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We construct an infinite-dimensional symplectic 2-groupoid as the integration of an
exact Courant algebroid. We show that every integrable Dirac structure integrates to a
‘‘Lagrangian’’ sub-2-groupoid of this symplectic 2-groupoid. As a corollary, we recover a
result of Bursztyn–Crainic–Weinstein–Zhu that every integrable Dirac structure integrates
to a presymplectic groupoid.
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1. Introduction

In the late 80s, T. Courant and A. Weinstein [1] introduced the notion of Dirac structure as a way of unifying Poisson,
symplectic, and presymplectic structures. An important ingredient in the definition of Dirac structure is a bracket, now
called the Courant bracket, defined on the direct sum of the spaces of vector fields and 1-forms on a manifold. In the 90s,
Z. Liu, Weinstein, and P. Xu [2] formalized the properties of the Courant bracket in the definition of a Courant algebroid.

A Dirac structure is a subbundle of a Courant algebroid that is maximally isotropic and whose sections are closed under
the Courant bracket. The restriction of a Courant bracket to the sections of a Dirac structure is a Lie bracket, making the
Dirac structure into a Lie algebroid. In the case of the standard Courant algebroid TM ⊕ T ∗M (as well as its twisted versions),
H. Bursztyn, M. Crainic, Weinstein, and C. Zhu [3] showed that, if a Dirac structure is integrable in the sense of [4], then
the Lie groupoid integrating it carries a natural closed (or H-closed, in the twisted case), multiplicative 2-form, making it a
presymplectic groupoid.

In this article, we study the integration problem for Courant algebroids, which was one of open problems raised by Z. Liu,
A. Weinstein, and P. Xu [2]:

‘‘Open Problem 5.What is the global, groupoid-like object corresponding to a Courant algebroid? In particular, what is the
double of a Poisson groupoid?’’
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In [5], generalizing the idea of rational homotopy theory in the language of NQ -manifolds, P. Ševera outlined a formal
proof that the solution to this problem is a symplectic 2-groupoid. A key missing piece in [5] is a proof of the smoothness of
the involved constructions. Recently, the authors [6], D. Li-Bland and P. Ševera [7], and Y. Sheng and C. Zhu [8] independently
constructed (local) Lie 2-groupoids integrating certain subclasses of Courant algebroids, with the standard Courant algebroid
being the common element of all three subclasses. For these constructions, the term ‘‘integration’’ can be justified by showing
that the Courant algebroid structure can be recovered via Ševera’s 1-jet construction [9].

An important question that has remained unaddressed is how a symplectic 2-groupoid integrating a Courant algebroid
is related to the presymplectic groupoids integrating the Dirac structures that sit inside the Courant algebroid. In fact, one
can easily find examples showing that the symplectic 2-groupoids of [6,7], and [8] are not large enough to contain all the
presymplectic groupoids arising from Dirac structures. In this article, we show that this problem can be resolved, at the cost
of working with infinite-dimensional manifolds.

Inspired by the works of A. Cattaneo and G. Felder [10] and M. Crainic and R. L. Fernandes [4] on integration of Poisson
manifolds and Lie algebroids, we construct, for any manifoldM , an infinite-dimensional Lie 2-groupoid, i.e. a Kan simplicial
(Banach) manifold {X•} for which the horn fillings are unique in degrees greater than 2. For any closed H ∈ Ω3(M), we
obtain a natural multiplicative symplectic 2-form ωH

2 on X2, making {X•} into a symplectic 2-groupoid, which we call the
Liu–Weinstein–Xu 2-groupoid, or LWX(M) for short.

A brief description of LWX(M) in low degrees is as follows. The space of ‘‘0-simplices’’ is LWX0(M) = M . The space
LWX1(M) of ‘‘1-simplices’’ consists of bundle maps from the tangent bundle of the standard 1-simplex to T ∗M . An element
of the space LWX2(M) of ‘‘2-simplices’’ is given by a quadruplet ([f ], ψ0, ψ1, ψ2), where [f ] is an equivalence class of maps
from the standard 2-simplex toM , modulo boundary-fixing homotopies, andwhere eachψi is an element of LWX1(M)whose
base map is the ith edge of f . This construction can be seen as a concrete implementation of the proposal by Ševera [5] to
integrate Courant algebroids via equivalence classes ofmaps. In order to endow LWX(M) with a smooth structure, we require
the maps to have certain fixed orders of differentiability; the details are in Section 3.

Our most significant results arise from the observation that LWX(M) has a natural 2-form ωH
1 on LWX1(M) for which

dωH
1 = δH, δωH

1 = ωH
2 , (1.1)

where δ : Ω•(LWXk(M)) → Ω•(LWXk+1(M)) is the simplicial coboundary map. In other words, ωH
2 is the coboundary of

ωH
1 + H in the Bott–Shulman–Stasheff complex of LWX(M). The existence of ωH

1 seems to be specific to the case of exact
Courant algebroids, so it does not appear in the general construction of [5].

We associate to any integrable Dirac structure a sub-2-groupoid of LWX(M) whose 1-truncation can be identified with
the Lie groupoid integrating the Dirac structure. We prove that the pullback of ωH

2 vanishes on this sub-2-groupoid; as a
result, we can deduce that the pullback of ωH

1 descends to the 1-truncation, inducing an H-closed, multiplicative 2-form on
the Lie groupoid integrating the Dirac structure. This 2-form precisely coincides with the one constructed by H. Bursztyn, M.
Crainic, A. Weinstein, and C. Zhu [3]. We can thus view the Liu–Weinstein–Xu 2-groupoid as being the geometric origin of
presymplectic groupoids.

We prove that the sub-2-groupoid associated to a Dirac structure is in fact Lagrangian at the ‘‘units’’ of the 2-groupoid.We
conjecture that it is Lagrangian everywhere, and we prove the conjecture in a special case. We believe that the Lagrangian
property is the origin of the nondegeneracy condition in [3] and therefore deserves further study.

Another issue that we do not address here is that of the relationship between LWX(M) and the finite-dimensional
symplectic 2-groupoids of [6–8]. There are natural maps between these different symplectic 2-groupoids, e.g. [7, Remark
7]. Clearly, there should be a notion of equivalence between symplectic 2-groupoids (see [11] for discussion about Morita
equivalence of symplectic groupoids) but the precise nature of the equivalence remains an open question.

Organization of the paper. In Section 2, we briefly review some background material on Courant algebroids and simplicial
manifolds. In Section 3, we construct an infinite-dimensional simplicial manifold {C•(M)} associated to any manifoldM . We
show that {C•(M)} can be truncated to an infinite-dimensional Lie 2-groupoid, which we denote LWX(M). In Section 4, we
construct canonical symplectic forms ωi on LWXi(M) for i = 1, 2, as well as twisted versions ωH

i associated to any closed
3-form H on M . In particular, we show that the relations (1.1) are satisfied. In Section 5, we construct a simplicial manifold
{G•(D)} associated to any Dirac structureD, whose 1-truncation is the Lie groupoid G integrating the Dirac structure. There
is a natural inclusion map G•(D) ↪→ C•(M), and we show that the pullback of ω2 vanishes, implying that ω1 induces a
presymplectic structure on G. Finally, in Section 6, we show that the image of G2(D) in LWX(M) is Lagrangian at the units
and conjecture that it is Lagrangian everywhere.

2. Background

In this section, we briefly review the definitions and constructions about Courant algebroids and simplicial manifolds.

2.1. Courant algebroids

We begin with the definition of Courant algebroid.
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Definition 2.1. A Courant algebroid is a vector bundle E → M equippedwith a nondegenerate symmetric bilinear form ⟨·, ·⟩,
a bundle map ρ : E → TM (called the anchor), and a bracket [[·, ·]] (called the Courant bracket) on Γ (E) such that

(1) [[e1, fe2]] = ρ(e1)(f )e2 + f [[e1, e2]],
(2) ρ(e1)(⟨e2, e3⟩) = ⟨[[e1, e2]], e3⟩ + ⟨e2, [[e1, e3]]⟩,
(3) [[[[e1, e2]], e3]] = [[e1, [[e2, e3]]]] − [[e2, [[e1, e3]]]],
(4) [[e1, e2]] + [[e2, e1]] = D⟨e1, e2⟩,

for all f ∈ C∞(M) and ei ∈ Γ (E), where D : C∞(M) → Γ (E) is defined by

⟨Df , e⟩ = ρ(e)(f ).

Note that, in Definition 2.1, the bracket is generally not skew-symmetric, but a Jacobi identity (condition (3)) holds. This
definition of Courant algebroid appeared in [2], and itwas shown to be equivalent to the original definition of Liu–Weinstein–
Xu in [12] (see also [13] and [14]).

For any manifold M , the standard Courant algebroid over M is the bundle E = TM ⊕ T ∗M , where ρ is the projection onto
the TM component, the bilinear form is given by

⟨X1 + ξ1, X2 + ξ2⟩ = ξ2(X1) + ξ1(X2),

and the bracket is given by

[[X1 + ξ1, X2 + ξ2]] = [X1, X2] + LX1ξ2 − ιX2dξ1

for Xi ∈ X(M), ξi ∈ Ω1(M). Given a closed 3-form H onM , one can define the H-twisted Courant bracket by

[[X1 + ξ1, X2 + ξ2]]H = [X1, X2] + LX1ξ2 − ιX2dξ1 + ιX1 ιX2H.

Definition 2.2. A Courant algebroid E → M is called exact if the sequence

0 → T ∗M
ρ∗

−→ E
ρ
−→ TM → 0

is exact.

Ševera [15] showed that every exact Courant algebroid is isomorphic to an H-twisted version of TM ⊕ T ∗M for some
closed H ∈ Ω3(M).

Dirac structures in TM ⊕ T ∗M were introduced by Courant [16] as a bridge between Poisson geometry and presymplectic
geometry. The twisted versions were studied in [14].

Definition 2.3. An (H-twisted) Dirac structure on M is a maximally isotropic subbundle D ⊂ TM ⊕ T ∗M such that Γ (D) is
closed under the (H-twisted) Courant bracket.

2.2. Simplicial manifolds

Definition 2.4. A simplicial manifold is a sequence {X•} = {Xm : m ≥ 0}, of manifolds equipped with surjective submersions
dmi : Xm → Xm−1 (called face maps), i = 0, . . . ,m, and embeddings smi : Xm → Xm+1 (called degeneracy maps), i = 0, . . . ,m,
such that

dm−1
i dmj = dm−1

j−1 dmi , i < j,

sm+1
i smj = sm+1

j+1 smi , i < j,

dm+1
i smj =

⎧⎨⎩
sm−1
j−1 dmi , i < j,
id, i = j, i = j + 1,
sm−1
j f mi−1, i > j + 1.

When the domain of a face or degeneracy map is clear, we will generally omit the superscript index.
For m ≥ 1 and 0 ≤ ℓ ≤ m, an (m, ℓ)-horn of X consists of an m-tuple (x0, . . . , xℓ−1, xℓ+1, . . . xm), where xi ∈ Xm−1, such

that

dixj = dj−1xi (2.1)

for i < j. The space of all (m, ℓ)-horns is denotedΛm,ℓ(X). The horn maps λm,ℓ : Xm → Λm,ℓ(X) are defined as

λm,ℓ(x) = (d0x, . . . , d̂kx, . . . dmx)

for x ∈ Xm.
A simplicial manifold {X•} is said to satisfy the Kan condition if all of its horn spaces Λm,ℓ(X) are smooth and all of the

horn maps λm,ℓ are surjective submersions. The following is a more general notion.
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Definition 2.5. A morphism f : {X•} → {Y•} of simplicial manifolds is a Kan fibration if all of the fiber products
Λm,ℓ(X)×Λm,ℓ(Y )Y are smooth and all of the maps Xm → Y×Λm,ℓ(Y )Λm,ℓ(X) given by x ↦→ (f (x), λm,ℓ(x)) are surjective
submersions.

Clearly, {X•} satisfies the Kan condition if and only if the map {X•} → {∗} is a Kan fibration.
The following statement is a special case of [17, Lemma 2.9]. Although that paper mainly deals with reduced simplicial

manifolds, i.e. those for which X0 = {∗}, the proof given there does not rely on that assumption.

Lemma 2.6. If {Y•} is a Kan simplicial manifold and if f : {X•} → {Y•} is a Kan fibration, then {X•} is Kan.

2.3. Lie n-groupoids

Definition 2.7. A Lie n-groupoid is a Kan simplicial manifold whose horn maps λm,ℓ are diffeomorphisms form > n.

Duskin [18] introduced a truncation functor τ≤n which may be applied to a Kan simplicial set {X•} to produce an n-
groupoid. It is defined as follows:

• (τ≤nX)m = Xm for m < n;
• (τ≤nX)n = Xn/∼ , where x ∼ y if and only if there exists z ∈ Xn+1 such that dnz = x, dn+1z = y, and diz ∈ im(sn−1) for

0 ≤ i < n;
• (τ≤nX)m = Xm/∼ for m > n, where x ∼ y if and only if the n-skeletons of x and y are equivalent with respect to the

equivalence relation on Xn.

The following result can be found in [19, Section 2].

Lemma 2.8. If {X•} is a Kan simplicial (Banach) manifold, then τ≤nX is an n-groupoid. If, furthermore, (τ≤nX)n = Xn/∼ is a
(Banach) manifold, then {(τ≤nX)•} is a Lie n-groupoid.

2.4. Symplectic 2-groupoids

The notion of symplectic 2-groupoidwas defined in [6,7]. We somewhat imprecisely state the definition as follows:

Definition 2.9. A symplectic 2-groupoid is a Lie 2-groupoid {X•} that is equipped with a closed, multiplicative 2-form
ω ∈ Ω2(X2), i.e. dω = δω = 0 satisfying a nondegeneracy condition.

In Definition 2.9, we have intentionally left the content of the nondegeneracy condition ambiguous. Li-Bland and
Ševera [7] required the 2-form to be genuinely nondegenerate, so that (X2, ω) is a symplectic manifold. In [6], a weaker
condition was stated, where the kernel of ω is required to be controlled in a certain way by the simplicial structure. We
refer the reader to [20] for ideas from shifted symplectic geometry about the nondegeneracy condition, and to [21] for more
detailed discussion about the nondegeneracy condition.

In this paper, we will use the genuine nondegeneracy condition; however, since we are dealing with Banach manifolds,
we only require weak nondegeneracy, which is recalled in the following definition.

Definition 2.10. Let X be a Banach manifold. A 2-form ω ∈ Ω2(X) is weakly nondegenerate if for every x ∈ X , the map
ω
♭
x : TxX → T ∗

x X , v ↦→ ωx(v, ·), is injective, i.e. ωx(v,w) = 0 for all w ∈ TxX if and only if v = 0.

3. Construction of LWX(M)

In this section, we describe the construction of the Liu–Weinstein–Xu 2-groupoid, which involves first constructing an
infinite-dimensional simplicial manifold and then truncating it to obtain a Lie 2-groupoid.

The idea of integrating infinitesimal structures by spaces of maps has a long history, going back to Lie’s Third Theorem
(see [22]). A general constructionwas given by D. Sullivan [23] in the context of rational homotopy theory. The application of
this idea to the integration of symplectic NQ -manifolds was described in [5,15] and is closely related to AKSZ theories [24].
In particular, the integration of Poisson manifolds and Lie algebroids [4,10] utilizes this approach.

3.1. A simplicial manifold

Let M be a manifold. Recall that, if X is a manifold and E
π
−→ M is a vector bundle, then a map φ : X → E is said to be of

class Cp,q if φ is Cq and π ◦ φ is Cp. Clearly, if this is the case, then it is necessary that p ≥ q.
Fix p ≥ q. For each integer m ≥ 0, let Cm(M) denote the set of Cp,q bundle maps from T∆m to T ∗M , where ∆m is the

standardm-dimensional simplex in Rm.
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Lemma 3.1. The space Cm(M) is a Banach manifold.

Proof. Let T ∗
mM be them-fold direct sum of T ∗M . That is,

T ∗

mM := T ∗M ⊕ · · · ⊕ T ∗M  
m

.

Then wemay use the standard trivialization T∆m
= ∆m

×Rm to obtain a one-to-one correspondence between bundle maps
ϕ : T∆m

→ T ∗M and maps ϕ̃ : ∆m
→ T ∗

mM . Specifically, given such a ϕ, we obtain ϕ̃ by evaluating ϕ on the standard basis
vectors of Rm. This correspondence preserves order of differentiability, in that ϕ is Cp,q if and only if ϕ̃ is Cp,q.

The statement immediately follows from the fact that the space of Cp,q-maps from∆m to T ∗
mM is a Banach manifold. □

There is a cosimplicial manifold structure on {T∆•
}, obtained by applying the tangent functor to the standard cosimplicial

manifold {∆•
}. Thus there is an induced simplicial manifold structure on {C•(M)}. We note that C0(M) = M , and that

C1(M) = {Cp,q bundle maps T [0, 1] → T ∗M} can be identified with the space of Cp,q paths on T ∗M .

Lemma 3.2. The horn spaceΛm,ℓ(C(M)) is smooth for all m, ℓ.

Proof. We will prove the statement by constructing a coordinate chart on a neighborhood U of any element inΛm,ℓ(C(M)).
Since horns are contractible, we may assume without loss of generality that U is contained in the space of horns whose
images are in T ∗U ∼= T ∗Rn for some coordinate chart U ⊆ M . Thus, it is sufficient to show thatΛm,ℓ(C(Rn)) can be given the
structure of a Banach space.

Since T ∗
mR

n can be identified withRn(m+1), we can identify Cm(Rn) with the Banach space of Cp,q maps from∆n toRn(m+1).
Under this identification, the face maps dmi : Cm(Rn) → Cm−1(Rn) are bounded linear maps between Banach spaces. To
construct the horn spaceΛm,ℓ(C(Rn)), we first consider the Banach space

Pm−1 := Cm−1(Rn) ⊕ · · · ⊕ Cm−1(Rn)  
m

consisting of m-tuples of (m − 1)-simplices. We then observe that the horn compatibility conditions (2.1) can be written in
the form dixj − dj−1xi, so thatΛm,ℓ(C(Rn)) can be seen as the intersection of the kernels of a set of bounded linear maps and
is therefore a Banach space. □

Proposition 3.3. The simplicial manifold {C•(M)} satisfies the Kan condition.

Proof. For each m, let Sm(M) denote the set of Cp maps from∆m to M . It is known (see, for example, [17, Lemma 5.7]) that
{S•(M)} is a Kan simplicial manifold. There is a natural projection map {C•(M)} → {S•(M)}, so, by Lemma 2.6, it suffices to
show that this map is a Kan fibration.

The fact that {S•(M)} satisfies the Kan condition, togetherwith Lemma 3.2, implies that the fiber product Sm(M)×Λm,ℓ(S(M))

Λm,ℓ(C(M)) is smooth. It remains to show that the map Cm(M) → Sm(M)×Λm,ℓ(S(M))Λm,ℓ(C(M)), taking ϕ ∈ Cm(M) to
(ϕ̄, λm,ℓ(ϕ)), where ϕ̄ is the underlying base map of ϕ, is a surjective submersion for all ℓ and m ≥ 1. We will prove this
using a method similar to that used in [17, Lemma 5.7].

Let f : ∆m
→ M be a Cp map, and letψi : T∆m−1

→ T ∗M , i ̸= ℓ be a collection of Cp,q maps forming a horn inΛm,ℓ(C(M))
that is compatible with f . For each nonempty I ⊂ {0, . . . ,m} ∖ {ℓ}, let FI ⊂ ∆m denote the (m − |I|)-dimensional subface
whose vertices are {0, . . . ,m} ∖ I . As a result of the horn compatibility conditions, the maps ψi induce well-defined Cp,q

maps ψI : TFI → T ∗M .
For each I , let pI : ∆m

→ FI be the affine projection map collapsing the vertices in I onto ℓ. Fix a Riemannian metric on
M . Then, for each t ∈ ∆m, we may use parallel transport along the image of the line from t to pI (t) to identify T ∗

f (t)M with
T ∗

f (pI (t))
M .

We now define a map ϕ : T∆m
→ T ∗M with base map f , given by

ϕ =

∑
I⊂{0,...,m}∖{ℓ}

(−1)|I|+1ψI ◦ TpI .

It is clear by construction that ϕ is Cp,q, and it follows from the identities satisfied by the projection and face maps that
diϕ = ψi for each i ̸= ℓ. This proves surjectivity.

To show that themap is a submersion,we observe that, under a sufficiently small change in f , we canuse parallel transport
to accordingly change any horn filling ϕ, and under a change in {ψi}, we can apply the above construction to the difference
to accordingly change ϕ. This process gives a local section through any ϕ ∈ Cm(M). □
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3.2. 2-groupoid truncation

By applying Lemma 2.8 to {C•(M)} for n = 2, we obtain the Liu–Weinstein–Xu 2-groupoid LWX(M) := τ≤2C(M). The main
result of this section is the following:

Theorem 3.4. The quotient C2(M)/∼ is a Banach manifold, and therefore LWX(M) is a Lie 2-groupoid.

Theorem 3.4 follows directly from Lemmas 3.6–3.8. In these lemmas we will assume, without loss of generality, that M
is connected.

Lemma 3.5. The map C1(M) → M × M given by ψ ↦→ (d0ψ, d1ψ) is a surjective submersion.

Proof. Surjectivity follows from the assumption thatM is connected. To prove that themap is a submersion, wewill describe
a way to construct local sections.

Recall that C1(M) can be identified with the space of Cp,q paths on T ∗M . Let ψ be such a path. Choose a Riemannian
metric on M , and, for i = 1, 2, let Ui be a neighborhood of diψ for which the exponential map is a diffeomorphism. Using
the exponential map and parallel transport along the base path ψ̄ : [0, 1] → M , we may then identify the neighborhood
U1 × U2 of (d0ψ, d1ψ) with a neighborhood of (0, 0) in Td0ψM × Td0ψM .

For any (v0, v1) ∈ Td0ψM × Td0ψM , we may (again using parallel transport) view v(t) := (1 − t)v0 + tv1 as a vector field
along ψ̄ . By exponentiating ψ̄ in the direction of v(t) and parallel transporting the cotangent vectors of ψ , we obtain a path
ψ ′

∈ C1(M) for which (d0ψ ′, d1ψ ′) = (v0, v1). This process provides a well-defined local section through ψ . □

LetB(M) be defined as the space of ‘‘triangles’’ of paths in C1(M). More precisely,B(M) is the space of triples (ψ0, ψ1, ψ2),
ψi ∈ C1(M), such that

d0ψ2 = d1ψ0, d0ψ1 = d0ψ0, d1ψ1 = d1ψ2. (3.1)

Lemma 3.6. B(M) is a Banach manifold.

Proof. Recall (see, for example, [17, Lemma 4.4]) that Banach manifolds are closed under fiber products where one of the
maps is a surjective submersion. Since the face maps of a simplicial manifold are surjective submersions, the horn space
Λ2,1(C(M)), consisting of pairs (ψ0, ψ2) ∈ C1(M) × C1(M) satisfying the first equation in (3.1), is a Banach manifold.

Wemay viewB(M) as the fiber product overM ×M of C1(M) andΛ2,1(C(M)), where the fiber product imposes the latter
two equations in (3.1). Since this fiber product involves the surjective submersion C1(M) → M × M from Lemma 3.5, it
follows thatB(M) is a Banach manifold. □

Let πB : B(M) → Cp(∂∆2
;M) be the map taking (ψ0, ψ1, ψ2) ∈ B(M) to its base map (ψ̄0, ψ̄1, ψ̄2).

Lemma 3.7. The map πB is a surjective submersion.

Proof. Surjectivity is clear, since the edges of any map from ∂∆2 to M can be lifted to zero maps T∆1
→ T ∗M .

Choose a Riemannianmetric onM . For anymap f : ∂∆2
→ M , we can use the exponentialmap to identify any sufficiently

close maps with lifts f̃ : ∂∆2
→ TM . Given such a lift, we can use parallel transport along the exponential paths to translate

any element ofB(M) whose base map is f . This process gives a local section of πB. □

There is a natural ‘‘1-skeleton’’ map ν : C2(M) → B(M), given by ν(ϕ) = (d0ϕ, d1ϕ, d2ϕ). The map ν is invariant under
the equivalence relation that defines LWX2(M) = C2(M)/∼ .

Let B0(M) be the connected component of B(M) consisting of elements β for which πB(β) is contractible. Clearly, the
image of ν is contained inB0(M). Thus, we see that ν induces a map ν̂ : LWX2(M) → B0(M).

There is another map πC : C2(M) → S2(M) := Cp(∆2
;M), taking ϕ to its base map ϕ̄. An equivalence between

elements ϕ, ϕ′
∈ C(M) induces a boundary-fixing homotopy between ϕ̄ and ϕ̄′, so πC descends to a map from LWX2(M)

to S2(M)/∼ , where the equivalence relation is boundary-fixing homotopy. We observe that S2(M)/∼ is a covering of the
component of contractible maps in Cp(∂∆2

;M) and is therefore a Banach manifold.1 In particular, if π2(M) = 0, then
S2(M)/∼ = Cp(∂∆2

;M).

Lemma 3.8. The map (ν̂, πC) is a bijection from LWX2(M) to the fiber product (over Cp(∂∆2
;M)) of B0(M) with S2(M)/∼ .

Proof. Throughout this proof, wewill assume that a choice of Riemannianmetric onM has been fixed, andwewill implicitly
use parallel transport to identify cotangent spaces at different points along paths inM .

1 This statement is a higher-dimensional analogue of the fact that the fundamental groupoid of amanifoldM is a cover ofM×M , and the proof is similar.
We leave the details to the reader.
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Wewill first show that (ν̂, πC) is surjective. Let (ψ0, ψ1, ψ2) be inB0, and let f be a compatible map in Cp(∆2
;M). Using

the standard trivializations of ∆1 and ∆2, we can identify each ψi with a path in T ∗M , and we can identify C2(M) with the
space of Cp,q maps from∆2 to T ∗

2M := T ∗M ⊕ T ∗M .
For i = 0, 1, 2, let βi be the path in T ∗

2M with the same base path as ψi, given by

β0(t) = (ψ0(t), (1 − t)(ψ1(0) − ψ0(0)) + tψ2(0)) ,
β1(t) = ((1 − t)ψ0(0) + t(ψ1(t) − ψ2(1)), (1 − t)(ψ1(t) − ψ0(0)) + tψ2(1)) ,
β2(t) = ((1 − t)ψ0(1) + t(ψ1(1) − ψ2(1)), ψ2(t)) .

These paths agree at the endpoints, in that β2(0) = β0(1), β0(0) = β1(0), and β1(1) = β2(1), so they form a well-defined
map β : ∂∆2

→ T ∗

2M that can be extended to a Cq map ϕ : ∆2
→ T ∗

2M for which the base map is f . By construction, we
have that ν̂(ϕ) = (ψ0, ψ1, ψ2) and πC(ϕ) = f .

Next, we will show that (ν̂, πC) is one-to-one. Suppose that ϕ, ϕ′ are elements of C2(M) for which ν(ϕ) = ν(ϕ′) and
πC(ϕ) ∼ πC(ϕ′). By a process similar to the proof of surjectivity, one can construct a map from ∂∆3 to T ∗

3M which, if it could
be extended to amap ζ : ∆3

→ T ∗

3M , would satisfy the conditions of an equivalence between ϕ and ϕ′. The assumption that
πC(ϕ) and πC(ϕ′) are in the same boundary-fixing homotopy class guarantees that such an extension ζ does exist (and can
be chosen to have the same order of differentiability as the boundary), proving that ϕ and ϕ′ represent the same element of
LWX2(M). □

Remark 3.9. If π2(M) = 0, then Lemma 3.8 implies that LWX2(M) is naturally diffeomorphic to B0(M). If π1(M) = 0, then
B0(M) = B(M). Thus, if M is 2-connected, then ν̂ is a diffeomorphism from LWX2(M) to B(M). This fact provides a simple
description (in the 2-connected case) of elements of LWX2(M) as triangles of paths in C1(M). For general M , an appropriate
modification is as follows: an element of LWX2(M) corresponds to a quadruplet ([f ], ψ0, ψ1, ψ2), where

• [f ] is a class of Cp maps from∆2 toM , modulo boundary-fixing homotopy, and
• each ψi is a Cq lift of the ith edge of f to T ∗M .

4. Symplectic structures

In this section, we describe how the canonical symplectic form on T ∗M induces symplectic structures on LWX1(M) and
LWX2(M).

4.1. Multiplicative forms and truncation

Let {X•} be a Kan simplicial manifold, and let α be a k-form on Xm for some m. Recall that the simplicial coboundary of
α ∈ Ωk(Xm) is defined as

δα :=

m+1∑
i=0

(−1)id∗

i α ∈ Ωk(Xm+1).

There is also the de Rham differential

d : Ωk(Xm) → Ωk+1(Xm).

The two differentials d and δ commute and hence define a bicomplex structure on the total space of differential forms⨁
k,mΩ

k(Xm). The associated total complex is called the Bott–Shulman–Stasheff complex [25].

Definition 4.1. We say that α ∈ Ω(Xm) ismultiplicative if δα = 0.

Proposition 4.2. If α ∈ Ω(Xn) is multiplicative, then α is basic with respect to the quotient map Xn → (τ≤nX)n.

Proof. Recall that the quotient is defined by the equivalence relation where x ∼ y if and only if there exists z ∈ Xn+1 such
that dnz = x, dn+1z = y, and diz ∈ im(sn−1) for 0 ≤ i < n. In this case, it follows that diz = sn−1dix = sn−1diy for 0 ≤ i < n.

From the definition of the equivalence relation, we can see that a vector v ∈ TXn is tangent to a fiber of the quotient map
if and only if there exists a vector ṽ ∈ TXn+1 such that (dn+1)∗ṽ = v and (di)∗ṽ = 0 for 0 ≤ i ≤ n. If this is the case, then, for
any α ∈ Ωk(Xn),

α(v, ·, . . . , ·) = ±(δα)(ṽ, ·, . . . , ·).

Therefore, if α is multiplicative, then any vector tangent to a fiber of the quotient map is in kerα.
If α is multiplicative, then dα is also multiplicative, and any vector tangent to a fiber of the quotient map is also in ker dα.

Since both α and dα annihilate vectors tangent to the fibers, we conclude that α is basic. □
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4.2. Lifting differential forms

Recall that, for eachm, the space Cm(M) consists of Cp,q bundle maps from T∆m to T ∗M . For ϕ ∈ Cm(M), a tangent vector
at ϕ is given by a Cp,q lift X : T∆m

→ TT ∗M that is linear over TM:

TT ∗M = T ∗TM

↓↓

↘↘
T∆m

↓↓

ϕ →→

X
→→

T ∗M

↓↓

TM

↘↘
∆m

X0

→→

f →→ M

(4.1)

For each pair of tangent vectors X, Y ∈ TϕCm(M), we can use the canonical symplectic form ωcan on T ∗M to obtain a
function ηmX,Y on T∆m, given by

ηmX,Y (v) = ωcan(X(v), Y (v))

for v ∈ T∆m.

Proposition 4.3. The function ηmX,Y is linear and can therefore be identified with a 1-form on∆m.

Proof. The result is a direct consequence of the linearity property of ωcan with respect to the bundle structure of
T ∗M → M . □

For m = 1, the operation (X, Y ) ↦→
∫
∆1 η

1
X,Y is bilinear and skew-symmetric, and so it determines a 2-form ω1 ∈

Ω2(C1(M)). For m = 2, we can also define a 2-form ω2 ∈ Ω2(C2(M)) by the formula

ω2(X, Y ) =

∫
∆2

dη2X,Y =

∫
∂∆2

η2X,Y . (4.2)

Proposition 4.4. ω2 is the simplicial coboundary of ω1.

Proof. For i = 0, 1, 2, let σi : ∆1
→ ∆2 be the ith coface map (which is essentially dual to the face map di). For any

X, Y ∈ TϕC2(M) and v ∈ T∆1, we have that

η1Tdi(X),Tdi(Y )(v) = ωcan(Tdi(X)(v), Tdi(Y )(v))

= ωcan(X(Tσi(v)), Y (Tσi(v)))

= η2X,Y (Tσi(v)).

(4.3)

Using (4.3), we see that

(d∗

i ω1)(X, Y ) = ω1(Tdi(X), Tdi(Y ))

=

∫
∆1
η1Tdi(X),Tdi(Y )

=

∫
∆1
σ ∗

i η
2
X,Y .

(4.4)

The result then follows from (4.2) and (4.4). □

Proposition 4.5. The 2-forms ω1 ∈ Ω2(C1(M)) and ω2 ∈ Ω2(C2(M)) are exact.

Proof. Let λcan denote the tautological 1-form on T ∗M , satisfying the property ωcan = −dλcan. We can use λcan to induce
forms on the mapping spaces in a manner similar to the construction of ω1 and ω2. Specifically, for X ∈ TϕCn(M), let θnX be
the function on T∆n given by

θnX (v) = λcan(X(v)).

Because of the linearity property of λcan, we have that θnX is a linear function and can therefore be identified with a 1-form
on∆n.
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Then, let λ1 ∈ Ω1(C1(M)) and λ2 ∈ Ω1(C2(M)) be defined by

λ1(X) =

∫
∆1
θ1X , λ2(X) =

∫
∆2

dθ2X =

∫
∂∆2

θ2X .

The proof of Proposition 4.4, with appropriate modification, can be used to show that λ2 = δλ1.
We claim that ω1 = −dλ1 (and, since d commutes with δ, therefore ω2 = −dλ2). We can check it locally inM , as follows.
Let (xi, pi) be canonical coordinates on a neighborhood in T ∗M . Any Cp,q bundle map ϕ : T∆1

→ T ∗M is locally described
by the pullbacks f i := ϕ∗(xi) and ξi := ϕ∗(pi), where f i ∈ Cp(∆1) and ξi ∈ Cq

linear(T∆
1) can be identified with 1-forms on∆1.

A tangent vector X ∈ TϕC1(M) is locally given by (vi, χi), where the vi and χi are functions and 1-forms, respectively, on∆1.
We can locally describe λ1 by the formula

λ1|(f i,ξi)(v
i, χi) =

∫
∆1
viξi. (4.5)

The directional derivatives of λ1 are given by

D(vi,χi)λ1|(f i,ξi)(v
′i, χ ′

i ) =

∫
∆1
v′iχi,

from which we obtain the result

dλ1((vi, χi), (v′i, χ ′

i )) =

∫
∆1
v′iχi − viχ ′

i = −ω1((vi, χi), (v′i, χ ′

i )). □

4.3. A symplectic 2-groupoid

Since ω2 ∈ Ω2(C2(M)) is multiplicative, it descends (by Proposition 4.2) to LWX2(M) = C2(M)/∼ .

Theorem 4.6. LWX(M), equipped with the 2-form ω2, is a symplectic 2-groupoid.

Proof. The fact that ω2 descends to a closed, multiplicative 2-form on the truncation is an immediate consequence of
Propositions 4.2, 4.4, and 4.5.

It remains to check the nondegeneracy condition. For this, we first observe that ω1 ∈ Ω2(C1(M)) is (weakly) nonde-
generate. Then, using the description of LWX2(M) obtained in Lemma 3.8, one can see that a tangent vector in LWX2(M)
is given by a compatible triplet of tangent vectors in C1(M). If such a triplet (b0, b1, b2) does not vanish everywhere, it is a
straightforward exercise to construct another triplet (b′

0, b
′

1, b
′

2) for which the pairing

ω2((b0, b1, b2), (b′

0, b
′

1, b
′

2)) = ω1(b0, b′

0) − ω1(b1, b′

1) + ω1(b2, b′

2)

does not vanish, thereby proving the (weak) nondegeneracy of ω2 on LWX2(M). □

Remark 4.7.

(1) We recommend the reader to compare Theorem 4.6 with [5, Lemma 3] for a formal proof of a more general statement.
(2) In [26], a symplectic form is constructed by the AKSZ method for the Courant-sigma model. It would be interesting to

see if the symplectic form ω2 on LWX2(M) could be interpreted as a Hamiltonian reduction of the symplectic form for
the Courant-sigma model, in analogy to the result of [10].

4.4. 3-form twisting

Let H be a 3-form on M . In this section, we describe how H can be used to twist the 2-forms ω1 and ω2. We suggest the
reader to compare these constructions with the ones in [7, Section 4.1]. In [7], a metric on M is chosen and only geodesic
paths are considered, whereas in this article we consider all paths.

For ϕ ∈ Cm(M), let f : ∆m
→ M be the basemap underlying ϕ : T∆m

→ T ∗M . For X, Y ∈ TϕCm(M), let X0, Y0 : ∆m
→ TM

be the respective base maps (see (4.1)). We can use H to obtain a 1-form Hm
X,Y on∆m, given by

Hm
X,Y (s) = f ∗(H(X0(s), Y0(s), ·))

for s ∈ ∆m. We then define 2-forms φH
1 ∈ Ω2(C1(M)) and φH

2 ∈ Ω2(C2(M)) by

φH
1 (X, Y ) =

∫
∆1

H1
X,Y ,

φH
2 (X, Y ) =

∫
∆2

dH1
X,Y .
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Remark 4.8. The forms φH
i , i = 1, 2, only depend on the information about the underlying base maps, so are actually

pullbacks of forms on Si(M) := Cp(∆i,M). The construction of φH
1 is a special case of a more general transgression procedure

taking any β ∈ Ωk(M) to φβi ∈ Ωk−1(Si(M)).

We define the twisted versions of ω1 and ω2 as follows:

ωH
i := ωi + φH

i .

Proposition 4.9. φH
2 is the simplicial coboundary of φH

1 . Therefore, ω
H
2 = δωH

1 .

Proof. The result follows from an argument similar to the proof of Proposition 4.4. □

Proposition 4.10. If H is closed, then dφH
1 = δH, and therefore dωH

1 = δH.

Proof. In local coordinates on M , write H =
1
6Hijkdxi ∧ dxj ∧ dxk. Then, in the local neighborhood, for f = (f i) ∈ Cp(∆1

;M)
and any Cp sections X0 = (X i

0), Y0 = (Y i
0) of f

∗(TM), we have

φH
1 |f (X0, Y0) =

∫
∆1

f ∗(Hijk)X i
0Y

j
0df

k.

The differential of φH
1 is then given by

dφH
1 |f (X0, Y0, Z0) =

∫
∆1

X∗

0 (dHijk)Y i
0Z

j
0df

k
+ f ∗(Hijk)Y i

0Z
j
0dX

k
0 + {cycl.}. (4.6)

The integral of the first term on the right side of (4.6), together with its cyclic permutations, is equal to

φdH
1 |f (X0, Y0, Z0) +

∫
∆1

f ∗(dHijk)X i
0Y

j
0Z

k
0 . (4.7)

The integral of the second term on the right side of (4.6), together with its cyclic permutations, is∫
∆1

f ∗(Hijk)d(X i
0Y

j
0Z

k
0 ). (4.8)

Putting (4.7) and (4.8) together, we have

dφH
1 |f (X0, Y0, Z0) = φdH

1 |f (X0, Y0, Z0) +

∫
∆1

d
(
f ∗(Hijk)X i

0Y
j
0Z

k
0

)
= φdH

1 |f (X0, Y0, Z0) +

[
f ∗(Hijk)X i

0Y
j
0Z

k
0

]1

0
,

or, in other words,

dφH
1 = φdH

1 + δH. (4.9)

In particular, if H is closed, then dφH
1 = δH . □

Since ωH
2 ∈ Ω2(C2(M)) is multiplicative, it descends to LWX2(M). We now arrive at the main result of this section.

Theorem 4.11. Let M be a manifold, and let H be a closed 3-form on M. Then LWX2(M), equipped with the 2-form ωH
2 , is a

symplectic 2-groupoid.

Proof. It follows from Propositions 4.9 and 4.10 that ωH
2 is closed and multiplicative.

As in the proof of Theorem 4.6, the nondegeneracy ofωH
2 follows from the observation thatωH

1 is nondegenerate. This can
be seen by showing that, for any X ∈ TϕC1(M), one can construct Y ∈ TϕC1(M) for which φH

1 (X, Y ) = 0 and ω1(X, Y ) ̸= 0.
We leave the details as an exercise. □

Remark 4.12.

(1) The geometric intuition behind the construction of ωH
1 is as follows. The space of 1-simplices C1(M) = LWX1(M) can

be naturally identified with the cotangent bundle of S1(M), and ω1 can then be seen as the canonical symplectic form
on T ∗(S1(M)). Since φH

1 is the pullback of a 2-form on S1(M), we see that ωH
1 is the modification of ω1 by the magnetic

term φH
1 and is therefore ‘‘automatically’’ nondegenerate.

(2) The results of Propositions 4.9 and 4.10 can be concisely stated by saying that φH
2 is the coboundary of φH

1 + H in the
Bott–Shulman–Stasheff complex of LWX(M). Putting this together with Propositions 4.4 and 4.5, we see that ωH

2 is the
coboundary of ωH

1 + H in the Bott–Shulman–Stasheff complex.
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5. Integration of Dirac structures

In this section, we study the geometry of integration of Dirac structures in relation to the Liu–Weinstein–Xu 2-groupoid.

5.1. A-path integration

Let D be a Dirac structure in an exact Courant algebroid (TM ⊕ T ∗M,H). Letting ρ be the canonical projection from
TM ⊕ T ∗M to TM , we have that (D, ρ) forms a Lie algebroid. The integration of (D, ρ) via ‘‘A-paths’’ was studied in [3,4].

In this section, we will construct a simplicial manifold {G•(D)} that connects the A-path integration of a Dirac structure
to {C•(M)}. First, we briefly review the A-path construction.

Define P(D) to be the space of C2,1 paths α : ∆1
→ T ∗M satisfying(

d
dt

(π ◦ α)(t), α(t)
)

∈ D, ∀t ∈ ∆1.

It is proved in [4, Lemma 4.6] that P(D), which is called the space of A-paths, is a Banach manifold.
Recall that C1(M) can be identified with the space of all Cp,q maps from∆1

→ T ∗M . Taking p = 2 and q = 1, we have a
natural, smooth inclusion map ι1 : P(D) → C1(M).

To construct a groupoid integrating D, one needs to impose a homotopy relation on A-paths; we refer to [4, Definition
1.4] for the precise definition. Crainic and Fernandes proved [4, Theorem 2.1] that the quotient G := P(D)/∼ is a source-
simply-connected topological groupoid. In general, G could fail to be smooth, and necessary and sufficient conditions for D
to be integrable to a Lie groupoid were obtained in [4, Theorem 4.1].

We will now describe a simplicial manifold associated to a Dirac structure D. For simplicity, we will assume that D is
integrable to a Lie groupoid, although many of the results will carry through in the general case.2

For each m ≥ 0, let Gm(D) denote the set of C2 groupoid morphisms from the pair groupoid ∆m
× ∆m to G. There is a

natural simplicial structure on {G•(D)}, induced by the cosimplicial structure of {∆•
}.

Lemma 5.1. The space Gm(D) is a Banach manifold.

Proof. Given a C2 groupoidmorphismΣ : ∆m
×∆m

→ G, we define a C2 mapσ : ∆m
→ G by the equationσ (w) = Σ(w, 0).

We observe that σ satisfies the following two properties:

• σ (0) is a unit of G,
• σ (w) is in the same source-fiber as σ (0) for all w ∈ ∆m.

Conversely, given any C2 map σ : ∆m
→ G satisfying the above properties, we may obtain Σ ∈ Gm(D) by setting

Σ(w1, w2) = σ (w1)σ (w2)−1, so we have a one-to-one correspondence.
We will now show that the space of all σ satisfying the above properties (and hence Gm(D)) is a Banach manifold. Let

s : G → M denote the source map. Since s is a submersion, we have that s−1(x) is a submanifold of G for each x ∈ M , so
C2(∆m

; s−1(x)) is a Banach manifold.
Consider the evaluation map ev0 : C2(∆m

; s−1(x)) → s−1(x), defined by ev0(f ) := f (0) for f ∈ C2(∆m
; s−1(x)). It is not

difficult to check that ev0 is a surjective submersion between Banach manifolds. Therefore, C2(∆m
; s−1(x))0 := ev−1

0 (x) is a
Banach manifold.

As σ (∆m) is compact and the map s : G → M is submersive, we have that G(D)m near σ is locally a product of a
neighborhood of σ in C2(∆m, s−1(x))0 and Rdim(M). This shows that Gm(D) is a Banach manifold. □

Remark 5.2. We point out that, since G might not be a Hausdorff manifold [4], it is possible for Gm(D) to be non-Hausdorff
as well.

Following the approach of the proof of Lemma 5.1, one can show that the horn spaces of {G•(D)} are smooth and the horn
maps are surjective submersions, thereby completing the proof of the following statement.

Proposition 5.3. {G•(D)} is a Kan simplicial manifold.

For anyΣ ∈ Gm(D), we may apply the Lie functor to obtain a C2,1 Lie algebroid morphism Σ̄ from T∆m toD; in fact, this
process gives a one-to-one correspondence, since G and the pair groupoid∆m

×∆m are both source-simply-connected.
When m = 1, this correspondence allows us to identify G1(D) with the A-path space P(D). Furthermore, when we

consider the truncation τ≤1G(D), the equivalence imposed by the truncation corresponds to homotopy equivalence of A-
paths (see [4, Propositions 1.1, 1.3]). In other words,

(
τ≤1G(D)

)
1 can be identified withG = P(D)/∼ . Thus we see thatG can

be recovered from {G•(D)} by truncation.

2 It has been communicated to us by Rui Fernandes and Ionut Marcut [27] and Pavol Ševera andMichal Siran [28,29] that Lemma 5.1 holds evenwithout
the assumption that D is integrable.
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To connect {G•(D)} to {C•(M)}, let πT and πT∗ be the canonical projections from TM ⊕ T ∗M to TM and T ∗M , respectively.
The map takingΣ ∈ Gm(D) to the bundle map πT∗ ◦ Σ̄ : T∆m

→ T ∗M defines a natural map of simplicial manifolds

F• : G•(D) → C•(M). (5.1)

It may seem that F• discards the information about the TM-component of Σ̄; however, the fact that Σ̄ is a Lie algebroid
morphism implies that the TM-component can be recovered by applying the tangent functor to the underlying map
∆m

→ M . To bemore explicit, suppose that Σ̄ is a Lie algebroidmorphism from T∆m toDwith underlyingmap f : ∆m
→ M .

The anchormapD → TM is the restriction of πT toD, so compatibility of Σ̄ with the anchormaps requires that πT ◦Σ̄ = Tf .
Therefore, the map F• is injective.

The following diagram of Kan simplicial manifolds summarizes the various relationships we have described.

G•(D) ↘
↙ F• →→

τ≤1

↓↓

C•(M)

τ≤2

↓↓
G LWX(M)

(5.2)

Example 5.4. To help illustrate the relationships in (5.2), consider the case where D = TM . Then Gm(TM) is space of C2

groupoid morphisms from the pair groupoid ∆m
× ∆m to the fundamental groupoid Π1(M), which is the source-simply-

connected Lie groupoid integrating TM . Such groupoidmorphisms are in one-to-one correspondence with C2,1 Lie algebroid
morphisms from T∆m to TM , which can be identified with C2 maps from ∆m to M . The map Fm takes f : ∆m

→ M to the
trivial bundle map f̃ : T∆m

→ T ∗M which has f as its underlying base map and is the zero map on each fiber.

5.2. (Twisted) Presymplectic 2-form

In Section 4.2, we introduced 2-forms ωi, as well as their twisted versions ωH
i , on Ci(M) for i = 1, 2. In this subsection,

we study the relationship of these 2-forms to the simplicial manifold {G•(D)} associated to a Dirac structure D. Our main
results are as follows.

Theorem 5.5. The 2-form F∗

2ω
H
2 ∈ Ω2(G2(D)) vanishes.

Together with the results of Section 4 (specifically, Propositions 4.2, 4.9, and 4.10), Theorem 4.11 implies the following
result.

Corollary 5.6. The 2-form F∗

1ω
H
1 is multiplicative and therefore descends to a multiplicative 2-form on the Lie groupoid G

integrating D. Additionally, F∗

1ω
H
1 is H-closed, in the sense that d(F∗

1ω
H
1 ) = δH.

Remark 5.7.

(1) In Corollary 5.6, we recover one of the main results of [3]. However, [3] showed that the 2-form on G satisfies an
additional property that controls the extent to which it is degenerate. It remains unclear how this property arises from
the inclusion (5.1), but we expect that it is related to the Lagrangian property discussed in Section 6.

(2) From Corollary 5.6, F∗

1ω
H
1 is anH-closed 2-form onG1(D), and therefore defines a δH-twisted Dirac structure onG1(D).

From the property that F∗

1ω
H
1 is multiplicative, it is not hard to check the truncation map τ≤1 is a forward Dirac map.

It is natural to expect that the groupoid G could be obtained from G1(D) via Hamiltonian reduction as in [10] and [4].
We will not pursue this direction in this paper.

The proof of Theorem 5.5 is somewhat technical, so we will first give an intuitive explanation for why one might expect
it to hold. By [13] and [5], there is a correspondence between Courant algebroids and degree 2 differential graded (dg)-
symplecticmanifolds. In particular, the Courant algebroid TM⊕T ∗M corresponds to the dg-symplecticmanifold T ∗

[2]T [1]M .
We can thus view the symplectic 2-groupoid LWX(M) as the integration of T ∗

[2]T [1]M .
It is known [5] that Dirac structures D ⊂ TM ⊕ T ∗M correspond to a certain dg-Lagrangian submanifolds LD of

T ∗
[2]T [1]M . It seems reasonable to expect that dg-Lagrangian submanifolds should integrate to Lagrangian sub-2-groupoids.

We point out that the analogous result in the n = 1 case is known to be true [30].
In the remainder of this section,wewill prove Theorem5.5. For simplicity, we assumeH = 0. The extension to the general

case is straightforward and left to the reader.
It suffices to check the statement locally on a coordinate chart of M . On such a chart, let (xi, qi, pi) be coordinates on

TM ⊕ T ∗M . A C2,1 bundle map ϕ : T∆2
→ T ∗M is locally given by ϕ = (f i, ξi), where f i := ϕ∗(xi) is a function on ∆2

and ξi := ϕ∗(pi) is a 1-form on ∆2 for each i. Together, the f i form a C2 map f : ∆2
→ M , and the ξi form a C1 element of

Ω1
(
∆2, f ∗(T ∗M)

)
.
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A tangent vector on C2(M) at ϕ is locally given by (vi, χi), where the vi describe a section of f ∗(TM) and the χi describe
an element ofΩ1

(
∆2, f ∗(T ∗M)

)
. In the above coordinates, η2 has the form

η2
(
(vi, χi), (v′i, χ ′

i )
)

= viχ ′

i − v′iχi,

so the 2-form ω2 on C2(M) is given by

ω2((vi, χi), (v′i, χ ′

i )) =

∫
∆2

d(viχ ′

i − v′iχi). (5.3)

Let n = dimM . Since the rank of the Dirac structure D is n, we can locally find linearly independent sections Θα =

Qα + Pα = qiα∂i + piαdxi, for α = 1, . . . , n, that span D. The following properties hold by definition of Dirac structures:

⟨Θα,Θβ⟩ = qiαpiβ + qiβpiα = 0, (5.4)[
Θα,Θβ

]
= CγαβΘγ , (5.5)

where Cγαβ is a smooth function on M , and [·, ·] is the Courant bracket. Using the definition of the Courant bracket, (5.5)
implies that

CγαβPγ = LQαPβ − ιQβ dPα, (5.6)

which in coordinates becomes

Cγαβpiγ = qjα∂j(piβ ) − qjβ∂j(piα) + pjβ∂i(qjα) + qjβ∂i(pjα). (5.7)

Recall from Section 5.1 that a point Ψ of G2(D) can be identified with a C2,1 Lie algebroid morphism from T∆2 to D. A
C2,1 bundle map from T∆2 toD can be locally described by a C2 map f : ∆2

→ M and C1 elementsψα
∈ Ω1(∆2) where, for

v ∈ T∆2,

Ψ (v) = ψα(v)Θα.

Using the characterization of Lie algebroid morphisms in terms of differentials, we have that a bundle map Ψ : T∆2
→ D is

a Lie algebroid morphism if and only if

df i = f ∗(qiα)ψ
α, (5.8)

dψγ
= −

1
2
f ∗(Cγαβ )ψ

α
∧ ψβ . (5.9)

Given Ψ ∈ G2(D), the induced bundle map Ψ̂ := F2(Ψ ) from T∆2 to T ∗M is given by

Ψ̂ = (f i, f ∗(piα)ψα).

A tangent vector on G2(D) at Ψ is given by a collection of C2 functions vi on∆2, representing a vector field along f , and
C1 1-forms µα , satisfying the following equations, which are obtained by differentiating (5.8) and (5.9):

dvi = vjf ∗(∂jqiα)ψ
α

+ f ∗(qiα)µ
α, (5.10)

dµγ = −
1
2
vjf ∗(∂jC

γ

αβ )ψ
α

∧ ψβ
− f ∗(Cγαβ )µ

α
∧ ψβ . (5.11)

The induced tangent vector on C2(M) is given by (vi, χi), where

χi = vkf ∗(∂kpiα)ψα
+ f ∗(piα)µα. (5.12)

Putting this into (5.3), we obtain the formula

(F∗

2ω2)
(
(vi, µα), (v′i, µ′α)

)
=

∫
∆2

dΞ ,

where

Ξ = f ∗(∂kpiα)ψα(viv′k
− v′ivk) + f ∗(piα)(viµ′α

− v′iµα) (5.13)

is a 1-form on∆2. We claim that dΞ = 0, which will imply Theorem 5.5.
The proof will proceed as follows. First, we can use (5.8)–(5.11) to write dΞ in terms of f , ψα , vi, v′i, µα , µ′α , and the

various structure functions. Second, we can collect terms that are of similar type with respect to theµ’s andψ ’s. We will see
that each group of terms vanishes as a result of (5.4)–(5.7).

5.2.1. Terms of type µ ∧ µ

In dΞ , the coefficient of µα ∧ µ′β is f ∗(piαqiβ + piβqiα) = f ∗(⟨Θα,Θβ⟩), which vanishes by the isotropy condition (5.4).
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5.2.2. Terms of type ψ ∧ µ
The coefficient of ψα

∧ µβ in dΞ is

f ∗

(
∂j(piα)q

j
β − ∂i(pjα)q

j
β − qjα∂j(piβ ) − pjβ∂i(qjα) + piγ C

γ

αβ

)
v′i

=
(
CγαβPγ − LQαPβ + ιQβ dPα

)
(v′),

which vanishes by the integrability conditions (5.6)–(5.7). Because of skew-symmetry, the coefficient of ψα
∧ µ′β will

similarly vanish.

5.2.3. Terms of type ψ ∧ ψ
The coefficient of ψα

∧ ψβ is

f ∗
(
qkα∂k∂j(piβ ) − qkβ∂k∂j(piα) − ∂j(piγ )C

γ

αβ + ∂j(pkβ )∂i(qkα)

− ∂j(pkα)∂i(qkβ ) + ∂k(piβ )∂j(qkα) − ∂k(piα)∂j(qkβ ) − piγ ∂j(C
γ

αβ )
)
viv′j,

plus terms that are antisymmetric in i, j. This is equal to

f ∗∂j
(
qkα∂k(piβ ) − qkβ∂k(piα) + pkβ∂i(qkα) + ∂i(pkα)qkβ − piγ C

γ

αβ

)
viv′j,

again plus terms that are antisymmetric in i, j. We can recognize this expression as

d
(
LQαPβ − ιQβ dPα − CγαβPγ

)
(vi, v′j),

which vanishes by the integrability conditions (5.6)–(5.7).

Remark 5.8. We observe that the proof of Theorem 5.5 does not rely on the assumption that D is maximally isotropic.
Therefore, the result applies to any isotropic subbundle of TM ⊕ T ∗M satisfying the integrability condition (5.5). The next
section aims to address the question of what distinguishes the isotropic case from the maximally isotropic case.

6. Dirac structures and Lagrangian sub-2-groupoids

In Section 5, we considered the geometry of the inclusion F• : G•(D) ↪→ C•(M), whenD is a Dirac structure. Consider the
composition of this mapwith the truncationmap τ≤2 : C(M) → LWX(M), and let LD be the image ofG2(D) in LWX2(M). The
image LD determines a sub-2-groupoid LD of LWX(M), and the 1-truncation of LD can be identified with the 1-truncation
of G(D), which, as we noted in Section 5, is the Lie groupoid G integrating D. As is explained in the proof of Lemma 5.1,
G2(D) can be identified with the mapping space from∆2 to s-fibers of G such that 0 ∈ ∆2 is mapped into the unit space of
G. An argument similar (but easier) to the proof of Theorem 3.4 shows that τ≤2(G•(D))2 is a smooth Banach manifold and
therefore LD is a Lie 2-groupoid.3 We would now like to consider the geometry of the sub-2-groupoid LD ⊂ LWX(M).

For x ∈ M , the zero bundle map Ψ x
: T∆ → D over the constant map f x : ∆ → M , s ↦→ x, defines a point in LD . This

defines an embeddingM ↪→ LD ⊂ LWX2(M). We can think of this image ofM as being the space of ‘‘units’’, since it is equal
to the image ofM under the ‘‘double degeneracy’’ maps. Recall that a subspace L of a (weak) symplectic Banach space (B,Ω)
is Lagrangian if L is maximally isotropic with respect toΩ .

Proposition 6.1. For all x ∈ M, TxLD is a Lagrangian subspace of TxLWX2(M).

Proof. By Theorem 5.5, we already know that LD is isotropic. It remains to show that TxLD is coisotropic, fromwhich we can
conclude that TxLD is a Lagrangian subspace.

We use the local description and notation from Section 5.2. Choose coordinates on M for which x = 0. Then, if we write
Ψ x

= (f i, ψα) as in Section 5.2, we have f i = 0 and ψα
= 0.

Let (vi, µα) be a tangent vector on G2(D) at Ψ x. In this case, (5.10) and (5.11) reduce to

dvi = qiα(0)µ
α, (6.1)

dµα = 0. (6.2)

Any solution to (6.1)–(6.2) can be written in the form

vi = qiα(0)g
α

+ c i, (6.3)
µα = dgα, (6.4)

for some C2 functions gα on∆2 and constants c i. From (5.12), we have that the induced tangent vector on C2(M) has

χi = piα(0)µα = piα(0)dgα. (6.5)

3 In general, it is proved in [31, Theorem 1.2] that the truncation of G•(D) at level 2 always gives a Lie 2-groupoid.
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At the level of tangent vectors, the truncation map τ≤2 has the effect of pulling back to ∂∆2. In what follows, let
j : ∂∆2

→ ∆2 be the natural inclusion map.
To prove that TxLD is coisotropic, we will show that, if any tangent vector (v′i, χ ′

i ) ∈ TxC2(M) is such that ωH
2 ((v

i, χi),
(v′i, χ ′

i )) = 0 for all (vi, χi) of the form (6.3), (6.5), then (j∗v′i, j∗χ ′

i ) takes the same form.
We compute

ωH
2

(
(vi, χi), (v′i, χ ′

i )
)

=

∫
∆2

d
(
(qiα(0)g

α
+ c i)χ ′

i − v′ipiα(0)dgα
)

=

∫
∂∆2

c iχ ′

i +

∫
∂∆2

(
qiα(0)χ

′

i + piα(0)dv′i) gα.
The requirement that this vanishes for all gα and c i implies that

∫
∂∆2 χ

′

i vanishes for all i, and that j∗(qiα(0)χ
′

i + piα(0)dv′i)
vanishes for all α. From the first condition, we have that j∗χ ′

i is exact, so let Λi be functions on ∂∆2 such that j∗χ ′

i = dΛi.
From the latter condition, we then have that

0 = d(qiα(0)Λi + piα(0)j∗v′i)

= d⟨Θα(0), j∗v′i∂i +Λidxi⟩.
(6.6)

Let 0 denote the 0th vertex of∆2, and let ei = v′i(0), εi = Λi(0). Then (6.6) implies that

(j∗v′i
− ei)∂i + (Λi − εi)dxi

annihilated D. Using the fact that D is maximally isotropic, we deduce that there exist unique functions Φα on ∂∆2 such
that

(j∗v′i
− ei)∂i + (Λi − εi)dxi = ΦαΘα(0),

implying that

j∗v′i
= qiα(0)Φ

α
+ ei, (6.7)

Λi = piα(0)Φα
+ εi. (6.8)

Differentiating the latter equation, we have

j∗χ ′

i = piα(0)dΦα. (6.9)

From (6.7) and (6.9), we see that j∗v′i and j∗χ ′

i indeed take the desired form of (6.3) and (6.5). □

Definition 6.2. An embedded submanifold L of a (weak) symplectic Banach manifold (B,Ω) is Lagrangian if the tangent
space TxL at each point x ∈ L is a Lagrangian subspace of (TxB,Ωx), i.e. TxL ⊂ TxB is a maximally isotropic subspace with
respect toΩx.

A sub-2-groupoid L• of a symplectic 2-groupoid (G•,Ω) is called Lagrangian if L2 is a Lagrangian submanifold of G2.

Proposition 6.1 suggests the following conjecture.

Conjecture 6.3. LD is a Lagrangian sub-2-groupoid of the symplectic 2-groupoid LWX(M), i.e. LD is a Lagrangian submanifold
of LWX2(M).

It is well-known that, if B ∈ Ω2(M) is a closed 2-form on M , then the graph of B♭ : TM → T ∗M is a Dirac structure (with
H = 0). We prove Conjecture 6.3 in this special case.

Proposition 6.4. Let B be a closed 2-form on M, and let D ⊂ TM ⊕ T ∗M be the graph of B♭. Then LD is a Lagrangian sub-2-
groupoid of LWX(M).

Proof. Because of Theorem 5.5, we only need to show that LD is coisotropic. In the notation of Section 5.2, we can take the
local trivialization of D to be given by Θi = ∂i + Bijdxj, where B =

1
2Bijdxi ∧ dxj. In this frame, the structure functions Ck

ij
vanish.

Using (5.8), (5.9), and the above description of Θi, we have that a point Ψ ∈ G2(D) is given by (f i, ψ i), where df i = ψ i

andψ i
= 0 (of course, the latter condition is redundant). Similarly, Eqs. (5.10) and (5.11), describing a tangent vector (vi, µi)

at Ψ , reduce to dvi = µi, dµi
= 0. From (5.12), we have that the induced tangent vector on C2(M) is of the form

χi = vkf ∗(∂kBij)ψ j
+ f ∗(Bij)µj

= vkf ∗(∂kBij)df j + f ∗(Bij)dvj. (6.10)

As in the proof of Proposition 6.1, let j : ∂∆2
→ ∆2 be the natural inclusion map. To prove that LD is coisotropic, we will

show that, if any tangent vector (v′i, χ ′

i ) is such that ω2((vi, χi), (v′i, χ ′

i )) = 0 for all vi, with χi of the form (6.10), then j∗χ ′

i
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takes the same form. We compute

ω2
(
(vi, χi), (v′i, χ ′

i )
)

=

∫
∂∆2

viχ ′

i − v′i (vkf ∗(∂kBij)df j + f ∗(Bij)dvj
)

=

∫
∂∆2

vi
(
χ ′

i − v′kf ∗(∂iBkj)df j − d(v′jf ∗(Bij))
)
.

The requirement that this vanishes for all vi implies that

j∗χ ′

i = j∗
(
v′kf ∗(∂iBkj)df j + d(v′jf ∗(Bij))

)
= j∗

(
v′kf ∗(∂iBkj)df j + v′jf ∗(∂kBij)df k + f ∗(Bij)dv′j) . (6.11)

Using the fact that B is closed, we may rewrite (6.11) as

j∗χ ′

i = j∗
(
v′kf ∗(∂kBij)df j + f ∗(Bij)dv′j) ,

showing that j∗χ ′

i takes the desired form. □
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