))((z− w)), respectively.

The power series YM(A, z) are called vertex operators. We write the vertex operator corre-
sponding to ω as

YM(ω, z) =
∑
n∈Z

LMn z
−n−2,

where LMn are linear operators on V generating the Virasoro algebra. Following [10], we call M
admissible if LM0 acts semi-simply with integral eigenvalues.

Now let σV be a conformal automorphism of V, i.e., an automorphism of the underlying vector
space preserving all of the above structures (so in particular σV (ω) = ω). We will assume that σV
has finite order N > 1. A vector space Mσ is called a σV -twisted V-module (or simply twisted
module) if it is equipped with an operation

YM
σ

: V → EndMσ[[z±(1/N)]],

A �→ YM
σ
(A, z1/N ) =

∑
n∈(1/N)Z

AM
σ

(n) z
−n−1

such that for any v ∈ Mσ we have AM
σ

(n) v = 0 for large enough n. Please note that we use the

notation YM
σ
(A, z1/N ) rather than YM

σ
(A, z) in the twisted setting. This operation must satisfy

the following axioms (see [14,10,11,20]):

• YM
σ
(|0〉, z1/N ) = IdMσ ;

• For any v ∈ Mσ , there exists an element

fv ∈ Mσ[[z1/N,w1/N ]][z−(1/N), w−(1/N), (z− w)−1]

such that the formal power series

YM
σ

(A, z1/N )YM
σ

(B,w1/N )v and YM
σ

(Y (A, z− w)B,w1/N )v

are expansions of fv in Mσ((z1/N ))((w1/N )) and Mσ((w1/N ))((z− w)), respectively.
• If A ∈ V is such that σV (A) = e(2πim/N)A, then AM

σ

(n) = 0 unless n ∈ m
N

+ Z.

The series YM
σ
(A, z) are called twisted vertex operators. In particular, the Fourier coefficients

of the twisted vertex operator

YM
σ

(ω, z1/N ) =
∑
n∈Z

LM
σ

n z−n−2,
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generate an action of the Virasoro algebra onMσ . The σV -twisted moduleMσ is called admissible
if LM

σ

0 acts semi-simply with eigenvalues in 1
N

Z.
Suppose thatMσ is an admissible module. Then we define a linear operatorSσ onMσ as follows.

It acts on the eigenvectors of LM
σ

0 with eigenvalue m
N

by multiplication by e(2πim/N). Hence we
obtain an action of the cyclic group of order N generated by σ onMσ, σ �→ Sσ . According to the
axioms of twisted module, we have the following identity:

S−1
σ YM

σ

(σ · A, z1/N )Sσ = YM
σ

(A, z1/N ). (2.1)

3. The stack of pointed G-covers

In this section we review the definition of the stack of pointed G-covers introduced in [16]
following [1].

LetMg,n denote the stack of smooth n-pointed curves of genus g. The objects ofMg,n consist
of families (λ : X �→ S, p1, · · · , pn) where λ : X �→ S is a smooth family of curves of genus g,
and pi : S �→ X, i = 1, · · · , n are pairwise disjoint sections of λ. Note that the pi are ordered.

Definition 3.1. Let (λ : X �→ S, p1, · · · , pn) ∈Mg,n be a smooth n-pointed curve, and G a finite
group. A smooth G-cover of X consists of a morphism π : C �→ X of smooth curves over S,
satisfying the following properties:

• There is a right G-action on C preserving π.
• C\ ∪i π−1(pi) is a principal G-bundle over X\ ∪i pi

We denote the smooth G-cover by (π : C �→ X,p1, . . . , pn). A smooth n-pointed G-cover consists
of a smooth G-cover (π : C �→ S, p1, . . . , pn) together with n sections qi : S �→ C such that
qi ∈ π−1(pi). We denote it by (π : C �→ X,p1, . . . , pn, q1, . . . , qn).

To avoid cumbersome notation, we will henceforth use (X,p), (C,X,p), and (C,X,p,q), to de-
note, respectively, an n-pointed curve, a G-cover, and a pointed G-cover, where p = (p1, . . . , pn)
and q = (q1, . . . , qn).

A morphism of pointed G-covers is a G-equivariant fibered diagram - that is, a morphism of the
underlying curves X together with a G-equivariant morphism of the covers preserving the points
qi. Smooth n-pointed G-covers form a stack, denotedMG

g,n. There is an obvious morphism

p :MG
g,n �→Mg,n

(C,X,p,q) �→ (X,p)

Let GA denote the group G viewed as a right G-space under conjugation. There is a G-
equivariant map

e :MG
g,n �→ GnA

sending (C,X,p,q) to the n-tuple m = (m1, . . . , mn), where mi is the monodromy of C around
qi. LetMG

g,n(m) denote the closed sub-stack e−1(m). Note thatMG
g,n(m) may be empty. We have

MG
g,n =

⋃
m∈Gn

A

MG
g,n(m)
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We have the following theorem:

Theorem 3.1. [16] The stackMG
g,n and the stacksMG

g,n(m) are smooth Deligne-Mumford stacks,
flat, proper, and quasi-finite overMg,n.

4. Groups and torsors

The purpose of this section is to review the structure of the group of formal coordinate changes
on the “formal” disk Spec(R[[z]]) and the “formal punctured disk” Spec(R((z))) for an arbitrary
C-algebra R. We will be primarily interested in the case when R is an Artin C-algebra, such as
C[ε]/(ε2). For more on the structure of these groups, see Section 5.1 of [12], or the original source
[21].

4.1. Groups

Let us denoteR[[z]] by OR, andR((z)) by KR. Let Aut(OR) denote the group of continuous R-
algebra automorphisms ofR[[z]] preserving the ideal (z), and Aut(KR) the group of all continuous
R-algebra automorphisms ofR((z)). SinceR[[z]] is topologically generated by z, an automorphism
ρ of R[[z]] is completely determined by the image of z, which is a series of the form

ρ(z) =
∑

n∈Z,n≥1

cnz
n, cn ∈ R (4.1)

where c1 is a unit. Hence we identify Aut(OR) with the space of power series in z satisfying these
conditions. Similarly, an element ρ of Aut(KR) can be identified with a formal Laurent series of
the form

ρ(z) =
∑

n∈Z,n≥k
cnz

n,

where cn is nilpotent if n ≤ 0, and c1 is a unit. The functor

R �→ Aut(OR)

is representable by a group scheme over C which we’ll denote AutO. The Lie algebra Der(o)(O)
of Aut(O) is topologically generated by elements

zk∂z, k ≥ 1

The functor

R �→ Aut(KR)

is representable by an Ind-group scheme which we’ll denote Aut(K). Denote by Der(K) the Lie
algebra of Aut(K), generated by

zk∂z, k ∈ Z

We now consider some groups arising in the study of ramified coverings of disks. Let
Aut(R[[z1/N ]]) denote the group of continuous R-algebra automorphisms ofR[[z1/N ]] preserving
the ideal (z1/N ).

Definition 4.1. AutN (OR) is the subgroup of Aut(R[[z1/N ]]) preserving the subalgebra R[[z]] ⊂
R[[z1/N ]].
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Thus, AutNO consists of power series of the form

ρ(z1/N ) =
∑

n∈ 1
N

+Z,n>0

cnz
n, cn ∈ R (4.2)

such that c1/N is a unit.
There is a homomorphism µN : AutN (OR) → Aut(OR) which takes ρ ∈ AutN (OR) to the

automorphism of R[[z]] that it induces. At the level of power series, this is just the map µN :
ρ(z1/N ) �→ ρ(z1/N )N . The kernel consists of the automorphisms of the form z1/N �→ εz1/N , where
ε is an Nth root of unity, so we have the following exact sequence:

1 → Z/NZ → AutN (OR) → Aut(OR) → 1 .

Thus AutN (OR) is a central extension of Aut(OR) by the cyclic group Z/NZ. One can define
the group AutN (KR) in an obvious way. Denote by AutN (O) the group scheme representing the
functor R �→ AutN (OR), and AutN (K) the Ind-group scheme representing R �→ AutN (KR). The
Lie algebra Der(o)

N (O) of AutN (O) can be identified with z1/NC[[z]]∂z1/N . The homomorphism
µN induces an isomorphism of the corresponding Lie algebras sending

zk+(1/N)∂z1/N �→ Nzk+1∂z, k ∈ Z, k ≥ 0. (4.3)

Similarly, the Lie algebra DerN (K)of AutN (K) can be identified with z1/NC((z))∂z1/N , and µN
extends to a homomorphism DerN (K) �→ Der(K).

Let X be a smooth curve over SpecR. If x ∈ X is an R-valued point of X, denote by Aut(Ôx,R)
the automorphisms of the formal neighborhood of x fixing x. Suppose now that C is a smooth
curve over SpecR with effective G-action, and that X = C/G. Denote the quotient map by π :
C �→ X. Choosing a formal coordinate z at x yields an isomorphism Aut(Ôx,R) ∼= Aut(OR) (For
the definition of a formal coordinate, see the next section).

If y ∈ C, denote byO(y) the G-orbit of y in C, and by Ô(y) the formal neighborhood ofO(y).
Let Ô(y)

∗
denote the union of the formal punctured disks around points in O(y). Note that Ô(y)

and Ô(y)
∗

carry an action of G. Let

Aut(Ô(y)R) resp.Aut(Ô(y)
∗
R)

denote the automorphism group of O(y) and O(y)∗, respectively, and

AutG(Ô(y)R) resp.AutG(C, Ô(y)
∗
R)

the corresponding subgroups of elements commuting with G. Finally, denote by

AutGe (Ô(y)R) resp.AutGe (Ô(y)
∗
R)

the identity components of the corresponding groups. For each q ∈ O(y), by choosing a coordinate
in which the action of the stabilizer Gq is linear (this is called a special coordinate, see the next
section), we obtain isomorphisms

ψq : AutGe (Ô(y)R) �→ AutN (OR)

and

ψ∗
q : AutGe (Ô(y)

∗
R) �→ AutN (KR)

by restricting to the disk around q. The proof amounts to observing that any element of AutN (OR)
has a unique G-equivariant extension to AutGe (Ô(y)R) (and the same with Ô replaced by Ô∗).
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4.2. Torsors

Let DR = SpecA, where A ∼= R[[z]] is a “formal” R-disk, and let x ∈ DR be an R-point. By a
formal coordinate on (DR, x) we mean a isomorphism DR ∼= Spec(R[[z]]) that identifies x with
the origin (the origin being the R-point corresponding to the ideal (z) ⊂ R[[z]]). Let Aut(DR,x)
denote the set of formal coordinates on (DR, x). It is an Aut(OR)-torsor.

Suppose now that (DR, x, σD) is a triple consisting of a formal disk DR = SpecB, where
B ∼= R[[z1/N ]], x ∈ DR, and σD is an automorphism of D (equivalently, of B) of order N fixing
x. After a change of coordinate, σD is equivalent to the automorphism z1/N �→ εz1/N , where ε is
a primitive Nth root of unity. We denote by D̄ the quotient of D by 〈σD〉, i.e., the disk SpecBσD ,
where BσD is the subalgebra of σD-invariant elements.

A formal coordinate t is called a special coordinate with respect to σD if σD(t) = εt, where ε is
an Nth root of unity, or equivalently, if tN is a formal coordinate on D̄. We denote by AutN (DR,x)
the subset of Aut(DR,x) consisting of special formal coordinates. The set AutN (DR,x) carries a
simply transitive right action of the group AutN (OR) given by t �→ ρ(t), where ρ is the power
series given in (4.2), i.e. AutN (DR,x) is an AutN (OR)-torsor.

Suppose now that π : C �→ X = C/G as above, and that y ∈ C. Let N denote the order of the
stabilizerGy, which is cyclic, and generated by the monodromy around y,my. To this data we can
associate the set AutN (DR,y) of special coordinates on (SpecÔy, y) with respect to Gy, which is
an AutN (OR)-torsor.

Note that when R = C,DR has a unique R-point, and we will suppress it in the notation.
Henceforth, we will also use the convention that DC is denoted D, and suppress R when referring
to groups, torsors, etc.

5. Orbifold conformal blocks

In this section we review the definition of orbifold conformal blocks introduced in [13].

5.1. Twisting modules by AutN (D)

Let D be a disk with an Nth order automorphism as in the last section, and let Mσ be an
admissible σV -twisted module over a conformal vertex algebra V. Define a representation rM

σ
of

the Lie algebra Der(o)
N (O) on Mσ by the formula

rM
σ

: zk+(1/N)∂z1/N → −N · LMσ

k .

It follows from the definition of a twisted module that the operators LM
σ

k , k > 0, act locally
nilpotently on Mσ and that the eigenvalues of LM

σ

0 lie in 1
N

Z, so that the operator N · LMσ

0 has
integer eigenvalues. This implies that the Lie algebra representation rM

σ
may be exponentiated to

a representation RM
σ

of the group AutN (O). In particular, the subgroup Z/NZ of AutN (O) acts
on Mσ by the formula i �→ Siσ , where Sσ is the operator defined in Section 2.

We now twist the module Mσ by the action of AutNO and define the vector space

Mσ(D)
def= AutN (D) ×

AutNO
Mσ. (5.1)

Thus, vectors in Mσ(D) are pairs (t, v), up to the equivalence relation

(ρ(t), v) ∼ (t, RM
σ

(ρ) · v), t ∈ AutN (D), v ∈ Mσ.
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When D=Dx, the formal neighborhood of a point x on an algebraic curve X, we will use the
notation Mσ

x .

5.2. The vector bundle VGX

Let (X,p) be a smooth n-pointed curve over Spec(C), and let π : C �→ X be a smooth G-
cover of (X,p). Suppose furthermore that V is a conformal vertex algebra, and that G acts on
V by conformal automorphisms. Let AutC be the Aut(O)-torsor over C whose fiber at y ∈ C is
Aut(Dy)the set of formal coordinates at y. As explained in [12], Aut(O) acts on V, and the action
commutes with G. Let

VC = AutC ×
Aut(O)

V

VC has a flat connection ∇, given in the local coordinate z by the expression

d + LV−1 ⊗ dz

The vector bundle VC carries a G-equivariant structure lifting the action of G on C. It is given by

g · (p, (A, z))
def=(g(p), (g(A), z ◦ g−1)) (5.2)

where z ◦ g−1 is the coordinate induced at g(p) from z. Let
◦
C ⊂ C denote the open set on which

the G-action is free, and let
◦
X ⊂ X = π(

◦
C). Thus,

◦
C is a G-principal bundle over

◦
X. V◦

C
descends

to a vector bundle VG◦
X

on
◦
X. More explicitly,

VG◦
X

= Aut ◦
C

×
Aut(O)×G

V (5.3)

Here, G acts on Aut ◦
C

by g(p, z) = (g(p), z ◦ g−1), and this action commutes with the action of

Aut(O). The connection ∇ on VC is G-invariant over
◦
C, and so descends to a connection ∇G on

VG◦
X

.

5.3. Modules along G-orbits

Let y ∈ C. Then every point r ∈ O(y) has a cyclic stabilizer of order N, which we denote Gr.
Each Gr has a canonical generator hr, which corresponds to the monodromy of a small loop
around p = π(y). For a point r in a generic orbit, N = 1, Gr = {e} and we set hr = e. Suppose
that we are given the following data:

(1) A collection of admissible V-modules {Mhr
r }r∈O(y), one for each point in the orbit, such that

Mhr
r is hr-twisted.

(2) A collection of mapsSg,r,g(r) : Mhr
r �→ M

hg(r)
g(r) , g ∈ G, r ∈ π−1(p), commuting with the action

of AutNO and satisfying

Sgk,r,gk(r) = Sg,k(r),gk(r) ◦ Sk,r,k(r),

S−1
g,r,g(r) = Sg−1,g(r),r,
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and

S−1
g,r,g(r)Y

M
hg(r)
g(r) (g · A, z)Sg,r,g(r) = YM

hr
r (A, z).

(3) If g ∈ Gr, then Sg,r,r = Sg, where Sg is the operator defined in Section 2.

Given a collection {Mhr
r }r∈O(y), we can form the collection {Mhr

r (Dr)}r∈O(y), where Mhr
r (Dr)

is the AutNO-twist of Mhr
r by the torsor of special coordinates at r. Let

MO(y) =
⊕
r∈O(y)

Mhr
r (Dr)

This is a representation of G, where G acts as follows. IfA ∈ Mhr
r , z1/N

r is a special coordinate
at r, and g ∈ G, then

g · (A, z1/N
r ) = (Sg,r,g(r) · A, z1/N

r ◦ g−1)

Note that this action is well-defined since the S-operators commute with the action of AutNO.
Now, let MO(y) = (MO(y))G, the space of G-invariants of MO(y). For every r ∈ O(y) let

φr : MO(y) �→ Mhr
r (Dr)

be the isomorphism which is the composition of the inclusionMO(y) → MO(y) and the projection
MO(y) → Mhr

r (Dr).
Forvr ∈ Mhr

r (Dr), let [vr] denoteφ−1
r (vr) ∈ MO(y). Note that for each (A, z1/N

r )r ∈ Mhr
r (Dr),

and g ∈ G, [(A, z1/N
r )r] = [(Sg,r,g(r) · A, z1/N

r ◦ g−1)g(r)] in Mp.

Definition 5.1. We call MO(y) a V-module along O(y).

Henceforth, we will suppress the square brackets for elements of MO(y) and refer to

[(A, z1/N
r )r] simply as (A, z1/N

r ).

5.4. Construction of Modules along G-orbits

In this section we wish to describe an induction procedure which yields a module along O(y)
starting with a point r ∈ O(y) and an hr-twisted module Mhr

r . Note that when Gr is trivial, this
just an ordinary V-module M.

Thus, suppose we are given r ∈ O(y), and an hr-twisted module Mhr
r . Observe that the mon-

odromy generator at the point g(r) is hg(r) = ghrg
−1, i.e. the monodromies are conjugate.

(1) Forg ∈ G, define the moduleMghrg
−1

g(r) to beMhr
r as a vector space, with the V-module structure

given by the vertex operator

Y
M
ghrg

−1

g(r) (A, z1/N ) = YM
hr
r (g−1 · A, z1/N ) (5.4)

It is easily checked that this equips Mghrg
−1

g(r) with the structure of a ghrg−1-twisted module.

Furthermore, if g ∈ Gr, this construction results in an hr-twisted module isomorphic toMhr
r .

(2) Recall that Mhs is canonically isomorphic to Mhr
r as a vector space by the previous item.

Thus, if s ∈ O(y), and g(s) �= s, define Sg,s,g(s) to be the identity map.
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(3) If g ∈ Gs, then g is conjugate to an element g′ ∈ Gr. Define Sg,s,s = Sg′,r,r also using the
canonical identification.

It is easy to check that this construction is well-defined, and satisfies the requirements of
Definition 5.1.

Definition 5.2. We call a module alongO(y) obtained via this construction a module alongO(y)
induced from Mhr

r , and denote it IndO(y)
r (Mhr

r ).

Remark 1. If Gr is trivial, and M = V , then for any g ∈ G, the new module structure (5.4) is
isomorphic to the old one, and so the resulting module Mp along O(y) is isomorphic to VGp , the

fiber of the sheaf VG at p.

Remark 2. If G = Gr, then r is unique, and so any hr-twisted module results in a module along
O(y).

Now, let m = (m1, . . . , mn) ∈ GnA be a collection of monodromies. Let (π : C �→
X,p1, . . . , pn, q1, . . . , qn) ∈ e−1(m) be a pointed G-cover with the prescribed monodromies.
Given a collection M1, . . . ,Mn of V-modules, such that Mi is mi-twisted, the above induction
procedure yields a collection IndO(q1)

q1
(M1), . . . , IndO(qn)

qn
(Mn), of modules along O(qi).

Note: We can label G-orbits on C by points of p ∈ X. We will use the notation Mp to denote
a module along the G-orbit π−1(p).

5.5. Geometric Vertex Operators

Let p ∈ X, and Mp a V-module along π−1(p). Let D×
p denote the formal punctured disk

SpecKp, and �X the sheaf of holomorphic 1-forms on X. It is shown in [13] that the vertex
operator gives rise to a section

YMp,∨ : Γ (D×
p ,VG◦

X

⊗�◦
X

) → EndMp.

Moreover, this map factors through the quotient

U(VGp )
def= Γ (D×

p ,VG◦
X

⊗�◦
X

)/Im∇G,

which has a natural Lie algebra structure. The corresponding map

yp : U(VGp ) → EndMp (5.5)

is a homomorphism of Lie algebras. Note that p does not have to lie in
◦
X, but can be any point of

X.
For each r ∈ π−1(p), composing the above maps with the isomorphism EndMp

∼=
EndMhr

r (Dr) induced by φr yields a map:

YMp,∨
r : Γ (D×

p ,VG◦
X

⊗�◦
X

) → EndMhr
r (Dr)

and a Lie algebra homomorphism

yp,r : U(VGp ) → EndMhr
r (Dr). (5.6)
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5.6. A sheaf of Lie algebras

Following Section 8.2.5 of [12], let us consider the following complex of sheaves (in the Zariski

topology) on
◦
X:

0 → VG◦
X

∇→VG◦
X

⊗�◦
X

→ 0

where VG◦
X

⊗�◦
X

is placed in cohomological degree 0 and VG◦
X

is placed in cohomological degree

−1 (shifted de Rham complex). Let h(VG◦
X

) denote the sheaf of the 0th cohomology, assigning to

every Zariski open subset � ⊂ ◦
X the vector space

U�(VG◦
X

)
def= Γ (�,VG◦

X

⊗�◦
X

)/Im∇G

One can show as in Chapter 18 of [12] that this is a sheaf of Lie algebras.

For any p ∈ �′, where �′ ⊂ X is such that �′ ∩ ◦
X = �, restriction induces a Lie algebra

homomorphism ιp : U�(VG◦
X

) → U(VGp ). We denote the image by U�(VGp ).

5.7. Conformal Blocks

Let (π : C �→ X,p) be a G-cover, and M = (Mp1 , . . . ,Mpn ) a collection of modules along
π−1(p1), . . . , π−1(pn). Let

F =
⊗

Mpi

Composing the maps (5.5) with the map

UX\p(VG◦
X

)

∑
ιpi→

n⊕
i=1

U(VGpi )

we obtain an action of the Lie algebra UX\p(VG◦
X

) on F.

Definition 5.3. The space of coinvariants is the vector space

HG
V (C,X,p,M) = F/UX\p(VG◦

X

) · F.

The space of conformal blocks is its dual: the vector space of UX\p(VG◦
X

)-invariant functionals on

F

CGV (C,X,p,M) = HomUX\p(VG◦
X

)(F,C).

Suppose now that (π : C �→ X,p,q) is a pointed G-cover, that mi denotes the monodromy at
qi, and thatM1, . . . ,Mn is a collection of V-modules such thatMi ismi-twisted. Then IndO(qi)

qi
(Mi)

is a module along O(qi), and we can apply our definition above with

M = (IndO(q1)
q1

(M1), . . . , IndO(qn)
qn

(Mn))

In this case, to emphasize the dependence on the points qi in the fiber, we use the notation
HG
V (C,X,p,q,M) and CGV (C,X,p,q,M).



1932 M. Szczesny / Journal of Geometry and Physics 56 (2006) 1920–1939

Denote by Mqi the twist of Mi by the torsor of special coordinates at qi. For each i, we have
the following commutative diagram of Lie algebras:

Letting F̃ = ⊗
Mqi , the commutativity of the diagram implies that

HG
V (C,X,p,q,M) ∼= F̃/UX\p(VG◦

X

) · F̃.

and

CGV (C,X,p,q,M) = HomUX\p(VG◦
X

)(F̃,C).

6. Localization functors

The purpose of this section is to review the general yoga of Beilinson-Bernstein localization
(see [3,4,8,12]) following [12].

Definition 6.1. A Harish-Chandra pair is a pair (g,K) where g is a Lie algebra and K is an
algebraic group, equipped with the following data: an embedding k ⊂ g of the Lie algebra k of K
into g, and an action Ad of K on g compatible with the adjoint action of K on k and the action of
k on g. A (g,K)-module is a vector space V carrying compatible actions of g and K.

Definition 6.2. Let Z be a variety over C. A (g,K)-action on Z is an action of K on Z, together
with a Lie algebroid homomorphism α : g⊗ OZ �→ TZ to the tangent sheaf of Z. The two actions
must satisfy the following compatibility conditions:

(1) The restriction of α to k⊗ OZ is the differential of the K-action.
(2) α(Adk(a)) = kα(a)k−1

The action is said to be transitive if α is surjective, and simply transitive if α is an isomorphism.

These definitions extend naturally to the world of pro-algebraic groups, pro-varieties, and
pro-stacks. (see [4,6]).

Suppose now that Z �→ S is a principal K-bundle, and that Z carries a transitive (g,K)-action
extending the fibrewise K-action. Let V be a (g,K)-module. The sheaf V ⊗ OZ carries an action
of the algebroid g⊗ OZ, and it follows from the surjectivity of α that Vstab = V ⊗ OZ/ker(α) ·
(V ⊗ OZ) is a module for the algebroid TZ, and therefore aDZ-module, where the latter denotes
the sheaf of differential operators on Z. Moreover, the K-equivariance requirement in the definition
of (g,K)-action and (g,K)-module ensures that Vstab is K-equivariant, and so descends to a DS-
module, which we denote �(V ).

We will need a description of the fiber of�(V ) at a point s ∈ S. LetZs denote the fiber of Z over
s, and let gs denote the Lie algebra Zs ×K g. The ideals ker(α)z, z ∈ Zs give rise to a well-defined
Lie ideal gsstab ⊂ gs. Denote Zs ×K V by Vs. The action of g on V induces an action of gs on Vs.
One can show (see [12]) that �(V )s ∼= Vs/gsstab · Vs.
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Definition 6.3. The functor

� : ((g,K) − mod) −→ (DS − mod)

sending V to �(V ) is called the localization functor associated to the (g,K)-action on Z.

More generally, suppose that V is a module for a Lie algebra l, which contains g as a Lie
subalgebra and carries a compatible adjoint K-action. V ⊗ OZ is then a module over the Lie
algebroid l⊗ OZ. Suppose also that we are given a subsheaf of Lie subalgebras l̃ ⊂ l⊗ OZ

satisfying the following conditions:

(1) it is preserved by the action of K
(2) it is preserved by the action of the Lie algebroid g⊗ OZ

(3) it contains ker(α)

Then, for the same reason as above, the sheaf V ⊗ OZ/l̃ · (V ⊗ OZ) becomes a K-equivariant
DZ-module, and so descends to a DS-module which we denote �̃(V ). Let s ∈ S, and Zs be as
above. Denote by ls the Lie algebra Zs ×K l. The fibers l̃z, z ∈ Zs give rise to a well-defined
subalgebra l̃s ⊂ ls, and the fiber �̃(V )s is isomorphic to Vs/l̃s · Vs.

6.1. Localization of central extensions

Suppose as above, that (g,K) is a Harish-Chandra pair, and thatZ �→ S is a K-principal bundle
with a transitive (g,K)-action extending the fibrewise K-action. Suppose also that g has a central
extension

0 �→ C �→ ĝ �→ g �→ 0

which splits over k. Tensoring the above extension byOZ we obtain an extension of Lie algebroids

0 �→ OZ �→ ĝ⊗ OZ �→ g⊗ OZ �→ 0 (6.1)

We will assume henceforth that the extension (6.1) splits over ker(α), so that we get an embedding
of the ideal ker(α) into ĝ⊗ OZ. The quotient T of ĝ⊗ OZ by ker(α) now fits into an extension
of Lie algebroids

0 �→ OZ �→ T �→ TZ �→ 0 (6.2)

Let V be a (ĝ,K)-module. The sheaf V ⊗ OZ carries an action of the Lie algebroid ĝ⊗ OZ,
and so the quotient V̂stab = V ⊗ OZ/ker(α) · (V ⊗ OZ) carries an action of T. Let D′

Z = U(T),
the enveloping algebroid of T. This is a sheaf of twisted differential operators (a TDO), and the
T-action on V̂stab extends naturally to an action of D′

Z. By the same argument as above, D′
Z and

V̂stab are K-equivariant, and so is the action of D′
Z on V̂stab. D′

Z therefore descends to a TDO D′
S

on S, and V̂stab to a D′
S-module which we denote �(V ). Let ĝs denote the Lie algebra Zs ×K ĝ.

The ideals ker(α)z, z ∈ Zs give rise to a well-defined Lie ideal ĝsstab ⊂ ĝs. DenoteZs ×K V by Vs.
The action of ĝ on V induces an action of ĝs on Vs. The fiber�(V )s is isomorphic to Vs/ĝsstab · Vs.
Thus, a central extension ĝ of g gives rise to a localization functor

� : ((ĝ,K) − mod) −→ (D′
S − mod)

sending V to �(V ).
More generally, suppose ĝ is a Lie subalgebra of l̂, and we are given a subsheaf l̃ ⊂ l̂⊗ OZ

containing ker(α), preserved by the actions of K and ĝ⊗ OZ. Let V be a l̂-module carrying a
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compatible K-action. The sheaf V ⊗ OZ/l̃ · (V ⊗ OZ) is then a K-equivariant D′
Z-module, and

descends to a D′
S-module on S, which we denote �̃(V ). Let l̂s = Zs ×K l̂, and denote by l̃s ⊂ l̂s

the subalgebra arising from the stabilizers in Zs. The fiber �̃(V )s is isomorphic to Vs/l̃s · Vs.

7. G-equivariant Virasoro uniformization

Let ̂MG
g,N = {(π : C �→ X,p,q, z)} where (π : C �→ X,p,q) is an n-pointed G-cover, and

z = (z1, . . . , zn), where zi is a formal special coordinate at qi. This is a projective limit of Deligne-
Mumford stacks. Forgetting the coordinates yields a map

Similarly, let M̂g,n = {(X,p,q, z′)} where (X,p) ∈Mg,n and z′ = (z
′
1, . . . , z

′
n), where z

′
i is a

formal coordinate at pi. Forgetting the coordinates yields a map

Moreover, there exists a map η : ̂MG
g,n �→ M̂g,n defined by

η : (π : C �→ X,p,q, z) �→ (X,p, z′)

where z′i = z
Ni
i , and Ni is the order of Gqi making the following diagram commute:

For a C-algebra R, let

Aut(C/X,OR) = AutN1 (OR) × AutN2 (OR) × · · · × AutNn (OR)

Der(o)(C/X,O) = Der(o)
N1

(O) × · · · × Der(o)
Nn

(O).

Similarly, define Aut(C/X,KR) and Der(C/X,K) in the obvious way. We have that Der(C/X,O)
(resp. Der(C/X,K)) is the Lie algebra of the group scheme (resp. ind-scheme) representing

R �→ Aut(C/X,OR) (resp. R �→ Aut(C/X,KR)). We see that ̂MG
g,n is an Aut(C/X)-torsor over

MG
g,n. The following is a generalization of the Virasoro uniformization theorem (see [2,8,19,23])

to G-covers.

Theorem 7.1. ̂MG
g,N carries a transitive action of Der(C/X,K) extending the action of

Aut(C/X,O) along the fibers of ξ.
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Proof. Let R = C[ε]/(ε2). A family of G-covers and special coordinates over SpecR is the

same as a tangent vector to ̂MG
g,N . Thus to construct an action of Der(C/X,K) on ̂MG

g,N and
prove transitivity, it suffices to do it over R. In fact, we construct an action of the corresponding

group Aut(C/X,KR). Suppose that (π : C �→ X,p,q, z) is an R-point of ̂MG
g,n, and that ρ ∈

Aut(C/X,KR). Let

AutGe (C/X,KR) = AutGe (Ô(q1)
∗
,KR) × · · · × AutGe (Ô(qn)

∗
,KR)

We have an isomorphism

ψ∗
q1

× · · · × ψ∗
qn

: AutGe (C/X,KR) �→ Aut(C/X,KR).

under which ρ corresponds to an element ρG of AutGe (C/X,KR).
At each point r ofO(qi), there is a set ofNi special coordinates compatible with zi (i.e. obtained

from zi by applying elements of G), and we choose one arbitrarily, and call it wr. We now define
the new ρ-twisted G-cover

(π : Cρ �→ Xρ,pρ,qρ, zρ)

by the following: as a topological space, Cρ = C and Xρ = X, but the structure sheaf of Cρ is
changed as follows. Let U ∈ C be Zariski open. If O(qi) ∩ U = ∅,∀i, define OCρ (U) = OC(U).
If U intersects the orbits O(qi) at the points r1, . . . , rm, define OCρ (U) to be the subring of
OC(U\{rj}j=1,...,m) consisting of functions f whose expansion frj (wrj ) ∈ R((wrj )) at rj in the
coordinatewrj satisfies frj (ρ

G,−1(wrj )) ∈ R[[wrj ]]. Since the gluing is G-equivariant,Cρ is again
a G-cover.

We now prove transitivity. The homomorphisms µN : AutN (KR) �→ Aut(KR) induce a homo-
morphism

µC/X : Aut(C/X,KR) �→ Aut(X,KR)
def= Aut(KR) × · · · × Aut(KR) (ntimes)

The following diagram commutes:

The transitivity follows from the fact that the action of Aut(X,KR) on M̂g,n is transitive (by
[2,8,19,23]), the fact that η is a quasi-finite map, and µC/X is surjective. �

LetO(q) = ⋃
i O(qi). The stabilizer of (π : C �→ X,p,q, z) is the subgroup Aut(C/X,K)out ∈

Aut(C/X,K) consisting of those elements that preserve OC(C\O(q)). The Lie algebra
of Aut(C/X,K)out is the Lie algebra of G-invariant vector fields on C\O(q), denoted
VectG(C\O(q)). Note that

VectG(C\O(q)) ∼= Vect(X\p)
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where Vect(X\p) denotes the space of vector fields onX\p. We thus obtain a localization functor

� : ((Der(C/X),Aut(C/X)) − mod) −→ (DMG
g,n

− mod)

M �→ �(M)

The fiber of �(M) at (π : C �→ X,p,q, z) is M/VectG(C\O(q)}) · M, where M is the
Aut(C/X)-twist of M.

We want to construct a localization functor that sends modules along orbits to D-modules
whose fibers are spaces of orbifold conformal blocks. We now proceed with this construction.

7.1. Construction of the Lie algebroid UG(V )out

In this section we construct a Lie algebroid UG(V )out over ̂MG
g,n whose fiber at (π : C �→

X,p,q, z) is the Lie algebra UX\p(VG◦
X

) of Section 5.6.

Let CG denote the universal G-cover over ̂MG
g,n. Thus CG parametrizes tuples {(π : C �→

X,p,q, z, y)} where y ∈ C. Let ĈG denote the Aut(O)-bundle over CG whose fiber over {(π :
C �→ X,p,q, z, y)} is the set Aut(Dy) of formal coordinates at y. The projection CG �→ ̂MG

g,n

comes with sections qi : ̂MG
g,n �→ CG, and applying elements of the group G, we obtain sections

passing through every point of O(qi).
Let

VCG = ĈG ×
Aut(O)

V

this is a sheaf over CG. VCG possesses a flat connection ∇ along the fibers of the projection

CG �→ ̂MG
g,n, which along each fiber restricts to the connection ∇ of Section 5.2, i.e. we have a

complex

0 �→ VCG
∇�→VCG ⊗�

CG/M̂G
g,n

�→ 0

Restricting this complex to CG\O(q), taking de Rham cohomology along the fibers, and then
G-invariants, yields the Lie algebroid UG(V )out .

7.2. Sheaves of Conformal Blocks

Let m = (m1, . . . , mn) be a collection of monodromies, and M = (M1, . . . ,Mn) a collection
of V-modules such that Mi is mi-twisted and admissible. Let U(Mi) denote the Lie algebra of
Fourier coefficients of (twisted) vertex operators acting on Mi, and let

U(M) = U(M1) × · · · × U(Mn)

The data of the local coordinates in ̂MG
g,n allows us to embed the Lie algebroid UG(V )out in-

side U(M) ⊗ O
M̂G
g,n

(by expanding vertex operators in the local coordinates), and the Virasoro

operators acting on the modules yield the embedding

Der(C/X,K) ⊗ O
M̂G
g,n

↪→ U(M) ⊗ O
M̂G
g,n
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Denote by vectG(C\O(q)) the Lie algebroid on ̂MG
g,n whose fiber at (π : C �→ X,p,q, z) is

VectG(C\O(q)). Again, the local coordinates allow us to identify it with a subalgebroid of
Der(C/X,K) ⊗ O

M̂G
g,n

. Furthermore, under this identification,

vectG(C\O(q)) ↪→ UG(V )out.

The same argument that is used in [12], chap. 16, shows that UG(V )out is preserved by the

Aut(C/X)-action on ̂MG
g,n

Let M = ⊗
i Mi. This is a U(M)-module and a (g,K)-module for the Harish-Chandra pair

(Der(C/X),Aut(C/X)). We are thus in the setup of Section 6, with l = U(M) ⊗ O
M̂G
g,n

and

l̃ = UG(V )out . Suppose first that the Virasoro central charge c vanishes. Beilinson-Bernstein lo-
calization then yields a D-module HG

V (M) onMG
g,n(m) whose fiber at (π : C �→ X,p,q) is

F̃/UX\p(VG◦
X

) · F̃ (7.1)

where F̃ denotes the Aut(C/X)-twist of M by the torsor of special coordinates at the points qi.
By the comments at the end of Section 5.7, this space is exactly HG

V (C,X,p,q,M).
Suppose now that c is non-zero, and let D̂er(C/X) denote the central extension of Der(C/X)

obtained as the Baer sum of Virasoro cocycles of the individual factors. In this case M is a Harish-
Chandra module for the pair (D̂er(C/X),Aut(C/X)). Moreover, the Lie algebroid extension

0 �→ O
M̂G
g,n

�→ D̂er(C/X) ⊗ O
M̂G
g,n

�→ Der(C/X) ⊗ O
M̂G
g,n

�→ 0

splits over the kernel of the anchor map, as the Virasoro cocycle is trivial on VectG(C\O(q)).
Applying the machinery of Section 6 with l̂ = U(M) ⊗ O

M̂G
g,n

and l̃ = UG(V )out., we obtain a

module HG
V (M) for a sheaf of twisted differential operators onMG

g,n(m), whose fiber at (π : C �→
X,p,q) is HG

V (C,X,p,q,M).

Definition 7.1. Denote by ∇KZ the connection on HG
V (M) coming from the D-module structure.

8. The orbifold KZ connection in the direction of X fixed

In this section we give a formula for the orbifold KZ connection along the fibers of the projection

κ :MG
g,n(m) �→Mg

sending (C,X,p,q) to X i.e., this amounts to fixing the base curve X. We begin by introducing
some notation. Fix m = (m1, . . . , mn) and M = (M1, . . . ,Mn) as before, and let

M = M1 ⊗ · · · ⊗Mn

Let Der(O) denote the Lie algebra generated by {zk∂z}, k ≥ 0, and and DerN (O) the one generated

by {zk+ 1
N ∂z1/N }, k ≥ −1. Under the homomorphism (4.3), these two Lie algebras are isomorphic.

We have

Der(o)(O) ⊂ Der(O) Der(o)
N (O) ⊂ DerN (O)

Let

Der(C/X,O) = DerN1 (O) × · · · × DerNn (O).
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We now wish to consider the two Harish-Chandra pairs (Der(O),Aut(O)) and
(DerN (O),AutN (O)). As explained in [12], the action of the pair (Der(O),Aut(O)) is
simply transitive along the fibers of the projection M̂g,1 �→Mg (and a similar statement applies
in the case of multiple points). From the fact that the map

η : ̂MG
g,n �→ M̂g,n

has finite fibers, and that the two Harish-Chandra pairs (Der(O),Aut(O)) and (DerN (O),AutN (O))
are isogenous, we can deduce that the action of the pair (Der(C/X,O),Aut(C/X,O)) along the
fibers of the map

κ ◦ ξ : ̂MG
g,n �→Mg

is also simply transitive. Let

MG
X,n(m) = κ−1(X) ∩MG

g,n(m)

and
̂MG
X,n(m) = (κ ◦ ξ)−1(X) ∩ ̂MG

g,n(m)

and let

H̃G
V (M, X) = ̂MG

X,n(m) ×
Aut(C/X)

M.

We deduce that alongMG
X,n(m), the connection ∇KZ on HG

V (M) lifts to the sheaf H̃G
V (M, X), and

an explicit formula in local coordinates can be obtained.
Choose coordinates zi around pi. Since the map p is quasi-finite, the zi therefore define coor-

dinates on κ−1(X). Choose compatible special coordinates z1/Ni
i at qi which are Nith roots of the

zi. zi induces coordinates zi − wi at points near pi, and likewise, the choice of Nith root z1/Ni
i at

qi induces a family ofNith roots of zi − wi, which we denote (zi − wi)1/Ni . We can thus trivialize

H̃G
V (M, X) in a neighborhood W of (C,X,p,q):

ι : M ×W �→ H̃G
V (M, X)

(A1 ⊗ · · · ⊗ An,w1, . . . , wn) �→ [A1, (z1 − w1)1/N1 ] ⊗ · · · ⊗ [An, (zn − wn)1/Nn ]

and similarly, we obtain a trivialization ι∗ of H̃G
V (M, X)∗. We have the following theorem:

Theorem 8.1. Along,MG
X,n(m), the orbifold KZ connection ∇KZ on HG

V (M) lifts to H̃G
V (M, X),

and in the trivialization ι, is given in the local coordinates zi by

∇∂zi = ∂zi + L
Mi

−1

where LMi

−1 is the −1-st Virasoro operator acting on Mi.

Note: The vector field responsible for translations along the curve X is ∂z. Observe that under
the homomorphism (4.3), we have

µ−1
N (∂z) = 1

N
z−1+1/N∂z1/N

It follows that 1
N
z−1+1/N∂z1/N is precisely the vector field responsible for moving the ramification

points of the map π : C �→ X along X. Note that in general, its action on ̂MG
g,n will change the

complex structure of the cover C.
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