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Application of the moving frame method to deformed
Willmore surfaces in space forms

Thanuja Paragoda1

aDepartment of Mathematics, Faculty of Applied Sciences,
University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka

Abstract

The main goal of this paper is to use the theory of exterior differential forms in

deriving variations of the deformed Willmore energy in space forms and study

the minimizers of the deformed Willmore energy in space forms. We derive both

first and second order variations of deformed Willmore energy in space forms

explicitly using moving frame method. We prove that the second order vari-

ation of deformed Willmore energy depends on the intrinsic Laplace Beltrami

operator, the sectional curvature and some special operators along with mean

and Gauss curvatures of the surface embedded in space forms, while the first

order variation depends on the extrinsic Laplace Beltrami operator.
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1. Introduction

The Willmore energy of a surface M ⊂ R3 is defined as

W (M) =

∫

M

H2 dS, (1)

where H is the mean curvature of the surface M and dS is the area element.

This is also called classical bending energy and its applications appear in various

fields of science and technology such as cell biology, optical design, nonlinear

plate theory, nano tubes etc (see, e.g., [1], [2], [3],[4] and references therein).
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From the theoretical view point Willmore conjecture was one of the prominent

results in the study of Willmore energies which was proved by F. C. Marques

and A. A. Neves using min-max theory of minimal surfaces in [5]. This energy

captures how much the surface has deviated from a round sphere. The mini-

mizers of (1) are called Willmore surfaces which are the solutions of the Euler-

Lagrange equation corresponding to (1). The Willmore energy is important in

the context of conformal geometry as it is known to be invariant under the con-

formal transformations of R3; more details about this can be found in [6],[7],[8],

[9], [10] and [11].

The generalization of Willmore energy connects to the elasticity of mem-

branes which was studied by many authors in the literature (see [12],[13] and

[14]). In [1], the elasticity bending energy of a membrane is defined by

E(M) =

∫

M

ε+ β(H − c0)2 − γK dS,

where ε is the surface tension which describes the interaction between the mem-

brane material and the ambient fluid material and β, γ, c0 are the elastic con-

stants which determines the inner interaction of the membrane and the sponta-

neous curvature of the membrane respectively. When ε, γ, c0 = 0 and β = 1 this

reduces to (1). The [15] studies the behaviour of the Willmore energy under

infinitesimal bending of a surface. In addition, the Willmore energy of curves

under second order infinitesimal bending energy was studied in [16].

We define our generalized Willmore energy functional associated to a surface

M immersed in R3 as

W (M) =

∫

M

(H2 + ε) dS. (2)

The Euler-Lagrange equation corresponding to the functional (2) was first ob-

tained in [17] as a particular case of a most general variational problem. By

considering surface tension and neglecting other rigidities, the Euler-Lagrange

equation,

∆H + 2H(H2 −K − ε) = 0 (3)
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corresponding to (2) was deduced in [18] and [19], where ∆ is the Laplace

Beltrami operator induced by the metric and K is the Gauss curvature of the

surface . Its biological applications are demonstrated in [20]. The solutions of

(3) are called generalized Willmore surfaces and in the case of H = 0, they

are minimal surfaces. Further the studies in [21], [22], [23] and [24] motivated

us to study Generalized Willmore flow of graphs and its numerical applications

using automatic differentiation tools which was a novel approach in the study

of Willmore flow (see [25]).

In [18] and [26] we studied Willmore-type energies and Willmore-type sur-

faces in space forms and deduced the Euler-Lagrange equation of the deformed

Willmore energy in a space form using an extrinsic Laplace-Beltrami opera-

tor which depends on the metric of the surface and sectional curvature of the

space form. Papers [14] and [15] motivated us to derive both first and second

order variations of our deformed Willmore energy in space forms. In [26], we

considered only normal variation of a surface.

In this report, we consider the variation of a surface embedded in M3(k0)

along with a moving frame. Using exterior differential forms we derive the

variations of the deformed Willmore energy in M3(k0). The first order variation

of the deformed Willmore energy in space forms depends on the extrinsic Laplace

Beltrami operator and the sectional curvature of ambient space form and the

second order variation depends on the intrinsic Laplace Beltrami operator, the

sectional curvature and some special operators ∇K ,∇·∇K which will be defined

in the next section. Then we study the minimizers of the deformed Willmore

energy in space forms.

2. Background

Let p be a point of a Riemannian manifold M and let σ ⊂ TpM be a two

dimensional subspace of the tangent space TpM of M at p. The real number

k(x, y) = k(σ), where {x, y} is an arbitrary basis of σ, is called the sectional

curvature of σ at p. It measures the curvature of a Riemannian manifold. In
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other words, it is defined by

k(u, v) =
〈R(u, v)v, u〉

〈u, u〉〈v, v〉 − 〈u, v〉2 ,

where R is the Riemann curvature tensor which is given by

R(u, v)v, u = ∇v∇uv −∇u∇vv +∇[u,v]v,

and u, v are linearly independent tangent vectors at a point on the Riemannian

manifold. Here, ∇ is the Riemann connection of M and [u, v] denotes Lie

brackets of u and v. If u and v are orthonormal, then k(u, v) = 〈R(u, v)v, u〉. If

M = Rn, then 〈R(u, v)v, u〉 = 0 for all tangent vectors u and v, which implies

k(u, v) = 0. In our work, the sectional curvature, k(u, v) = k0 is a constant.

The complete Riemannian manifolds with constant sectional curvature k0 are

said to be space forms. We consider a three-dimensional space form and it is

denoted by M3(k0). When k0 = 1, k0 = 0 and k0 = −1, the space form becomes

S3, R3 and H3 spaces respectively.

The deformed Willmore energy in space form M3(k0) is defined by

W̃ (M ; k1) =

∫

M

(H2 + k1) dS (4)

where k1 is an arbitrary constant. When k0, k1 = 0 this reduces to the classical

Willmore energy in R3. When k0 = 0 and k1 6= 0, this deformed Willmore

energy reduces to (2). In that case, if we add a constant k1 to the integrand

of (4) then we subtract the same constant from the quantity H2 − K in the

corresponding Euler-Lagrange equation as in [18] and [26].

Now, we review some basic facts about differential forms in connections

with concepts in differential geometry. More details can be found in [27]. Let us

consider r : M →M3(k0) to be an immersion of a smooth orientable surface M

embedded in M3(k0). We start by recalling few basic facts about local geometry

of M at a point p ∈ M . Let O ⊂ M be a neighbourhood of p such that the

restriction r|O is an embedding. Let P ⊂ M3(k0) be a neighbourhood of p

such that P ∩ r(M) = r(O). Now it is possible to construct a moving frame

{e1, e2, e3} such that e1, e2 are tangent vectors to r(O) and e3 is normal to
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r(O). Note that ei · ej = δij (i, j = 1, 2, 3). Also, dr = ω1e1 + ω2e2, where {ωi}
is the coframe forms associated to the frame {ei}. The connection forms are

given by ωij = −ωji, i, j = 1, 2, 3 which satisfy the following structure equations

of M with the additional relation ω3 = 0.

dω1 = ω2 ∧ ω21, (5)

dω2 = ω1 ∧ ω12, (6)

ω1 ∧ ω13 + ω2 ∧ ω23 = 0, (7)

dω12 = ω13 ∧ ω32, (8)

dω13 = ω12 ∧ ω23, (9)

and

dω23 = ω21 ∧ ω13. (10)

Using (7) and Cartan’s lemma, we have

ω13 = h11ω1 + h12ω2 (11)

and

ω23 = h21ω1 + h22ω2, (12)

where hij = hji are differentiable functions.

The area element is defined as dS = ω1 ∧ ω2. The first fundamental form is

given by

I := dr · dr = ω2
1 + ω2

2 . (13)

The second fundamental form is

II := −dr · de3 = hijωiωj . (14)

The mean curvature H and the Gauss curvature K of M are given by

H =
h11 + h22

2
and K = h11h22 − h212 (15)
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respectively. It can be easily obtained that

dω12 = −Kω1 ∧ ω2 and ω13 ∧ ω2 + ω1 ∧ ω23 = 2Hω1 ∧ ω2. (16)

The fundamental properties of the Hodge star operator (∗) are given by the

following formulae

∗ξ = ξ ω1 ∧ ω2, (17)

∗ω1 = ω2, ∗ω2 = −ω1, (18)

and

d ∗ dφ = ∆φω1 ∧ ω2, (19)

where φ, ξ are functions defined on M and ∆ is the intrinsic Laplace Beltrami

operator on M (see[14] and [27]).

The extrinsic Laplace Beltrami operator, ∆̃, in M3(k0) is defined by

∆̃ = ∆ + 2k0. (20)

The following relations and operators can be easily proved using orthogonal

local coordinates (u1, u2) at a point in a surface. Then we have

dφ(u1, u2) = φ1ω1 + φ2ω2. (21)

If we consider (13) in Einstein notation then we have

I = g11(du1)2 + g22(du2)2, (22)

where gij = 〈 ∂r
∂u1 ,

∂r
∂u2 〉. Since ω1 =

√
g11du

1 and ω2 =
√
g22du

2, (14) implies

II = h11g11(du1)2 + 2h12
√
g11
√
g22du

1du2 + h22g22(du2)2. (23)

By taking h11g11 = l11, h12
√
g11
√
g22 = l12 and h22g22 = l22,

II = lijdu
iduj ,

which is the second fundamental form in Einstein notation. Then we can define

∇K = Klijri
∂

∂uj
, (24)

6



where lij = (lij)
−1. Then we have

∇ · ∇Kφ =
1√

g11g22

∂

∂ui

(√
g11g22Kl

ij ∂φ

∂uj

)
(25)

and

d∗̃d̃φ = ∇ · ∇Kφω1 ∧ ω2, (26)

where ∗̃d̃φ = −φ2ω13 + φ1ω23.

3. Variations of deformed Willmore functional in space forms

In this section, we derive both first and second order variations of (4) of a

surface embedded in M3(k0). We consider the variation of a surface in M3(k0)

along an orthonormal moving frame e1, e2, e3 and show that the variations of

deformed Willmore energy along the vectors e1 and e2 vanish for a surface

without a boundary and with a boundary in M3(k0) and then we obtain the

variation formulae in the normal direction e3 to the surface.

3.1. Variation of a surface in M3(k0)

Let M be a surface with mean curvature H and Gauss curvature K in space

forms M3(k0) of sectional curvature k0. Then M ′ := {r′|r′ = r + δr} is the

deformed surface, where δr is the variation of the surface M and it is denoted

by

δr = δ1r + δ2r + δ3r. (27)

where

δ1r = Ω1e1, δ2r = Ω2e2, and δ3r = Ω3e3, (28)

Ω1,Ω2 and Ω3 are smooth functions. The moving frame {e1, e2, e3} should be

changed because of the deformation of M . Therefore, we have

δkei = Ωkijej , i, j, k = 1, 2, 3. (29)

Since ei · ej = δij (i, j = 1, 2, 3), Ωkij = −Ωkji. Since the operators δ and

d(exterior differential operator) are commutative we have dδkr = δkdr and

dδkej = δkdej .
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3.2. First order variation of deformed Willmore energy

Here we derive the first order variation of (4) using exterior differential

forms. We consider two cases a surface without a boundary and a surface with

a boundary separately.

Theorem 1. Let r : M → M3(k0) be an immersion of a smooth orientable

surface M embedded in M3(k0). Let M ′ := {r′|r′ = r + δr} be a deformed

surface of M ⊂ M3(k0), where δr is given by (27). Then the first variation of

(4) is given by

δW̃ (M ; k1) =

∫

M

(
∆̃H + 2H(H2 −K + k0 − k1)

)
Ω3 dS.

where ∆̃ is the extrinsic Laplace Beltrami operator on M .

Proof. Case I: M is a surface without a boundary.

Let us consider

δW̃ (M ; k1) = δ1W̃ (M ; k1) + δ2W̃ (M ; k1) + δ3W̃ (M ; k1). (30)

We calculate δ1W̃ (M ; k1), δ2W̃ (M ; k1), and δ3W̃ (M ; k1). First we show that

δ1W̃ (M ; k1) ≡ 0 and δ2W̃ (M ; k1) ≡ 0. By taking the variation δ1 of (4), we

have

δ1W̃ (M ; k1) = δ1

(∫

M

(H2 + k1) dS

)

=

∫

M

(
2Hδ1(H)ω1 ∧ ω2 +H2δ1(ω1 ∧ ω2)

)

+k1

∫

M

δ1(ω1 ∧ ω2)).

Then we evaluate δ1H and δ1(ω1 ∧ ω2).

δ1(ω1 ∧ ω2) = δ1ω1 ∧+ω1 ∧ δ1ω2. (31)

The following fundamental formulae can be found in [14].

δ1ω1 = dΩ1 − ω2Ω121, (32)

δ2ω2 = Ω1ω12 − ω1Ω112, (33)

Ω113 = h11Ω1, and Ω123 = h12Ω1, (34)
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and

δkωij = dΩkij + Ωkimωmj − ωimΩkmj . (35)

Using (32) and (33), (31) becomes

δ1(ω1 ∧ ω2) = dΩ1 ∧ ω2 + Ω1ω1 ∧ ω12 = d(Ω1ω2). (36)

Taking wedge product of (11) with ω12, we obtain

dω23 = h11dω2 − h12dω1. (37)

On the other hand, from (12) we have

dω23 = d(h21) ∧ ω1 + h21dω1 + d(h22) ∧ ω2 + h22dω2. (38)

By equating (37) and (38), we obtain

d(h12) ∧ ω1 + 2h12dω1 = (h11 − h22)dω2 − d(h22) ∧ ω2. (39)

Using (39), (34) and (35) we have

δ1Hω1 ∧ ω2 = dH ∧ ω2Ω1. (40)

Therefore,

δ1W̃ (M ; k1) =

∫

M

(2HdH) ∧ ω2Ω1 + (H2 + k1)d(Ω1ω2)) (41)

=

∫

M

d((H2 + k)Ω1ω2) = 0 (42)

since M is a closed surface. Similarly, it is easily showed that

δ2W̃ (M ; k1) = 0.

Now, we consider

δ3W̃ (M ; k1) = δ3

(∫

M

(H2 + k1) dS

)
=

∫

M

δ3(H2) dS

+

∫

M

H2 δ3(dS) + k1

∫

M

δ3(dS). (43)
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δ3 (dS) = δ3(ω1 ∧ ω2) = δ3ω1 ∧ ω2 + ω1 ∧ δ3ω2. (44)

Since δ3ω1 = Ω3ω31 − ω2Ω321 and δ3ω2 = Ω3ω32 − ω2Ω312, (44) becomes

δ3ω1 ∧ ω2 + ω1 ∧ δ3ω2 = Ω3(ω31 ∧ ω2 + ω1 ∧ ω32) (45)

Substituting (16) in (45), we obtain

δ3 (dS) = −(2H)Ω3 dS. (46)

Now, we show that

δ3(H2) dS = (4H2 − 2K + 4k0)HΩ3 dS +H∆Ω3 dS. (47)

Using (15), we have

δ3(H2) dS = H(δ3(h11) + δ3(h22))ω1 ∧ ω2. (48)

By taking variation δ3 of (11) and (12) we obtain

δ3ω13 = δ3(h11)ω1 + h11δ3ω1 + δ3(h12)ω2 + h12δ3ω2 (49)

and

δ3ω23 = δ3(h12)ω1 + h12δ3ω1 + δ3(h22)ω2 + h22δ3ω2. (50)

On the other hand, using (35) we have

δ3ω13 = dΩ313 + Ω311ω13 − ω12Ω323, (51)

δ3ω23 = dΩ323 + Ω321ω13 − ω22Ω323, (52)

and

dΩ3 = Ω313ω1 + Ω323ω2. (53)

Using (15) and (18), we end up with the following formulae;

δ3(h11) = (4H2 − 2K + 4k0)Ω3, (54)

δ3(h22)ω1 ∧ ω2 = d ∗ dΩ3. (55)
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Substituting (54) and (55) into (48), we obtain

δ3(H2) dS = (4H2 − 2K + 4k0)HΩ3 ω1 ∧ ω2 +Hd ∗ dΩ3. (56)

Since d ∗ dΩ3 = ∆Ω3ω1 ∧ ω2 = ∆Ω3 dS, (56) implies (47). The Green’s second

identity implies that
∫

M

H∆Ω3 dS =

∫

M

Ω3∆H dS, (57)

since M is a closed surface.

Using (46) and (47), (43) becomes

δ3W̃ (M ; k1) =

∫

M

((∆ + 4H2 − 2K + 4k0)H)Ω3 dS

+

∫

M

H2(−(2H)Ω3) dS +

∫

M

−2k1HΩ3 dS

=

∫

M

(
(∆H + 2H(H2 −K + 2k0 − k1)

)
Ω3 dS. (58)

Substituting (20) in (58), we obtain

δW̃ (M ; k1) =

∫

M

(
∆̃H + 2H(H2 −K + k0 − k1)

)
Ω3 dS. (59)

Case II: M is a surface in M3(k0) with a boundary

Let

W̃ (M ; k1) =

∫

M

(H2 + k1) dS +

∫

∂M

(H2 + k1) dS. (60)

Since Ω1,Ω2,Ω3 = 0, we have dΩ1, dΩ2, dΩ3 = 0 on the boundary, and taking

the variation δ1 of (60) we obtain

δ1W̃ (M ; k1) =

∫

M

d((H2 + k1)Ω1ω2) =

∫

∂M

(H2 + k1)Ω1ω2 = 0. (61)

Similarly, we can easily show that

δ2W̃ (M ; k1) = 0.

In case of a surface with a boundary, the Green’s second identity gives
∫

M

H∆Ω3 dS − Ω3∆H dS =

∫

∂M

(H ∗ dΩ3 − Ω3 ∗ dH). (62)
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Since Ω3 = 0 and dΩ3 = 0 on the boundary, we have (62) becomes

∫

M

H∆Ω3 dS − Ω3∆H dS = 0.

In case of taking variation δ3 of (60), we still obtain (59).

Observe that if M is a surface with a boundary embedded in the space form

M3(k0), then the variations δ1 and δ2 of (60) are zero and the presence of the

boundary does not lead to additional relations. It was earlier shown in [28] and

[3] that the variations δ1 and δ2 of (60) are zero when the ambient space is R3.

3.3. Second order variation of deformed Willmore energy in space forms

Theorem 2. Let r : M → M3(k0) be an immersion of a smooth orientable

surface M embedded in M3(k0). Let M ′ := {r′|r′ = r + δr} be a deformed

surface of M ⊂ M3(k0), where δr is given by (27). Then the second order

variation of (4) is given by

δ2W̃ (M ; k1) =

∫

M

Ω2
3

(
8H4 − 10H2K + 2K2 − 8Kk0 + 12H2k0 + 8k20

+2Kk1 − 4k0k1

)
dS

+

∫

M

Ω3∆Ω3

(
7H2 − 2K + 4k0 − k1

)
dS

−
∫

M

2HΩ3∇ · ∇KΩ3 dS +
1

2

∫

M

(∆Ω3)2 dS

+

∫

M

2H(∇(HΩ3) · ∇Ω3 −∇Ω3 · ∇KΩ3) dS. (63)

Proof. We consider

δ2W̃ (M ; k1) = δ23

∫

M

H2 + k1 dS. (64)
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Substituting (56) and (46) into (64), we have

δ2W̃ (M ; k1) = δ3

∫

M

(
(4H2 − 2K + 4k0)H − 2H3

)
Ω3 dS

+ δ3

∫

M

Hd ∗ dΩ3 + k1

∫

M

δ3(−2HΩ3 dS)

=

∫

M

δ3

(
(4H2 − 2K + 4k0)H − 2H3

)
Ω3 dS

+

∫

M

(
(4H2 − 2K + 4k0)H − 2H3

)
Ω3δ3(dS)

+

∫

M

(δ3Hd ∗ dΩ3 +Hδ3(d ∗ dΩ3))

− 2k1Ω3

(∫

M

δ3H dS +

∫

M

Hδ3(dS)

)
.

Define

I1 :=

∫

M

δ3(2H3 − 2KH + 4k0H)Ω3 dS. (65)

Now we show that

δ3K dS = 2KHΩ3 +∇ · ∇KΩ3. (66)

From (16), we have

δ3K dS = −δ3(dω12)−Kδ3(dS). (67)

Using (35) and (46) we obtain (66). Substituting (47) and (66) into (65) we

have

I1 = Ω3

(∫

M

6H2

(
(2H2 −K + 2k0)Ω3 +

1

2
∆Ω3

)

−2H

(
2KHΩ3 +∇ · ∇KΩ3

)

−2K

(
(2H2 −K + 2k0)Ω3 +

1

2
∆Ω3

)

+4k0

(
(2H2 −K + 2k0)Ω3 +

1

2
∆Ω3

)
dS

)
. (68)

Substituting (57) into (68), we obtain

I1 =

∫

M

Ω2
3

(
12H4 − 14H2K + 2K2 − 8Kk0 + 20H2k0 + 8k20

)
dS

+Ω3

∫

M

(3H2 −K + 2k0)∆Ω3 dS − 2Ω3

∫

M

H∇ · ∇KΩ3 dS. (69)
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Define

I2 :=

∫

M

(
(4H2 − 2K + 4k0)H − 2H3

)
Ω3δ3(dS). (70)

Using (46),

I2 =

∫

M

(2H3 − 2KH + 4k0H)Ω3(−2HΩ3) dS,

= Ω2
3

∫

M

(−4H4 + 4KH2 − 8k0H
2) dS. (71)

Now we consider

δ3(d ∗ dΩ3) =

(
2∇(HΩ3) · ∇Ω3 + 2HΩ3∆Ω3

−2∇Ω3 · ∇KΩ3 − 2Ω3∇ · ∇KΩ3

)
dS. (72)

Define

I3 :=

∫

M

(δ3Hd ∗ dΩ3 +Hδ3(d ∗ dΩ3)). (73)

Substituting (72) into (73) we have

I3 =

∫

M

(
(2H2 −K + 2k0)Ω3 +

1

2
∆Ω3

)
∆Ω3 dS

+

∫

M

(
2H∇(HΩ3) · ∇Ω3) + 2H2Ω3∆Ω3

−2H∇Ω3 · ∇KΩ3 − 2HΩ3∇ · ∇KΩ3

)
dS,

which simplifies to

I3 = Ω3

∫

M

(4H2 −K + 2k0)∆Ω3 dS

+
1

2

∫

M

(∆Ω3)2 dS −
∫

M

2HΩ3∇ · ∇KΩ3 dS

+

∫

M

2H(∇(HΩ3) · ∇Ω3 −∇Ω3 · ∇KΩ3) dS. (74)

Define

I4 := −2k1Ω3

(∫

M

δ3H dS +

∫

M

Hδ3(dS)

)
. (75)
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Using (46) and (47), (75) becomes

I4 = −2k1Ω3

(∫

M

(
(2H2 −K + 2k0)Ω3 +

1

2
∆Ω3

)
dS.

+Ω2
3

∫

M

4k1H
2 dS. (76)

δ2W̃ (M ; k1) = I1 + I2 + I3 + I4.

4. Conclusion

We studied deformed Willmore energy in space forms with the framework of

exterior differential forms. We considered the variation of a surface embedded in

M3(k0) along with the moving frame. In that case we considered the variation

of the moving frame {e1, e2, e3} and showed that the variations of deformed

Willmore energy along the directions e1 and e2 are zero and obtained the both

first and second order variations of the deformed Willmore energy in M3(k0) in

the direction of e3 which is the normal to the surface. The papers [26] and [18]

studied first variation of deformed Willmore energy with framework of Einstein

notation and considered only normal variation of the surface. In this paper we

derived both first and second order variations using exterior differential forms.

In the first variation of the deformed Willmore energy depends on the extrinsic

Laplace Beltrami operator ∆̃, as we described in [26] and [18], the sectional

curvature k0 of the ambient space form, mean and Gauss curvatures of the

surface and arbitrary constant k1. We considered a surface in M3(k0) with

a boundary and without a boundary in deriving the variation using exterior

differential forms which is a novel approach in the study of Willmore energy in

different ambient spaces. Then the second variation of the deformed Willmore

energy is expressed in terms of the intrinsic Laplace Beltrami operator ∆, k0,

k1, mean and Gauss curvatures and some special operators ∆K , ∆ ·∆K which

depends on the Gauss curvature and the metric of the surface. When k1 = 0

in R3, k1 = 2 in S3 and k1 = −2 in H3, the minimizers of (4) share the same

15



Euler-Lagrange equation which is the classical Willmore equation, eventually up

to extrinsic shift 2k0 = k1 in the Laplace Beltrami operator. The equation (63)

is useful to discuss the stability of the minimizers of (4) in different ambient

spaces.

The papers [29] and [30] studies Lawson’s 1-1 correspondence which repre-

sents CMC surfaces in different ambient spaces and they are called Lawson’s

cousins. Likewise, there should be a 1-1- correspondence between Willmore sur-

faces embedded in different ambient space forms. In future, we will study this

1-1 correspondence between isometric families of Willmore surfaces in differ-

ent ambient space forms together with the generalized harmonic maps and Lie

group theory.
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