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1. Introduction

The classical isoperimetric problem in geometry is to determine how to enclose a given volume V with a hypersurface
of optimal area. The condition for a (smooth) hypersurface to be critical for area with a volume constraint is that its mean
curvature be constant. In a given explicit geometry, one may be able to determine a class of constant mean curvature (CMC)
surfaces (for example, in case the surfaces are orbits of a subgroup of the isometry group) which stand as candidates for
solutions to the optimization problem. It generally takes considerably more work to argue that the local condition of having
constant mean curvature implies the hypersurface satisfies the global optimization problem. It is interesting, therefore, to
be able to use a known isoperimetric profile to obtain the isoperimetric profile of a comparable space, as has been done in
Bray–Morgan [1].
Ourmain results (Theorem2 and Proposition 3) solve an isoperimetric problem in certain Friedmann–Robertson–Walker

(FRW) space-times.Much is knownabout the class of space-like hypersurfaceswith constantmean curvature in some special
space-times, such as Minkowski space-time [2]. Moreover, the work of Bahn–Ehrlich settles an isoperimetric problem for
a class of domains in Minkowski space-time [3]. We employ an adaptation of the Bray–Morgan approach to the Lorentzian
setting, whereby we obtain the FRW isoperimetric profile (analogous to Bahn–Ehrlich) by comparing the FRW geometry
to that of Minkowski space-time. In contrast to the Riemannian case, the unit sphere in a Lorentzian vector space is
non-compact, and compact space-like hypersurfaces of Minkowski space-time necessarily have non-empty boundary. This
impacts the domains we use for the isoperimetric problem, which in this case are tied to the causal structure. We remark
that a similar amount of care in defining domains on which to measure volume is needed to achieve certain Lorentzian
analogues of the classical volume comparison theorems, cf. [4,5].
Isoperimetric problems in the purely Riemannian context have been studied in connection with general relativity, on

space-like slices of space-times. Consider a space-time (S, ḡ) satisfying the Einstein equation Ric(ḡ) − 1
2R(ḡ)ḡ = 8πT .
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If M ⊂ S is a space-like hypersurface with induced (Riemannian) metric g , unit (time-like) normal field N , and second
fundamental form (with trace H) of a space-like slice, then using the Einstein equation along with the Gauss equation, we
obtain the Hamiltonian constraint onM: R(g)− ‖ ‖2 + H2 = 16πµ, where R(g) is the scalar curvature and µ = T (N,N)
is the local energy density of the matter fields. In the totally geodesic ( = 0) case (also known as the time-symmetric
case), these constraints reduce to the condition R(g) = 16πµ, which indicates a role for the scalar curvature in the study
of the energy content of isolated systems (cf. the Positive Mass Theorem and the Penrose Inequality). However, Bray notes
in [6] that the ‘‘potential energy contributions betweenmatter (to the extent this is well-defined in certain examples) tends
to make a negative contribution to the total mass’’ of the isolated system. In Section 4 we will see that negative scalar
curvature (energy density) provides a stabilizing effect for constant mean curvature hypersurfaces in certain geometries.
To be precise, we will construct examples of rotationally-symmetric, time-symmetric initial data for the Einstein constraint
equationswith scalar curvature of fixed sign, whichwill illustrate that non-positive energy density has a stabilizing effect on
the rotationally-symmetric spheres. It might seem strange from a physical point of view that a natural variational problem
seems to prefer exoticmatter, but it is quite natural from a geometric point of view. Indeed, recall thewell-known expansion
for the volume of small geodesic balls Br(p) about p in a Riemannian three-manifold [7]:

V (Br(p)) =
4πr3

3

(
1−

R(p)
30
r2 + O(r3)

)
. (1)

We see that the scalar curvature measures the top-order deviation of the volumes of small geodesic balls from that of their
Euclidean counterparts, and that negative scalar curvature implies that small geodesic balls containmore volume than their
Euclidean counterparts. Of course, volume is just one part of the isoperimetric problem, and this volume behavior needs to
be compared with the area profile of the rotationally-symmetric spheres Sr .
Bray [8] established a connection between isoperimetric profiles and the Riemannian Penrose inequality from general

relativity, using a Hawking mass quantity associated to the profile. In particular, he established the isoperimetric profile for
the standard space-like slice of the Schwarzschild space-time, an argument which was codified by Bray and Morgan [1],
and further explored in [9]. The main idea of the argument, as we will recall in more detail below, is that under certain
special circumstances, one can glean the isoperimetric profile of a space by comparison to a space where the isoperimetric
profile is already established. In the relativistic context, appropriate comparison to the Euclidean space establishes that the
rotationally-symmetric spheres in the standard space-like slice of the (positive mass) Schwarzschild space-time minimize
area for given volume enclosed with the horizon [1]. The analogous result holds for the Reissner–Nördstrom space-time,
while comparison to the hyperbolic space proves the analogous result for Schwarzschild–anti-DeSitter space-time [9]. The
relation between isoperimetric problems and themass-energy of space-times has recently been developed by Huisken [10],
in part motivated by (1).

2. Preliminaries

Let (M, g) be a Riemannian or Lorentzian space, with Levi–Civita connection∇ . In local coordinates xi we have∇ ∂

∂xi

∂

∂xj
=

Γ kij
∂

∂xk
, with Γ kij =

1
2g
km(gim,j + gmj,i − gij,m). We use the Einstein summation convention, and the comma denotes partial

differentiation. We use the curvature convention R(X, Y , Z) = ∇[X,Y ]Z − ∇X∇YZ + ∇Y∇XZ , and R( ∂∂xi ,
∂

∂xj
, ∂

∂xk
) = R`ijk

∂

∂x`
.

The Ricci curvature Ric(g) has components Rik = R`i`k, and the scalar curvature is the metric trace of Ric: R(g) = g
ikRik.

2.1. The Bahn–Ehrlich theorem

Let Ln+1 = (Rn+1, η) be the (n + 1)-dimensional Minkowski space-time, with metric signature (−,+, . . . ,+). Recall
that a set A in a time-oriented Lorentzian space-time is achronal if no future-pointing time-like curve intersects A in more
than one point. Let S be a compact, simply connected, achronal hypersurface contained in the causal future I+(O) of the
origin of Minkowski space-time. Let d(O, ·) be the Minkowski distance function on I+(O): d(O, x) =

√
−η(x, x) =: ‖x‖.

We assume without further remark that S is (piecewise) smooth with (piecewise) smooth boundary. I+(O) is foliated by
umbilic space-like hypersurfaces H(r) = {x ∈ I+(O) : d(O, x) = r}, r > 0, each of which is isometric to a hyperbolic space
(of curvature K = − 1

r2
). We can rescale a hypersurface S to µ(S) =

{
x
‖x‖ : x ∈ S

}
⊂ H(1). We let the closed cone of S be

given by C(S) = {λx : x ∈ S, λ ∈ [0, 1]}. We now recall the isoperimetric inequality of Bahn and Ehrlich.

Theorem 1 (Bahn–Ehrlich [3]). Let S ⊂ I+(O) ⊂ Ln+1 be a compact, simply connected, achronal, space-like hypersurface. Let
t∗ = d(O, S). Let A0 be Lorentzian area, let V0 be Lorentzian volume, and let ωS = V0(C(µ(S))). Then

(A0(S))n+1 ≤ (n+ 1)n+1ωS(V0(C(S)))n.

Equality holds if and only if S ⊂ H(t∗).



F. Abedin et al. / Journal of Geometry and Physics 59 (2009) 1453–1460 1455

It follows that for hypersurfaces with a givenµ(S), only subsets of the hyperbolic leavesmaximize area for given volume
enclosed by the cone C(S).
We now turn to spaces for which we want to generalize the above result. Let I = (0, b) ⊆ (0,+∞) be an open interval.

Note that themetricη on I+(O) can bewritten as awarpedproductmetric on (0,+∞)×Hn asη = −dt2+t2gHn . On I×Hnwe
consider other warped product metrics g = −dt2+ (a(t))2gHn . Such metrics form a class of Friedmann–Robertson–Walker
(FRW) metrics, which more generally take the form g = −dt2 + (a(t))2gκ onM = I ×Σ , where gκ is a Riemannian metric
on Σ of constant sectional curvature κ . Such metrics are used to model homogeneous and isotropic cosmologies, and the
warping factor a(t) encodes the dynamics of the space-time.
We will consider smooth maps F : I ×Hn → I+(O) ≈ (0,+∞)×Hn of the form F(t, ω) = (ψ(t), ω), for some suitably

chosen ψ . We take ψ to strictly increasing, so that F is a diffeomorphism onto its image.
We now define subsets of FRW space-times analogous to those used in the Bahn–Ehrlich Theorem and examine how

they behave under F . First, note that the curves α(s) = (s, ω) are time-like geodesics: since α′(s) = ∂
∂t |α(s), the acceleration

vector is given by α′′(s) := Dα′(s)α′(s) = Γ k00
∂

∂xk
, where x0 = t and (x1, . . . , xn) are coordinates on the hyperbolic factor,

and Γ k00 =
1
2g
km(2gm0,0 − g00,m) = 0. Now consider a compact, space-like, achronal hypersurface S. We define a cone-like

set Γ (S) on S as follows: Γ (S) = {(t, ω) : (τ , ω) ∈ S and 0 < t < τ }. We also want to define the analogous shadow set
µ̂t(S) ⊂ {t}×Hn by µ̂t(S) = {(t, ω) : for some τ > 0, (τ , ω) ∈ S}. Note that sinceψ is increasing, F(µ̂t(S)) = µψ(t)(F(S)).
The sets Γ (S) and µ̂t(S) are defined by using time-like geodesics passing through S, and so are tied to the causal structure.
In the Minkowski case, the geodesics emanate from an origin O; in the general FRW case, if limt→0+ a(t) = 0, we see that
the diameter of the shadow µ̂t(S) of any such surface S (compact) shrinks to zero as t → 0+. The geodesics might thus be
interpreted as emanating from a single point; in case limt→0+ a′(t) = +∞, one may interpret this as a big-bang singularity.

2.2. Second variation of area under a volume constraint

Let Σ be either a smooth domain contained in some {t0} × Hn inside an FRW space (M = I × Hn, g) as above, or
Σ = Sr = {r} × S2 in a rotationally-symmetric Riemannian metric g on M = I × S2 (see Section 4). In either case, Σ
has constant mean curvature inM . In factΣ is totally umbilic, since in the caseΣ = Sr , the ambient metric is rotationally
invariant, and similarly in the caseΣ = {t0}×Hn the ambient FRWmetric is preserved by hyperbolic isometries. In this latter

case we compute the second fundamental form with respect to the unit normal ∂
∂t toΣ:

(
∂

∂xi
, ∂

∂xj

)
= g

(
∂
∂t ,∇ ∂

∂xi

∂

∂xj

)
=

−Γ 0ij = −
a′(t0)
a(t0)
gij =: −h(t0)gij, so that the mean curvature of {t0} × Hn in FRW is just H = g ij ij = −nh(t0). In either case,

let N be a unit normal vector field to Σ , let ε = g(N,N) = ±1, and let V = V T + VN be the decomposition of a vector
V ∈ TpM , p ∈ Σ , into tangential and normal parts. The mean curvature vector field ofΣ is then EH =

∑n
i=1(∇EiEi)

N , so that
for any normal vector fieldW onΣ , divΣW =

∑n
i=1 g(∇EiW , Ei) = −g(W , EH), and EH = εHN .

We now recall the relevant formulas for the first and second variation of area ofΣ (in either case posed above). Consider
a variation Φ : (−ε0, ε0) × Σ → M with variation field X = (Φτ )|τ=0, where Φτ := Φ∗(

∂
∂τ
). Let γ (τ) be the induced

metric onΦ(τ ,Σ), and let the area of the embeddingΦ(τ ,Σ) be A(τ ). Let {Ei} be a local trivialization of TΦ(τ ,Σ)which
commutes with the variation fieldΦτ alongΦ , and which is a local orthonormal frame field onΣ , and let ν be the outward-
pointing co-normal on ∂Σ (in the FRW case). From the identity d

dτ

√
det γ = 1

2

√
det γ

(
γ ij ddτ γij

)
= (divΣτΦτ )

√
det γ , we

can easily derive the first variation of area formula (assuming X ⊥ ν on ∂Σ): A′(0) = −
∫
Σ
g(X, EH) dAΣ .

We consider variation fields normal toΣ (at τ = 0). Indeed in the Riemannian case, we considerΦτ = f (τ , x)N(τ , x) to
be normal to the embedding. In the FRW (Lorentzian) case, we let the variation Φτ = f (τ , x) ∂∂t |Φ(τ ,x) be in the t-direction.
Moreover, we also assume the volume V (τ ) enclosed by Φ(τ ,Σ) (either the cone volume, or the homological volume,
depending on the case) is constant. We let D(Σ) ⊂ Hn be the projection of Σ onto the second factor of I × Hn; there
is a function t(τ , p) so that V (τ ) =

∫
p∈D(Σ)

∫ t(τ ,p)
0 a(s)n ds dAHn . In either case, V ′(0) =

∫
Σ
f dAΣ , and by applying the

calculation for the first variation of area, we obtain V ′′(0) =
∫
Σ

(
∂ f
∂τ
− Hf 2

)
dAΣ = 0.

The derivation of the second variation of area follows the argument in [11] (up to any sign change from the Lorentzian
signature); see also [12] (note that their time-like Ricci curvature is negative of ours), or [13] for the FRW case. We apply
the volume constraint V ′(0) = 0 = V ′′(0) to arrive at the second variation of area for volume-preserving normal variations,
and then use X = fN , ∇NEiX = (∇EiX)

N
= Ei[f ] N , and ∂

∂t = N on {t0} × Hn to obtain (2):

A′′(0) =
∫
Σ

(
n∑
i=1

g(∇NEiX,∇
N
EiX)−

n∑
i,j=1

(g(∇EiEj, X))
2
− g(R(X, Ei)X, Ei)

)
dAΣ

=

∫
Σ

(
ε|∇Σ f |2 − f 2‖ ‖2 − f 2Ric(g)(N,N)

)
dAΣ . (2)

In FRW space-times satisfying the time-like convergence condition Ric(g)(N,N) ≥ 0 (equivalently a′′(t) ≤ 0 by (4)), we have
A′′(0) ≤ 0. More generally, = − a

′(t)
a(t) g along with (4) also implies A

′′(0) ≤ 0 in case (a(t)a′′(t)− (a′(t))2) ≤ 0.
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3. Lorentzian isoperimetric comparison

We will now discuss an adaptation of the Bray–Morgan isoperimetric comparison technique to our setting. We let
(M, g) = (I×Hn,−dt2+ (a(t))2gHn) be an FRW space-time as above, and let (I+(O), η) be the future of O in theMinkowski
space-time, which we identify with ((0,+∞)× Hn,−dt2 + t2gHn). We consider a diffeomorphism F : M → I+(O)which
has the form F(t, ω) = (ψ(t), ω) with respect to the indicated identifications, with ψ increasing in t . We define the area
stretch factor αΣ for a space-like hypersurfaceΣ ⊂ M by F∗(dAF(Σ)) = αΣdAΣ , where dAΣ and dAF(Σ) are the induced area
forms on the surfaces, and where we assume F(Σ) is also space-like; a similar definition holds for time-like hypersurfaces.
The volume stretch factor β is given by F∗(dV0) = βdVM , where dVM and dV0 denote the respective volume forms.
To estimate the stretch factors, we first compute them for two types of surfaces. We let D ⊂ Hn be any regular domain,

and let Dt = {t} × D ⊂ M . Let α1(t) = αDt , so that

α1(t) =

∫
D ψ

n(t) dAHn∫
D a
n(t) dAHn

=
ψn(t)
an(t)

.

We define the stretch factor α0(t) for the annular time-like surface determined by flowing an (n − 1)-dimensional
submanifold Γ ⊂ Hn along the time-like direction field ∂

∂t , and we let dσΓ be the gHn-induced area element along Γ :

α0(t) =
d
dt

∫ ψ(t)
ψ(t0)

∫
Γ
τ n−1 dσΓ dτ

d
dt

∫ t
t0

∫
Γ
an−1(τ ) dσΓ dτ

=
ψn−1(t)ψ ′(t)
an−1(t)

.

Finally the volume stretch is given by

β(t) =
d
dt

∫ ψ(t)
ψ(t0)

∫
D τ
n dAHn dτ

d
dt

∫ t
t0

∫
D a
n(τ ) dAHn dτ

=
ψn(t)ψ ′(t)
an(t)

=
n
√
α1(t) α0(t).

LetΣ ⊂ M be a space-like hypersurface; at a (smooth) point p ∈ Σ ∩ ({t} ×Hn), TpΣ ∩ Tp({t} ×Hn) is at least (n− 1)-
dimensional. Let E2, . . . , En be an orthonormal set in this intersection. Let E1 complete these to form an orthonormal basis
for Tp({t} × Hn), and let E0 = ∂

∂t . There exist ξ0, ξ1 ∈ R with ξ 21 − ξ
2
0 = 1 so that ξ0E0 + ξ1E1 ∈ TpΣ is a unit vector

orthogonal to Ej, j = 2, . . . , n. Therefore we see

αΣ = |dAF(Σ)(F∗(E2), . . . , F∗(En), F∗(ξ0E0 + ξ1E1))|
= ‖F∗(E2)‖ · · · ‖F∗(En)‖‖ξ0F∗(E0)+ ξ1F∗(E1)‖

=
ψn−1(t)
an−1(t)

√
ξ 21
ψ2(t)
a2(t)

− ξ 20 (ψ
′(t))2 =

√
ξ 21α

2
1 − ξ

2
0α
2
0 . (3)

Therefore, α2Σ = ξ
2
1α
2
1 − ξ

2
0α
2
0 = α

2
1 + ξ

2
0 (α

2
1 − α

2
0).

Theorem 2. Let S be a compact, simply-connected, space-like, achronal hypersurface in an FRW space-time (M, g) = (I × Hn,
−dt2 + (a(t))2gHn), with V (Γ (S)) < +∞. Let T (S) = {t : S ∩ ({t} × Hn) 6= ∅}, and let t∗ > 0 be such that the volume
V (Γ (µ̂t∗(S))) from the shadow µ̂t∗(S) is precisely V (Γ (S)). Furthermore, suppose a map F as above can be constructed so that
β(t) ≤ β(t ′) for t, t ′ ∈ T (S) with t ≥ t∗ ≥ t ′ (e.g. in case β(t) is non-increasing for t ∈ T (S)), so that the average value of αS
over S is at least α1(t∗) =

A0(F(µ̂t∗ (S)))
A(µ̂t∗ (S))

, and so that F(S) is space-like and achronal. Then the area A(S) of S is at most the area of
the shadow µ̂t∗(S), with equality if and only if S = µ̂t∗(S).

Proof. Suppose S and t∗ > 0 are as in the theorem, and moreover that A(S) ≥ A(µ̂t∗(S)). Then we have by change of
variables and the fact that 1

A(S)

∫
S αS dAS ≥ α1(t

∗),

A0(F(S)) =
∫
F(S)
dAF(S) =

∫
S
αS dAS ≥ A0(F(µ̂t∗(S))) = A0(µψ(t∗)(F(S))).

Since β(t) is decreasing in t , the volume V0 (C(F(S)) ∩ {(τ , ω) : τ > ψ(t∗)}) is less than the volume V0(C(F(S))∩ {(τ , ω) :
τ < ψ(t∗)}). Wemay thus conclude that V0(C(F(S))) ≤ V0(C(µψ(t∗)(F(S)))). By assumption on the map F , F(S) is achronal
and space-like, so that we may apply the Bahn–Ehrlich theorem to prove (A0(F(S)))n+1 = (n + 1)n+1ωF(S)(V0(C(F(S))))n,
and thus conclude F(S) ⊂ {ψ(t∗)} × Hn. Pulling back toM , we can conclude the theorem. �

Remark. We remark that the assumption V (Γ (S)) < +∞will be satisfied in our applications below. In any case, we could
instead choose t0 > 0 and replace V (Γ (S))with V (Γ (S), t0) = V (Γ (S) ∩ {(t, ω) ∈ M : t > t0}), which is always finite for
compact S, and state an analogous theorem.
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3.1. Applications

It remains to be shown to what extent the theorem can be applied, in other words, under what restrictions on the FRW
metric we can find ψ so that F satisfies the conditions of the theorem. We begin with the following proposition.

Proposition 3. Consider an FRWmetric g = −dt2+ (a(t))2gHn on I×Hn with 0 < a′(t) ≤ 1, and a′′(t) ≤ 0. For any compact,
simply connected, space-like, achronal hypersurface S, we let t∗ > 0 be chosen so that V (Γ (µ̂t∗(S))) = V (Γ (S)). Then the area
A(S) of S is at most the area A(µ̂t∗(S)) of the shadow, with equality if and only if S = µ̂t∗(S).
Proof. We verify the conditions of Theorem 2. We define F by taking ψ(t) = a(t). Then the area stretch α1(t) = 1, while
α0(t) = a′(t). Thus α1(t) ≥ α0(t) if and only if a′(t) ≤ 1, in which case by (3), αS ≥ α1. The volume stretch is β(t) = a′(t),
so β is non-increasing precisely for a′′(t) ≤ 0.
We now consider how F affects the causal nature of vectors. Let v = ∂

∂t + λu, where u is a gHn-unit vector. Then
g(v, v) = −1+ λ2a2(t), and F∗(v) = ψ ′(t) ∂∂t + λu, so that

η(F∗(v), F∗(v)) = −(ψ ′(t))2 + λ2ψ2(t) = −(a′(t))2 + λ2a2(t).

Under the condition 0 < a′(t) ≤ 1, we obtain

η(F∗(v), F∗(v)) ≥ g(v, v) = −1+ λ2a2(t).

Thus we see F∗ maps space-like vectors to space-like vectors, so that F(S) is space-like. This inequality also shows that F(S)
is achronal: if there were a future-pointing time-like curve γ = F ◦ α from F(p) to F(q) on F(S), then α is a future-pointing
time-like curve from p to q on S, which contradicts achronality of S. �

Let N = ∂
∂t , and let V andW be tangent to {t} ×Hn. The Ricci tensor and scalar curvature of an FRWmetric are given by

the following [14]: Ric(g)(N, V ) = 0, Ric(g)(V ,W ) =
(
a(t)a′′(t)+ (n− 1)((a′(t))2 − 1)

)
,

Ric(g)(N,N) = −
na′′(t)
a(t)

(4)

and thus R(g) = (a(t))−2
[
2na(t)a′′(t)+ n(n− 1)

(
(a′(t))2 − 1

)]
. The metrics covered by the proposition, then, have

non-negative Ricci curvature in the time direction (orthogonal to the hyperbolic space-like slices), and non-positive Ricci
curvature in the spatial directions.
Let us interpret the metrics covered by this proposition as solutions of Einstein’s equation in the case n = 3. Using the

above curvature formulas, one easily obtains the equation Ric(g)− 12R(g)g+Λg = 8πT , whereΛ is a constant (cosmological
constant), and the tensor T has the form Tab = ρNaNb + P(gab + NaNb) of the stress-energy tensor of a perfect fluid with
velocity N , density ρ and pressure P , for functions ρ(t) and P(t)which will be specified below. The density and pressure are
related to the metric function a(t) as follows, where h(t) = a′(t)

a(t) is called the Hubble parameter [14]:

(h(t))2 :=
(a′(t))2

(a(t))2
=
1
3

(
8πρ +

3
a2(t)

+Λ

)
,

a′′(t)
a(t)

= −
4π
3
(ρ + 3P)+

1
3
Λ.

Wenote the condition that ρ ≥ 0 is equivalent to h2 ≥ a−2+Λ/3, i.e. (a′(t))2 ≥ 1+ 13Λ(a(t))
2. Observe that in the classical

case of vanishing cosmological constant, the metrics covered by the preceding proposition have ρ ≤ 0; for the proposition
to accommodate models with positive matter density, one must use an Einstein equation withΛ < 0.
We remark that in the proof of the proposition, we constructed a specific comparisonmap F , and that it might be possible

to find a different comparisonmap that may capture a different regime of FRWmetrics, and in particular, may allowmodels
with ρ ≥ 0 in caseΛ = 0. For example, consider (3) and impose the condition α0(t) = α1(t); by the above calculations, this
condition is equivalent to ψ ′(t)

ψ(t) =
1
a(t) . The solutions to this equation are determined up to a constant factor. We note that

with this choice of ψ , F preserves the causal nature of vectors, and hence F(S) is space-like and achronal if S is: as above,
for v = ∂

∂t + λu, we have η(F∗(v), F∗(v)) = −(ψ
′(t))2 + λ2ψ2(t) = ψ2(t)

a2(t)
g(v, v). By design, αS = α1 = α0. Furthermore,

this choice of ψ yields a monotone volume stretch β(t) = ψn+1(t)
an+1(t)

. Indeed we find

β ′(t) = (n+ 1)β
n
n+1 (t)

ψ ′(t)a(t)− ψ(t)a′(t)
a2(t)

= (n+ 1)β
n
n+1 (t)

ψ(t)(1− a′(t))
a2(t)

.

Thus, β is non-increasing precisely if a′(t) ≥ 1, which corresponds to non-negative density ρ ≥ 0 in caseΛ = 0.
However there is a catch: the last item to check is the area stretch factor for S. We note that since α1(t) = β

n
n+1 (t),

the sign of α′1(t) is the same as the sign of β
′(t). This is problematic, since one way to satisfy the area stretch condition in

Theorem 2 is to arrange αS ≥ α1(t∗), which would be satisfied if α1 has a minimum at t∗. This simple statement will not
hold in this case, but at least the monotone behavior of α1(t) does give us a way to interpret the condition on the area of
S used in Theorem 2: in trying to minimize volume and maximize area (for a given shadow set), the only possible way to
improve upon a hyperboloidal hypersurface is to try to arrange for a majority of the surface to lie in {t > t∗}, while at the
same time adhering to the volume constraint. We conjecture this cannot improve on the hyperboloidal hypersurface.
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4. Remarks on energy density and stability of CMC surfaces

The Lorentzian isoperimetric comparison in Proposition 3 can be interpreted to hold in certain FRW space-times with
Λ = 0 and ρ ≤ 0. In this section we consider the Riemannian setting, and in the context of the time-symmetric Einstein
constraint equation R(g) = 16πµ, we remark that negative energy density tends to promote stability of CMC spheres in
rotationally-symmetric perturbations of the standard space-like slices in Schwarzschild space-times.
In particular, we will consider metrics on domains ER = {x ∈ R3 : |x| > R} of the form g(x) = u4(r)gE(x), where gE is

the Euclidean metric, and u(r) > 0, (r = |x|). An important family of such metrics is given by the Schwarzschild metrics:
gS(x) =

(
1+ m

2r

)4 gE . The parameter m is called the mass; it measures the deviation of the metrics from the Euclidean
metric, and it has an interpretation in terms of the energy of isolated gravitational systems [15]. Form > 0, there is a unique
minimal (in fact totally geodesic) sphere r = m/2, which in the context of general relativity is called the (apparent) horizon;
in this case the metric is complete with two asymptotically flat ends, as the map r 7→ m2

4r is an isometric inversion in the
horizon sphere.We note thatwe can do a radial change of coordinates so that half of the Schwarzschildmetric can bewritten(
1− 2m

r

)−1
dr2 + r2dΩ2, where dΩ2 is the standard metric on the sphere S2, and r > 2m; in these coordinates r = 2m

corresponds to the horizon. When the mass m is negative, the metric (1 − 2m
r )
−1dr2 + r2dΩ2 is defined on r > 0, and is

an inextendible metric with no minimal sphere. The metric is incomplete: as r → 0+ along radial geodesics, the arclength
remains bounded but the Ricci tensor blows up.
Of present interest for us is the fact that the stability of the area functional at the constant mean curvature spheres Sr of

constant r depends on the sign of themassm. LetN be a unit normal field to Sr , and let A(τ ) be the area function induced from
a variation of Sr with normal variation field X = fN; we assume that the volume is preserved (at least through the second
order).We use coordinates forwhich the Schwarzschildmetric takes the form gS =

(
1− 2m

r

)−1
dr2+r2dΩ2, so that the area

of Sr is 4πr2, and the first non-zero eigenvalue of the Laplacian is λ1 = 2
r2
. By the volume constraint we have

∫
Sr
f dASr = 0,

so we can apply the Poincaré inequality λ1
∫
Σ
f 2 dAΣ ≤

∫
Σ
|∇

Σ f |2 dAΣ onΣ = Sr . From the second variation (2) we then
obtain A′′(0) ≥ 6mr−3

∫
Sr
f 2 dASr , with equality if and only if f is in the λ1-eigenspace (which is the span of the restrictions

of Cartesian coordinate functions to the sphere). We see from this that in the positivemass Schwarzschild case, the second
variation must be positive for (non-trivial) volume-preserving deformations; note that by applying Theorem 4 below, one
can show the spheres are in fact isoperimetric form > 0. In casem < 0, however, we see that for f a λ1-eigenfunction, A′′(0)
is negative, so the spheres are unstable. Of course in the Euclidean (m = 0) borderline case, the spheres are stable, but not
strictly stable, as the translations are isometries.
The Schwarzschild metrics have zero scalar curvature. A natural follow-up to the above observations is to determine

geometries that are in some sense perturbations of Schwarzschild geometries, for the which the scalar curvature is non-
zero and the rotationally-symmetric spheres enjoy some stability or isoperimetry. We will in fact deform the area profiles
of Schwarzschild geometries to obtain rotationally-symmetric geometries in which the spheres Sr (for some range of r
values) have a desired stability property, while keeping the sign of the scalar curvature fixed. The examples will point out
that non-positive energy density has a stabilizing effect on the rotationally-symmetric spheres.
Before we state our results, we recall a simple form of the Bray–Morgan comparison theoremwewill use for our setting.

Theorem 4 (Bray–Morgan [1]). Consider a Riemannian three-manifold M = I × S2 with a rotationally-symmetric metric (so
the metric can be written in the form dr2 + f 2(r)dΩ2, or equivalently h2(r)dr2 + r2dΩ2), and let Sr = {r} × S2 be a radially-
symmetric sphere. SupposeM has non-positive radial Ricci curvature, and that M has non-negative tangential sectional curvature
(with respect to the spheres Sr ). Suppose furthermore that Sr has non-negative mean curvature in the− ∂

∂r direction, for all r ∈ I .
Then the radially-symmetric spheres Sr minimize surface area among smooth surfaces enclosing the same volume (against Sr0 ,
say).
We now compute the quantities of interest for the metric g = u(r)4gE = u4(r)(dr2 + r2(dϕ2 + sin2 ϕ dθ2)). For this

purpose, we index (r, ϕ, θ) as (1, 2, 3) respectively, and we let ∂r , ∂ϕ , ∂θ be the coordinate vector fields. The area profile is
just A(r) = A(Sr) = 4πr2u4, and the non-vanishing Christoffel symbols are as follows.

Γ 111 =
2u′

u
, Γ 133 = − sin

2 ϕ

(
2u′

u
r2 + r

)
= sin2 ϕΓ 122, Γ 233 = − sinϕ cosϕ,

Γ 323 = cotϕ, Γ 212 = Γ
2
21 = Γ

3
13 = Γ

3
31 =

2u′

u
+
1
r
.

We find Rk232∂k = R(∂ϕ, ∂θ , ∂ϕ) = ∇∂θ∇∂ϕ∂ϕ − ∇∂ϕ∇∂θ ∂ϕ = ∇∂θ (Γ
1
22∂r) − ∇∂ϕ (Γ

3
23∂θ ) =

(
1− r2( 1r +

2u′
u )
2
)
∂θ . The

tangential sectional curvature is then KM(r) = KM(TpSr) =
g(R(∂ϕ ,∂θ ,∂ϕ ),∂θ )
‖∂θ ‖

2‖∂ϕ‖2
=
−4
u6

(
(u′)2 + uu′

r

)
. We also note R2121 = R

3
131 =

−2u′′
u +

2u′2

u2
−
2u′
ru , so that the radial Ricci curvature is given by Ric

M(∂r , ∂r) = R1111 + R
2
121 + R

3
131 =

−4u′′
u +

4u′2

u2
−
4u′
ru . The

scalar curvature transforms as

R(g) = −8u−5∆gEu = −8u
−5
(
u′′ +

2
r
u′
)
. (5)
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We consider the unit normal N = −u−2∂r to Sr , and we compute the second fundamental form and mean curvature of Sr
with respect to N . We find θθ = (∂θ , ∂θ ) = g(−∇∂θN, ∂θ ) = g(u

−2Γ k31∂k, ∂θ ) = u
−2( 2u

′

u +
1
r )gθθ = u

2r2sin2ϕ( 2u
′

u +
1
r ) = sin

2 ϕ ϕϕ . From here it is easy to find ‖ ‖2 = g ikSr g
jl
Sr ij kl = gθθgθθ 2

θθ + g
ϕϕgϕϕ 2

ϕϕ =
2
u4
( 2u
′

u +
1
r )
2 and

H = gϕϕ ϕϕ + gθθ θθ =
2
u2

(
2u′
u +

1
r

)
. Finally we apply the second variation formula (2) to Sr with X = fN , and use

the Poincaré inequality with λ1 = 1
u4r2
to obtain

A′′(0) ≥
∫
Sr
f 2
(
2
u4r2
−
2
u4

(
2u′

u
+
1
r

)2
− u−4

(
−4u′′

u
+
4u′2

u2
−
4u′

ur

))
dASr

= 4u−6
(
uu′′ −

uu′

r
− 3(u′)2

)∫
Sr
f 2 dASr .

LetΞ(r) = uu′′ − uu′
r − 3(u

′)2, so that stability is equivalent toΞ(r) ≥ 0.
We will produce some examples by picking appropriate functions u. We first note u0(r) = 1 + m

2r gives the general
solutions (up to a constant factor) of u′′ + 2

r u
′
= 0; in particular u0 are the rotationally invariant harmonic functions (up to

scale). With an eye on (5), we will look for solutions of the equation

u′′ +
2
r
u′ = −

C
rp
, (6)

where C is a constant whose sign gives the sign of µ, and where p gives the decay rate of µ as r → +∞. Solutions of this
equation are given by

u(r) = u0(r)+
C

(2− p)(p− 3)
1
rp−2
= 1+

m
2r
+

C
(2− p)(p− 3)

1
rp−2

,

where again u0 is determined up to a constant factor.We take p > 3 so that u0 gives the top-order part of u. We now proceed
by specifying the parameters m, C and p, and then checking whether and where the corresponding metric g = u4(r)gE ,
defined on some ER = {u > 0}, satisfies the Bray–Morgan conditions for isoperimetry and/or the condition Ξ(r) ≥ 0 for
stability.
We let p = 4, and for reference we collect here the following identities:

A(r) = 4πr2
(
1+

m
2r
−
C
2r2

)4
(7)

RicM
(
∂

∂r
,
∂

∂r

)
= −

4(2mr2 − C(8r +m))
r(r(2r +m)− C)2

(8)

KM(r) =
64r6(mr − 2C)(2r2 + C)

(r(2r +m)− C)6
(9)

H(r) =
8r3(r(2r −m)+ 3C)
(r(2r +m)− C)3

(10)

Ξ(r) =
6mr3 − Cr(16r −m)− 4C2

4r6
. (11)

Case m = 0. We take m = 0 and p = 4 in the definition of u, so u = 1 − C
2r2
, and so for large r , then, the metric g = u4gE

approaches the flat metric, with top-order deviation O(r−2).
If we let C < 0, then the metric is defined on {r > 0}, and from H(r) = 8r3(2r2+3C)

(2r2−C)3
, we see there is a unique minimal

sphere at r0 =
√
−3C
2 : note that the spheres for r > r0 are convex. The scalar curvature R(g) is negative in this case, and

R(g) ∈ L1({r > r0}, dµg), where dµg is the metric volume measure, which is u6 times the Euclidean volume measure. We
note that N = ±u−2 ∂

∂r is a unit normal to Sr , so that substitutingm = 0 into (7)–(9) above, we obtain limr→0+ A(r) = +∞,
and limr→0+ RicM(N,N) = 0 = limr→0+ KM(TpSr). Indeed, the metric is asymptotically flat with two ends; however as
r → 0+, the difference of the metric from the flat metric is only O(s−2/3), where s is the intrinsic distance along radial
geodesics approaching r = 0; in fact, R(g) 6∈ L1({r0 > r > 0}, dµg). In any case, using the above identities, we see the
Bray–Morgan comparison proves that the spheres Sr for r > r0 are isoperimetric. Moreover, these isoperimetric spheres are
strictly stable, unlike in the Euclidean case. In fact,Ξ(r) = − C(4r

2
+C)
r6

> 0 if and only if r > rc =
√
−C
2 , and r0 > rc .

The Penrose Inequality ([6,15,16]) states that in an asymptotically flatmetric with non-negative scalar curvature, the total

mass measured at infinity in an asymptotically flat end is always at least
√

A
16π , where A is the area of an outermost minimal
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surface. If we let (M, g) = ({r ≥ r0}, u4gE) in our example above, then we see the Penrose Inequality does not hold for g; of
course, the scalar curvature is negative in this example.

If we now let C > 0, so that the scalar curvature is positive, we note that themetric is defined on
{
r >

√
C
2

}
. There are no

minimal spheres: this is no surprise, in light of the Penrose inequality. The hypotheses of the Bray–Morgan theorem above
do not hold; in factΞ(r) < 0, so the spheres Sr are unstable.
Casem < 0. We letm = −2 and p = 4, so that g = u4gE with u(r) = 1− 1

r −
C
2r2
.

Suppose we try to stabilize spheres Sr by increasing C from zero to positive (thus by increasing the scalar curvature from
zero to positive); the metric in this case is defined for r > 1+

√
1+2C
2 = rc . Then by (11), Ξ(r) = − 6r

3
+Cr(8r+1)+2C2

2r6
< 0, and

so Sr is unstable.
Suppose instead we seek to stabilize some range of spheres Sr by making the scalar curvature negative. Note from (11),

that no matter what C is,Ξ(r) < 0 for large r; this makes sense, since the spheres Sr are unstable in the negative mass case,
and the mass term dominates the scalar curvature term for large r . From the form of rc above, we see that for C < − 12 , the

metric is defined on {r > 0}. By (10), H = 8r3(2r2+2r+3C)
(2r2−2r−C)3

, so there is a unique minimal sphere at r0 = 1
2 (−1+

√
1− 6C). For

C just below− 12 , the radius r0 of theminimal sphere is just above
1
2 , and there is a small range of r values near r0 aboutwhich

the spheres are stable; the range becomes smaller as C → − 12
−
. For example, if let C = −1, we produce an example of a

metric g on {r > 0}with negative scalar curvature, andwith a uniqueminimal sphere Sr0 with r0 =
√
7−1
2 ≈ 0.823.We note

thatΞ(r) is positive on an interval I ⊃ (0.557, 1.254) around r0, so that the spheres Sr are stable in this range. Moreover, on
the interval J = (r0, 1), we have negative radial Ricci curvature, positive (inward) mean curvature, and positive tangential
sectional curvature. Hence by Bray–Morgan, the spheres Sr are isoperimetric in (J × S2, g).
Case m > 0. We finally consider the case where m > 0, say m = 2. We let p = 4 again, so that g = u4gE with
u(r) = 1+ 1

r −
C
2r2
.

When C < 0 (negative scalar curvature), the metric is defined on {r > 0}, and by (10), H = 8r3(2r2−2r+3C)
(2r2+2r−C)3

, we see there is

a uniqueminimal sphere Sr0 with r0 =
1
2 (1+

√
1− 6C). Since 2r20 +C > 0, a glance at (8)-(10) shows that the Bray–Morgan

comparison can be applied to show that each Sr for r > r0 is isoperimetric.
When C > 1

6 , however, the geometry does not resemble the Schwarzschild geometry of massm = 2 for small r . Indeed,
the metric is defined for r > rc = 1

2 (−1+
√
1+ 2C), in which range there are no minimal spheres. As r → r+c , the metric

becomes singular (consider the intrinsic curvature quantities in (8) and (9)), and the spheres Sr can be unstable: for example
if C = 4, then rc = 1 andΞ(rc) < 0.
In conclusion, the above examples illustrate the stabilizing effect of negative scalar curvature. The borderline (m = 0)

case may illustrate this the best: the effect of the scalar curvature is shown no matter how small C is, and the metric u4gE
converges uniformly on compact subsets of {r > rc} (where rc may be 0) to the Euclidean metric as C tends to 0. We also
emphasize that in the negative mass cases, positive scalar curvature promotes further instability, while in the positive mass
case, negative scalar curvature promotes further stability. When one tries to change the stability properties, one must add
enough scalar curvature of the appropriate sign to make a large enough deviation in the geometry to change the stability
properties of the spheres in some interval; though the geometry may change a lot, we maintain control on the sign of the
scalar curvature.
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